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Abstract We present a novel modeling approach for supervised teams, which can
determine optimal incentives when individual team member contributions are un-
known. Our approach is based on multiscale decision theory (MSDT), which models
the agents’ decision processes and their mutual influence. To estimate the initially un-
known influence of team members on their supervisor’s success, we develop a linear
approximation method that estimates model parameters from historic team perfor-
mance data. In our analysis, we derive the optimal incentives the supervisor should
offer to team members accounting for their varying skill levels. In addition, we iden-
tify the information and communication requirements between all agents such that
the supervisor can calculate the optimal incentives, and such that team members can
calculate their optimal effort responses. We illustrate our methods and the results
through a systems engineering example.
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1 Introduction

In organizations, incentives are used to motivate employees to do their best and make
decisions in the interest of their supervisors. A well-designed incentive scheme aligns
the preferences of all employees such that their actions contribute to the organiza-
tional goals [1, 10, 48]. Organizational incentive alignment is challenging due the
multiscale effect of incentives across organizational levels and time scales [23, 24,
38, 49]. Organizational incentive design becomes even more challenging when team
dynamics need to be considered. In teams, the performance of each team member is
interdependent and cannot be easily quantified or isolated [2, 23, 37].

Multiscale decision theory (MSDT), developed by Wernz [42], is a modeling ap-
proach that analyzes multi-level incentives in organizations and other hierarchical
systems with many decision makers. MSDT has proven to be an effective and efficient
approach for incentive analysis and design in complex socio-technical systems, rang-
ing from manufacturing enterprises [44] to the US healthcare system [51]. Current
MSDT models, however, have not yet accounted for teams and team incentivization.

Motivated by the prevalence and importance of teams in organizations, and the
challenges associated with incentivizing teams, the goal of this paper is to develop
a novel mathematical model of teams using the MSDT approach. While the team
incentivization problem is a well-known challenge in agency theory [13, 15, 16, 20],
current mathematical models are not scalable, i.e., they cannot account for the multi-
level interactions and incentive effects throughout a large organization [5, 6, 37, 40,
41]. Further, data-driven methods to isolate the contributions of each team member
are not sufficiently developed, but are needed to quantify how each team member
contributes to the success of the team, the supervisor and the organization overall
[3, 4].

In response, this paper’s objective is to develop a team model that can derive ef-
fective team incentives, and that lays the foundation for a multiscale team model.
The specific contributions of the paper are: (1) extension of the MSDT framework to
account for teams, (2) introduction of a continuous decision variable to MSDT (prior
models only considered binary decisions), and (3) development of a data-driven ap-
proach to isolate the contribution of each team member to overall team performance.

We will present a two-level model with one supervisor overseeing a team with
multiple members. Each team member chooses and exerts a level of work effort,
which is that agent’s continuous decision variable. Incentives are used to align the
team members’ interests with that of the supervisor, i.e., the team member’s indi-
vidually optimal effort becomes also optimal for the supervisor. Using the MSDT
extension approach [49], this two-level, single-period model can be extended in fu-
ture research to a multiscale model with many teams across different organizational
levels operating on different time scales. The data-driven method to quantify and iso-
late the contributions of team members is based on linear regression. It derives the
model parameter values needed for the team model.

The paper is organized as follows: Section 2 discusses related work on teams and
team incentivization, and provides a brief overview of MSDT. Section 3 introduces
the model, followed by the parameter estimation approach. The analysis and results
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are presented in Section 4, followed by an illustrative examples in Section 5. Section
6 provides the conclusions.

2 Related Work

2.1 Teams and Incentives

To determine optimal incentives for teams, a variety of quantitative, economic mod-
els have been developed [7, 26, 29, 33]. The majority of these works builds upon the
principal-agent model, which in its basic form studies the interaction between one su-
pervisor (principal) and one subordinate (agent) [35]. A key problem in the principal-
agent relationship is that of moral hazard [8, 32], which refers to the agent’s tendency
to exert less work effort, since effort is not observable or enforceable. The supervi-
sor’s inability to obverse the agent’s effort results in information asymmetry [22, 25],
and thus the supervisor has to use an indirect signal to determine the incentive, such
as the stochastic outcome of effort [2, 19, 21].

Information asymmetries not only exist between a supervisor and the team, but
also between team members. The role of information in teams was comprehensively
studied by Marschak and Radner [30]. Groves [16] built upon their work and explored
how incentives can motivate supervisors to communicate accurate information to the
team, thereby enabling team members to make optimal decisions. Information also
plays a central role in our paper. We determine the minimal information set that must
be exchanged so that supervisor and team members can make optimal decisions.

Incentives for teams can take on various forms. One can distinguish between two
classes of incentive mechanisms: relative performance incentives and independent
performance incentives [9, 28, 29, 34]. For relative performance incentives, the in-
centive for the team member depends on the performance of their team mates, while
for independent performance incentives, only the team members’ absolute perfor-
mance counts. Relative performance incentives are more effective when stochastic,
external events have a strong effect on team performance, while independent perfor-
mance incentives are best when only team-internal effects are relevant [14, 27]. For
our model assumptions, results show that the independent performance mechanism is
optimal, even though stochastic, external events have a strong performance influence.

