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Wind energy can contribute to national climate, energy, and economic goals by expanding clean
energy and supporting economies through new manufacturing industries. However, the
mechanisms for achieving these interlinked goals are not well understood. Here we analyze the
wind energy manufacturing global value chain (GVC), using a dataset on 389 component supplier
firms (2006-2016) that work with 13 original equipment manufacturers (OEMs). We assess how
technology complexity, i.e., the knowledge intensity and difficulty of manufacturing components,
shapes the location of suppliers. For countries without existing wind industries, we find evidence
of the emergence of suppliers only for low complexity components (e.g., towers and generators).
For countries with existing wind industries, we find that suppliers’ evolution, i.e., changes in their
international supply relationships, is less likely for high complexity components (e.g., blades and
gearboxes). Our findings show the importance of understanding technologies along with firms

and countries within GVCs for achieving policy goals.
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The global market for wind power technology is large and growing. Installed wind capacity has
grown wotldwide from 73 GW in 2006 to 623 GW in 2019'. Mid-century projections expect
continued expansion® for two reasons: first, the increasing ambition for clean energy deployment
by the governments of many countries and second, the cost decreases driven by, among other
factors, technological advances and manufacturing improvements at the component level’>—such

as in blades, towers, gearboxes, and bearings.

This expanding market for wind power has created co-benefit opportunities for policymakers
interested in coupling energy and economic development goals. The ability to develop a domestic
manufacturing component supply chain and generate employment is particularly attractive.
Examples of governments explicitly trying to advance energy, climate, and industrial goals in the
wind sector include the Offshore Wind Sector Deal (United Kingdom)® and local content
requirement for onshore wind deployment (in Brazil, and previously in China)’. Articulating these
co-benefits for improving domestic energy technology industries has been instrumental in the

political dialogue on, and public support for, energy policy*'".

Despite growing research and policy interest in clean energy manufacturing and global value chains
(GVCs)'"™, there is a lack of understanding of the global manufacturing patterns of wind energy
technologies (and other clean energy technologies). In the last two decades, changes in the
manufacturing (and deployment) location of a few, large original equipment manufacturers
(OEMs)—i.e., lead companies that assemble, and occasionally manufacture, components for wind
turbines—have reshaped the global industry with countries like China and India catching up to
first movers in Europe and the United States™™'®. But there is an absence of comprehensive
datasets or analyses to understand these changes at the industry-specific firm-level, i.e., comprising
both component manufacturers and the OEMs that constitute the manufacturing GVC. This gap
is present not only in wind energy but also more broadly for clean energy technologies and other
manufacturing industries where GVCs are increasingly the subject of policy discussions on

1921 With limited evidence on the firm-level, tensions have been

globalization and manufacturing
prevalent as countries try to promote or protect domestic manufacturing, especially in clean energy

industries’.
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This paper examines in-depth the manufacturing GVC of the wind energy industry to understand
the technological drivers behind location of manufacturing. We operationalize this inquiry by
focusing on what we call the technology complexity—i.e., the combination of design, processes,
skills, resources, and institutions required to manufacture, transport, and integrate individual
components (such as towers, blades, gearboxes, control systems, and more) into a wind turbine>*.
We analyze the link between technology complexity and two key factors: where and why new
manufacturing companies emerge over time; and how existing companies evolve in response to
the international changes in the GVC. The emphasis on components is critical for a global analysis
of the wind industry because wind turbines are customized engineering-intensive goods where
technology innovation and cost reductions occur mainly at the individual component- rather than

the final product-level®*.

The full manufacturing global value chain for wind energy
The focus on components compels an assessment of the full manufacturing GVC, comprising
around 13 large OEMS and the hundreds of supplier firms that manufacture components for the

OEMs.

Thus far, research has focused on public policies and technology strategies using the final wind
turbine or the OEM as the unit of analysis, often examining how OEMs emerged in new countries

or evolved with changing global markets (e.g., refs.”™'"*

). Hundreds of supplier firms manufacture
components for the large OEMs and play a pivotal, but often neglected role, in shaping the
industry and the GVC'""*!, Suppliers are often small and medium enterprises (SMEs)—the main
employers that often constitute the backbone of many economies—who must develop
competences or strategies to stay competitive in rapidly changing local and international markets.
Yet, there is limited evidence on where suppliers emerge or how they respond to the broader
changes in global wind industry markets, with some case-study-based exceptions pointing to the
importance of technology characteristics in determining supplier activity''. Given the importance

of suppliers in the clean energy industry, understanding their behavior is key to coupling energy,

climate, and industry policy goals.

We developed a database of the component suppliers in the wind energy technology GVC (see
Methods for details). Our dataset builds on industry reports®” and captures data on 389 suppliers
involved in over 2,000 supplier-OEM market relationships with 13 major OEMs occurring

between 2006 and 2016 for 9 key components identified in industry reports (see Figure 1)”. The
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OEMs are located in Europe (e.g., Siemens, Vestas), the United States (General Electric), Japan
(Mitsubishi), and later in China (e.g., Goldwind) and India (Suzlon). We then combined this dataset
with the technology complexity of components to assess the emergence and evolution of

manufacturing locations of component suppliers.

Figure 1: Diversity in number and geographic spread of suppliers by wind turbine component. The
figure shows the total number and country of suppliers for each component that were active at least once in the
period between 2006 and 2016 in our dataset, including OEMs’ in-house suppliers. There are 389 suppliers in
our dataset, but because some suppliers manufacture multiple components (see Methods), they ate listed under

each component in this Figure.
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Technology complexity variation in wind turbine components
Our analysis takes into account the inherent technological differences across the different turbine
components, instead of treating the end-product, i.e., the wind turbine as a technology black box

as in most prior research focused on countries or OEMs (exceptions include, for e.g., ref.”*).

