

1 **Effects of technology complexity on the emergence and evolution of wind industry**
2 **manufacturing locations along global value chains**

3

4 Kavita Surana^{a*}, Claudia Doblinger^b, Laura Diaz Anadon^c, Nathan Hultman^a

5 ^aCenter for Global Sustainability, School of Public Policy, University of Maryland, College Park, USA

6 ^bTechnical University of Munich, Campus Straubing for Biotechnology and Sustainability and School of Management, Germany

7 ^cCentre for Environment, Energy and Natural Resource Governance, Department of Land Economy, University of Cambridge,
8 Cambridge, UK

9 *Corresponding author: ksurana@umd.edu

10

11 Wind energy can contribute to national climate, energy, and economic goals by expanding clean
12 energy and supporting economies through new manufacturing industries. However, the
13 mechanisms for achieving these interlinked goals are not well understood. Here we analyze the
14 wind energy manufacturing global value chain (GVC), using a dataset on 389 component supplier
15 firms (2006-2016) that work with 13 original equipment manufacturers (OEMs). We assess how
16 technology complexity, i.e., the knowledge intensity and difficulty of manufacturing components,
17 shapes the location of suppliers. For countries without existing wind industries, we find evidence
18 of the emergence of suppliers only for low complexity components (e.g., towers and generators).
19 For countries with existing wind industries, we find that suppliers' evolution, i.e., changes in their
20 international supply relationships, is less likely for high complexity components (e.g., blades and
21 gearboxes). Our findings show the importance of understanding technologies along with firms
22 and countries within GVCs for achieving policy goals.

23

24

25

26 **MAIN**

27

28 The global market for wind power technology is large and growing. Installed wind capacity has
29 grown worldwide from 73 GW in 2006 to 623 GW in 2019¹. Mid-century projections expect
30 continued expansion² for two reasons: first, the increasing ambition for clean energy deployment
31 by the governments of many countries and second, the cost decreases driven by, among other
32 factors, technological advances and manufacturing improvements at the component level³⁻⁵—such
33 as in blades, towers, gearboxes, and bearings.

34

35 This expanding market for wind power has created co-benefit opportunities for policymakers
36 interested in coupling energy and economic development goals. The ability to develop a domestic
37 manufacturing component supply chain and generate employment is particularly attractive.
38 Examples of governments explicitly trying to advance energy, climate, and industrial goals in the
39 wind sector include the Offshore Wind Sector Deal (United Kingdom)⁶ and local content
40 requirement for onshore wind deployment (in Brazil, and previously in China)⁷. Articulating these
41 co-benefits for improving domestic energy technology industries has been instrumental in the
42 political dialogue on, and public support for, energy policy⁸⁻¹⁰.

43

44 Despite growing research and policy interest in clean energy manufacturing and global value chains
45 (GVCs)¹¹⁻¹⁴, there is a lack of understanding of the global manufacturing patterns of wind energy
46 technologies (and other clean energy technologies). In the last two decades, changes in the
47 manufacturing (and deployment) location of a few, large original equipment manufacturers
48 (OEMs)—i.e., lead companies that assemble, and occasionally manufacture, components for wind
49 turbines—have reshaped the global industry with countries like China and India catching up to
50 first movers in Europe and the United States¹⁵⁻¹⁸. But there is an absence of comprehensive
51 datasets or analyses to understand these changes at the industry-specific firm-level, i.e., comprising
52 both component manufacturers and the OEMs that constitute the manufacturing GVC. This gap
53 is present not only in wind energy but also more broadly for clean energy technologies and other
54 manufacturing industries where GVCs are increasingly the subject of policy discussions on
55 globalization and manufacturing¹⁹⁻²¹. With limited evidence on the firm-level, tensions have been
56 prevalent as countries try to promote or protect domestic manufacturing, especially in clean energy
57 industries⁹.

58

59 This paper examines in-depth the manufacturing GVC of the wind energy industry to understand
60 the technological drivers behind location of manufacturing. We operationalize this inquiry by
61 focusing on what we call the technology complexity—i.e., the combination of design, processes,
62 skills, resources, and institutions required to manufacture, transport, and integrate individual
63 components (such as towers, blades, gearboxes, control systems, and more) into a wind turbine^{3,22}.
64 We analyze the link between technology complexity and two key factors: where and why new
65 manufacturing companies emerge over time; and how existing companies evolve in response to
66 the international changes in the GVC. The emphasis on components is critical for a global analysis
67 of the wind industry because wind turbines are customized engineering-intensive goods where
68 technology innovation and cost reductions occur mainly at the individual component- rather than
69 the final product-level^{23,24}.

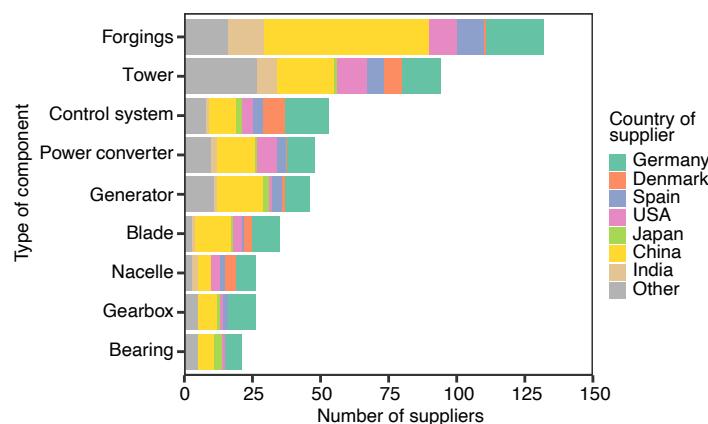
70

71 **The full manufacturing global value chain for wind energy**

72 The focus on components compels an assessment of the full manufacturing GVC, comprising
73 around 13 large OEMS and the hundreds of supplier firms that manufacture components for the
74 OEMs.

75

76 Thus far, research has focused on public policies and technology strategies using the final wind
77 turbine or the OEM as the unit of analysis, often examining how OEMs emerged in new countries
78 or evolved with changing global markets (e.g., refs.^{15–17,25}). Hundreds of supplier firms manufacture
79 components for the large OEMs and play a pivotal, but often neglected role, in shaping the
80 industry and the GVC^{11,13,14}. Suppliers are often small and medium enterprises (SMEs)—the main
81 employers that often constitute the backbone of many economies²⁶—who must develop
82 competences or strategies to stay competitive in rapidly changing local and international markets.
83 Yet, there is limited evidence on where suppliers emerge or how they respond to the broader
84 changes in global wind industry markets, with some case-study-based exceptions pointing to the
85 importance of technology characteristics in determining supplier activity¹¹. Given the importance
86 of suppliers in the clean energy industry, understanding their behavior is key to coupling energy,
87 climate, and industry policy goals.


88

89 We developed a database of the component suppliers in the wind energy technology GVC (see
90 Methods for details). Our dataset builds on industry reports²⁷ and captures data on 389 suppliers
91 involved in over 2,000 supplier-OEM market relationships with 13 major OEMs occurring
92 between 2006 and 2016 for 9 key components identified in industry reports (see Figure 1)²⁷. The

93 OEMs are located in Europe (e.g., Siemens, Vestas), the United States (General Electric), Japan
94 (Mitsubishi), and later in China (e.g., Goldwind) and India (Suzlon). We then combined this dataset
95 with the technology complexity of components to assess the emergence and evolution of
96 manufacturing locations of component suppliers.

97

98 **Figure 1: Diversity in number and geographic spread of suppliers by wind turbine component.** The
99 figure shows the total number and country of suppliers for each component that were active at least once in the
100 period between 2006 and 2016 in our dataset, including OEMs' in-house suppliers. There are 389 suppliers in
101 our dataset, but because some suppliers manufacture multiple components (see Methods), they are listed under
102 each component in this Figure.

103

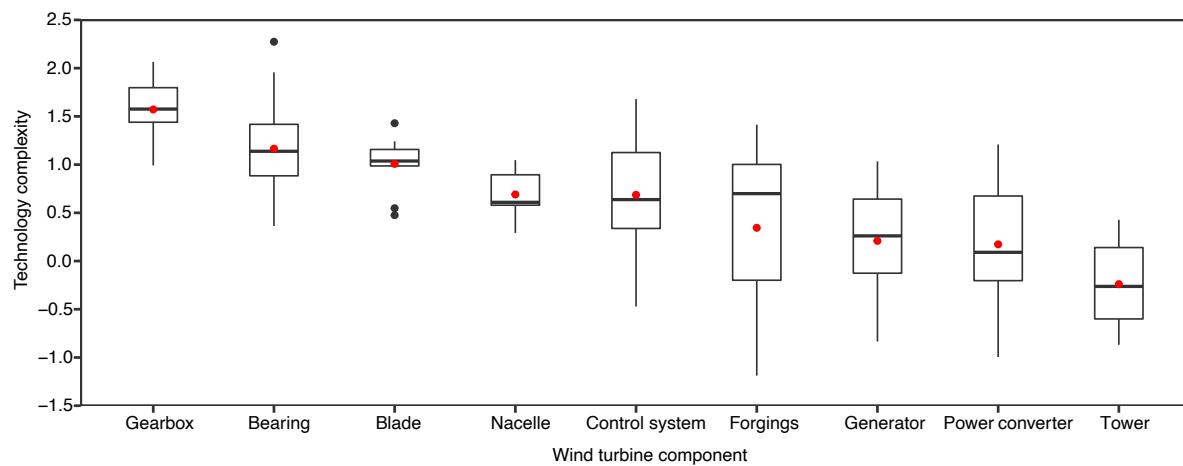
104

105 Technology complexity variation in wind turbine components

106 Our analysis takes into account the inherent technological differences across the different turbine
107 components, instead of treating the end-product, i.e., the wind turbine as a technology black box
108 as in most prior research focused on countries or OEMs (exceptions include, for e.g., ref.²⁴).