2.2 Multiscale Decision Theory (MSDT)

MSDT is a normative decision-theoretic framework that combines game theory [12],
Markov decision processes [36], and hierarchical and graphical modeling [11, 31]. It
allows for the analysis of stochastic interactions in complex systems, where decision
makers affect each other across multiple system levels and time scales. In particu-
lar, MSDT can be used to determine optimal incentives and organizational design
parameters that align and coordinate decisions throughout an organization.

The current MSDT framework incorporates two interconnected scales: the orga-
nizational scale and the time scale. Decisions at higher organizational levels are more
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strategic and long term in nature, while lower level decisions are more operational and
short term. Prior operations research methods have either modeled decision-making
over time, e.g., via Markov decision processes, or decision-making across system
levels, e.g., via game theory or principal-agent models. Comprehensive and scalable
methods for multi-level and dynamic systems, where each level operates at a different
time scale, had been missing.

The foundational paper on MSDT, by Wernz and Deshmukh [48], introduced the
MSDT term and concept and focused on the organizational scale of large hierarchical
organizations. The paper considered a cascading incentive mechanism where each
supervisor offers performance-based rewards to their immediate subordinates. Even
for large systems, closed-form analytic solutions could be derived, which described
the optimal multi-level incentives, and each agent’s optimal decision response.

Building upon this multi-organizational scale model, the temporal scale was then
integrated into the MSDT framework [49]. Using multi-time-scale Markov decision
processes, closed-form solutions for a 3-level, 3-time-scale and 3-period decision
problem were determined. In the next step, Wernz [43] derived a sequence of recur-
sive solutions for the many-period problem with two levels operating at different time
scales.

In parallel to the methodological development of MSDT, various applications
were explored, which show the benefit this method can bring to complex decision-
making and system design problems. MSDT has been applied to a 2-level manufac-
turing enterprise problem [44], general management problems [45–47], a 3-level ser-
vice operations problem [17, 50], a 3-level supply chain problem [18], and a 3-level,
4-agent healthcare problem [51, 52].

In our paper, we consider the effect of the organizational scale on the interaction
between team members and the supervisor. The supervisor’s performance is influ-
enced by the aggregate team performance, and thus each team member affects the
supervisor’s probability of success. To quantify this influence, we use MSDT’s in-
fluence function concept. In addition to developing a team model, our work also
extends MSDT by incorporating a continuous decision variable, which in this model
is the work effort of team members. Prior MSDT models used discrete action sets.
This extension presents an important methodological advancement for MSDT, which
required a new solution approach.

3 Model

The team consists of a group of subordinates working for a supervisor. The supervisor
receives her objectives from the organization and then proceeds to allocate jobs to
each subordinate to achieve these objectives. We do not consider the job allocation or
the job completion sequence in our model. Instead, we focus on the overall team and
team member performance and the resulting effect on the supervisor’s success.

The interactions between the supervisor and the team members is modeled as a
one-period game. Team members are characterized by their skill level, their effort
decision, the outcome (performance) they achieve, and the rewards they receive. A
team member’s skill is a function that describes the relationship between their ef-
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fort and their performance. A team member’s reward consists of two components: a
base reward and an incentive. The base reward is provided by the organization, while
the incentive is provided and paid for by the supervisor. Both rewards are perfor-
mance/outcome dependent. A team member’s effort is a continuous decision variable,
and combined with a team member’s skill characteristics, results in the probability of
achieving a satisfactory outcome. A team member’s effort is costly, and thus a team
member’s decision problem is to choose the optimal effort. We assume that team
members are risk-neutral and aim to maximize their expected rewards.

The supervisor is characterized similarly to team members. This structural sim-
ilarity supports the multiscale extension of the model, where a supervisor not only
oversees a team, but is also part of a team working under another supervisor, who
in turn reports to and gets incentivized by a higher level authority, and so on. In our
two-level case, we take the supervisor’s effort as given, i.e., it is a model parameter,
not a decision variable.

The supervisor’s outcome is probabilistic and is either satisfactory or unsatisfac-
tory. Her outcome-based reward is reduced by the incentive she pays to her team. The
incentive that she offers to each team member is a percentage of her reward. Thus,
the supervisor’s decision problem is to chose the percentage of her reward each team
member is offered.

The team’s performance affects the performance of the supervisor. We use MSDT’s
influence function concept to model this bottom-up influence. Since the supervisor
offers a percentage of her final reward, team members need to consider the effort re-
sponses and incentives of their team mates while computing their own effort decision.
Thus, incentives and efforts are interdependent, and determining an optimal level for
each requires a game-theoretic analysis by all team members and the supervisor. To
perform this analysis, agents may need private information from the other agents, and
we will analyze the communication requirements.