To capture differences in the components, we quantify the variability in the technology complexity
of each of the 9 components in our dataset (Figure 2). Complexity can be measured in different
ways but there is no universal consensus metric or terminology (example refs. **7*) We use the

1 as a measure of

Product Complexity Index (PCI) developed by Hausmann, Hidalgo, et a
technology complexity. We found that compared to most other approaches to measure complexity
that focus on knowledge competences, the PCI better reflects the broad set of real-world
perspectives—including country economy and contexts, knowledge requirements, manufacturing
skills, resources, and costs—for manufacturing, transporting, and integrating wind components™

(see Methods for comparison of different complexity metrics, how they compare with insights

specific to wind turbine technologies, and why we chose the PCI). We continue to refer to
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technology complexity rather than product complexity in the rest of this paper, because wind
turbine technology is the end-product and includes multiple components or products, which in

turn comprise other sub-components or products.

The PCI is based on the hypothesis that more complex technologies with greater knowledge
intensity are manufactured and exported by countries that have higher knowledge intensity, and
that these countries are also able to manufacture and export other high complexity technologies
(i.e., with a higher PCI*). We calculate the PCI metric indicating technology complexity by
assigning to each wind turbine component a relevant Harmonized System (HS) code(s). We then
calculate the average PCI of that component based on PCI estimates derived from Hausmann,
Hidalgo, et al’s approach using global trade data on the component-level® (see Methods,

Supplementary Table 1-3, Supplementary Figure 1).

Figure 2: Technology complexity estimates of wind turbine components. Wind turbine components have
differences in technology complexity, as estimated using the product complexity index (PCI) method based on
Hausmann, Hidalgo, et al (2014)28. For each component, in the box plot, the thick horizontal line indicates the
median and the red dots indicate the mean from 2006 to 2016 (full dataset available in Supplementary Data 1).
The bottom line in the box indicates the 25th percentile and the top indicates the 75th percentile. The whiskers

indicate the observations that lie within 1.5 times the inter quartile range (IQR) and the black dots indicate

outliers.
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Under our assessment, blades and gearboxes are among the most complex technologies (PCI >
1), while towers are among the least complex (PCI < 0). For reference, using a similar
methodology, solar photovoltaic cells have a relatively high PCI of 0.89, while biofuels have low
complexity with a PCI of -1.1°*. Our findings on the relatively high complexity of blades are

consistent with the intensive requirements of blade manufacturing that require high technology
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equipment, more time, and advanced skills. Similarly, our findings on the low complexity of towers
are consistent with research that indicates tower manufacturing involves more standard industrial

processes™?’

(See Supplementary Table 1).

The emergence of new component suppliers

Our analysis quantifies the relationships between wind component suppliers and their large OEMs
partners in the GVC between 2006 and 2016. These interactions highlight three findings on the
characteristics of the GVC and the emergence of wind component suppliers within our study

period.

First, OEMs and suppliers were dispersed globally in 34 countries, but their relationships remained
largely domestic, albeit with some exceptions discussed below. In our study period, 78% of
suppliers (305 out of 389) were in countries that had a large OEM and 58% of relationships
between OEMs and suppliers (1,239 out of 2,121) were domestic, i.e., involving suppliers and
OEMs from the same country (see example, Figure 3). Our analysis, which starts in 2000, suggests
that a domestic manufacturing supply chain initially developed in countries with large OEMs,
which were the countries that also had the largest wind deployment markets in the study period

(i.e. Germany, Denmark, Spain, United States, China, India, and Japan).
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Figure 3: Change in international supplier-OEM relationships between 2006 and 2016 with increasing
technology complexity. The figure shows the country (in the solid black rectangle) of the component suppliers
that sold components to OEMs from specific countries (denoted by the white rectangles). The green bands
denote an international relationship between component suppliers and OEMs (i.e., supplier and OEM from
different countries) and the grey bands denote a domestic relationship between suppliers and OEMs (i.e.,
supplier and OEM from the same country). n represents the number of relationships in the dataset. The number
of countries involved in the manufacturing of low complexity components increased substantially between 2006
and 2016. This was not the case for high complexity components. Low complexity components such as towers
and generators experienced a greater diversification (or number) of supplier locations and more international

relationships compared to high complexity components such as blades and gearboxes.
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Second, the emergence of suppliers in new locations, especially in countries without an OEM,
relates to the technology complexity of the components. Although new countries became part of
the wind GVC over time, the extent of this emergence and the consequent global diversification
of the GVC was inversely linked to the complexity of the component (Figure 3 and Figure 4). For
low complexity components (i.e., towers and generators), suppliers from new locations in
developing economies emerged (including countries in Africa, Latin America, and Asia-Pacific
regions). For high complexity components (i.e., blades and gearboxes), the emergence of new

supplier countries was significantly lower, potentially because more complex products required
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suppliers with skilled manufacturing, higher absorptive capacity, and tacit knowledge that may be
more difficult for suppliers originating in developing and emerging economies™. Towers are large
and their shipping costs are high, incentivizing manufacturing closer to demand, but such
incentives may also be present for labor intensive components such as blades*. Our finding on
the greater emergence of low complexity towers rather than of blades in most countries indicate
the importance of transport as one of many factors, along with knowledge and skills®, that shape

costs and decisions in the location of manufacturing.

Figure 4: Relationship between the number of supplier countries of each component and the average
complexity of the component. In this figure, suppliers include The dot size indicates the number of firms for
each component in our dataset. Low complexity components experienced emergence of suppliers (including

OEMS’ in-house suppliers).
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Third, a larger fraction of high complexity component suppliers interacted exclusively with OEMs
from their own country or with OEMs from other industrialized countries. For example, we found
that German OEMs primarily sourced blades from other German suppliers (or had subsidiaries
or in-house production in Germany) or from suppliers in other industrialized countries (e.g.,
Denmark, US). This implies that higher complexity components that require more skills and
expertise were likely manufactured only by a few specialized suppliers in industrialized countries
(see Supplementary Figure 2). The emergence of a diverse and large number of countries with
component suppliers for towers (a low complexity component) contrasts with the fewer
specialized countries with suppliers working on gearboxes (a high complexity component) (Figure

3).

Overall, our analysis implies that, for most countries (and in particular developing countries that

face institutional, financial and operational risks and uncertainties'’), the emergence of suppliers
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manufacturing high complexity components with higher value add may be a challenging endeavor

without active policy interventions, which we discuss later in this paper.

