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Entanglement, while being critical in many quantum applications, is difficult to characterize experimentally.
While entanglement witnesses based on the fidelity to the target entangled state are efficient detectors of
entanglement, they in general underestimate the amount of entanglement due to local unitary errors during state
preparation and measurement. Therefore, to detect entanglement more robustly in the presence of such control
errors, we introduce a ‘subspace’ witness that detects a broader class of entangled states with strictly larger
violation than the conventional state-fidelity witness at the cost of additional measurements, while remaining
more efficient with respect to state tomography. We experimentally demonstrate the advantages of the subspace
witness by generating and detecting entanglement with a hybrid, two-qubit system composed of electronic spins
in diamond. We further extend the notion of the subspace witness to specific genuine multipartite entangled
(GME) states detected by the state witness, such as GHZ, W, and Dicke states, and motivate the choice of the
metric based on quantum information tasks, such as entanglement-enhanced sensing. In addition, as the subspace
witness identifies the many-body coherences of the target entangled state, it facilitates (beyond detection)
lower-bound quantification of entanglement via generalized concurrences. We expect that the straightforward
and efficient implementation of subspace witnesses would be beneficial in detecting specific GME states in
noisy, intermediate-scale quantum processors with a hundred qubits.
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I. INTRODUCTION

Entanglement describes quantum correlations with no clas-
sical analog, and it underpins many advantages of quantum
devices over classical computation, communication, and sens-
ing [1-3], while also being central in many physical phe-
nomena such as phase transitions [4]. However, entanglement
is difficult to characterize both theoretically and, even more
so, experimentally. The most direct way requires performing
quantum state tomography (QST) [5,6] to obtain the density
operator p describing the state and then use one of several
metrics of entanglement that have been proposed. Unfortu-
nately, QST requires a number of measurements that scale
exponentially with the qubit number n, such that for large
n QST becomes intractable. Even for small systems, errors
in state preparation and measurement (SPAM) compound the
difficulty in identifying p with a high accuracy [7-10].

When the goal is more simply to detect whether or not
entanglement is present, an attractive alternative is to use so-
called entanglement witnesses W [11,12]. In contrast to QST,
the resources needed to measure an entanglement witness
typically scale more favorably with respect to n. The witness
operator W is designed to ‘witness,” that is, detect a specific
entangled state |v/): its expectation value (Wy) = tr(oWy,)
is negative for some entangled states, while it is positive
for all separable states. While designing a witness for an
arbitrary entangled state is difficult, since this would solve the
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separability problem [13-16], for NPT entangled states |¢)
(states that have negative eigenvalues under positive partial
transpose) [17], such as the well-known Bell, GHZ, W, and
Dicke states, the witness is based on the state fidelity, (Fy) =

(Wlply):
Wy = ol — [y ) (¥l (D

Here « is the squared maximum overlap of |y) with all possi-
ble separable states [18] so as to conservatively detect entan-
glement. This improved experimental feasibility—requiring
only the measurement of state fidelity—has led to success-
ful demonstrations of entanglement detection across many
platforms [18-24] as well as theoretical improvements and
modification of the witness to further improve experimental
feasibility [25].

However, one immediate drawback of such ‘state’ wit-
nesses Wy, is that they can severely underestimate the amount
of entanglement actually present in p. While errors in state
preparation can indeed lower the entanglement from the target
state p = |Y)(¥|, some common errors such as local and
unitary errors will not change the amount of entanglement.
However, the typical witnesses Wy, of the form in Eq. (1) will
not capture this entanglement.

Here we use a solid-state two-qubit system to investigate
the advantages and limits of entanglement witnesses in the
presence of SPAM errors. To achieve more robust entangle-
ment detection, we introduce a new metric, which we call
the ‘subspace’ witness (W), that can capture a larger share
of entangled states generated in the presence of unitary, local
errors. We compare state (Wy,) and subspace (W;) witnesses,

©2020 American Physical Society



SUN, COOPER, AND CAPPELLARO

PHYSICAL REVIEW A 101, 012319 (2020)

observing an improvement in the detection of entanglement by
(W;), which can even provide a stricter bound on entanglement
quantification. As an extension, we discuss the subspace wit-
ness measurement for specific genuine multipartite entangled
(GME) states, such as GHZ, W, and Dicke states, that are
compatible with state-fidelity witnesses. We find that quite
broadly the subspace witness allows identification of all the
many-body coherences, which are often of interest in practical
applications such as quantum sensing.

II. WITNESSING TWO-QUBIT ENTANGLEMENT
A. State witnesses Wy,

For a two-qubit system, there are four canonical maximally
entangled states, the Bell states [2,26,27]. The Bell states
{|®*), |¥*)} form an orthogonal basis, thus any state (and,
in particular, entangled states) can be written in terms of their
superpositions. Choosing the computational basis to describe
the energy eigenbasis, we can explicitly write a Bell state
as |®(W*)) = (|k) % |k))/+/2, with [k) = [00)(]01)) and
|k) the corresponding spin-flipped states. Each pair of Bell
states, |®*) and |W¥), spans a subspace with constant energy.
For many applications, such as entanglement-enhanced quan-
tum sensing [3,28,29] or decoherence-protected subspaces
[30-35], states inside this subspace are equally beneficial. In
particular, we can identify the family of maximally entangled
states inside such subspaces, parametrized by a phase ¢,

| () = cos(p/2)|PT) +isin(p/2)|P), 2)

and similarly for |¥*). Here ¢ describes the phase degree
of freedom that leaves unchanged the state desired properties
(e.g., for enhanced sensing or decoherence-protected memory,
respectively).