3.1 Model Formulation

The team consists of n team members. As customary in MSDT, we refer to a team
member as an infimal agent, or INF, and to the supervisor as the supremal agent, or
SUP. Team members in general are referred to as INFs, and a specific team member
is referred to as INFx, with x ∈ {1, . . . ,n}. The performance of each agent is charac-
terized by a state variable, with SUP’s states being SSUP ∈ {0,1}, and INFx’s states
being SINFx ∈ {0,1}. State 1 refers to the satisfactory outcomes, and state 0 to the
unsatisfactory outcome for each agent. SUP’s base reward is hSUP for SSUP = 1, and
lSUP for SSUP = 0, with hSUP > lSUP. Similarly, the base rewards for INFx are hINFx

for SINFx = 1, and lINFx for SINFx = 0, with hINFx > lINFx.
SUP has the option to offer INFx a share of her final reward as an incentive. INFx’s

reward share is denoted by bINFx. Thus, INFx’s incentive will either be bINFx ·hSUP or
bINFx · lSUP depending on SUP’s outcome. We denote the vector of the rewards shares
for the INFs by b = (bINF1, . . . ,bINFn).

The efforts chosen by the agents are eSUP and eINFx, with eINFx,eSUP ≥ 0. For the
two-level model, we assume SUP’s effort eSUP as given, i.e., a fixed model parameter,
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whereas the effort eINFx is INFx’s decision variable. The vector of effort chosen by
the INFs is denoted by e = (eINF1, . . . ,eINFn).

INFx bears an effort-dependent cost kINFx(eINFx). A higher effort leads to higher
effort cost, but also to a higher probability of achieving the satisfactory outcome.
The extent to which a higher effort leads to a better outcome is captured by INFx’s
individual skill function α INFx(eINFx).

We define the skill function as the effort-dependent probability of achieving the
satisfactory outcome, i.e., α INFx(eINFx) := p(SINFx = 1|eINFx). For SUP, whose effort
is given, the skill is a fixed probability αSUP with αSUP := p(SSUP = 1). SUP’s effort
cost is already accounted for in her rewards.

We assume that with increasing effort by INFx, its probability of success and
effort-dependent costs strictly increase. However, with increasing effort for INFx, the
marginal gains in the probability of success decrease, whereas the marginal losses
from the effort dependent cost increase. Therefore, α INFx(·) is a strictly increasing
concave function of eINFx for all x, and kINFx(·) is a strictly increasing convex function
of eINFx for all x. Lastly, we assume that α INFx(·) and kINFx(·) are C3 functions for all
x.

The influence of the INFs on SUP’s outcome is modeled through an influence
function. We use the additive influence function approach of MSDT, where a so called
change coefficient is either added or subtracted from the initial probability αSUP of
SUP’s success. As shown by Wernz [42], an additive influence function is equivalent
to a multiplicative one, as every multiplicative probability modification ultimately
has additive characteristics, since probabilities need to add up to 1. In the case of
teams, the change coefficient is a function of all of INFx’s performances. Thus, SUP’s
probability function of achieving a satisfactory outcome is

p(SSUP = 1|eSUP,SINF1, . . . ,SINFn) = α
SUP + fteam(SSUP,SINF1, . . . ,SINFn), (1)

with fteam(·) denoting the team influence function. Figure 1 graphically summarize
the model described above.

For the ensuing analysis, we assume that the team influence function fteam(·)
can be approximated through a linear combination of the individual team member’s
influences. We define

fteam(SSUP,SINF1, . . . ,SINFn) :=
n

∑
x=1

fx(SSUP,SINFx), (2)

where fx(·) is the influence of each INFx’s outcome on SUP’s probability of success.
For each of the influence functions fx(·), a satisfactory outcome has an additive pos-
itive impact on SUP’s probability of achieving her preferred outcome, and a negative
influence otherwise. We define the influence functions fx(·) by

fx(SSUP,SINFx) :=

{
cINFx if SINFx = SSUP

−c̃INFx if SINFx 6= SSUP (3)
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Fig. 1: Model outline

with change coefficients cINFx, c̃INFx ≥ 0. SUP’s conditional probability of success is
thus

p(SSUP = 1|SINF1 = jINF1, ..,SINFn = jINFn) = α
SUP

+
n

∑
x=1

jINFx cINFx−
n

∑
x=1

(1− jINFx) c̃INFx, (4)

with jINFx ∈ {0,1} specifying the outcome of each INFx. Table 1 summarizes the
model’s notation.

In equation (2), we assumed that the team influence function fteam(·) can be ap-
proximated through a linear combination of each INFx’s influence on SUP. This as-
sumption is only reasonable when the individual performances of the INFs are not
significantly affected by the interactions between the INFs. The following section
on data-driven team influence estimation builds upon this assumption, and a differ-
ent team influence function would require a different estimation approach. For the
model approach itself, the assumption is not necessary, and any other team influence
function could be considered, though the results would differ.