International evolution of suppliers
The globalization of the wind energy industry was evident in the shift of initial leadership of
Europe and the United States in deployment and OEMs (in 20006) to increasing deployment and

new OEMs in China and India (by 2016) with large and growing demand in those countries'™"**.,

The changes in the broader industry affected the traditional or existing suppliers in countries with
OEMs, as these suppliers faced increasing competition from new markets (and new suppliers).
These existing suppliers had opportunities to work with both OEMs from the suppliers’ countries
(domestic or local OEMs) and those from other countries (international OEMs). But the most
strategic and competitive suppliers likely delivered components to international OEMs and

2= " in what we refer to as evolution. We

increased such international relationships over time
estimate this evolution by calculating the change (over a two-year time lag) in the fraction of each

supplier’s market or contractual relationships with international OEMs (see Methods).

We assessed the relationship between technology complexity and evolution with a detailed
statistical analyses using Ordinary Least Squares (OLS) regressions (Model 1 and Model 2, see
Methods, Table 1, and Supplementary Table 4), where we controlled for various factors that may
affect evolution such as firm characteristics and firm strategic decisions**~**. These characteristics
include wind specialization (activities only in wind and not in any other sectors), component
diversification (supply of multiple wind components), age (number of years since company
founding), size (number of employees), knowledge stock (measured through international and
home country patents). We also controlled for the governance of the GVC¥—i.e., whether
suppliers supply to individual OEMs or have been acquired by them (e.g., ‘captive’ suppliers or
those that are part of vertically integrated OEMs) or whether they supply to multiple OEMs in a
more competitive market by estimating the supplier dependence on OEMs through in-house or
outsources relationships. In addition, we use fixed effects to account for any firm-, country-, and

time- specific features (see Methods for details on the variables).

The OLS regression analysis demonstrates that, as technology complexity increases by one unit,
the likelihood of international evolution (i.e., increase in fraction of relationships with international

OEMs) decreases by 12%, even after controlling for other important characteristics (Model 1, in
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Table 1). To give a sense of the size of the effect in our sample of components, a one unit increase
in technology complexity is the difference in complexity measured using the PCI separating a low
complexity component like towers (-0.24) from a higher complexity component like control

systems (0.69) or blades (1.00) (see Supplementary Table 2).

Additionally, the international evolution of supplier firms may be associated with their own
country or with the OEMs that they work with (e.g., differences in countries’ incentives for

manufacturing or the OEMs’ strategy)'"*"

. We developed two separate sets of models
distinguishing our results based on the origin country of suppliers (see Figure 5a, Models 3-5) and
the countries of their target OEMs (in Europe, the US, and China, see Figure 5b, Models 6-8). We
note that while in many cases target OEMs are associated with the deployment markets in the

countries of those OEMs, such assumptions may not always be true as, for example, several

international OEMs were also present in India and China'’.

We found that the additional and statistically-significant firm-level predictors of international
evolution, i.e., low specialization in wind and smaller size (in Model 1, Table 1), seem to be
primarily driven by Chinese suppliers (see Model 5). This is potentially because larger state-owned
firms may have established relationships with Chinese OEMs'" whereas smaller firms in China
may work more with international OEMs. Additionally, with the large manufacturing base in
China, many firms may not specialize in wind energy, but rather manufacture components that
have applications in multiple industries (e.g., generators, power converters) and supply these to

international OEMs.

Even after accounting for the OEM- or country-related factors that could affect suppliers’
behavior (as seen in the automotive sector, for example™), we find continued evidence of the
negative relationship between technology complexity and international evolution. Distinguishing
the origin countries of suppliers, we find that high technology complexity decreases the likelihood
of international evolution by 13% for suppliers from China, 9% for suppliers from Europe (i.e.,
Germany, Denmark, and Spain), and 28% for suppliers from the United States (the latter two are
not significant) (see Figure 5a and Table 1, Models 3-5). Distinguishing the OEM countries that
suppliers have market relationships with, we find that high technology complexity decreases the
likelihood of international evolution by up to 27% when suppliers work with OEMs from different
countries, most notably the United States (see Figure 5b, Table 1, Models 6-8). Our results are

robust across different model specifications and additional robustness checks, such as time-lags of

10



283
284
285
286
287
288
289

290
291
292
293
294
295
296

297
298

299
300
301
302
303
304
305
306

one and three years and using different complexity metrics (see Methods and Supplementary

Tables 5-0).

Together, our quantitative findings on the evolution of suppliers show that international
competitiveness (proxied with increase in suppliers’ relationships with international OEMs)
increased for low complexity components for suppliers from all countries. Overall, this is

consistent with the findings on the emergence of manufacturing.

Figure 5: Coefficient plots showing the relationship between international evolution, technology
complexity and other control variables. The figures show results from OLS regressions, where the size of the
regression coefficients is represented as dots and standard errors as bars. (a) Models with relationships grouped by
location of the suppliers. (b) Models with relationships grouped by location of the OEMs that suppliers work with
(i.e., the primary target market). Some of the larger coefficients of the OEM or country related factors are not

depicted due to their large values but are shown in Table 1.
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Implications for wind component technology manufacturing

Our analysis provides a comprehensive view of the wind energy manufacturing GVC, with central
emphasis on the technological characteristics of components and suppliers — as opposed to just

the turbines and OEMs covered by previous research.

As countries expand wind turbine manufacturing and domestic supply chains for both onshore

and offshore wind, our findings suggest that governments and private firms would benefit from

11
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developing targeted, technology-specific approaches to participate in the wind energy
manufacturing GVC. This requires designing policies that consider the technology complexity of
individual components and the domestic capabilities of the country rather than simply the end
product (i.e., the turbine). In turn, it means tailoring local industry support, skills development,

and national policies to the specific characteristics of component technologies'®".

To support expanded wind manufacturing in developing countries and newly industrialized
economies, we find that low complexity towers are a promising entry point. Even in larger market
countries like China and India, the majority of domestic suppliers that initially emerged
manufactured low complexity components (Figure 3). Of course, many countries would like to
support industries that upgrade beyond low complexity. To this end, over the decade we studied,
we also find evidence that a base of lower complexity technologies may provide a gateway to
upgrade to more complex technologies. This program of ‘catching up’ can be enhanced by policy
efforts that target both emergence of new suppliers and, eventually, the evolution of existing ones

(see Figure 6).