109

110 To capture differences in the components, we quantify the variability in the technology complexity
111 of each of the 9 components in our dataset (Figure 2). Complexity can be measured in different
112 ways but there is no universal consensus metric or terminology (example refs. ²⁸⁻³⁴) We use the
113 Product Complexity Index (PCI) developed by Hausmann, Hidalgo, et al²⁸ as a measure of
114 technology complexity. We found that compared to most other approaches to measure complexity
115 that focus on knowledge competences, the PCI better reflects the broad set of real-world
116 perspectives—including country economy and contexts, knowledge requirements, manufacturing
117 skills, resources, and costs—for manufacturing, transporting, and integrating wind components³⁵
118 (see Methods for comparison of different complexity metrics, how they compare with insights
119 specific to wind turbine technologies, and why we chose the PCI). We continue to refer to


120 technology complexity rather than product complexity in the rest of this paper, because wind
121 turbine technology is the end-product and includes multiple components or products, which in
122 turn comprise other sub-components or products.

123

124 The PCI is based on the hypothesis that more complex technologies with greater knowledge
125 intensity are manufactured and exported by countries that have higher knowledge intensity, and
126 that these countries are also able to manufacture and export other high complexity technologies
127 (i.e., with a higher PCI²⁸). We calculate the PCI metric indicating technology complexity by
128 assigning to each wind turbine component a relevant Harmonized System (HS) code(s). We then
129 calculate the average PCI of that component based on PCI estimates derived from Hausmann,
130 Hidalgo, et al's approach using global trade data on the component-level³⁶ (see Methods,
131 Supplementary Table 1-3, Supplementary Figure 1).

132

133 **Figure 2: Technology complexity estimates of wind turbine components.** Wind turbine components have
134 differences in technology complexity, as estimated using the product complexity index (PCI) method based on
135 Hausmann, Hidalgo, et al (2014)²⁸. For each component, in the box plot, the thick horizontal line indicates the
136 median and the red dots indicate the mean from 2006 to 2016 (full dataset available in Supplementary Data 1).
137 The bottom line in the box indicates the 25th percentile and the top indicates the 75th percentile. The whiskers
138 indicate the observations that lie within 1.5 times the inter quartile range (IQR) and the black dots indicate
139 outliers.

140

141

142 Under our assessment, blades and gearboxes are among the most complex technologies (PCI >
143 1), while towers are among the least complex (PCI < 0). For reference, using a similar
144 methodology, solar photovoltaic cells have a relatively high PCI of 0.89, while biofuels have low
145 complexity with a PCI of -1.1^{37,38}. Our findings on the relatively high complexity of blades are
146 consistent with the intensive requirements of blade manufacturing that require high technology

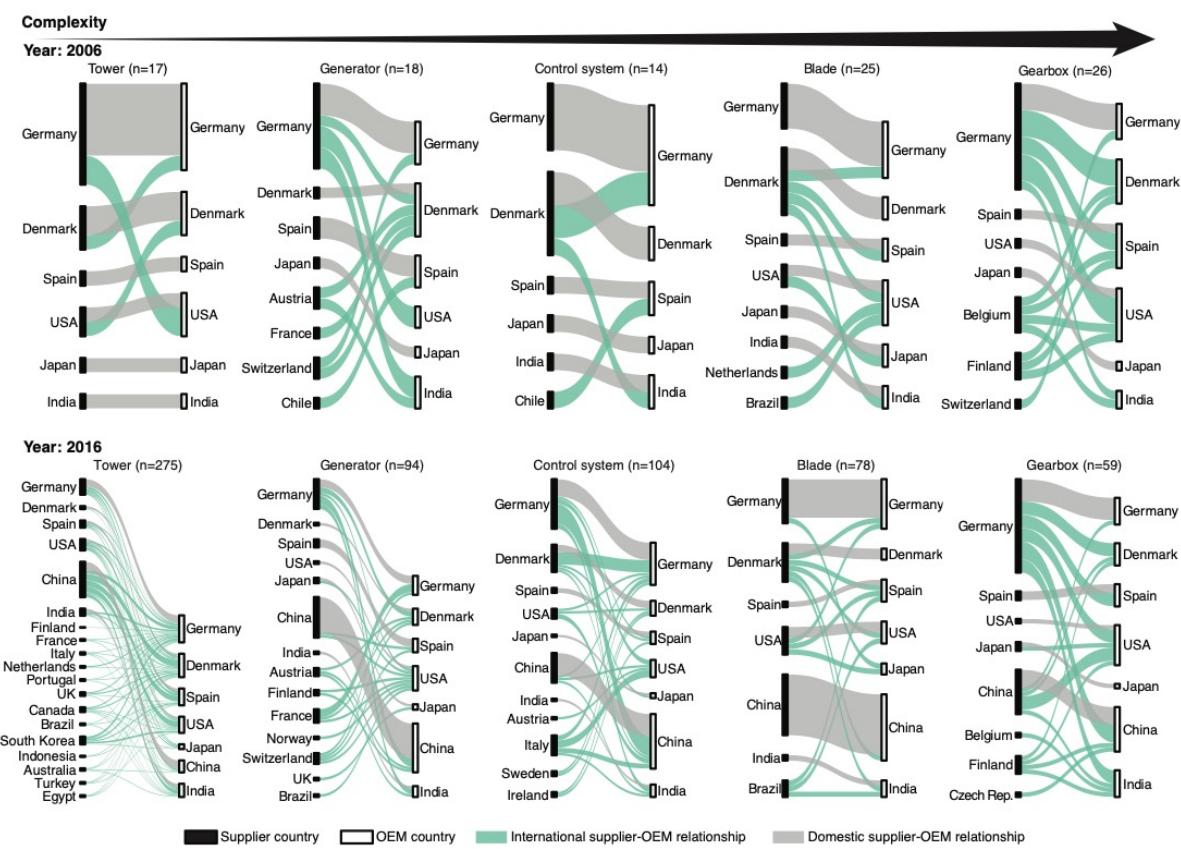
147 equipment, more time, and advanced skills. Similarly, our findings on the low complexity of towers
148 are consistent with research that indicates tower manufacturing involves more standard industrial
149 processes^{24,27} (See Supplementary Table 1).

150

151 **The emergence of new component suppliers**

152 Our analysis quantifies the relationships between wind component suppliers and their large OEMs
153 partners in the GVC between 2006 and 2016. These interactions highlight three findings on the
154 characteristics of the GVC and the emergence of wind component suppliers within our study
155 period.

156

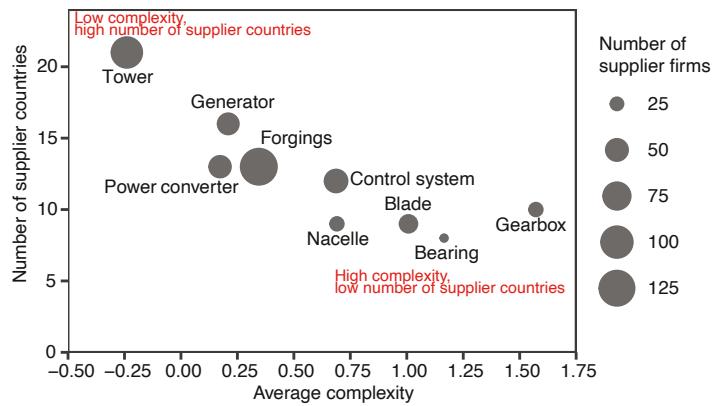

157 First, OEMs and suppliers were dispersed globally in 34 countries, but their relationships remained
158 largely domestic, albeit with some exceptions discussed below. In our study period, 78% of
159 suppliers (305 out of 389) were in countries that had a large OEM and 58% of relationships
160 between OEMs and suppliers (1,239 out of 2,121) were domestic, i.e., involving suppliers and
161 OEMs from the same country (see example, Figure 3). Our analysis, which starts in 2006, suggests
162 that a domestic manufacturing supply chain initially developed in countries with large OEMs,
163 which were the countries that also had the largest wind deployment markets in the study period
164 (i.e. Germany, Denmark, Spain, United States, China, India, and Japan).

165

166

167 **Figure 3: Change in international supplier-OEM relationships between 2006 and 2016 with increasing**
 168 **technology complexity.** The figure shows the country (in the solid black rectangle) of the component suppliers
 169 that sold components to OEMs from specific countries (denoted by the white rectangles). The green bands
 170 denote an international relationship between component suppliers and OEMs (i.e., supplier and OEM from
 171 different countries) and the grey bands denote a domestic relationship between suppliers and OEMs (i.e.,
 172 supplier and OEM from the same country). n represents the number of relationships in the dataset. The number
 173 of countries involved in the manufacturing of low complexity components increased substantially between 2006
 174 and 2016. This was not the case for high complexity components. Low complexity components such as towers
 175 and generators experienced a greater diversification (or number) of supplier locations and more international
 176 relationships compared to high complexity components such as blades and gearboxes.

177


178

179 Second, the emergence of suppliers in new locations, especially in countries without an OEM,
 180 relates to the technology complexity of the components. Although new countries became part of
 181 the wind GVC over time, the extent of this emergence and the consequent global diversification
 182 of the GVC was inversely linked to the complexity of the component (Figure 3 and Figure 4). For
 183 low complexity components (i.e., towers and generators), suppliers from new locations in
 184 developing economies emerged (including countries in Africa, Latin America, and Asia-Pacific
 185 regions). For high complexity components (i.e., blades and gearboxes), the emergence of new
 186 supplier countries was significantly lower, potentially because more complex products required
 187

188 suppliers with skilled manufacturing, higher absorptive capacity, and tacit knowledge that may be
189 more difficult for suppliers originating in developing and emerging economies³⁹. Towers are large
190 and their shipping costs are high, incentivizing manufacturing closer to demand, but such
191 incentives may also be present for labor intensive components such as blades⁴⁰. Our finding on
192 the greater emergence of low complexity towers rather than of blades in most countries indicate
193 the importance of transport as one of many factors, along with knowledge and skills²⁸, that shape
194 costs and decisions in the location of manufacturing.