Fixing ¢, we can build a canonical state witness as in
Eq. (1) (with @ = 1/2). This is a good witness to detect the
presence of two-qubit entanglement in any state p, given that
all two-qubit entangled states are NPT. The expectation value
of the witness depends on the state fidelity, W, = 1/2 — Fy,
where the state fidelity is a function of ¢:

(Fy) = (W (olplv (@) =P+Clp) <P+ lpgl.  3)

Here P = 1/2(pxx + pg) is the sum of populations in the
|k), |k) subspace and

C(@) = Re(pr) cos(@) + Im( o) sin(e)
= | oyl cos(¢ + Oyz)

are the related coherences, with tan(6,;) = Im(pz)/Re(poiz)-
The coherence C(¢) is maximum only for 6,; = —¢. Unfortu-
nately, 6,; might be unknown due to the unitary component of
SPAM errors. Then, while P < 1/2 always reflects a subop-
timal (or absent) entanglement, C(¢) might even be negative,
although the state is maximally entangled. This leads to an
underestimate not only of the entanglement unless 6,; = —¢
but, more critically, of the useful entanglement for many
quantum tasks, as often the exact value of 6, is unimportant.

“4)

B. Subspace witnesses W;

As a way to improve upon entanglement detection by state
witnesses, we propose a subspace witness measurement that

becomes insensitive to some unitary SPAM errors:
(W) = H}}n(Ww) = - m(slx(lﬁ(<ﬂ)|/?|lﬂ(<ﬂ))- &)

We call this a subspace witness as, for any state in the
subspace spanned by the relevant entangled-state basis, the
witness is able to detect whether or not it is entangled.
The subspace witness can thus be considered an intermediate
metric between state witnesses and entanglement measures:
while entanglement measures provide a quantitative estimate
of the entanglement amount, typically by optimizing over all
possible local unitaries, the subspace witness optimizing over
a set of local unitaries that are of relevance for a particular
quantum information task, thus detecting entanglement more
robustly than the state witness, while still maintaining an
efficient protocol.

Indeed, to experimentally obtain the subspace witness by
maximizing the fidelity over the subspace, one needs to simply
perform multiple state witness (or fidelity) measurements.
That is, improved entanglement detection comes at the cost
of additional measurements. Still, the number of measure-
ments is much smaller than for QST. For two-qubit entangle-
ment, Egs. (3) and (4) show that there are three unknowns:
Re(pz), Im(pyz), and P. Thus, three measurements, e.g., at
¢ = {0, /2, }, fully identify P and |p;z|, thus yielding the
subspace-optimized entanglement witness. While the advan-
tage for two qubits is not large, it quickly becomes substantial
for larger systems, as we see in Sec. IV.

Having discussed the idea of the subspace witness we
now describe our experimental system and the experimental
protocol to measure W;.

III. EXPERIMENTAL GENERATION AND DETECTION
OF ENTANGLEMENT

A. Entanglement generation

We generated entanglement in a solid-state two-qubit sys-
tem, comprising two electronic spin impurities in diamond.
The qubits are given by two electronic-spin levels of a sin-
gle nitrogen-vacancy (NV) center, weakly interacting with a
nearby, optically dark, electronic spin-1/2 defect in diamond.
This spin qubit has been earlier characterized as an electronic-
nuclear spin defect [36]. Here we neglect the nuclear spin de-
grees of freedom and remove the electronic spin dependence
on their state by applying two-tone microwave pulses detuned
by the nuclear hyperfine strength.

To experimentally prepare an entangled state p, we follow
the protocol described below whose details are provided in
[29,37]. Starting from the thermal equilibrium state of the
two spins, we first initialize the two-qubit system to po,
via a Maxwell demon-type cooling scheme. Specifically, we
first initialize the N'V spin to a high-purity state using spin-
nonconserving optical transitions under laser illumination
[38,39]. Then we swap its state with the dark electronic spin
X and reinitialize the NV. After the initialization step I, we
apply an entangling operation U to prepare the desired state p
[Fig. 1(a)].

Both the SWAP in [ and the entangling gate in
U are achieved by Hartmann-Hahn cross-polarization
(HHCP), which exploits the spin coupling described by
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FIG. 1. Entanglement detection. (a) General entanglement detec-
tion scheme: to initialize the state to py (/), entangle p, — p (U), and
measure p (M) at the desired settings parameterized by the operator
M(p), where typically the fidelity measurement M(¢) = F, (@) =
[Y (@) (¥ (®)] is desired. (b) Visualizing (improved) fidelity-based
entanglement detection: as seen from Egs. (4) and (8), the fidelity
can be improved by increasing the overlap between vectors de-
scribing the many-body coherences pjx and vectors describing the
measurement or, equivalently, the target entangled state |y (®)).
Given that p is a priori unknown, one knows not the optimal fidelity
measurement operator Fy, (); furthermore, given that in general p
is mixed, a single fidelity measurement—and thus a typical ‘state’
witness measurement (W,,) [Eq. (1)]—cannot reveal the true (i.e.,
maximum) coherences |p;;|. Thus we discuss a ‘subspace’ witness
measurement (W;) [Eq. (5)], relying on multiple fidelity measure-
ments, for improved entanglement detection by identification of the
true coherences pj.. Here the schematic illustrates a single fidelity
measurement Fy, (@1, ) with respect to a three-qubit W state as the
target |1) = (|0) + ¢ #1|1) 4+ ¢#2|2))/+/3—which fixes the blue
and cyan arrows—given the state p, whose (unknown) coherences
Pk are shown in pink.