For example, in China, a local content requirement policy that started in 2003 mandated domestic
manufacturing of some components until 2009 to make them eligible for deployment incentives'’.
Partly to meet this requirement, high complexity blade manufacturing began with the Danish
OEM Vestas establishing a new manufacturing location in China. A large number of domestic
suppliers emerged following the Renewable Energy Law of 2006 that supported rapid, large scale
wind power deployment while parallel policies supported the domestic development of larger
turbines'’. With growing demand and because of the presence of other industries with relevant
transferable knowledge and skills, our dataset shows that the manufacturing of high complexity
components such as gearboxes quickly emerged, led by the China High Speed Transmission

Equipment Group Company that supplied to both Chinese and international OEMs since 2008.

India provides a second example. A sizeable domestic market was already in place in 2006, along
with some incentives for manufacturing, leading to the emergence of several domestic component
suppliers for low complexity components'’. Higher complexity components such as blades were
manufactured in 2006 through Suzlon, a large Indian OEM, rather than through international
suppliers. Although overall only a few high complexity domestic component manufacturers

emerged in India, the existing low complexity base coupled with policies attracted the emergence

12
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of manufacturing for higher complexity gearboxes in 2010 through subsidiaries of European

suppliers.

A third example is from Brazil, which developed higher-complexity component manufacturing
even without a large domestic OEM. Brazil’s domestic manufacturing expanded potentially
because of its large market size, a local content requirement policy, and existing industry strengths
as exemplified by companies like Tecsis, a blade manufacturer that emerged as a spin-off from the

existing aviation industry™.

Within countries, such opportunities for emergence and upgrading in the GVC have been possible
over time through an overlapping system of domestic and international clean energy policies that
spur market demand, incentivize domestic manufacturing, and catalyze existing industrial and
knowledge bases or support new skills. In addition, from the examples of China and India, we also
note that the emergence of manufacturing in more complex technologies may also be enabled
through subsidiaries of suppliers from other countries who come in and exploit potential business
opportunities in a large market.'>"” Although we had limited data on suppliers’ foreign subsidiaries
to be included in our quantitative, statistical analysis, we found multiple examples where such

approaches were used (these are included in Figure 06).

Our emphasis on ‘domestically owned companies’ is nevertheless valuable. Foreign firms with
local manufacturing facilities may provide employment and tax revenues but not necessarily the
same level of know-how, intellectual property, or support for local technology transfer.”’ In
contrast, as domestic firms develop know-how and can meet standard manufacturing requirements
(see Supplementary Table 1), even with the help of international firms, they can eventually get

access to international markets, for example observed in blade manufacturing in China.”

13
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Figure 6: The highest complexity of wind turbine components in a country in a given year. The Figure
is based on data on a country’s suppliers and the available data on any international subsidiaries. The data points
are staggered around the year they represent to allow visualization of multiple countries for each component in
a year. Developing countries and emerging economies have been able to manufacture more complex
components over time. We cannot rule out the possibility that China, India, and Brazil—all appearing in the top
part of the graph as manufacturing higher complexity components—started manufacturing lower complexity

components well before 20006, as shown by the current state of manufacturing complexity in wind in Indonesia,

Vietnam and Egypt.
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For wind manufacturing in more industrialized countries, we observed a larger emergence of high
complexity component manufacturing and lower evolution in high complexity component supply,
even as emerging economies suppliers emerged and evolved. Our finding that suppliers are more
likely to work with international OEMs for low complexity components suggests that the
continued domestically-owned manufacturing of such components would need additional policy
incentives to be competitive in international markets. This means that for countries trying to retain
existing manufacturing in low complexity components (e.g., some countries in Europe or the US)
through the evolution of existing firms, policies would need to be targeted towards specific
technologies or components. While protectionist policies such as the US considering imposing
trade tariffs on tower imports are one such near-term approach™, they may not be effective in the
long-term given that many other countries are already able to successfully produce low complexity
towers at competitive costs. The high labor costs in the US mean that high tariffs may help US
producers of low complexity components only for the domestic market but are unlikely to be
helpful in expanding the reach of US manufacturing to sell such components internationally.
Instead, a more effective, long-term strategy may be to support domestic innovation and industry
in more complex components since the lead time for other countries to enter the competition can

be longer and may require more systematic efforts on their part as well.
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Implications for global value chains

The evidence provided in this paper on how technology complexity shapes the emergence and
evolution of the full manufacturing value chain (i.e., both suppliers and OEMs) is valuable for
understanding the interactions of domestic energy and industrial policies. It specifically
underscores the importance of supporting an initial base of manufacturing, usually through a low
complexity manufacturing entry point in latemover countries, to provide a gateway for upgrading

to higher-complexity manufacturing in conjunction with carefully scoped policies.

As countries try to develop clean energy industries and meet climate and energy goals, it has
become increasingly evident that effective and lasting policies will depend on simultaneously

addressing economic development goals, including manufacturing®"

. By including technology and
GVC perspectives in clean energy policy design, countries can take the opportunity to develop
clean energy industries that will likely expand both manufacturing and deployment over time.
From this perspective, our work on wind turbines can be extended to other similar clean energy
industries that require high design capabilities for innovation but relatively low manufacturing
capabilities” and involve ‘Tumpy’ investments™. Such technologies include geothermal,
concentrated solar, large hydropower stations, offshore wind, grid infrastructures, electric vehicles,

and large buildings (as consumers of energy technologies)™”.

Our findings also underscore the central role of component technology characteristics at the
supplier level—in addition to firms and countries—in understanding GVCs. We found that
technology complexity shapes both the emergence and evolution of suppliers and the location of
manufacturing, even as industries develop globally over time. To incentivize the development of
new manufacturing opportunities in the clean energy industry or upgrading along the GVC, our
tindings imply that policies should have a targeted focus on manufacturing that considers existing
local industrial strengths and suppliers, global value chain dynamics, and the technology
complexity of components. Without such an integrated approach, countries may need to temper

expectations for moving from lower complexity to higher complexity components.