195

196 **Figure 4: Relationship between the number of supplier countries of each component and the average**
197 **complexity of the component.** In this figure, suppliers include The dot size indicates the number of firms for
198 each component in our dataset. Low complexity components experienced emergence of suppliers (including
199 OEMs' in-house suppliers).

200

201

202 Third, a larger fraction of high complexity component suppliers interacted exclusively with OEMs
203 from their own country or with OEMs from other industrialized countries. For example, we found
204 that German OEMs primarily sourced blades from other German suppliers (or had subsidiaries
205 or in-house production in Germany) or from suppliers in other industrialized countries (e.g.,
206 Denmark, US). This implies that higher complexity components that require more skills and
207 expertise were likely manufactured only by a few specialized suppliers in industrialized countries
208 (see Supplementary Figure 2). The emergence of a diverse and large number of countries with
209 component suppliers for towers (a low complexity component) contrasts with the fewer
210 specialized countries with suppliers working on gearboxes (a high complexity component) (Figure
211 3).

212

213 Overall, our analysis implies that, for most countries (and in particular developing countries that
214 face institutional, financial and operational risks and uncertainties¹⁷), the emergence of suppliers

215 manufacturing high complexity components with higher value add may be a challenging endeavor
216 without active policy interventions, which we discuss later in this paper.

217

218 **International evolution of suppliers**

219 The globalization of the wind energy industry was evident in the shift of initial leadership of
220 Europe and the United States in deployment and OEMs (in 2006) to increasing deployment and
221 new OEMs in China and India (by 2016) with large and growing demand in those countries^{15–18,41}.

222

223 The changes in the broader industry affected the traditional or existing suppliers in countries with
224 OEMs, as these suppliers faced increasing competition from new markets (and new suppliers).
225 These existing suppliers had opportunities to work with both OEMs from the suppliers' countries
226 (domestic or local OEMs) and those from other countries (international OEMs). But the most
227 strategic and competitive suppliers likely delivered components to international OEMs and
228 increased such international relationships over time^{42–44}, in what we refer to as evolution. We
229 estimate this evolution by calculating the change (over a two-year time lag) in the fraction of each
230 supplier's market or contractual relationships with international OEMs (see Methods).

231

232 We assessed the relationship between technology complexity and evolution with a detailed
233 statistical analyses using Ordinary Least Squares (OLS) regressions (Model 1 and Model 2, see
234 Methods, Table 1, and Supplementary Table 4), where we controlled for various factors that may
235 affect evolution such as firm characteristics and firm strategic decisions^{43,45–48}. These characteristics
236 include wind specialization (activities only in wind and not in any other sectors), component
237 diversification (supply of multiple wind components), age (number of years since company
238 founding), size (number of employees), knowledge stock (measured through international and
239 home country patents). We also controlled for the governance of the GVC⁴⁹—i.e., whether
240 suppliers supply to individual OEMs or have been acquired by them (e.g., 'captive' suppliers or
241 those that are part of vertically integrated OEMs) or whether they supply to multiple OEMs in a
242 more competitive market by estimating the supplier dependence on OEMs through in-house or
243 outsources relationships. In addition, we use fixed effects to account for any firm-, country-, and
244 time- specific features (see Methods for details on the variables).

245

246 The OLS regression analysis demonstrates that, as technology complexity increases by one unit,
247 the likelihood of international evolution (i.e., increase in fraction of relationships with international
248 OEMs) decreases by 12%, even after controlling for other important characteristics (Model 1, in

249 Table 1). To give a sense of the size of the effect in our sample of components, a one unit increase
250 in technology complexity is the difference in complexity measured using the PCI separating a low
251 complexity component like towers (-0.24) from a higher complexity component like control
252 systems (0.69) or blades (1.00) (see Supplementary Table 2).

253

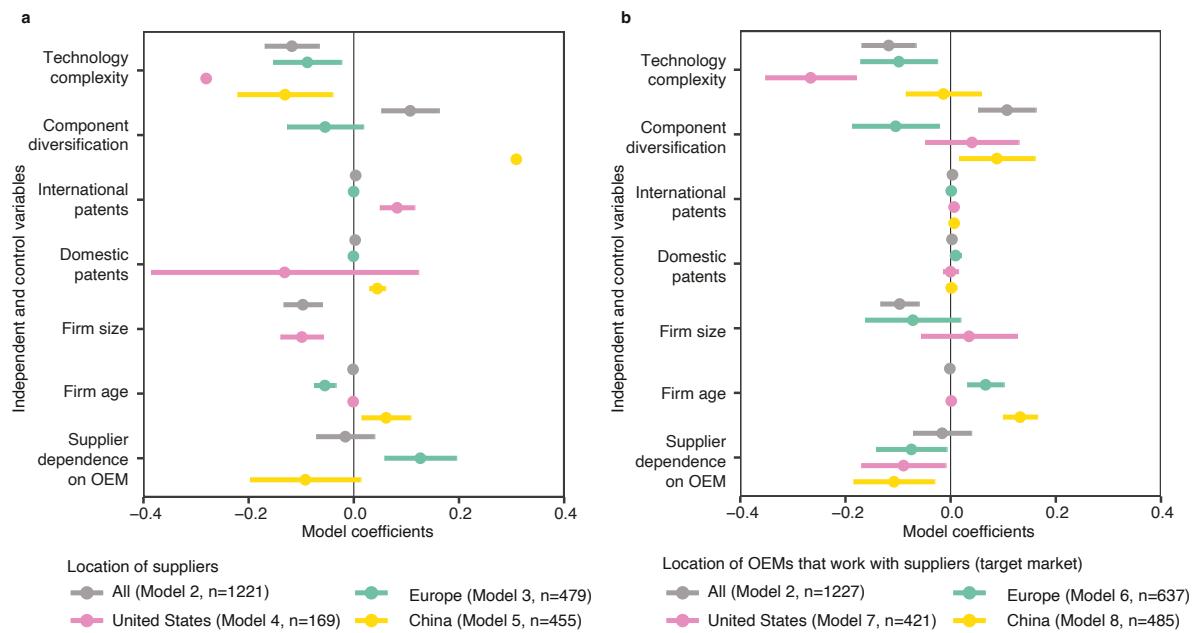
254 Additionally, the international evolution of supplier firms may be associated with their own
255 country or with the OEMs that they work with (e.g., differences in countries' incentives for
256 manufacturing or the OEMs' strategy)^{11,49,50}. We developed two separate sets of models
257 distinguishing our results based on the origin country of suppliers (see Figure 5a, Models 3-5) and
258 the countries of their target OEMs (in Europe, the US, and China, see Figure 5b, Models 6-8). We
259 note that while in many cases target OEMs are associated with the deployment markets in the
260 countries of those OEMs, such assumptions may not always be true as, for example, several
261 international OEMs were also present in India and China¹⁷.

262

263 We found that the additional and statistically-significant firm-level predictors of international
264 evolution, i.e., low specialization in wind and smaller size (in Model 1, Table 1), seem to be
265 primarily driven by Chinese suppliers (see Model 5). This is potentially because larger state-owned
266 firms may have established relationships with Chinese OEMs¹⁷ whereas smaller firms in China
267 may work more with international OEMs. Additionally, with the large manufacturing base in
268 China, many firms may not specialize in wind energy, but rather manufacture components that
269 have applications in multiple industries (e.g., generators, power converters) and supply these to
270 international OEMs.

271

272 Even after accounting for the OEM- or country-related factors that could affect suppliers'
273 behavior (as seen in the automotive sector, for example⁵⁰), we find continued evidence of the
274 negative relationship between technology complexity and international evolution. Distinguishing
275 the origin countries of suppliers, we find that high technology complexity decreases the likelihood
276 of international evolution by 13% for suppliers from China, 9% for suppliers from Europe (i.e.,
277 Germany, Denmark, and Spain), and 28% for suppliers from the United States (the latter two are
278 not significant) (see Figure 5a and Table 1, Models 3-5). Distinguishing the OEM countries that
279 suppliers have market relationships with, we find that high technology complexity decreases the
280 likelihood of international evolution by up to 27% when suppliers work with OEMs from different
281 countries, most notably the United States (see Figure 5b, Table 1, Models 6-8). Our results are
282 robust across different model specifications and additional robustness checks, such as time-lags of


283 one and three years and using different complexity metrics (see Methods and Supplementary
 284 Tables 5-6).

285

286 Together, our quantitative findings on the evolution of suppliers show that international
 287 competitiveness (proxied with increase in suppliers' relationships with international OEMs)
 288 increased for low complexity components for suppliers from all countries. Overall, this is
 289 consistent with the findings on the emergence of manufacturing.

290

291 **Figure 5: Coefficient plots showing the relationship between international evolution, technology**
 292 **complexity and other control variables.** The figures show results from OLS regressions, where the size of the
 293 regression coefficients is represented as dots and standard errors as bars. (a) Models with relationships grouped by
 294 location of the suppliers. (b) Models with relationships grouped by location of the OEMs that suppliers work with
 295 (i.e., the primary target market). Some of the larger coefficients of the OEM or country related factors are not
 296 depicted due to their large values but are shown in Table 1.

297

298

299 Implications for wind component technology manufacturing

300

301 Our analysis provides a comprehensive view of the wind energy manufacturing GVC, with central
 302 emphasis on the technological characteristics of components and suppliers — as opposed to just
 303 the turbines and OEMs covered by previous research.