Hine = dojo; /2 as follows [37]. After a global 7 /2 rotation to
the transverse plane, we drive both spins with driving strength
Qnv and Qy, ;, respectively (we use two driving fields, j =
1, 2, for the dark spin to drive both nuclear hyperfine transi-
tions). By tuning the driving strengths and frequencies (Swnv
and Swy,; for the jth nuclear spin state) the two spins can
be brought on resonance in the dressed basis. This allows for
polarization exchange, thanks to the coupling d between the
two spins, despite the large energy mismatch in the laboratory
frame. More generally, by the judicious choice of driving
phases and timing, the HHCP scheme can realize two-qubit
conditional gates [29,40—43].

In the case of ideal control, i.e., given no detuning in driv-
ing (wnv = dwy,; = 0) and perfect Rabi matching (Qny =
Qx_;), the HHCP scheme engineers evolution under Hyy =
d(o{03 £ 0]05)/4. Then a driving time of dt = 7 /4 would
realize the gate U = +/iSWAP useful for generating entangle-
ment. Similarly, with dt = 7 /2, ideal control would imple-
ment the iSWAP gate as needed for the initialization gate /.

Due to intrinsic limits in the NV polarization process
[44], and control errors and decoherence during the swap-
ping operation, the state prepared by [/ has subunit purity
[tr(pg) < 1]. In addition, control in / and U is limited not only

by decoherence, but also by local unitary rotations. Then the
prepared state p might not be as desired, and a state witness
might underestimate the entanglement present. To compound
these issues, as we explain in the next section, similar control
operations are needed to measure entanglement, given the
available observables. Thus to partially relieve these SPAM
errors, we show that it is beneficial to use subspace witnesses.

In the following, we measure both the state (Wy,) and the
subspace (W) witnesses and observe the presence of unitary,
local errors, thus motivating the use of (Wj).

B. Witness measurements

Here we discuss the experimental protocol for measuring
both the state witness (Wy) and the subspace witness (W)
in our system. Ideally, to measure the Bell-state fidelity Fy,
that enters in (W, ) we would want to measure the observable
M} = |®T)(PT|, such that the experimental signal would di-
rectly yield the Bell fidelity: § = tr(MyU T pU) = (®F|p| D).
While unfortunately this is typically not possible, we can
obtain M, by a suitable unitary transformation of any joint
projective measurement operator on the two qubits [45]. For
example, consider an experimental system with the joint
projective measurement operator M,_, = |0)(0|®". Prior to
measurement, we evolve the state of interest p under a unitary
disentangling gate U", such as U = C;NOT, - H; (where H; is
the Hadamard gate applied to qubit i). This is equivalent to
transforming the bare measurement operator M, into M} =
UM,UT = |®1) (Y], as desired.

Unfortunately, our hybrid system lacks a joint projective
measurement operator such as Mj, as we can only directly
measure the state of the NV center, M = |0X0| ® 1. In this
case, even with universal control on the two-qubit system,
we cannot measure the Bell fidelity in a single measurement.
Therefore, here we introduce a protocol to reconstruct the
Bell-state fidelity that exploits measuring three correlators,
(ofos), witha = {x,y, z}.

In the experiments, we measure M' = UMUT = oios,
with U = C|NOT; and the bare operator M = o = [0)X0] —
[1)X1] obtained from the difference signal of measuring the
NV states 0 and —1. The controlled-NOT gate is realized by
exploiting evolution under the two-spin interaction Hamilto-
nian Hiy, via the pulse sequence Ry(%) - e " - R\(%), with
t =m/4d and R,(0) collective rotations of the two spins
along the axis « for an angle 6. The other two correlators
M' = o{ oy fora = {x, y} can be measured by adding a global
R(7r /2) rotation along the {y, x} directions, respectively.

Given a joint projective measurement as discussed above,
globally rotating the disentangling gates along z, M}(¢) =
|D(@) (D) = R(9)|@T) (PR (9), would yield the re-
quired measurements to reconstruct the subspace witness.
Indeed, recall that to measure (W;) from the subspace-
maximized Bell-state fidelity max,, [Fy (¢)] requires multiple
fidelity measurements in order to learn the magnitude of the
coherence, |p;z|. Similarly, if only one of the two qubits is
observable, M = o7, one could use the correlator (o' o5’) and
their R_(¢) rotations to extract W;.