We note three needs for future research that also address some of the limitations of our work.
First, future work needs to remedy the absence of detailed industry datasets. Such datasets should
capture granularity on the full location of the GVC, over an extended set of components, and a

longer period of time. This includes a global network of multi-national companies and their
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subsidiaries, small businesses, and downstream firms and the quantity of supply between different
firms and of different component. Our own approach was limited in using the location of
component suppliers rather than the location of manufacturing (e.g., supplier subsidiaries in other
countries) and lacked details on supply quantities because of limited data availability. Second, more
mixed-methods research is needed to understand the relationships between technology
complexity, governance of GVCs, and upgrading of supplier firms in different country contexts,
especially for developing countries. Third, given that location of manufacturing may be influenced
by technology complexity, but can also affect technology innovation, future research needs to
analyze the direction of research and development and technology transfer in the GVC and its

implications for developing countries (see for example ref. ).

Finally, GVC research and policy need to be specifically developed for knowledge-intensive clean
energy industries. Evidence-based insights that capture technology, along with supplier firm and
country characteristics within are needed to inform policy design that couples energy, climate, and

economic development goals.
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METHODS

Wind supplier database development
We developed an original global database of component suppliers to major OEM for wind

turbines. The database was manually developed by analyzing, in detail, text-based industry reports
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on the wind GVC and tabulating relevant information at the firm-level®’. We obtained time series
data using biennial reports from Navigant Consulting (2006, 2008, 2010, 2012, and 2014), with
each relationship reported for a 3-year horizon—for example, the 2014 industry report identified
supplier-OEM relationships from 2014 through 2016. In this step, we tabulated information on
all major component suppliers (active between 2006 and 2014), the OEMs they supply to (and are
expected to supply to until 20106), the outsourcing strategies of the OEM firms (either in-house
development of components or outsourced to external supplier), and the geographical location of

the supplier firms.

Our dataset captures nearly a decade of rapid advancements and international changes in wind

energy manufacturing and deployment (e.g., refs. '*7*)

— however, it does not capture the
emergence of suppliers before 2006 in the formative stages of the wind energy industry in countries
wortldwide (e.g., ref. *). It also does not capture more recent advancements—such as the merger
between two large OEMs, Siemens and Gamesa in 2016—or new technological challenges related
to grid integration and storage that suppliers and OEMs now work on. Nonetheless, our dataset
also includes part of the period before onshore wind was highly commoditized and is relevant for

many other clean energy industries that are still at a formative stage, trying to establish domestic

suppliers and to participate in GVCs.

After an initial cleaning of this dataset and excluding missing or incomplete data points, we had
information on 389 suppliers and 9 components (.e., towers, blades, nacelle, gearboxes,
generators, control systems, power converters including transformers, bearings, and forgings)
including information on which of the 13 OEMs the suppliers worked with for in-house or

outsourced manufacturing. All analyses in this study were conducted on this dataset.

The OEMs were firms with the greatest global market shares between 2006 and 2016 and were
based in Germany (Siemens, Nordex, Enercon, REPower/Senvion), Denmark (Vestas), Spain
(Gamesa), USA (General Electric), Japan (Mitsubishi), China (Goldwind, Mingyang, Dongfang,
United Power), India (Suzlon). Additionally in some cases, suppliers also had multiple subsidiaries
with manufacturing locations outside of their home country—for example ABB from Switzerland
manufactured in the US and Rothe Erde from Germany manufactured in India, France, China,
UK, and others—but a complete dataset on such additional subsidiaries or locations is not publicly
available or verifiable and was not used for this assessment. Overall, the suppliers represent a

global distribution of firms from major countries home to OEMs as well as others that are trying
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to develop domestic wind manufacturing capabilities in components and/or OEMs (e.g., France,

UK).

Database expansion

We obtained additional data on each supplier firm from additional datasets and company website
searches (Bloomberg, Orbis, Amadeus) on firm size, founding year, and specialization—i.e.,
whether the firm supplies to industries beyond the wind industry, or whether the firm supplies
multiple components. Wind companies experienced multiple mergers and acquisitions in the
timeframe of our study (e.g., Suzlon, REPower, and Senvion) and following prior research we
considered them as individually operating companies if they were not integrated and continued to

operate under a different brand.

We also estimated the knowledge stock, i.e. prior research and development (R&D) activity of
each firm for each component domestically (i.e., in its home country) and internationally using
patent information. We first searched for wind technology patents for each supplier firm (i.e.,
where the supplier was an assignee on the patent) based on a detailed and previously tested
keyword search of the patent text and its Cooperative Patent Classification (CPC)**” from the
Derwent World Patent Index database. We extracted patent information (e.g., title, abstract
including translated abstracts, technology classification, priority country where patent was first
filed, and date of application) on each of the firms. Our search methodology limits patent results
to wind energy technologies and components and minimizes influences from those suppliers and
OEMs that are involved in multiple industries (e.g., large conglomerates like Siemens and GE).
Although our approach may not yield patenting activity in components that are not unique to wind
energy, we expect our approach to be thorough as our analysis emphasizes on the content of the

patent in its linkages to wind-specific R&D.

The patents were then classified by the component they most closely relate to using a machine
learning approach in R (version 3.6.2), as described in the following. The patent information was
prepared for text-based analysis using the text mining package tm”’ for pre-processing of the text
corpus in the title and description text; (e.g., by removing redundant words in patent language such
as “section” or “description” which are likely to be present in most patents, but do not add any
significant meaning to the technical content of the invention). We then used probabilistic topic
modeling with latent Dirichlet allocation in the R topicmodels package™. The topicmodels package

allowed us to differentiate the technological focus of innovation in the patent as we generated 26
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topics or categories of patents by clubbing together those with similar word occurrences™*. We
first estimated a probability for patents to be related to each topic. We then mapped each of the
26 topics to the 9 components (and an additional category “other”) to identify which component

a patent most closely links to. Our results were robust to changes in the number of topics.