304

305 As countries expand wind turbine manufacturing and domestic supply chains for both onshore
 306 and offshore wind, our findings suggest that governments and private firms would benefit from

307 developing targeted, technology-specific approaches to participate in the wind energy
308 manufacturing GVC. This requires designing policies that consider the technology complexity of
309 individual components and the domestic capabilities of the country rather than simply the end
310 product (i.e., the turbine). In turn, it means tailoring local industry support, skills development,
311 and national policies to the specific characteristics of component technologies^{18,51}.

312

313 To support expanded wind manufacturing in developing countries and newly industrialized
314 economies, we find that low complexity towers are a promising entry point. Even in larger market
315 countries like China and India, the majority of domestic suppliers that initially emerged
316 manufactured low complexity components (Figure 3). Of course, many countries would like to
317 support industries that upgrade beyond low complexity. To this end, over the decade we studied,
318 we also find evidence that a base of lower complexity technologies may provide a gateway to
319 upgrade to more complex technologies. This program of ‘catching up’ can be enhanced by policy
320 efforts that target both emergence of new suppliers and, eventually, the evolution of existing ones
321 (see Figure 6).

322

323 For example, in China, a local content requirement policy that started in 2003 mandated domestic
324 manufacturing of some components until 2009 to make them eligible for deployment incentives¹⁷.
325 Partly to meet this requirement, high complexity blade manufacturing began with the Danish
326 OEM Vestas establishing a new manufacturing location in China. A large number of domestic
327 suppliers emerged following the Renewable Energy Law of 2006 that supported rapid, large scale
328 wind power deployment while parallel policies supported the domestic development of larger
329 turbines¹⁷. With growing demand and because of the presence of other industries with relevant
330 transferable knowledge and skills, our dataset shows that the manufacturing of high complexity
331 components such as gearboxes quickly emerged, led by the China High Speed Transmission
332 Equipment Group Company that supplied to both Chinese and international OEMs since 2008.

333

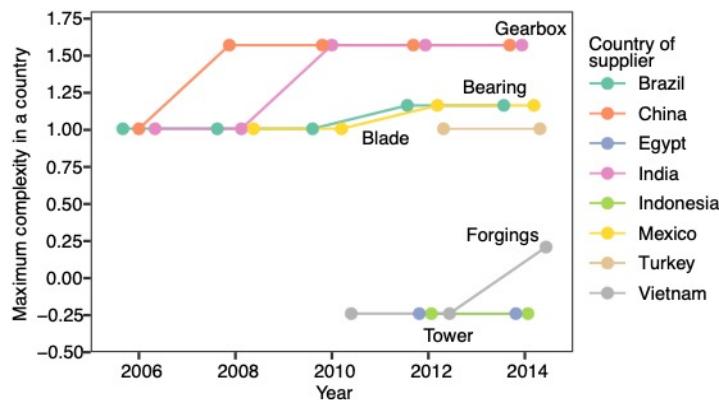
334 India provides a second example. A sizeable domestic market was already in place in 2006, along
335 with some incentives for manufacturing, leading to the emergence of several domestic component
336 suppliers for low complexity components¹⁷. Higher complexity components such as blades were
337 manufactured in 2006 through Suzlon, a large Indian OEM, rather than through international
338 suppliers. Although overall only a few high complexity domestic component manufacturers
339 emerged in India, the existing low complexity base coupled with policies attracted the emergence

340 of manufacturing for higher complexity gearboxes in 2010 through subsidiaries of European
341 suppliers.

342

343 A third example is from Brazil, which developed higher-complexity component manufacturing
344 even without a large domestic OEM. Brazil's domestic manufacturing expanded potentially
345 because of its large market size, a local content requirement policy, and existing industry strengths
346 as exemplified by companies like Tecsis, a blade manufacturer that emerged as a spin-off from the
347 existing aviation industry⁵².

348


349 Within countries, such opportunities for emergence and upgrading in the GVC have been possible
350 over time through an overlapping system of domestic and international clean energy policies that
351 spur market demand, incentivize domestic manufacturing, and catalyze existing industrial and
352 knowledge bases or support new skills. In addition, from the examples of China and India, we also
353 note that the emergence of manufacturing in more complex technologies may also be enabled
354 through subsidiaries of suppliers from other countries who come in and exploit potential business
355 opportunities in a large market.^{16,17} Although we had limited data on suppliers' foreign subsidiaries
356 to be included in our quantitative, statistical analysis, we found multiple examples where such
357 approaches were used (these are included in Figure 6).

358

359 Our emphasis on 'domestically owned companies' is nevertheless valuable. Foreign firms with
360 local manufacturing facilities may provide employment and tax revenues but not necessarily the
361 same level of know-how, intellectual property, or support for local technology transfer.⁴⁰ In
362 contrast, as domestic firms develop know-how and can meet standard manufacturing requirements
363 (see Supplementary Table 1), even with the help of international firms, they can eventually get
364 access to international markets, for example observed in blade manufacturing in China.⁵³

365

366 **Figure 6: The highest complexity of wind turbine components in a country in a given year.** The Figure
 367 is based on data on a country's suppliers and the available data on any international subsidiaries. The data points
 368 are staggered around the year they represent to allow visualization of multiple countries for each component in
 369 a year. Developing countries and emerging economies have been able to manufacture more complex
 370 components over time. We cannot rule out the possibility that China, India, and Brazil—all appearing in the top
 371 part of the graph as manufacturing higher complexity components—started manufacturing lower complexity
 372 components well before 2006, as shown by the current state of manufacturing complexity in wind in Indonesia,
 373 Vietnam and Egypt.

374
 375
 376 For wind manufacturing in more industrialized countries, we observed a larger emergence of high
 377 complexity component manufacturing and lower evolution in high complexity component supply,
 378 even as emerging economies suppliers emerged and evolved. Our finding that suppliers are more
 379 likely to work with international OEMs for low complexity components suggests that the
 380 continued domestically-owned manufacturing of such components would need additional policy
 381 incentives to be competitive in international markets. This means that for countries trying to retain
 382 existing manufacturing in low complexity components (e.g., some countries in Europe or the US)
 383 through the evolution of existing firms, policies would need to be targeted towards specific
 384 technologies or components. While protectionist policies such as the US considering imposing
 385 trade tariffs on tower imports are one such near-term approach⁵⁴, they may not be effective in the
 386 long-term given that many other countries are already able to successfully produce low complexity
 387 towers at competitive costs. The high labor costs in the US mean that high tariffs may help US
 388 producers of low complexity components only for the domestic market but are unlikely to be
 389 helpful in expanding the reach of US manufacturing to sell such components internationally.
 390 Instead, a more effective, long-term strategy may be to support domestic innovation and industry
 391 in more complex components since the lead time for other countries to enter the competition can
 392 be longer and may require more systematic efforts on their part as well.
 393

394 **Implications for global value chains**

395

396 The evidence provided in this paper on how technology complexity shapes the emergence and
397 evolution of the full manufacturing value chain (i.e., both suppliers and OEMs) is valuable for
398 understanding the interactions of domestic energy and industrial policies. It specifically
399 underscores the importance of supporting an initial base of manufacturing, usually through a low
400 complexity manufacturing entry point in latemover countries, to provide a gateway for upgrading
401 to higher-complexity manufacturing in conjunction with carefully scoped policies.

402

403 As countries try to develop clean energy industries and meet climate and energy goals, it has
404 become increasingly evident that effective and lasting policies will depend on simultaneously
405 addressing economic development goals, including manufacturing^{8,10}. By including technology and
406 GVC perspectives in clean energy policy design, countries can take the opportunity to develop
407 clean energy industries that will likely expand both manufacturing and deployment over time.
408 From this perspective, our work on wind turbines can be extended to other similar clean energy
409 industries that require high design capabilities for innovation but relatively low manufacturing
410 capabilities⁵¹ and involve ‘lumpy’ investments⁵⁵. Such technologies include geothermal,
411 concentrated solar, large hydropower stations, offshore wind, grid infrastructures, electric vehicles,
412 and large buildings (as consumers of energy technologies)^{51,55}.

413

414 Our findings also underscore the central role of component technology characteristics at the
415 supplier level—in addition to firms and countries—in understanding GVCs. We found that
416 technology complexity shapes both the emergence and evolution of suppliers and the location of
417 manufacturing, even as industries develop globally over time. To incentivize the development of
418 new manufacturing opportunities in the clean energy industry or upgrading along the GVC, our
419 findings imply that policies should have a targeted focus on manufacturing that considers existing
420 local industrial strengths and suppliers, global value chain dynamics, and the technology
421 complexity of components. Without such an integrated approach, countries may need to temper
422 expectations for moving from lower complexity to higher complexity components.

423

424 We note three needs for future research that also address some of the limitations of our work.
425 First, future work needs to remedy the absence of detailed industry datasets. Such datasets should
426 capture granularity on the full location of the GVC, over an extended set of components, and a
427 longer period of time. This includes a global network of multi-national companies and their

428 subsidiaries, small businesses, and downstream firms and the quantity of supply between different
429 firms and of different component. Our own approach was limited in using the location of
430 component suppliers rather than the location of manufacturing (e.g., supplier subsidiaries in other
431 countries) and lacked details on supply quantities because of limited data availability. Second, more
432 mixed-methods research is needed to understand the relationships between technology
433 complexity, governance of GVCs, and upgrading of supplier firms in different country contexts,
434 especially for developing countries. Third, given that location of manufacturing may be influenced
435 by technology complexity, but can also affect technology innovation, future research needs to
436 analyze the direction of research and development and technology transfer in the GVC and its
437 implications for developing countries (see for example ref. ⁵³).