First, we note that o{oj is invariant under R;, and in-
deed it yields the population P = (1 4 (o{c5))/4, which is
independent of ¢. To extract C(¢) here we used the same
HHCP-based disentangling gate U that generated the entan-
glement, resulting in the following signal S = (M’) up to a
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FIG. 2. Demonstration of witness measurements (W) and (W) for the d =2 target entangled state. (a) We measure the ‘state’
entanglement witness measurement, based on the Bell-state fidelity, which successfully detects entanglement by (W) = o — (@*lpl@*)
—0.07421(4). The vertical gray line denotes the optimal measurement gate time that would yield the desired two-body correlators (o{03) in
the absence of decoherence. To account for decoherence, the signal is fit (dotted lines) to exponentially decaying oscillations [Eq. (A1)]
with a characteristic decay time of 7 = 25 us. Given the short optimal gate time, we see little difference when accounting or not for
the decay. The measured two-body correlations are |(o703)| = 0.2142(1), (0] 03)| = 0.5857(2), and |(o{c§)| = 0.4970(0). (b) Sweeping
the control phase ¢ reveals oscillations between the real and the imaginary parts of the coherence py4. By fitting the oscillations (dotted
line) we extract the coherence amplitude and calculate the entangled-state fidelity maximized over the Bell subspace, thereby improving
entanglement detection by (W) = o — (®|p|P) = —0.1827(4). (c) Measuring the spin echo after preparing the entangled state also yields
the subspace witness, as the coherence py4 time evolution is equivalent to sweeping a phase ¢ = vt; this detection method further estimates
the time scale of (detectable) entanglement. The two-electronic-spin system in diamond, after entangled-state preparation to p, decoheres
under the spin-echo pulse sequence, yielding a characteristic decay time 7, = 31(3) us when fitted to a Gaussian decay (dotted line). As
the population P = 0.371 is constant over the time scale of the experiment, as measured independently, we witness entanglement until

* < T, In(C(0)/(a — P))"/? = 33(3) ps.

constant:
S(p) = tr(pU (9)MU " (¢))
_ (oo —0102) oy - T2 R MR 0
= 2Re(p14) cos(@) — 2Im(p14) sin(ep)
—2C(9). (6)

Here pi14 = (00|p|11) is the coherence of interest, and the
(undesired) constant offset under HHCP is given by (o] —
o05)/2, thus yielding a total of four measurements required to
determine W, (while only three would be necessary if a joint
projective measurement were available; see Appendix A for
experimental details and signal derivation.)

C. Experimental results

We now discuss the measurement results when at-
tempting to create the Bell state |®1), which results
in the generation of the state p. First, we measure the
state witness (We (¢ = 0)), which requires the measure-
ment of the Bell-state fidelity (®*|p|®T) = 4(1 (o70}) +
(ofo3) — (o1 02)). From the three measurements shown
in Fig. 2(a), we obtain Fp+ = 1/4(1 +0.497 +0.2142 +
0.5857) = 0.57421(4) > 1/2. From this fidelity we have
(We) = —0.07, which successfully detects entanglement.

Still, this measurement might underestimate the amount
of entanglement, due to coherent, local errors. We thus
measure the subspace witness (W), to extract the coher-
ence |pz| = 1(00]|p|11)| [see Fig. 2(b) and Appendix A for
experimental details and signal derivation]. We obtain a
maximum fidelity of (®|p|®) = 0.6827(4), corresponding to

W, = —0.1827(4), having optimized over the |®) subspace.
This indicates that we indeed have coherent errors affecting
our state preparation and measurement process.

The subspace witness can also help determining the en-
tanglement coherence time. The (entangled) prepared state
o(t=0) will evolve under the environment influence and
the natural (or engineered) Hamiltonian. By measuring the
subspace witness after a time 7, one can then detect whether
entanglement is still present, at the net of local, unitary
evolution. By setting max,[Fy (t*)] = o we can further define
a threshold time t* after which entanglement in p(t > t*) is
no longer witnessed.

To simplify the measurement of the subspace witness, we
can apply the phase ¢ rotation at each time point measured,
such that ¢ = vt. Then, from the decay of the oscillations in
C, one can directly extract W at T = 0 and the characteristic
time t*. We note that in general both coherences C and
population P will decay for open quantum systems, but only
extraction of the coherences at various ¢ is needed to recon-
struct W;. In our experiments [see Fig. 2(c)], we thus measure
the phase-modulated decay of the coherence. As the main
decoherence source is dephasing, which leaves populations
intact, we simply verify that P(7) is constant.

In experiments, we compare P(7)=(1 + (ofo3(7)))/4 at
T = 0 us and 7 = 40 us and, as expected, observe no decay

(ol o5(t)). We then study the entanglement decay under
a spin echo [29,46] of varying duration t. The prepared
entangled state p evolves under H;y; (Which would not affect
the ideal state |®)) and decoherence. We then apply the disen-
tangling gate (measurement) modulated at ¢ = vt with v =
15kHz. A simple Gaussian decay fit yields a characteristic
decoherence time 7, = 31(3) us of the double-quantum co-
herence |(00|p|11)|, such that taking a constant P = 0.374(1),
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FIG. 3. Improved entanglement detection allows an improved
bound to entanglement. (a) Given the imperfect state initialization
step that prepares py with subunit purity, it is possible to improve the
purity by N repetitive initialization steps. (b) We plot as a function
of N the following results of the subspace witness: namely, the
Bell-state fidelity Fy(N) = P(N)+ |{00|p(N)|11)|, the coherence
2[(00]p(N)|11)| = 2max,[C(p)] < F(N), and the resulting lower
bound to concurrence. With N > 1 we observe the expected im-
provement in purity, from P(N) = (1 4 (of05(N)))/4, which leads
to improved F;(N). We also verify the increase in double-quantum
coherence generated, |(00|p(N)|11)|, which is of practical impor-
tance given that specific applications such as entanglement-enhanced
sensing with GHZ states benefit directly from a larger quantum
coherence and not directly the fidelity itself. In addition, we note that
the subspace witness (W;) improves the bound to entanglement (via
concurrence) over the typical ‘state’ witness (Wy,) due to improved
Bell-state fidelity. The error bars are smaller than the circles in all
plots. The applicability of the improved bound for specific GME
states by (W) is discussed in the text.

we obtain the time t* = 33(3) s until which entanglement
can be detected.