3.2 Data-Driven Team Influence Estimation

To determine optimal incentives for each INFx, SUP must assess the contribution
of the team’s performance to her chance of success. In our model, this means esti-
mating the change coefficients cINFx, c̃INFx. In this section, we present a data-driven
approach for estimating the change coefficients and provide a numerical example.
The approach can be divided into three steps:

1. Obtain data on the historic performance of SUP and INFs.
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Table 1: Summary of notation

SSUP, SINFx State variables denoting satisfactory or unsatisfactory
outcomes

hSUP, lSUP SUP’s outcome-based rewards for satisfactory and unsat-
isfactory outcomes

bINFx Reward share offered by SUP to INFx

hINFx, lINFx INFx’s outcome-based rewards for satisfactory and unsat-
isfactory outcome

eSUP, eINFx SUP’s fixed effort and INFx’s effort decision variable

kINFx(eINFx) Effort cost function

αSUP, α INFx(·) SUP’s base skill and INFx’s skill function

p(SSUP = 1|·) SUP’s probability of success

fTeam(·), fx(·) Influence function of overall team and individual team
members

cINFx, c̃INFx Change coefficients

2. Qualitatively assess the type of influence each INFx has on SUP’s chance of suc-
cess.

3. Quantitatively assess each INFx’s influence through linear regression.

1. Obtain data. SUP needs to obtain historic team performance data. The data must
contain sufficient information to determine SUP’s past probability of success for all
possible permutations of INF-level outcomes. With two possible outcomes for each
INFx, there are 2n permutations for (SINF1, ...,SINFn). For each permutation, SUP’s
frequency of success needs to be assessed. Based on SUP’s historic success rate,
her future probability of success p(SSUP = 1|SINF1 = jINF1, ..,SINFn = jINFn) can be
estimated. Henceforth, we use pSUP

jINF1,..., jINFn to denote this probability.
The following example will help to illustrate our method. Consider a three-member

team and a supervisor, who have worked together on 40 projects. With three team
members, there are 23 = 8 possible team-level outcome permutations, or scenarios.
Table 2 summarizes the data and analysis results. Consider scenario 8, for example,
which refers to the case where every INFx had a satisfactory outcome. In this sce-
nario, SUP was successful 9 out of 10 times, and thus pSUP

1,1,1 = 0.9. In addition to the
data of Table 2, we assume that SUP’s skill is αSUP = 0.5.
2. Qualitatively assess the type of influence. After SUP has determined pSUP

jINF1,..., jINFn

for all permutations of INFs’ outcomes, SUP is tasked with qualitatively assessing
the type of influence each INFx has on her chance of success. A type of influence
can be categorized and characterized by whether the change coefficients cINFx, c̃INFx

are positive or zero. This qualitative assessment helps reduce the search space for the
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Table 2: Example data

Scenario SINF1 SINF2 SINF3 # projects # (SSUP = 1) pSUP
jINF1, jINF2, jINF3

1 0 0 0 1 0 0

2 0 0 1 4 1 0.25

3 0 1 0 3 1 0.33

4 0 1 1 7 4 0.57

5 1 0 0 4 1 0.25

6 1 0 1 5 3 0.6

7 1 1 0 6 5 0.83

8 1 1 1 10 9 0.9

quantitative assessment via linear regression in the next step. We distinguish between
four types of team member influences:

(i) Bi-directional effect: A satisfactory outcome by INFx has a positive effect on
SUP’s chance of success, and an unsatisfactory outcome has a negative effect
SUP’s chance of success, i.e., cINFx > 0 and c̃INFx > 0.

(ii) Positive effect: A satisfactory outcome by INFx improves SUP’s chance of suc-
cess, but an unsatisfactory outcome has no effect on SUP’s chance of success,
i.e., cINFx > 0 and c̃INFx = 0.

(iii) Negative effect: A satisfactory outcome by INFx has no effect on SUP’s chance
of success, but an unsatisfactory outcome has a negative effect SUP’s chance of
success, i.e., cINFx = 0 and c̃INFx > 0.

(iv) No effect: INFx’s outcome has no effect on SUP’s chance of success, i.e., cINFx =
0 and c̃INFx = 0.

If SUP cannot make such a qualitative assessment for one or more team mem-
bers, the quantitative assessment can still be performed, but all four cases need to
considered and need to be evaluated and compared. Continuing with our example,
SUP makes the assessment that INF1 has a negative effect on her chance of success,
and that INF2 has a positive effect. For INF3, SUP is unable to make the assessment.