438

439 Finally, GVC research and policy need to be specifically developed for knowledge-intensive clean
440 energy industries. Evidence-based insights that capture technology, along with supplier firm and
441 country characteristics within are needed to inform policy design that couples energy, climate, and
442 economic development goals.

443

444 **Competing interests:** The authors declare no competing interests.

445

446 **Acknowledgements:** Funding for this research was provided by the US National Science
447 Foundation under grant number 1829252; and the UK Economic and Social Research Council
448 under grant number ES/S010688/1. Mel George, Linlang He, Anna Hammerstingl, and Franz
449 Traimer helped with cleaning and verifying the dataset. Deyu Li and Mariana Vigil provided
450 valuable feedback on the concepts behind this paper.

451

452 **Author contributions:** K.S., C.D., and L.D.A developed the research idea and concept. K.S. and
453 C.D. collected and analyzed the data. K.S., C.D., L.D.A., and N.H. interpreted the results and
454 conducted policy analysis. K.S. and C.D. wrote the manuscript. L.D.A. and N.H. edited the
455 manuscript. K.S., L.D.A, and N.H. secured project funding.

456

457 **METHODS**

458

459 **Wind supplier database development**

460 We developed an original global database of component suppliers to major OEM for wind
461 turbines. The database was manually developed by analyzing, in detail, text-based industry reports

462 on the wind GVC and tabulating relevant information at the firm-level²⁷. We obtained time series
463 data using biennial reports from Navigant Consulting (2006, 2008, 2010, 2012, and 2014), with
464 each relationship reported for a 3-year horizon—for example, the 2014 industry report identified
465 supplier-OEM relationships from 2014 through 2016. In this step, we tabulated information on
466 all major component suppliers (active between 2006 and 2014), the OEMs they supply to (and are
467 expected to supply to until 2016), the outsourcing strategies of the OEM firms (either in-house
468 development of components or outsourced to external supplier), and the geographical location of
469 the supplier firms.

470

471 Our dataset captures nearly a decade of rapid advancements and international changes in wind
472 energy manufacturing and deployment (e.g., refs. ^{16,17,42}) – however, it does not capture the
473 emergence of suppliers before 2006 in the formative stages of the wind energy industry in countries
474 worldwide (e.g., ref. ²⁵). It also does not capture more recent advancements—such as the merger
475 between two large OEMs, Siemens and Gamesa in 2016—or new technological challenges related
476 to grid integration and storage that suppliers and OEMs now work on⁵⁶. Nonetheless, our dataset
477 also includes part of the period before onshore wind was highly commoditized and is relevant for
478 many other clean energy industries that are still at a formative stage, trying to establish domestic
479 suppliers and to participate in GVCs.

480

481 After an initial cleaning of this dataset and excluding missing or incomplete data points, we had
482 information on 389 suppliers and 9 components (i.e., towers, blades, nacelle, gearboxes,
483 generators, control systems, power converters including transformers, bearings, and forgings)
484 including information on which of the 13 OEMs the suppliers worked with for in-house or
485 outsourced manufacturing. All analyses in this study were conducted on this dataset.

486

487 The OEMs were firms with the greatest global market shares between 2006 and 2016 and were
488 based in Germany (Siemens, Nordex, Enercon, REPower/Senvion), Denmark (Vestas), Spain
489 (Gamesa), USA (General Electric), Japan (Mitsubishi), China (Goldwind, Mingyang, Dongfang,
490 United Power), India (Suzlon). Additionally in some cases, suppliers also had multiple subsidiaries
491 with manufacturing locations outside of their home country—for example ABB from Switzerland
492 manufactured in the US and Rothe Erde from Germany manufactured in India, France, China,
493 UK, and others—but a complete dataset on such additional subsidiaries or locations is not publicly
494 available or verifiable and was not used for this assessment. Overall, the suppliers represent a
495 global distribution of firms from major countries home to OEMs as well as others that are trying

496 to develop domestic wind manufacturing capabilities in components and/or OEMs (e.g., France,
497 UK).

498

499 **Database expansion**

500 We obtained additional data on each supplier firm from additional datasets and company website
501 searches (Bloomberg, Orbis, Amadeus) on firm size, founding year, and specialization—i.e.,
502 whether the firm supplies to industries beyond the wind industry, or whether the firm supplies
503 multiple components. Wind companies experienced multiple mergers and acquisitions in the
504 timeframe of our study (e.g., Suzlon, REPower, and Senvion) and following prior research we
505 considered them as individually operating companies if they were not integrated and continued to
506 operate under a different brand.

507

508 We also estimated the knowledge stock, i.e. prior research and development (R&D) activity of
509 each firm for each component domestically (i.e., in its home country) and internationally using
510 patent information. We first searched for wind technology patents for each supplier firm (i.e.,
511 where the supplier was an assignee on the patent) based on a detailed and previously tested
512 keyword search of the patent text and its Cooperative Patent Classification (CPC)^{24,35} from the
513 Derwent World Patent Index database. We extracted patent information (e.g., title, abstract
514 including translated abstracts, technology classification, priority country where patent was first
515 filed, and date of application) on each of the firms. Our search methodology limits patent results
516 to wind energy technologies and components and minimizes influences from those suppliers and
517 OEMs that are involved in multiple industries (e.g., large conglomerates like Siemens and GE).
518 Although our approach may not yield patenting activity in components that are not unique to wind
519 energy, we expect our approach to be thorough as our analysis emphasizes on the content of the
520 patent in its linkages to wind-specific R&D.

521

522 The patents were then classified by the component they most closely relate to using a machine
523 learning approach in R (version 3.6.2), as described in the following. The patent information was
524 prepared for text-based analysis using the text mining package tm⁵⁷ for pre-processing of the text
525 corpus in the title and description text; (e.g., by removing redundant words in patent language such
526 as “section” or “description” which are likely to be present in most patents, but do not add any
527 significant meaning to the technical content of the invention). We then used probabilistic topic
528 modeling with latent Dirichlet allocation in the R topicmodels package⁵⁸. The topicmodels package
529 allowed us to differentiate the technological focus of innovation in the patent as we generated 26

530 topics or categories of patents by clubbing together those with similar word occurrences^{59,60}. We
531 first estimated a probability for patents to be related to each topic. We then mapped each of the
532 26 topics to the 9 components (and an additional category “other”) to identify which component
533 a patent most closely links to. Our results were robust to changes in the number of topics.

534

535 **Technology complexity of components**

536 Researchers have developed multiple approaches to quantify technology complexity (examples in
537 ref. ^{28,31,33,34}). Many of these approaches are based on the concepts of knowledge diversity and
538 technology interfaces and few approaches take into account the skills, capabilities, or costs
539 associated with manufacturing (e.g., comparing the production of bulky and heavy components
540 like blades or towers with gearboxes).

541

542 Wind energy industry reports²⁷ suggest that gearbox and blades are likely to have high complexity
543 while towers are the least complex (Supplementary Table 1). These industry perspectives have also
544 been reflected in empirical literature on wind turbine components’ design hierarchy.³⁵

545

546 Since there is no single or consensus metric in the literature that uniquely captures technology
547 complexity, we tested three approaches to identify a quantitative metric that would most closely
548 match the real-world challenges of designing, manufacturing, integrating, and transporting each of
549 the 9 wind turbine components analyzed in this paper and their complexity over time (2006 to
550 2016).

551

552 First, we used the product complexity index (PCI) developed by Hausmann, Hidalgo et al^{28,36}. The
553 PCI quantifies the knowledge intensity of a technology by considering the knowledge intensity of
554 its exporting countries (thus also capturing countries’ economic and institutional contexts). We
555 estimate the products or technologies associated with wind components by mapping each wind
556 component with the Harmonized System (HS) code that they are globally exported under and
557 averaging the reported PCIs in the database across all our mapped codes for each year. As
558 components may be exported under different codes, we compiled these codes from literature and
559 from a deeper review of code descriptions that were verified by two technical experts (see
560 Supplementary Table 2 for the mapping of component codes)³⁸. Technologies with higher
561 complexity are manufactured in (and exported by) fewer countries with diversified manufacturing
562 and reflect higher levels of skills and knowledge. Conversely, technologies with lower complexity
563 are manufactured in and exported by a larger number of countries that may not necessarily be

564 diversified in their manufacturing capabilities. This metric also captures the fact that while some
565 technologies with higher complexity may be bulkier and have higher transportation costs resulting
566 in more countries tempted to manufacture them locally, they would still require the domestic skills
567 for manufacturing²⁸. We estimated the PCI from the 2002 HS trade classification (HS02) as well
568 as the 2007 HS trade classification (HS07). HS07 values were available in and after 2008 (we
569 assumed HS02 numbers for 2006 and 2007).

570

571 Second, we use an approach developed by Fleming and Sorenson³⁴ that quantifies technology as a
572 complex adaptive system. This metric is based on the interdependence of technologies and
573 modularity of interfaces as assessed by international patent classification (IPC) codes. We use the
574 simple interpretation applied by Broekel³¹, which evaluates the ratio of patent subclass co-
575 occurrences (10-digit IPC codes) of patents in a given year (with a 3 year moving average) to the
576 cumulative patent subclass co-occurrences in all prior years (starting from 1994). To find the
577 complexity of each of the 9 components, we averaged these ratios over all patents of each
578 component.