While we have shown that we can create entanglement in
our system, the state fidelity is not optimal. To improve the
quality of entanglement in our hybrid system and investigate
the source of nonideality, we probe the entanglement as a
function of the repetitive state initialization steps (Fig. 3) .
In this way, we can distinguish between initialization I and
control errors in U. We repeat the HHCP plus laser polariza-
tion block N = {1, 3, 5} times to create py(N), then prepare
the entangled state p(/N) and measure the witness (W (N))
with fixed control operations. With increasing N we observe
an increase in the overall fidelity F;(V), due to an increase
in both the population difference [inferred from P(N)] and
the double-quantum coherence C(N). We note that explicitly
verifying an increase in coherence is of practical importance,
because specific applications, e.g., classical field sensing with
GHZ states, depend strictly on the amount of coherence (not
necessarily fidelity) of the entangled state.

Finally, we note that the subspace witness provides a
stricter bound on the amount of entanglement generated.
While this might seem intuitive, we remark that a ‘general’
way to relate entanglement detection to existing quantifiers
is not known. However, for the two-qubit case, it has been
shown [2] that one can relate Bell fidelities Fy, to the entan-
glement of formation and, thereby, to any other related met-
rics such as the well-known concurrence. More specifically,
the lower bound to the two-qubit concurrence is Cp(p) =
max (0, —2W,,), with C; = 1 for maximally entangled states.
This relation makes it clear that to obtain an entanglement
measure one should optimize over all state witnesses. While
the subspace witness only optimizes over a restricted set of
states, it still provides a stricter bound than the state witness,
G = —2W; > —2Wy,.

IV. EXTENSION TO SPECIFIC GENUINE MULTIPARTITE
ENTANGLED STATES

We wish to extend the notion of subspace witness to
those multipartite entangled states that allow entanglement
detection by witnesses Wy,. To this end, we first parametrize a
multipartite entangled state |y ($)) in the computational basis
|k) as

d—1

V@) =) are k), (7)

k=0

where qy, is the probability amplitude, ¢; = k- @ is the |1€)-
dependent phase given a preset n-length vector of phases
¢ = {g;}" for every jth qubit, and d is the dimension of the
subspace spanned by the set {|k)} specifying |v). While such
an expression could describe any pure state of n qubits, we
are interested in NPT entangled states |¢) for which state
witnesses Wy, are valid, such as GHZ, W, or Dicke states.
For instance, for a general n-qubit GHZ state |y) = (|k) +
e k))/~/2, we have a; = 1/+/2 and the subspace of interest
is spanned by {|k), |k)} of dimension d = 2. For a W state
W(n)) =Y j_, e ¥|k)//n, we have a; = 1/4/n with the
subspace of dimension d = n spanned by states {|k)} in the
one-excitation manifold.

Given this parametrization, the fidelity Fy, again reduces
to a simple expression, Fy (@) = P + C($), with ¢ = {¢;} for
k=1,...,d. Here, P = ZZ;& at i and C(@) is just a sum
similar to Eq. (4) extended to all many-body coherences p i
of interest,

d—1 d
C@) =2 ajad o, ®)
J=0 k>j

where ¢ = (Re(pjr), Im(pjr)) and 0r; = (cos @y, sin ¢x;)
with g = o — ¢;.

As in the n = 2-qubit case, to extract the ‘subspace’
witness (W;), we must identify all d(d — 1)/2 many-body
coherences pj; by again solving the set of linear equations
given by multiple measurements Fy, (@), containing a total of
d(d — 1) + 1 unknowns.

Therefore the subspace dimension d, and its scaling with
the number of qubits n, sets the limit of which entangled states
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we can tackle, given that we want to be efficient with respect
to QST.

For GHZ states, d = 2 is constant and independent of
n: in other words, for any n-qubit quantum processor, one
can extract the subspace-maximized GHZ witness with just
three measurements, a very efficient protocol. Indeed, experi-
mentally such subspace-optimized fidelity has been observed
with ~20 qubits in superconducting and neutral atom sys-
tems [21-23]. We also note that using a 10-qubit register in
diamond up to a 7-qubit GHZ state was witnessed with state
fidelity 0.589(5) [24], which could be further optimized with
such subspace witness measurement.

For W states, d = n: since this is still polynomial in #n, all
subspace-optimized W; witnesses will be efficient with respect
to QST. In contrast, for Dicke states, d = () = (,",) with
k excitations: therefore, only for very lowly (highly) excited
Dicke states will (W) prove efficient with respect to QST.