3. Quantitative assessment. The final step is the numerical estimation of the change
coefficients. We use a multiple linear regression model of the form

Y = X ·C+ ε (5)

The dependent variable Y is a vector defined as Y := (pSUP
0,...,0,1, . . . , pSUP

1,1,...,1)−αSUP.
Vector Y has 2n elements covering all possible permutations of INF-level outcomes.
Vector Y corresponds to the last column of Table 2, with the values being reduced
by αSUP. Vector C := (cINF1, . . . ,cINFn, c̃INF1, . . . , c̃INFn) contains the 2n change coef-
ficients. The matrix of independent variables is defined by X = (X̂1, . . . , X̂2n)T , where
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each X̂i is a row vector with X̂i := ( jINF1, . . . , jINFn, jINF1−1, . . . , jINFn−1). The row
vector X̂i corresponds to the Y vector element yi = pSUP

jINF1,..., jINFn , and captures the

INFs with satisfactory outcomes via the values jINF1, . . . , jINFn, and the INFs with
unsatisfactory outcomes via the values jINF1−1, . . . , jINFn−1. Lastly, ε is the vector
of error variables.

In step 2, SUP had assessed that INF1 is of negative effect type, and INF2 is of
positive effect type. For INF3, SUP could not make an assessment. Since SUP does
not know INF3’s influence, she needs to consider all four possible influence types.
For each of these types, SUP must fit the linear model, equation (5), on the data given
in Table 2. In each of the four variations of equation (5) that SUP considers, INF1
has a negative influence and INF2’s has a positive influence. The results of linear
regression analysis for all four influence types is shown in Table 3.

Table 3: Results of linear regression

Bi-directional Positive

R2 0.96 R2 0.88

F-test p-value 0.01 F-test p-value 0.02

Estimate t-test p-value Estimate t-test p-value

c̃INF1 0.35 < 0.01 0.44 < 0.01

cINF2 0.38 < 0.01 0.30 0.01

cINF3 -0.09 0.41 0.15 0.11

c̃INF3 0.16 0.05 0 -NA-

Negative No-effect

R2 0.95 R2 0.69

F-test p-value < 0.01 F-test p-value 0.04

Estimate t-test p-value Estimate t-test p-value

c̃INF1 0.39 < 0.01 0.21 0.07

cINF2 0.35 < 0.01 0.19 0.03

cINF3 0 -NA- 0 -NA-

c̃INF3 0.11 0.01 0 -NA-

SUP must now determine which of the four influence types best fits the data. To
make this decision, SUP considers the squared correlation coefficient R2, the p-value
of the F-test, and the p-value associated with the t-test for each change coefficient.
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R2 is the proportion of the variance explained by the linear model, and is a measure
of how well a linear model fits the data. The closer R2 is to 1, the better.

The F-test uses the null hypothesis that the current set of independent variables
does not sufficiently describe the dependent variable. The p-value of the F-test is an
indicator of whether the current set of independent variables needs to be modified to
achieve a better model fit on the underlying data. The t-test for each change coefficient
uses the null hypothesis that the change coefficient must be 0, and the p-value of a
t-test on the estimate of a change coefficient is an indicator of how likely it is the
estimate should actually be 0 rather than a non-zero value. Since hypothesis testing
is based on rejecting or not rejecting the null hypothesis, the p-value of a hypothesis
test is preferred to be close to 0.

The results of the linear regression in Table 3 show that all four models have a
low p-value on the F-test, and that there is not sufficient evidence for SUP to reject
a model based on those results alone. However, there are differences in the R2 and
the p-values associated with the t-tests, which SUP can utilize to make a choice.
The no-effect model has the lowest R2 value, and is thus inferior to the other three.
Further, the bi-directional model shows a negative cINF3 value, which is not feasible.
Between the remaining positive and negative model, the negative model has better
p-values, and has a higher R2. Thus, the negative model best describes the data. The
quantitative assessment finds that INF3 is of negative effect type with c̃INF3 = 0.11,
and that c̃INF1 = 0.39 and cINF2 = 0.35.

4 Analysis

In this section, we use a game-theoretic analysis to derive the optimal effort for each
INFx as a function of the incentives, and then determine SUP’s optimal incentive
offer based on INFs’ responses.

4.1 INFx’s optimal effort

Each INFx seeks to maximize its expected reward. To determine INFx’s expected
reward, we must first determine SUP’s expected reward, which is a function of INFs’
effort vector e and reward share vector b. SUP’s expected reward can be calculated
as follows:

RSUP(e,b) =
(

1−
n

∑
x=1

bINFx
)(

lSUP

+(hSUP− lSUP)
1

∑
j1=0

. . .
1

∑
jn=0

(
p(SSUP = 1|SINF1 = j1, ..,SINFn = jn)

× p(SINF1 = j1)× . . .× p(SINFn = jn)
))
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=
(

1−
n

∑
x=1

bINFx
)(

lSUP +(hSUP− lSUP)
(

α
SUP +

n

∑
x=1

cINFx
α

INFx(eINFx)

−
n

∑
x=1

c̃INFx(1−α
INFx(eINFx)

)))
. (6)

Based on SUP’s expected reward, the expected reward for INFx can be calculated as