Technology complexity of components

Researchers have developed multiple approaches to quantify technology complexity (examples in
ref. *7%*) Many of these approaches are based on the concepts of knowledge diversity and
technology interfaces and few approaches take into account the skills, capabilities, or costs
associated with manufacturing (e.g., comparing the production of bulky and heavy components

like blades or towers with gearboxes).

Wind energy industry reports” suggest that gearbox and blades are likely to have high complexity
while towers are the least complex (Supplementary Table 1). These industry perspectives have also

been reflected in empirical literature on wind turbine components’ design hierarchy.”

Since there is no single or consensus metric in the literature that uniquely captures technology
complexity, we tested three approaches to identify a quantitative metric that would most closely
match the real-world challenges of designing, manufacturing, integrating, and transporting each of
the 9 wind turbine components analyzed in this paper and their complexity over time (2006 to

2016).

First, we used the product complexity index (PCI) developed by Hausmann, Hidalgo et al***. The
PCI quantifies the knowledge intensity of a technology by considering the knowledge intensity of
its exporting countries (thus also capturing countries’ economic and institutional contexts). We
estimate the products or technologies associated with wind components by mapping each wind
component with the Harmonized System (HS) code that they are globally exported under and
averaging the reported PCls in the database across all our mapped codes for each year. As
components may be exported under different codes, we compiled these codes from literature and
from a deeper review of code descriptions that were verified by two technical experts (see
Supplementary Table 2 for the mapping of component codes)™. Technologies with higher
complexity are manufactured in (and exported by) fewer countries with diversified manufacturing
and reflect higher levels of skills and knowledge. Conversely, technologies with lower complexity

are manufactured in and exported by a larger number of countries that may not necessarily be
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diversified in their manufacturing capabilities. This metric also captures the fact that while some
technologies with higher complexity may be bulkier and have higher transportation costs resulting
in more countries tempted to manufacture them locally, they would still require the domestic skills
for manufacturing®. We estimated the PCI from the 2002 HS trade classification (HS02) as well
as the 2007 HS trade classification (HS07). HSO7 values were available in and after 2008 (we
assumed HS02 numbers for 2006 and 2007).

Second, we use an approach developed by Fleming and Sorenson™ that quantifies technology as a
complex adaptive system. This metric is based on the interdependence of technologies and
modularity of interfaces as assessed by international patent classification (IPC) codes. We use the
simple interpretation applied by Broekel’', which evaluates the ratio of patent subclass co-
occurrences (10-digit IPC codes) of patents in a given year (with a 3 year moving average) to the
cumulative patent subclass co-occurrences in all prior years (starting from 1994). To find the
complexity of each of the 9 components, we averaged these ratios over all patents of each
component.

Third, structural diversity is a metric developed by Broekel

, inspired by the notion that
technologies are combinatorial networks of technology and knowledge. This complexity metric
intends to capture the diversity of a technology’s sub-networks, captured through patents. We
apply a simplified interpretation of Broekel’s structural diversity approach. We use the probability
of patents association with each component (as explained eatrlier) and assume that this probability
reflects technology design and knowledge, in that it captures when components are closely related
with other components in a patent description by assigning a probability to each component. We
estimated the sub-networks of each component in a year by extracting all the patents for a given
component in that year (with a 3-year moving average). In this component sub-network, we use
social network analysis (weighted degree centrality) to estimate the co-occurrence of each
component pair (where components are nodes and their co-occurrences are edges) weighted by
the intensity of association between the component pair®. The edge-weight is the product of the
probability of each component in a patent, relative to the maximum probability of any component
in that patent. To find the complexity of each of the 9 components across the patent dataset, we
averaged the degree of all components and divided it by the total patents for each component to
account for the differences in the number of patents. We used the igraph® package in R for the

social network analysis.
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In comparing these metrics, we found that the Hausmann, Hidalgo et al’s PCI best captures actual
challenges of manufacturing and integrating wind components as reflected by technology

roadmaps and the broader literature on wind power technologies™”’

(see Supplementary Figure 1
and Supplementary Data 1). A correlation analysis of these metrics across our study period
(Supplementary Table 3) reveals that all of them are positively correlated, however, the PCI-based
metric has the strongest correlation with international evolution (which we describe in the
following). Although our interpretation of Fleming and Sorenson’s approach demonstrates similar
trends as the PCI approach, it assigns a slightly higher complexity to towers which contrasts with
the insights from the literature on wind turbine manufacturing. Our interpretation of Broekel’s
structural diversity index differed from the understanding of complexity reflected by the specific
academic literature on knowledge transfer and manufacturing in wind. This could be because of
differences specific to the wind sector and/or because of limitations in our simplified approach
for estimating the index. For these reasons, we used the PCI-based approach as the main measure

of technology complexity in our analysis. Our primary results report HS02 values as these were

reported for each year from 2006 to 2016.

We note that the PCI has two main caveats. One, the PCI relies on international trade (and export)
data and may not fully capture what is produced for local use — but it is likely that countries only
export what they are good at producing, for both domestic and international use®. Two, resulting
from the dependence on trade flows, the PCI values for individual components may see variations
over time. However, we found that data on the different complexity metrics was correlated and
the PCI was still the best suited for our study. For the purposes of our research, the PCI provides
a suitable estimate of manufacturing wind turbine components, and of how technology
characteristics that capture more than technology- or knowledge-competences determine the

location of manufacturing.

Mixed-methods analysis of emergence of suppliers

We used network analysis techniques to visualize the relationships between OEM and component
supplier firms over different reported time periods (i.e., 2006 and 2014). The networks-based
approach is increasingly used to visualize and quantify GVCs as scholars recognize that GVCs are
better represented by multi-dimensional networks rather than linear chains”. We use the term
‘relationships’ to describe inter-firm linkages (e.g., Vestas (OEM) with Titan Wind (supplier) for
towers in 2014) and intra-firm linkages (e.g., Vestas (OEM) with Vestas (in-house manufacturing)

for nacelles)). We use a Sankey (alluvial) diagram to visualize the proportional flow between nodes
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of the network (i.e., the location of the supplier and the location of the OEM) using R (version

3.6.2) package ggforce®.