579

580 Third, structural diversity is a metric developed by Broekel³¹, inspired by the notion that
581 technologies are combinatorial networks of technology and knowledge. This complexity metric
582 intends to capture the diversity of a technology's sub-networks, captured through patents. We
583 apply a simplified interpretation of Broekel's structural diversity approach. We use the probability
584 of patents association with each component (as explained earlier) and assume that this probability
585 reflects technology design and knowledge, in that it captures when components are closely related
586 with other components in a patent description by assigning a probability to each component. We
587 estimated the sub-networks of each component in a year by extracting all the patents for a given
588 component in that year (with a 3-year moving average). In this component sub-network, we use
589 social network analysis (weighted degree centrality) to estimate the co-occurrence of each
590 component pair (where components are nodes and their co-occurrences are edges) weighted by
591 the intensity of association between the component pair⁶¹. The edge-weight is the product of the
592 probability of each component in a patent, relative to the maximum probability of any component
593 in that patent. To find the complexity of each of the 9 components across the patent dataset, we
594 averaged the degree of all components and divided it by the total patents for each component to
595 account for the differences in the number of patents. We used the igraph⁶² package in R for the
596 social network analysis.

597

598 In comparing these metrics, we found that the Hausmann, Hidalgo et al's PCI best captures actual
599 challenges of manufacturing and integrating wind components as reflected by technology
600 roadmaps and the broader literature on wind power technologies^{35,27} (see Supplementary Figure 1
601 and Supplementary Data 1). A correlation analysis of these metrics across our study period
602 (Supplementary Table 3) reveals that all of them are positively correlated, however, the PCI-based
603 metric has the strongest correlation with international evolution (which we describe in the
604 following). Although our interpretation of Fleming and Sorenson's approach demonstrates similar
605 trends as the PCI approach, it assigns a slightly higher complexity to towers which contrasts with
606 the insights from the literature on wind turbine manufacturing. Our interpretation of Broekel's
607 structural diversity index differed from the understanding of complexity reflected by the specific
608 academic literature on knowledge transfer and manufacturing in wind. This could be because of
609 differences specific to the wind sector and/or because of limitations in our simplified approach
610 for estimating the index. For these reasons, we used the PCI-based approach as the main measure
611 of technology complexity in our analysis. Our primary results report HS02 values as these were
612 reported for each year from 2006 to 2016.

613

614 We note that the PCI has two main caveats. One, the PCI relies on international trade (and export)
615 data and may not fully capture what is produced for local use – but it is likely that countries only
616 export what they are good at producing, for both domestic and international use²⁸. Two, resulting
617 from the dependence on trade flows, the PCI values for individual components may see variations
618 over time. However, we found that data on the different complexity metrics was correlated and
619 the PCI was still the best suited for our study. For the purposes of our research, the PCI provides
620 a suitable estimate of manufacturing wind turbine components, and of how technology
621 characteristics that capture more than technology- or knowledge-competences determine the
622 location of manufacturing.

623

624 **Mixed-methods analysis of emergence of suppliers**

625 We used network analysis techniques to visualize the relationships between OEM and component
626 supplier firms over different reported time periods (i.e., 2006 and 2014). The networks-based
627 approach is increasingly used to visualize and quantify GVCs as scholars recognize that GVCs are
628 better represented by multi-dimensional networks rather than linear chains⁶³. We use the term
629 'relationships' to describe inter-firm linkages (e.g., Vestas (OEM) with Titan Wind (supplier) for
630 towers in 2014) and intra-firm linkages (e.g., Vestas (OEM) with Vestas (in-house manufacturing)
631 for nacelles)). We use a Sankey (alluvial) diagram to visualize the proportional flow between nodes

632 of the network (i.e., the location of the supplier and the location of the OEM) using R (version
633 3.6.2) package `ggforce`⁶⁴.

634

635 **Statistical analysis for evolution of suppliers**

636 To estimate the links between technology complexity and suppliers' ability to be strategic and
637 competitive in international markets, we conduct a set of Ordinary Least Squares (OLS) regression
638 analyses from 2006 to 2016 using statistical modeling in R (version 3.6.2) and output using the
639 `stargazer` package⁶⁵.

640

641 The dependent variable is the evolution, estimated as the difference over two years (i.e., a two-year
642 time lag) in the fraction of supplier's market relationships with OEMs from a different country
643 (international OEMs), as a proxy for suppliers' ability to compete in international markets. We
644 used the network analysis technique (as described in the previous section) to first quantify the
645 market relationships between suppliers with OEMs. In a given year t , a value of 0 reflects that
646 suppliers work only with OEMs from the same country while 1 reflects that suppliers only work
647 with OEMs from a different country (international OEM). Then, to estimate the change over time,
648 where an increase in international relationships indicates an increase in competitiveness, we
649 calculated the difference with year $t+2$. The final variable for evolution ranges from -1 to 1, where
650 a negative value indicates a decrease in the fraction of international relationships, 0 indicates no
651 change, and 1 indicates an increase in the fraction of international relationships.

652

653 We combined the data on supplier-OEM relationships with home-country information of the
654 suppliers and OEMs. We manually collected the addresses of each supplier and OEM by searching
655 databases such as Orbis, Amadeus, or Bloomberg and verified and extended this information with
656 a manual search on the suppliers' webpages. We used headquarter addresses in case of larger
657 companies with multiple facilities. We calculated changes in the fraction of international
658 relationships on a two-year basis, and also on a yearly basis as a robustness check. While the results
659 using two-year and one-year changes revealed robust estimates, we decided to focus on two-year
660 changes that are likely to capture actual strategic changes of suppliers' evolution to a greater extent.

661

662 The main independent variable is technology complexity (x_1), measured using the product
663 complexity index as described above for each component and year.

664

665 In addition, we used the following supplier-specific control variables:

- 666 - wind specialization (x_2), which is a binary variable that measures whether the supplier
 667 specialized in wind energy (=1) or was active in other sectors outside of the wind industry
 668 (=0). We obtained this information during our efforts of expanding the original dataset by
 669 manually coding all suppliers based on an analysis of their webpages and databases such as
 670 Bloomberg.
- 671 - component diversification (x_3) is a variable that measures the number of wind components
 672 supplied by a firm to wind OEMs, which we derived from our original dataset. In our
 673 database, 279 (90.9%) suppliers only offered one component, 23 (7.5%) offered two, and
 674 5 (1.6%) firms offered three components. Those 5 firms offered 8 of the 9 distinct
 675 components, so there is no bias in a certain direction.
- 676 - patenting international (x_4), which captures the cumulative number of international patents
 677 per component by each supplier, depreciated by 15% annually⁴¹. We used the patent data
 678 and classification as described above and mapped whether the country where each patent
 679 was first registered matches the country of origin of the supplier.
- 680 - patenting domestic (x_5), similarly captures the cumulative number of home-country patents
 681 applied for by each supplier.
- 682 - size (x_6), which estimates the number of employees (logged). This information was
 683 obtained from during the database expansion from Orbis, Amadeus, Bloomberg and the
 684 suppliers' webpages. We used the last available number of full-time employees (or
 685 equivalents) given that many of the covered supplier are private firms where time varying
 686 data is not available.
- 687 - age (x_7), which represents the time interval since the founding year of the supplier. This
 688 information was also obtained during the database expansion.
- 689 - supplier dependence on OEM (x_8), which captures the different outsourcing or insourcing
 690 strategies applied by the OEMs and indicates how dependent each supplier is on the OEM.
 691 The importance of including this variable as a control stems from the fact that OEMs have
 692 different approaches for procuring components from suppliers, i.e., the governance of the
 693 value chain: some suppliers are in-house or through acquired companies, some are
 694 outsourced to international suppliers who, despite being part of an OEM, continued to
 695 brand their products differently. This is a continuous variable ranging from 0 (only in-
 696 house relationships) to 1 (only outsourced relationships).

697
 698 In the regression results, the change in international evolution (Y_i) for supplier i is estimated using
 699 the following OLS model:

700 $(Y_i) = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{3i} + \beta_4 x_{4i} + \beta_5 x_{5i} + \beta_6 x_{6i} + \beta_7 x_{7i} + \beta_8 x_{8i} + \varphi_i + \gamma_i + t \quad (1)$
701 where β_1 is the coefficient of interest on technology complexity, and β_{2-8} the coefficients of the
702 control variables. φ_i , γ_i and t are fixed effects for the supplier (φ_i), the country of the supplier (γ_i),
703 and year (t).

704
705 The same set of explanatory and control variables in Equation 1 are used in all cases. Table 1
706 reports values of (β) and Supplementary Table 4 shows the descriptive statistics and correlations.
707 In total, we have an unbalanced panel of 1,227 observations of 318 suppliers from Denmark,
708 Germany, Spain, US, Japan, China, and India (out of the 389 global suppliers, from 2006-2016).
709 Model 1 measures the impact of all control variables on international evolution, and Model 2 adds
710 the effect of our main independent variable technology complexity, suggesting a significant
711 negative impact on international evolution ($\beta = -0.118$, p-value =0.029). Model 3 includes the
712 same variables but limits the firms to the 114 suppliers from Germany, Denmark and Spain
713 (excluding US and Chinese suppliers). Model 4 captures the same for 37 US suppliers, and Model
714 5 for 138 Chinese suppliers. Given the low number of suppliers from India (21) and Japan (8), we
715 did not calculate separate models for these countries. Model 6 limits the dataset to only capture
716 relationships of suppliers with OEMs from EU, Model 7 to OEMs from the USA and Model 8
717 from China.

718
719 In addition, we conducted several robustness checks for our model specifications. These include
720 different complexity metrics, time lags, and interaction effects (Supplementary Tables 5-6). Our
721 results are robust to all model specifications.