RINFx(e,b) = (hINFx− lINFx)α INFx(eINFx)+ lINFx− kINFx(eINFx)

+bINFx

(
lSUP +(hSUP− lSUP)

(
α

SUP +
n

∑
x=1

cINFx
α

INFx(eINFx)

−
n

∑
x=1

c̃INFx(1−α
INFx(eINFx)

)))
. (7)

To determine INFx’s optimal effort response for a given incentive level bINFx,
denoted by eINFx

∗ (bINFx), we solve the first order condition of optimality and verify
the solution with the second order condition. For the analysis, we define e−x as the
effort vector of all INFs but INFx; the vector has n−1 elements. For given efforts e−x
and given reward share vector b, the optimal effort eINFx

∗ (bINFx) is the solution to the
first order condition of optimality, which is

∂

∂eINFx RINFx(eINFx
∗ (bINFx),e−x,b

)
= 0

=⇒
(
(hINFx−lINFx)+bINFx(cINFx+ c̃INFx)(hSUP−lSUP)

) d
deINFx α

INFx(eINFx
∗ (bINFx)

)
− d

deINFx kINFx(eINFx
∗ (bINFx)

)
= 0. (8)

To verify that eINFx
∗ (bINFx) maximizes INFx’s expected reward, we evaluate the second

order condition

∂ 2

∂ (eINFx)2 RINFx(eINFx,e−x,b)

=
(
(hINFx−lINFx)+bINFx(cINFx+ c̃INFx)(hSUP−lSUP)

) d2

d(eINFx)2 α
INFx(eINFx

∗ (bINFx)
)

− d2

d(eINFx)2 kINFx(eINFx
∗ (bINFx)

)
, (9)

which is strictly negative given the convexity of effort cost kINFx, and the concavity
of skill function α INFx.

Since no element of e−x is present in the first order condition, equation (8), we
know that INFx’s optimal effort is independent of the effort of the other INFs. SUP ac-
counting for the influence of each INFx’s outcome on her outcome, allows each INFx
to ignore the efforts and outcomes of the other INFs, even though SUP’s expected re-
ward, and thus each INFx’s expected reward, is dependent on the performance of all
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INFs. A significant implication of this result is that INFs can make optimal effort de-
cisions without knowing other INFs’ private information, in particular their rewards,
skills of effort costs. Each INFx merely needs to know its own parameters, its incen-
tive share offered by SUP, and SUP’s reward difference between a satisfactory and
unsatisfactory outcome . Communication and sharing of private information between
INFs is not necessary.

4.2 Optimal Incentives

Unlike the INFs, SUP needs to know all the parameters of all INFs to determine the
optimal reward shares. However, and as we will show next, SUP can compute each
INFx’s optimal effort response by herself, and does not need to observe or request
that information from the INFs. This result even applies, if a closed-form analytic
expression for INFs’ optimal efforts cannot be derived.

Theorem 1 SUP can numerically compute each INFx’s optimal effort eINFx
∗ for any

reward share bINFx to any level of accuracy.

Proof. The proof consists of two parts. First we show that each INFx’s optimal effort
is a continuous function of that agent’s incentive, i.e., eINFx

∗ is a continuous function
of bINFx. Then we derive the general form of the mth order derivative of eINFx

∗ (bINFx),
where m ∈ N+, and show that it exists for all values of bINFx and m. The existence of
the mth order derivative of eINFx

∗ (bINFx) implies that even if a closed-form expression
for eINFx

∗ (bINFx) is not available, SUP can approximate eINFx
∗ (bINFx) via the Taylor

series expansion [39]. To reduce the error in prediction, SUP can increase the order
of the derivatives used in the Taylor series expansion.

For the first part of the proof, let

Mx(eINFx,bINFx) =
∂

∂eINFx RINFx(eINFx,e−x,b
)

=
(
(hINFx− lINFx)+bINFx(c̃INFx + cINFx)(hSUP− lSUP)

) d
deINFx α

INFx(eINFx)

− d
deINFx kINFx(eINFx). (10)

Given bINFx, we know from equation (8) that Mx(eINFx
∗ (bINFx),bINFx) = 0, and thus

d
dbINFx Mx(eINFx

∗ (bINFx),bINFx) = 0

=⇒ ∂

∂bINFx Mx(eINFx
∗ (bINFx),bINFx)

+
∂

∂eINFx Mx(eINFx
∗ (bINFx),bINFx)× deINFx

∗ (bINFx)

dbINFx = 0

=⇒ deINFx
∗ (bINFx)

dbINFx =−

(
(cINFx+ c̃INFx)(hSUP−lSUP)

d
deINFx α

INFx(eINFx
∗ (bINFx)

))/



14 Aditya U. Kulkarni, Christian Wernz((
(hINFx−lINFx)+bINFx(c̃INFx+cINFx)(hSUP−lSUP)

) d2

d(eINFx)2 α
INFx(eINFx

∗ (bINFx)
)

d2

d(eINFx)2 kINFx(eINFx
∗ (bINFx)