While for concreteness we give examples with these well-
known GME states, they also highlight the motivation behind
improving entanglement detection via subspace witnesses
(as alluded to above with the two distinct Bell subspaces):
namely, that the amount of useful entanglement for the spe-
cific QIP task, i.e., considering entanglement as a resource,
often depends on the total magnitude of the quantum coher-
ence within that subspace, independent of relative phases that
could result from unknown local SPAM errors. This idea is
reflected in entanglement quantifiers, which is independent of
local unitary formations, but more concretely seen in well-
known QIP tasks of interest. For instance, in entanglement-
enhanced sensing of classical fields, it can be shown that
the sensitivity depends on the magnitude of the many-body
coherence in the GHZ subspace or, for improved quantum
memories via a decoherence-free subspace, e.g., with W-like
states, the lifetime of quantum information depends on the
magnitude of the coherences. Thus, the subspace witness,
while alleviating the problem of local unitary control errors
present during entanglement detection measurements, better
conveys the notion of entanglement as a resource, almost as an
intermediate between entanglement detectors and quantifiers.

In fact, this link could be made more concrete by noting
that the subspace witness also facilitates quantification of the
lower bound of entanglement, with additional measurements
of population terms. More specifically, the lower bound to
an entanglement measure called the GME concurrence Comg
[47], related to the separability criteria [48], can be estimated
efficiently from experiments, as it requires the knowledge of
only specific matrix elements of p. Both the lower bound to
CoMe and the separability criteria take the form of a difference
between the many-body coherences pj; within the subspace
of interest and appropriate population terms outside the sub-
space. Similarly to entanglement witnesses, these quantities
change sign for separable states, as the difference between
coherences and population terms changes sign.

For instance, for n = 3, the lower bound to GME concur-
rence is given by

CoMe(n =3) 2 p1g — Z A Pick PTie» &)

kk#1,8

where the first term is p;g = (000|p|111), and the second term
is the sum of populations outside the GHZ subspace.

We note that the subspace witness (W;) alone is insufficient
in providing the lower bound to GME concurrence: (W) can
only provide the first term, as it identifies the true (maximum)
coherences of interest. Thus the second term of populations
must be identified from additional measurements, but for
systems with individual-qubit readout, a single measurement
setting (every qubit along z) suffices to identify all the popu-
lation terms.

V. CONCLUSION

Typical entanglement witnesses based on fidelity measure-
ments to target entangled states [¢)—which we call ‘state’
witnesses (W, )—while being efficient detectors of entangle-
ment, can underestimate the actual entanglement present in p
due to local, unitary errors in state preparation and measure-
ment. Therefore, we develop the idea of the ‘subspace’ wit-
ness (W), based on two-qubit systems, which strictly observes
a larger amount of witness violation than does (W) at the
cost of additional measurements, while being efficient with
respect to state tomography. Conceptually, the appropriate
subspace is chosen for relevance to particular quantum infor-
mation tasks, and because the subspace witness yields a value
optimized over local unitaries within the subspace, it could
be viewed as an intermediate metric between an entanglement
measure (invariant under local unitaries) and a typical witness
(dependent on local unitaries). Experimentally, using a two-
qubit solid-state system composed of electronic spins, we
observe a significantly improved detection by the subspace
witness, motivating the use even for small quantum systems
which may have nonnegligible local unitary errors. Finally, we
extend the subspace witness to improve detection for specific
genuine multipartite entangled states, which may aid near-
term NISQ devices to better characterize their performance
for applications involving specific entangled states of interest.
Because the subspace witness essentially identifies the true
(i.e., maximum) many-body coherences of interest, it not
only guarantees improved entanglement witness detection but
also aids in improving the lower bounds to entanglement via
experimentally friendly metrics such as genuine multipartite
entangled concurrence or the separability criteria, which re-
quire the knowledge of only specific matrix elements of p.
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APPENDIX A: EXPERIMENTAL DETAILS
AND SIGNAL DERIVATION

1. State witness (W, ) measurement

Our experimental system is a hybrid n = 2-qubit system
in which only the first qubit can be directly observed with
the (bare) operator M = of ® 1, with Pauli operators UJ.[X"""Z}
on the jth qubit. Thus to measure any two-body correlator
(01‘102’3 ) (e.g., to reconstruct Bell-state fidelities), one can
evolve M under a two-qubit gate. Given that in our system
the qubits interact by Hiy = dofo;/2, a simple experimental
sequence involving only single-qubit 7 /2 rotations and free
evolution under H;y yields any desired two-qubit correlator.
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In other words, first defining a single-qubit rotation on the jth
qubit along axis ¢ by 6 as R, ;(0) = e /2] cx@)tojsin@),
a simple pulse, U(p) = R, (1 /2) - e it “ Ry p(m/2), will
suffice. To mitigate dephasing during free evolution, however,
one can also insert a global m pulse(s) on all qubits during
the free evolution so as to decouple from the environment
bath of spins. Therefore, we insert one 7 pulse in the middle
of the free evolution for both NV and X spin, resulting in
U(p) = Ry(/2) - e~ Mul2gT Y= Hml/2 . R, (7 /2). There-
fore the effective measurement operator M’ is

M’ =U(p)MU(p)"
= cos(g)[o] cos(dt) + ofo} sin(dr)]
+ sin(p)[ o} cos(dt) — o] o5 sin(dt)]. (A1)
Thus overlapping p with M’ at the optimal time ¢t =
(2m)/(4d) with ¢ = 0 gives the desired signal S:

S = tu(pM') = (o{c}). (A2)

2. Subspace witness (W;) measurement

Measuring the fidelity Fy(¢) = P + C(p) similarly in-
volves evolving the bare measurement operator M under a
combination of single-qubit rotations and two-qubit gates. In
the experimental work shown, we utilize HHCP to realize
the two-qubit gate to both generate and detect entanglement
by the subspace witness. More specifically, the evolution
under HHCP can be described by the Hamiltonian Hyy =
d(oio3y £0705)/4, in which the sign determines in which
subspace (either — for |®) or + for |W)) the evolution
will happen. For instance, choosing the |®) subspace, the
bare measurement operator under the pulse sequence U (¢) =
R.(p)e "' RT () evolves to the desired two-body operators:

2M'(¢) = 2U(9)MU () = +(of — 03)
+ (of + 05) cos(dt)
+ (003 — 0]0)) cos(p) sin(dr)
— (003 + o107 ) sin(p) sin(dr). (A3)

Taking the overlap of p with M’(¢) at the optimal time t =
(2m)/(4d) gives the signal S carrying the desired information
on the two-body coherence:

28(¢) =2t (pM'(9))
= +{o - 5] + [ofo3 — o703 cos(e)
— (070} 4+ 0703) sin(e)
=+{of — o) + 4Re((00]p|11)) cos(p)
+ 4Im((00|p|11))) sin(p)
=+(of — 0f) +4C(p), (A4)

where the first term makes up the (undesired) constant.

APPENDIX B: EXAMPLE FOR BELL STATES

Here we give an example for the two-qubit case (for which
an analytical expression of entanglement measure C, can be

obtained) that shows that the subspace entanglement witness
(W) detects a larger share of entangled states than does a
typical state witness (W, ), also with a larger violation.
Consider a generic state in the subspace spanned by one
pair of Bell states (e.g., |®*)). The state can be written as

1
Po= 7¢ + %(sin @o cos 8 @, + sin g sin @ Py + cos ¢y Dy),

where ®, are Pauli matrices in the (sub)space, e.g., &, =
[®T D |+ |P fPT]|, and 14 is the identity in the subspace.
po(€, 0, ¢y) is uniquely defined in the range € >0, 0 €
[0,27), and ¢ € [0, 7], where € = O indicates a classical
mixture. To gain a bit of insight into this generic state in the
chosen subspace, we note that the double-quantum coherence
C (necessarily nonzero for entanglement) is given by

C = (00| pg(€, 0, @o)|11) = (€/2)(cos ¢y + isin @y sin ).
(BD)

This shows that maximum entanglement at a given e—at
|C| = €/2—occurs when either sin® ¢y = 0 or sin> ¢ = 1. The
former indicates a state with fully real coherence C = €/2,
and the latter case refers to a more general complex coherence
C = e%¢e)2.

Now we calculate the concurrence C, for this state, which
reveals that the state pg (¢ > 0, 0, ¢g) is in general entangled
(except at a special point at 6 = 0, ¢y = 7 /2). More specifi-
cally, given C; = \/a + ble| — /a — ble|, where

a = (1 —€*sin® (1 + cos 20))/4,

b=+/b1by/2,

by =2 — sin® go(1 + cos 20) >
2

’

0
by =2 —sin” o(1 + cos 20)e> > 0, (B2)
the equality for by, = 0 is achieved at the mentioned special
point at e = 1. Since C; > 0, which simplifies to 2b|e| > 0, in-
dicates entanglement, we see in general that pg (€ > 0, 0, ¢p)
is entangled due to positivity of b. Therefore, an ideal entan-
glement witness should detect all of pg (€ > 0, 0, @) (except
at the special point).

Now let us first examine the state witness (W) for the
‘range’ of states it can detect as well as its violation. Here
the target state is either |/) = |®¥); we choose |®*), as it
makes no difference in the detectable range or the degree of
violation. More specifically, we see that

1
Wy) =5 - (@F|pe|DT)

€
= —5cos¢p
= —Re((00]pa (€, 0, @o)[11)). (B3)

Therefore, assuming € # 0, the range of detectable states for
(Wy) is @o € [0, /2), while all of ¢o € [0, 7] are entangled
as seen from concurrence. Furthermore, the state witness,
being oblivious to #, will underestimate or completely miss
all the entanglement in the imaginary part of the coherence.
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Finally, we show that the subspace witness (W) captures
a larger share of entangled states, namely, all the entangled
states in the subspace, also with a larger violation. The sub-
space witness is

Wy) =1 — max(® ()| po|P(¢)

€
=-3 max{sin @ sin ¢ sin ¢ + cos @ cos ¢}
¢

172

= —%(sin2 6 sin” gy + cos® @p) mq'?x{cos(go —0")}

= —{00lpa(e, 0, go) 1) max {cos(p — 0"}

= —|{00]pa (€, 0, @o)|11)]. (B4)

In other words, the subspace witness detects with maximum
violation |C| all of pge(e > 0,0, ¢y) except at the special
(unentangled) point mentioned above. We make one note: the
analytical maximization in the third equality is realized at a
single ¢ since there is only a single coherence (00]p|11) to
overlap with. Of course, experimentally one does not know the
optimal ¢ a priori, so as discussed in the text, such dimension
d = 2 entangled states require three measurements to measure
the subspace witness. An explicit example to measure the
subspace witness with multiple coherence terms is discussed
in the next section.