722
723 Finally, we undertook a three-step approach to address endogeneity concerns that the complexity
724 will shape how countries export and internationalize, while the PCI based complexity measure is
725 also calculated based on countries that are able to manufacture and export a technology. First,
726 complexity (the independent variable) is measured at the component-level based on broader
727 mapping of HS codes from Hausmann, Hidalgo, et al.'s PCI approach (where other components
728 unrelated to wind may also be traded under a particular component code). International evolution
729 (our dependent variable) is estimated on the supplier-component level of the wind energy industry.
730 This eliminates the use of same data and unit of analysis for the two variables. Second, we use
731 other complexity metrics that are based on patent data and do not rely on country information.
732 Our results are again robust to these other complexity metrics (Supplementary Table 5). Third, we
733 use time lags of two years in our main model (Model 1 and Model 2) and multiple other time lags

734 for robustness checks (See Supplementary Table 6). This reduces the relationship in a particular
 735 year between the dependent variable and the complexity independent variable. Our results are
 736 robust under different specifications.

737

738 **Table 1: Regression results on the relationship between technology complexity and evolution i.e.,**
 739 **change in fraction of relationships with international OEMs.** Suppliers of high complexity
 740 components are likely to have low evolution. The model results are from Ordinary Least Squares (OLS)
 741 regressions. Numbers in parentheses indicate robust standard errors.

742

International evolution (change in the fraction of supplier relationships with international OEMs)	Controls	All suppliers	European suppliers	US suppliers	Chinese suppliers	Suppliers to European OEMs	Suppliers to US OEMs	Suppliers to Chinese OEMs
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7	Model 8
technology complexity		-0.118** (0.054) t = -2.191 p = 0.029	-0.088 (0.066) t = -1.337 p = 0.182	-0.281 (0.239) t = -1.175 p = 0.240	-0.131* (0.075) t = -1.752 p = 0.080	-0.099 (0.078) t = -1.263 p = 0.207	-0.266*** (0.089) t = -2.993 p = 0.003	-0.014 (0.062) t = -0.222 p = 0.825
wind specialization	-1.141*** (0.390) t = -2.927 p = 0.004	-1.105*** (0.390) t = -2.836 p = 0.005	0.307 (0.368) t = 0.834 p = 0.405	0.011 (0.299) t = 0.036 p = 0.972	-1.943*** (0.649) t = -2.995 p = 0.003	0.291* (0.173) t = 1.682 p = 0.093	-12.733*** (4.602) t = -2.767 p = 0.006	-0.381 (1.550) t = -0.246 p = 0.806
component diversification	0.136** (0.069) t = 1.984 p = 0.048	0.107 (0.068) t = 1.572 p = 0.116	-0.055 (0.081) t = -0.676 p = 0.500	0.449*** (0.148) t = 3.027 p = 0.003	0.309*** (0.119) t = 2.588 p = 0.010	-0.105 (0.097) t = -1.079 p = 0.281	0.04 (0.120) t = 0.337 p = 0.737	0.088 (0.093) t = 0.946 p = 0.345
patenting international	0.003 (0.003) t = 1.101 p = 0.271	0.003 (0.003) t = 1.132 p = 0.258	-0.0004 (0.002) t = -0.148 p = 0.883	0.082** (0.041) t = 2.011 p = 0.045	0.627** (0.280) t = 2.241 p = 0.026	0.001 (0.004) t = 0.267 p = 0.790	0.007** (0.003) t = 2.200 p = 0.028	0.007*** (0.002) t = 2.813 p = 0.005
patenting home	-0.001 (0.005) t = -0.116 p = 0.908	0.003 (0.005) t = 0.505 p = 0.614	-0.001 (0.005) t = -0.166 p = 0.868	-0.132 (0.244) t = -0.539 p = 0.590	0.045*** (0.014) t = 3.091 p = 0.002	0.009 (0.011) t = 0.874 p = 0.383	-0.0002 (0.016) t = -0.015 p = 0.989	0.001 (0.009) t = 0.142 p = 0.888
size	-0.547** (0.216) t = -2.534 p = 0.012	-0.516** (0.214) t = -2.408 p = 0.017	0.156** (0.078) t = 2.016 p = 0.044	-0.396 (0.281) t = -1.409 p = 0.159	-1.977*** (0.635) t = -3.111 p = 0.002	0.064 (0.110) t = 0.578 p = 0.564	10.710*** (3.303) t = 3.243 p = 0.002	-0.343 (1.342) t = -0.255 p = 0.799
age	0.008*** (0.002) t = 3.736 p = 0.0002	0.008*** (0.002) t = 3.697 p = 0.0003	0.002 (0.001) t = 1.079 p = 0.281	-0.057*** (0.011) t = -4.958 p = 0.00000	-0.031 (0.023) t = -1.367 p = 0.172	0.001 (0.001) t = 1.053 p = 0.293	-0.680*** (0.228) t = -2.989 p = 0.003	-0.01 (0.033) t = -0.293 p = 0.770
supplier dependence on OEM	-0.018 (0.067) t = -0.266 p = 0.791	-0.016 (0.067) t = -0.240 p = 0.810	0.127 (0.077) t = 1.640 p = 0.102	-0.092 (0.130) t = -0.708 p = 0.479	-0.075 (0.072) t = -1.034 p = 0.302	-0.09 (0.083) t = -1.076 p = 0.283	-0.108 (0.083) t = -1.300 p = 0.194	
Constant	4.703*** (1.604) t = 2.931 p = 0.004	4.551*** (1.595) t = 2.853 p = 0.005	-0.940** (0.447) t = -2.103 p = 0.036	4.457*** (1.691) t = 2.637 p = 0.009	14.883*** (4.896) t = 3.039 p = 0.003	-0.046 (0.635) t = -0.072 p = 0.943	-50.519*** (15.602) t = -3.238 p = 0.002	3.054 (10.390) t = 0.294 p = 0.769
Country FE	YES	YES	NO	NO	NO	YES	YES	YES
Year FE	YES	YES	YES	YES	YES	YES	YES	YES
Firm FE	YES	YES	YES	YES	YES	YES	YES	YES
Observations	1,227	1,227	479	169	455	637	421	485
R ²	0.426	0.429	0.456	0.548	0.487	0.457	0.449	0.509
Adjusted R ²	0.288	0.291	0.319	0.397	0.338	0.307	0.297	0.362

Note: *p<0.1; **p<0.05; ***p<0.01

743

744 **Data availability**

745 The database on the global manufacturing value chain developed for this study was built on third-
746 party reports published by Navigant Consulting, with additional details obtained from Orbis,
747 Amadeus, Bloomberg, and Derwent World Patents Index. Restrictions apply to the availability of
748 these third-party data and so the dataset is not publicly available. Data are however available upon
749 reasonable request from the corresponding author. Supplier data (without the supplier company
750 name) are available at [<https://github.com/kavsurana/tech-complexity-project/>] along with the
751 source and code to replicate the analysis. The source data underlying Figs. 1–6 and Supplementary
752 Figs. 1–2 are provided as a Source Data file.

753

754

755 **References**

- 756 1. IRENA. Renewable Capacity Statistics 2020.
757 <https://www.irena.org/publications/2020/Mar/Renewable-Capacity-Statistics-2020> (2020).
- 758 2. IEA. World Energy Outlook 2019. <https://www.iea.org/reports/world-energy-outlook-2019>
759 (2019).
- 760 3. GLWN (Global Wind Network). U.S. Wind Energy Manufacturing and Supply Chain: A
761 Competitiveness Analysis.
762 https://energy.gov/sites/prod/files/2014/09/f18/U.S.%20Wind%20Energy%20Manufacturing%20and%20Supply%20Chain%20Competitiveness%20Analysis_0.pdf (2014).
- 764 4. Wiser, R. et al. Expert elicitation survey on future wind energy costs. *Nature Energy* **1**, 16135
765 (2016).
- 766 5. Wiser, R. et al. 2018 Wind Technologies Market Report. *103* (2018).
- 767 6. HM Government. Industrial Strategy: Offshore Wind Sector Deal.
768 https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/790950/BEIS_Offshore_Wind_Single_Pages_web_optimised.pdf (2019).

- 770 7. Hansen, U. E., Nygaard, I., Morris, M. & Robbins, G. The effects of local content requirements in
771 auction schemes for renewable energy in developing countries: A literature review. *Renewable
772 and Sustainable Energy Reviews* **127**, 109843 (2020).
- 773 8. Schmidt, T. S., Schmid, N. & Sewerin, S. Policy goals, partisanship and paradigmatic change in
774 energy policy – analyzing parliamentary discourse in Germany over 30 years. *Climate Policy* **19**,
775 771–786 (2019).
- 776 9. Lewis, J. I. The Rise of Renewable Energy Protectionism: Emerging Trade Conflicts and
777 Implications for Low Carbon Development. *Global Environmental Politics* **14**, 10–35 (2014).
- 778 10. Stokes, L. C. & Warshaw, C. Renewable energy policy design and framing influence public
779 support in the United States. *Nature Energy* **2**, 17107 (2017).
- 780 11. Haakonsson, S. J. & Kirkegaard, J. K. Configuration of technology networks in the wind turbine
781 industry. A comparative study of technology management models in European and Chinese lead
782 firms. *International Journal of Technology Management* **70**, 281–299 (2016).
- 783 12. Binz, C. & Truffer, B. Global Innovation Systems—A conceptual framework for innovation
784 dynamics in transnational contexts. *Research Policy* **46**, 1284–1298 (2017).
- 785 13. Pietrobelli, C. & Rabellotti, R. Global Value Chains Meet Innovation Systems: Are There Learning
786 Opportunities for Developing Countries? *World Development* **39**, 1261–1269 (2011).
- 787 14. Jurowetzki, R., Lema, R. & Lundvall, B.-Å. Combining Innovation Systems and Global Value
788 Chains for Development: Towards a Research Agenda. *Eur J Dev Res* **30**, 364–388 (2018).
- 789 15. Lema, R. & Lema, A. Technology transfer? The rise of China and India in green technology
790 sectors. *Innovation and Development* **2**, 23–44 (2012).
- 791 16. Lewis, J. I. Building a national wind turbine industry: experiences from China, India and South
792 Korea. *International Journal of Technology and Globalisation* **5**, 281–305 (2011).
- 793 17. Surana, K. & Anadon, L. D. Public policy and financial resource mobilization for wind energy in
794 developing countries: A comparison of approaches and outcomes in China and India. *Global
795 Environmental Change* **35**, 340–359 (2015).