))
. (11)

Since the denominator of deINFx
∗ (bINFx)

/
dbINFx is strictly negative for any effort of

INFx, we know that deINFx
∗ (bINFx)

/
dbINFx exists for all efforts of INFx, and this in

turn implies that INFx’s optimal effort is a continuous function of its incentive share.
For the second part of the proof, we know that

dm

d(bINFx)m Mx(eINFx
∗ (bINFx),bINFx) = 0

=⇒ dm−1

d(bINFx)m−1

(
∂Mx(eINFx

∗ (bINFx),bINFx)

∂bINFx

+
∂Mx(eINFx

∗ (bINFx),bINFx)

∂eINFx
deINFx
∗ (bINFx)

dbINFx

)
= 0

=⇒ dm−1

d(bINFx)m−1
∂Mx(eINFx

∗ (bINFx),bINFx)

∂bINFx

+
deINFx
∗ (bINFx)

dbINFx
dm−1

d(bINFx)m−1
∂Mx(eINFx

∗ (bINFx),bINFx)

∂eINFx

+
∂Mx(eINFx

∗ (bINFx),bINFx)

∂eINFx
dmeINFx

∗ (bINFx)

d(bINFx)m = 0

=⇒ dmeINFx
∗ (bINFx)

d(bINFx)m =−
(

dm−1

d(bINFx)m−1
∂Mx(eINFx

∗ (bINFx),bINFx)

∂bINFx

+
deINFx
∗ (bINFx)

d(bINFx)

dm−1

d(bINFx)m−1
∂Mx(eINFx

∗ (bINFx),bINFx)

∂eINFx

)/
∂Mx(eINFx

∗ (bINFx),bINFx)

∂eINFx .

Since

∂Mx(eINFx
∗ (bINFx),bINFx)

∂eINFx =(
(hINFx− lINFx)+bINFx(c̃INFx + cINFx)(hSUP− lSUP)

) d2

d(eINFx)2 α
INFx(eINFx

∗ (bINFx)
)

− d2

d(eINFx)2 kINFx(eINFx
∗ (bINFx)

)
< 0, (12)

we know the mth order derivative of eINFx
∗ (bINFx) exists, and thus SUP can numerically

determine the optimal effort of INFx given bINFx. We present the first and second
order derivatives of eINFx

∗ (bINFx) in Appendix A. ut
There are two significant implications of Theorem 1. The first is that SUP does

not need to monitor, supervise or set the efforts of each INFx as long as SUP can
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assess their skill, effort cost function and influence (i.e., change coefficients). The
second implication is that SUP only needs to consider the data of one INFx at a time
to compute that agent’s optimal effort response to an incentive.

Next, we determine the optimal incentives SUP will offer. SUP can determine the
optimal reward share vector b by solving the optimization problem OS:

max
b

RSUP(b) =
(

1−
n

∑
x=1

bINFx
)(

(hSUP− lSUP)
(

α
SUP+

n

∑
x=1

cINFx
α

INFx(eINFx
∗ (bINFx))

−
n

∑
x=1

c̃INFx(1−α
INFx(eINFx

∗ (bINFx)))
)
+ lSUP

)
s.t.

0≤ bINFq ≤ 1 for q = 1, . . . ,n (13)
n

∑
x=1

bINFx ≤ 1. (14)

In general, OS is a nonlinear optimization program. The first order partial deriva-
tive of RSUP(b) with respect to INFx’s reward share is

∂

∂bINFx RSUP(b) =
(

1−
n

∑
k=1

bINFk
)(

(hSUP− lSUP)×

(cINFx + c̃INFx)
d

deINFx α
INFx(eINFx

∗ (bINFx)
)
× deINFx

∗ (bINFx)

dbINFx

)
−
(
(hSUP− lSUP)

(
α

SUP +
n

∑
k=1

cINFk
α

INFk(eINFx
∗ (bINFk))

−
n

∑
k=1

c̃INFk(1−α
INFk(eINFk

∗ (bINFk)))
)
+ lSUP

)
. (15)

With equation (15), we can determine the gradient of RSUP(b) for a given reward
share vector b, and thus SUP’s optimization problem OS can be solved numerically.
If closed-form expressions for any deINFx

∗ (bINFx)/dbINFx are not available, then equa-
tion (24) in Appendix A can be used as a substitute. Together with suitable initial
conditions, OS can be solved via numerical integration as discussed in the proof of
Theorem 1.

The computational effort required to solve OS can be significantly reduced if
RSUP(b) is concave for all b. We know from equation (9) that INFx’s marginal ex-

pected reward function,
∂

∂eINFx RINFx(e,b), is decreasing in INFx’s effort. In addition,

we can show that if
∂

∂eINFx RINFx(e,b) is concave with respect to e, then RSUP(b) is
concave with respect to b. The concavity of SUP’s expected reward function implies
that a local maximum is the unique solution to Os. The following theorem formally
presents and proves this result.
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Theorem 2 A unique optimal incentivization strategy for SUP exists, if
∂

∂eINFx RINFx(e,b)

is concave with respect to eINFx for all INFx.