APPENDIX C: EXAMPLE (W,) MEASUREMENT SCHEME
FOR TARGET |W (n = 4))

Recall that a single-fidelity measurement yields
(W (@)lply(e)) = P+ C(p), where
d-1 d
C@)=2)_) ajai o
J=0 k>j
d-1 d
=2 ) ajau(Re(pjr) cos() + Im(pje) sin(gy))),
J=0 k>j
(ChH

with @x; = @ —@;, where ¢ =ié~¢ is the state |I?)-
dependent phase given a preset n-length vector ¢ = {6,,}",
with the phase 6,, on the mth qubit in general. Here, assuming
control over the n-length vector ¢ assumes universal control
over all qubits such that individual single-qubit control can
imprint an arbitrary phase 6,, along z.

Control over individual qubit phases 6,, allows a simple
method to reconstruct the subspace-optimized fidelity and
thus improved entanglement detection. For instance, consider
the general definition of the W-entangled state |W(n)) =

1 e |k)//n. Given single-qubit phase control § = {0,,}",
the W state can be written in a more experimentally friendly
manner as [W(n)) = Y _ e %|m)//n, where m indicates
excitation on the mth qubit. This ‘practical’ definition allows
simple parametrization of the fidelity F($) measurements
so as to carefully (with minimal measurements) reconstruct
maxg[F (9)].

Given multiple ways to reconstruct maxg[F (@)l = P +
maxy[C($)], here we discuss one simple approach to recon-
struct maxg[C(®)]. First, we note that a judicious choice of
@, as seen from Eq. (C1), decouples equations containing

either only the real or only the imaginary parts of coherences
pjk- More specifically, C(¢) contains either only Re(pji) or
only Im(pjx) if one measures either ¢ = {0, 7} or ¢, = {£ 7},
respectively. Note that this (arbitrary) restriction to a binary
set will accordingly reduce the maximum number of unique
fidelity measurements (equations) available to solve for o |.
More specifically, given d |k) vectors describing the tar-
get ), there are now (d — 1) relative phases e~ therefore
the binary set of inputs allows at most 2! unique fidelity
measurements (equations). Since the number of unknown
parameters needed to identify |¢) is d(d — 1) + 1, one must
make sure the available equations (in this case 24-1y outnum-
ber d(d — 1) + 1. The binary restriction of inputs allows this
for GHZ, W, and a subset of lowly (highly) excited Dicke
states. Instead, the subspace dimension d of intermediately
excited Dicke states increases nonpolynomially with the qubit
number n, such that d(d — 1) + 1 > 2971, In this case, the
number of measurements required for entanglement witness-
ing tends towards that required for state tomography, thus
defeating the very purpose of entanglement witnesses.
Finally, we explicitly describe the subspace witness mea-
surement scheme for an n =4-qubit W-entangled state:

W ()) = (J0001) + e~1|0010) + e~#2|0100)
+ e7%(1000)),/2
= (10) + ™™ [1) + e [2) + e7™|3))/2.  (C2)

The second equation shows how, for simplicity, the phase ¢
can be realized by a phase 6,, on the mth qubit, as discussed
above. Thus each fidelity measurement is parameterized by
@ = {01, 6, 63}, where we have removed 6, as it simply gives
rise to a global phase. Then, defining R jx = 2a;aq;Re(pji) =
Re(pjr)/2, each fidelity measurement yields Fy(¢) = P +
C(®), where

d—1 d

C@) =YY (~H"®IR,. (C3)

J=0 k>j
Thus to extract (W) we must first identify all R .

For convenience, let us define the sum and difference of
two fidelity measurements as y+ (9, ¢') = Fy (¢) £ Fy (@').
Then choosing the set of inputs ¢ = {001, 010, 100} and ¢’ =
@ @ 1 (i.e., the spin-flipped state), we identify three of the six
real parts {Ry;, R|2, Ro3} via the differences of fidelities:

y-(001, 110) = 2(+Ro1 + Roz — Ro3),
y-(010, 101) = 2(+Ro1 — Ro2 + R3),
y_(100,011) = 2(—Ro1 + Ro2 + Ro3)- (&)

Then, by the sum of fidelities we almost identify the

remaining three real parts {R|>, R;3, Ry3}:

y+(001, 110) = 2(P + R1» — R13 — R»3),

y+(010, 101) = 2(P — Ry2 + Ri3 — Rx3),

y+(100,011) = 2(P — R12 — Ri3 + Rp3). (C5)
More specifically, we see that (due to unknown P) we need
one more measurement, e.g., at ¢ = {0, 0, 0}, to solve for the
remaining unknowns.

Therefore, a total of d(d —1)/2+1=6+1 =7 mea-
surements identifies all six real parts of pj; and P. In
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the same manner, d(d — 1)/2 = 6 more measurements at
¢ = {£75} = {0, 1} will identify the imaginary parts of pj,

such that one can reconstruct (Wy) = o — maxg[Fy(¢)] =
a—(P+2 Z‘;;é Zf>j a;al pjkl)-
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