- 796 18. Binz, C., Gosens, J., Hansen, T. & Hansen, U. E. Toward technology-sensitive catching-up policies:
797 insights from renewable energy in China. *World Development* **96**, 418–437 (2017).
- 798 19. World Bank. *World Development Report 2020: Trading for development in the age of global
799 value chains.* (World Bank, 2020).
- 800 20. OECD. *Multinational enterprises in the global economy - Heavily debated but hardly measured.*
801 <https://www.oecd.org/industry/ind/MNEs-in-the-global-economy-policy-note.pdf> (2018).
- 802 21. Antràs, P. *Conceptual Aspects of Global Value Chains.* <http://www.nber.org/papers/w26539>
803 (2019) doi:10.3386/w26539.
- 804 22. AWEA. *Wind Energy Industry Manufacturing Supplier Handbook.* (2011).
- 805 23. Hobday, M. *Product complexity, innovation and industrial organisation.* *Research Policy* **26**, 689–
806 710 (1998).
- 807 24. Huenteler, J., Schmidt, T. S., Ossenbrink, J. & Hoffmann, V. H. *Technology life-cycles in the
808 energy sector — Technological characteristics and the role of deployment for innovation.*
809 *Technological Forecasting and Social Change* **104**, 102–121 (2016).
- 810 25. Garud, R. & Karnoe, P. *Bricolage versus breakthrough: distributed and embedded agency in
811 technology entrepreneurship.* *Research Policy* **32**, 277–300 (2003).
- 812 26. OECD. *OECD SME and Entrepreneurship Outlook 2019.* (2019).
- 813 27. Navigant Research. *Supply Chain Assessment 2014 – Wind Energy 2014-2018.* (2014).
- 814 28. Hausmann, R. et al. *The atlas of economic complexity: Mapping paths to prosperity.* vol. 51 (MIT
815 Press, 2014).
- 816 29. McNerney, J., Farmer, J. D., Redner, S. & Trancik, J. E. *Role of design complexity in technology
817 improvement.* *PNAS* **108**, 9008–9013 (2011).
- 818 30. Novak, S. & Eppinger, S. D. *Sourcing By Design: Product Complexity and the Supply Chain.*
819 *Management Science* **47**, 189–204 (2001).
- 820 31. Broekel, T. *Using structural diversity to measure the complexity of technologies.* *PLOS ONE* **14**,
821 e0216856 (2019).

- 822 32. Mealy, P., Farmer, J. D. & Teytelboym, A. Interpreting economic complexity. *Science Advances* **5**,
823 eaau1705 (2019).
- 824 33. Balland, P.-A. & Rigby, D. The Geography of Complex Knowledge. *Economic Geography* **93**, 1–23
825 (2017).
- 826 34. Fleming, L. & Sorenson, O. Technology as a complex adaptive system: evidence from patent
827 data. *Research Policy* **30**, 1019–1039 (2001).
- 828 35. Huenteler, J., Ossenbrink, J., Schmidt, T. S. & Hoffmann, V. H. How a product's design hierarchy
829 shapes the evolution of technological knowledge—Evidence from patent-citation networks in
830 wind power. *Research Policy* **45**, 1195–1217 (2016).
- 831 36. MIT Media Lab. Observatory of Economic Complexity - Product Complexity Rankings.
832 https://atlas.media.mit.edu/en/rankings/product/hs07/?year_range=2011-2016.
- 833 37. Paisemi, F. EU energy technology trade: Import and export.
834 https://setis.ec.europa.eu/sites/default/files/reports/eu_energy_technology_trade.pdf (2017).
- 835 38. Wind, I. HS Codes and the Renewable Energy Sector. Research and Analysis, International Centre
836 for Trade and Sustainable Development (ICTSD) (2008).
- 837 39. Asheim, B. T. & Coenen, L. Knowledge bases and regional innovation systems: Comparing Nordic
838 clusters. *Research Policy* **34**, 1173–1190 (2005).
- 839 40. Lewis, J. I. & Wiser, R. H. Fostering a renewable energy technology industry: An international
840 comparison of wind industry policy support mechanisms. *Energy Policy* **35**, 1844–1857 (2007).
- 841 41. Qiu, Y. & Anadon, L. D. The price of wind power in China during its expansion: Technology
842 adoption, learning-by-doing, economies of scale, and manufacturing localization. *Energy*
843 *Economics* **34**, 772–785 (2012).
- 844 42. Awate, S., Larsen, M. M. & Mudambi, R. Accessing vs sourcing knowledge: A comparative study
845 of R&D internationalization between emerging and advanced economy firms. *Journal of*
846 *International Business Studies* **46**, 63–86 (2015).

- 847 43. Nieto, M. J. & Rodríguez, A. Offshoring of R&D: Looking abroad to improve innovation
848 performance. *Journal of International Business Studies* **42**, 345–361 (2011).
- 849 44. Dunning, J. H. & Lundan, S. M. The Internationalization of Corporate R&D: A Review of the
850 Evidence and Some Policy Implications for Home Countries1. *Review of Policy Research* **26**, 13–
851 33 (2009).
- 852 45. Doblinger, C., Dowling, M. & Helm, R. An institutional perspective of public policy and network
853 effects in the renewable energy industry: enablers or disablers of entrepreneurial behaviour and
854 innovation? *Entrepreneurship & Regional Development* **28**, 126–156 (2016).
- 855 46. Cox Pahnke, E., McDonald, R., Wang, D. & Hallen, B. Exposed: Venture Capital, Competitor Ties,
856 and Entrepreneurial Innovation. *AMJ* **58**, 1334–1360 (2014).
- 857 47. Doblinger, C., Surana, K. & Anadon, L. D. Governments as partners: The role of alliances in U.S.
858 cleantech startup innovation. *Research Policy* **48**, 1458–1475 (2019).
- 859 48. Schilling, M. A. & Phelps, C. C. Interfirm collaboration networks: The impact of large-scale
860 network structure on firm innovation. *Management Science* **53**, 1113–1126 (2007).
- 861 49. Gereffi, G., Humphrey, J. & Sturgeon, T. The governance of global value chains. *Review of
862 International Political Economy* **12**, 78–104 (2005).
- 863 50. Sturgeon, T., Van Biesenbroeck, J. & Gereffi, G. Value chains, networks and clusters: reframing the
864 global automotive industry. *J Econ Geogr* **8**, 297–321 (2008).
- 865 51. Schmidt, T. S. & Huenteler, J. Anticipating industry localization effects of clean technology
866 deployment policies in developing countries. *Global Environmental Change* **38**, 8–20 (2016).
- 867 52. Brauch, H. G., Spring, Ú. O., Grin, J. & Scheffran, J. *Handbook on sustainability transition and
868 sustainable peace*. vol. 10 (Springer, 2016).
- 869 53. Haakonsson, S., Kirkegaard, J. K. & Lema, R. The decomposition of innovation in Europe and
870 China's catch-up in wind power technology: the role of KIBS. *European Planning Studies* **0**, 1–19
871 (2020).

- 872 54. USITC. Utility Scale Wind Towers from Canada, Indonesia, Korea, and Vietnam. Investigation
873 Nos. 701-TA-627-629 and 731-TA-1458-1461 (Preliminary).
- 874 https://www.usitc.gov/publications/701_731/pub4952.pdf (2019).
- 875 55. Wilson, C. et al. Granular technologies to accelerate decarbonization. *Science* **368**, 36–39 (2020).
- 876 56. IRENA. Future of wind: Deployment, investment, technology, grid integration and socio-
877 economic aspects. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Oct/IRENA_Future_of_wind_2019.pdf (2019).
- 879 57. Feinerer, I., Hornik, K. & Meyer, D. Text Mining Infrastructure in R. *Journal of Statistical Software*
880 **25**, 1–54 (2008).
- 881 58. Grün, B. & Hornik, K. *topicmodels: An R Package for Fitting Topic Models*. *Journal of Statistical*
882 *Software* **40**, 1–30 (2011).
- 883 59. Chan, G. The Commercialization of Publicly Funded Science: How Licensing Federal Laboratory
884 Inventions Affects Knowledge Spillovers.
http://isites.harvard.edu/fs/docs/icb.topic1459278.files/CHAN-Gabriel_11-21-14_JMP%20-%20National%20Lab%20Patent%20Licensing.pdf (2015).
- 887 60. Kim, G., Park, S. & Jang, D. Technology Analysis from Patent Data Using Latent Dirichlet
888 Allocation. in *Soft Computing in Big Data Processing* (eds. Lee, K. M., Park, S.-J. & Lee, J.-H.) 71–
889 80 (Springer International Publishing, 2014).
- 890 61. Barrat, A., Barthélémy, M., Pastor-Satorras, R. & Vespignani, A. The architecture of complex
891 weighted networks. *PNAS* **101**, 3747–3752 (2004).
- 892 62. Csardi, G. & Nepusz, T. The igraph software package for complex network research. *InterJournal*
893 **Complex Systems**, 1695 (2006).
- 894 63. Taglioni, D. & Winkler, D. Making Global Value Chains Work for Development. (The World Bank,
895 2016). doi:10.1596/978-1-4648-0157-0.
- 896 64. Pedersen, T. L. *ggforce: Accelerating ‘ggplot2’*. R package version 0.1 **2**, (2019).

897 65. Hlavac, M. Stargazer: Well-formatted regression and summary statistics tables. R package

898 version 5, (2015).

899

900