Statistical analysis for evolution of suppliers

To estimate the links between technology complexity and suppliers’ ability to be strategic and
competitive in international markets, we conduct a set of Ordinary Least Squares (OLS) regression
analyses from 2006 to 2016 using statistical modeling in R (version 3.6.2) and output using the

stargazer package®.

The dependent variable is the evolution, estimated as the difference over two years (i.e., a two-year
time lag) in the fraction of supplier’s market relationships with OEMs from a different country
(international OEMs), as a proxy for suppliers’ ability to compete in international markets. We
used the network analysis technique (as described in the previous section) to first quantify the
market relationships between suppliers with OEMs. In a given year t, a value of 0 reflects that
suppliers work only with OEMs from the same country while 1 reflects that suppliers only work
with OEMs from a different country (international OEM). Then, to estimate the change over time,
where an increase in international relationships indicates an increase in competitiveness, we
calculated the difference with year t+2. The final variable for evolution ranges from -1 to 1, where
a negative value indicates a decrease in the fraction of international relationships, 0 indicates no

change, and 1 indicates an increase in the fraction of international relationships.

We combined the data on supplier-OEM relationships with home-country information of the
suppliers and OEMs. We manually collected the addresses of each supplier and OEM by searching
databases such as Orbis, Amadeus, or Bloomberg and verified and extended this information with
a manual search on the suppliers” webpages. We used headquarter addresses in case of larger
companies with multiple facilities. We calculated changes in the fraction of international
relationships on a two-year basis, and also on a yearly basis as a robustness check. While the results
using two-year and one-year changes revealed robust estimates, we decided to focus on two-year

changes that are likely to capture actual strategic changes of suppliers’ evolution to a greater extent.

The main independent variable is technology complexity (xi), measured using the product

complexity index as described above for each component and year.

In addition, we used the following supplier-specific control variables:
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wind specialization (xz), which is a binary variable that measures whether the supplier
specialized in wind energy (=1) or was active in other sectors outside of the wind industry
(=0). We obtained this information during our efforts of expanding the original dataset by
manually coding all suppliers based on an analysis of their webpages and databases such as
Bloomberg.

component diversification (x3) is a variable that measures the number of wind components
supplied by a firm to wind OEMs, which we derived from our original dataset. In our
database, 279 (90.9%) suppliers only offered one component, 23 (7.5%) offered two, and
5 (1.6%) firms offered three components. Those 5 firms offered 8 of the 9 distinct
components, so there is no bias in a certain direction.

patenting international (x4), which captures the cumulative number of international patents
per component by each supplier, depreciated by 15% annually*. We used the patent data
and classification as described above and mapped whether the country where each patent
was first registered matches the country of origin of the supplier.

patenting domestic (xs), similarly captures the cumulative number of home-country patents
applied for by each supplier.

size (X¢), which estimates the number of employees (logged). This information was
obtained from during the database expansion from Orbis, Amadeus, Bloomberg and the
suppliers’ webpages. We used the last available number of full-time employees (or
equivalents) given that many of the covered supplier are private firms where time varying
data is not available.

age (x7), which represents the time interval since the founding year of the supplier. This
information was also obtained during the database expansion.

supplier dependence on OEM (xs), which captures the different outsourcing or insourcing
strategies applied by the OEMs and indicates how dependent each supplier is on the OEM.
The importance of including this variable as a control stems from the fact that OEMs have
different approaches for procuring components from suppliers, i.e., the governance of the
value chain: some suppliers are in-house or through acquired companies, some are
outsourced to international suppliers who, despite being part of an OEM, continued to
brand their products differently. This is a continuous variable ranging from 0 (only in-

house relationships) to 1 (only outsourced relationships).

In the regression results, the change in international evolution (Y;) for supplier i is estimated using

the following OLS model:
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(Y1) = Bo + BiXai + BaXai + BsXsi + BaXai + PsXsi + PeXei + BrXzi + Bexai + @i +vi +t (1)
where B is the coefficient of interest on technology complexity, and . the coefficients of the
control variables. ¢; , yi and t are fixed effects for the supplier (), the country of the supplier (y;),

and year (t).

The same set of explanatory and control variables in Equation 1 are used in all cases. Table 1
reports values of () and Supplementary Table 4 shows the descriptive statistics and correlations.
In total, we have an unbalanced panel of 1,227 observations of 318 suppliers from Denmark,
Germany, Spain, US, Japan, China, and India (out of the 389 global suppliers, from 2006-2016).
Model 1 measures the impact of all control variables on international evolution, and Model 2 adds
the effect of our main independent variable technology complexity, suggesting a significant
negative impact on international evolution (B = -0.118, p-value =0.029). Model 3 includes the
same variables but limits the firms to the 114 suppliers from Germany, Denmark and Spain
(excluding US and Chinese suppliers). Model 4 captures the same for 37 US suppliers, and Model
5 for 138 Chinese suppliers. Given the low number of suppliers from India (21) and Japan (8), we
did not calculate separate models for these countries. Model 6 limits the dataset to only capture
relationships of suppliers with OEMs from EU, Model 7 to OEMs from the USA and Model 8

from China.

In addition, we conducted several robustness checks for our model specifications. These include
different complexity metrics, time lags, and interaction effects (Supplementary Tables 5-6). Our

results are robust to all model specifications.

Finally, we undertook a three-step approach to address endogeneity concerns that the complexity
will shape how countries export and internationalize, while the PCI based complexity measure is
also calculated based on countries that are able to manufacture and export a technology. First,
complexity (the independent variable) is measured at the component-level based on broader
mapping of HS codes from Hausmann, Hidalgo, et al.’s PCI approach (where other components
unrelated to wind may also be traded under a particular component code). International evolution
(our dependent variable) is estimated on the supplier-component level of the wind energy industry.
This eliminates the use of same data and unit of analysis for the two variables. Second, we use
other complexity metrics that are based on patent data and do not rely on country information.
Our results are again robust to these other complexity metrics (Supplementary Table 5). Third, we

use time lags of two years in our main model (Model 1 and Model 2) and multiple other time lags
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734 for robustness checks (See Supplementary Table 6). This reduces the relationship in a particular
735  year between the dependent variable and the complexity independent variable. Our results are
736  robust under different specifications.

737

738  Table 1: Regression results on the relationship between technology complexity and evolution i.e.,
739  change in fraction of relationships with international OEMs. Suppliers of high complexity

740  components are likely to have low evolution. The model results are from Ordinary Least Squares (OLS)

741  regressions. Numbers in parentheses indicate robust standard errors.

742
International Controls All European UsS Chinese Suppliers Suppliers Suppliers
evolution (change in suppliers suppliers suppliers suppliers to to US to Chinese
the fraction of European OEMs OEMs
supplier relationships OEMs
with international
OEMs)
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

technology 0118 0,088 -0.281 -0.131% -0.099 02665 -0.014
complexity

(0.054) (0.066) (0.239) (0.075) 0.078) (0.089) 0.062)

t=-2.191 t=-1.337 t=-1.175 t=-1.752 t=-1.263 t=-2.993 t=-0.222

p = 0.029 p=0.182 p =0.240 p = 0.080 p = 0.207 p = 0.003 p =0.825
wind specialization -1.14 10k -1.105%%* 0.307 0.011 -1.94 38k 0.291%* -12.733%kk -0.381
(0.390) (0.390) (0.368) (0.299) (0.649) (0.173) (4.602) (1.550)

t=-2.927 t=-2.836 t=0.834 t = 0.036 t=-2.995 t=1.682 t=-2.767 t=-0.246

p = 0.004 p = 0.005 p = 0.405 p =0.972 p = 0.003 p = 0.093 p = 0.006 p = 0.806

component

oo . 0.136%* 0.107 -0.055 0.449kx 0.309k* -0.105 0.04 0.088
diversification
(0.069) (0.068) (0.081) (0.148) (0.119) (0.097) (0.120) (0.093)
t=1.984 t=1.572 t=-0.676 t=3.027 t = 2.588 t=-1.079 t = 0.337 t = 0.946
p =0.048 p=0.116 p = 0.500 p = 0.003 p =0.010 p =0.281 p =0.737 p =0.345
patenting 0.003 0.003 -0.0004 0.082%* 0.627+* 0.001 0.007+* 0.007+5*
international
(0.003) (0.003) (0.002) (0.041) (0.280) (0.004) (0.003) (0.002)
t=1.101 t=1.132 t=-0.148 t=2.011 t=2.241 t=0.267 t=2.200 t=2.813
p=0.271 p =0.258 p =0.883 p = 0.045 p = 0.026 p =0.790 p = 0.028 p = 0.005
patenting home -0.001 0.003 -0.001 -0.132 0.045%k* 0.009 -0.0002 0.001
(0.005) (0.005) (0.005) (0.244) 0.014) 0.011) (0.016) (0.009)
t=-0.116 t = 0.505 t=-0.166 t=-0.539 t=3.091 t=0.874 t=-0.015 t=0.142
p = 0.908 p =0.614 p = 0.868 p =0.590 p = 0.002 p =10.383 p =0.989 p = 0.888
size -0.547+* -0.516%* 0.156%* -0.396 -1.977Hkx 0.064 10,7107k -0.343
(0.216) (0.214) (0.078) (0.281) (0.635) (0.110) (3.303) (1.342)
t=-2.534 t=-2.408 t=2.016 t=-1.409 t=-3.111 t=0.578 t=3.243 t=-0.255
p =0.012 p =0.017 p = 0.044 p =0.159 p = 0.002 p = 0.564 p = 0.002 p =0.799
age 0.008** 0.008** 0.002 0,057 -0.031 0.001 -0.680** -0.01
(0.002) (0.002) (0.001) (0.011) (0.023) (0.001) (0.228) (0.033)
t=3.736 t=3.697 t=1.079 t=-4.958 t=-1.367 t = 1.053 t=-2.989 t=-0.293
p=10.0002 p=00003 p=0.281 18.0_0000 p=0.172 p=10.293 p = 0.003 p =10.770
supplier dependence 1 -0.016 0.127 -0.092 -0.075 -0.09 -0.108
on OEM
(0.067) (0.067) 0.077) (0.130) (0.072) (0.083) (0.083)
t=-0.266 t=-0.240 t = 1.640 t=-0.708 t=-1.034 t=-1.076 t=-1.300
p=0.791 p =0.810 p =0.102 p=0.479 p = 0.302 p =0.283 p=0.194
Constant 4.703%#% 4,551 %% -0.940%* 4. 457HH% 14,883k -0.046 -50.519%%¢ 3,054
(1.604) (1.595) (0.447) (1.691) (4.896) (0.635) (15.602) (10.390)
t=2.931 t = 2.853 t=-2.103 t = 2.637 t=3.039 t=-0.072 t=-3.238 t=0.294
p = 0.004 p = 0.005 p = 0.036 p = 0.009 p = 0.003 p =10.943 p = 0.002 p =0.769
Country FE YES YES NO NO NO YES YES YES
Year FE YES YES YES YES YES YES YES YES
Firm FE YES YES YES YES YES YES YES YES
Observations 1,227 1,227 479 169 455 637 421 485
R2 0.426 0.429 0.456 0.548 0.487 0.457 0.449 0.509
Adjusted R? 0.288 0.291 0.319 0.397 0.338 0.307 0.297 0.362
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Note: *p<0.1; *p<0.05; “p<0.01

Data availability

The database on the global manufacturing value chain developed for this study was built on third-
party reports published by Navigant Consulting, with additional details obtained from Orbis,
Amadeus, Bloomberg, and Derwent World Patents Index. Restrictions apply to the availability of
these third-party data and so the dataset is not publicly available. Data are however available upon
reasonable request from the corresponding author. Supplier data (without the supplier company
name) are available at [https://github.com/kavsurana/tech-complexity-project/| along with the
source and code to replicate the analysis. The source data underlying Figs. 1-6 and Supplementary

Figs. 1-2 are provided as a Source Data file.
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