The proof of Theorem 2 is presented in Appendix B. The outline of the proof
is as follows. A unique optimal incentivization strategy for SUP exists if RSUP(b) is
strictly concave with respect to the incentive vector b. As shown in Appendix B, if

∂

∂eINFx RINFx(e,b) is concave with respect to eINFx, then eINFx
∗ (bINFx) will always be

strictly concave with respect to bINFx. This in turn will result in the Hessian matrix
of RSUP(b) being negative definite for all b ∈ (0,1]n, which implies that RSUP(b) is
strictly concave with respect to b.

The sufficient condition for a unique optimal incentivization strategy for SUP to
exist implies that the optimal effort for INFx, eINFx

∗ (bINFx), is a strictly increasing,
concave function of bINFx. In other words, SUP can elicit a greater effort by INFx by
offering a greater share of her reward. However, due to the concavity of eINFx

∗ (bINFx),
the rate of increase in INFx’s optimal effort is decreasing with increasing incentives.
At the optimum, the costs and benefits of the incentives are in balance, which means
that SUP’s marginal reward gains from INFs’ increase in efforts equal the marginal
cost of providing the effort-inducing incentives.

5 Systems Engineering Example

We will consider the team of one SUP and three INFs introduced in Section 3. The
team is part of a systems engineering firm that develops and produces drones for
consumers. The firm seeks to launch a new model. The supervisor SUP and her team
of three software engineers, the INFs, are tasked with developing the flight control
software.

As discussed in Section 3, SUP and the three INFs have worked together in the
past. The data in Table 2 summarize the team’s historic performance. In addition and
as in the prior example, SUP has assessed that INF1 is of negative influence type,
INF2 is of positive influence type, and INF3’s influence type is unknown. The result
of the linear regression in Table 3 show that INF3 is of negative influence type and
that the change coefficients c̃INF1 = 0.39, cINF2 = 0.35 and c̃INF3 = 0.11 best fit the
data.

For this example, we assume that the INFs are homogeneous, i.e., they have the
same skill and effort cost functions. Effort eINFx represents the hours spent by an INFx
to complete the software tasks assigned by SUP. We assume that INFx’s skill function
is of the form α INFx(eINFx) = 1−exp(−veINFx). Parameter v describes the skill level;
greater v implies greater skill. The skill function is positive monotonic and concave
with respect to effort, which means that additional hours lead to higher chances of
success, but also that the marginal increase in the chance of success decreases as the
number of hours increase.

We further assume INFx’s cost function to be kINFx(eINFx) = 20exp(eINFx/w).
The parameter w is a scaling factor, which represents the rate of increase in INFx’s
effort cost. It can be interpreted as INFx’s endurance. The greater the value of w, the
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slower the growth in effort cost, i.e., the greater the agent’s endurance. The effort
cost function is positive monotonic and convex, which means that the cost of effort
increases with greater effort, and that the marginal increase is also increasing with
each extra hour worked.

Table 4: Parameter values for agents

Agent Skill Cost Rewards Influence

SUP αSUP = 0.5 - hSUP = 500,
lSUP = 50

-

INF1 v = 10−3 w = 2000 hINF1 = 100,
lINF1 = 80

c̃INF1 = 0.39

INF2 v = 10−3 w = 2000 hINF2 = 100,
lINF2 = 80

cINF2 = 0.35

INF3 v = 10−3 w = 2000 hINF3 = 100,
lINF3 = 80

c̃INF3 = 0.11

Table 4 summarizes all model parameters for this example. We had assumed that
except for their influence, all three INFs are identical. For SUP, the reward for achiev-
ing a satisfactory outcome is significantly larger than that for the INFs. The reason
is that SUP has project level responsibility, which is greater than the individual re-
sponsibilities and rewards of the INFs. The following analysis will show if and what
level of incentives SUP should offer to each INF such that her expected reward is
maximized.

5.1 Optimal incentives for INFs

To determine the optimal incentives for the INFs, we formulate SUP’s optimization
problem OS. Input to OS are INFs’ optimal effort responses to the reward shares
offered. The analytic expression of the optimal effort responses can be derived by
solving equation (8). Together with the parameters of Table 4, the results are

eINF1
∗ (bINF1) = (2000/3) log(2+11.7bINF1), (16)

eINF2
∗ (bINF2) = (2000/3) log(2+10.5bINF2) and (17)

eINF3
∗ (bINF3) = (2000/3) log(2+3.3bINF3). (18)

By substituting these equations in INFs’ skill functions, we obtain the probability of
them achieving a satisfactory performance given bINFx:

α
INF1
∗ (bINF1) = 1− (20+117bINF1)−

2
3 , (19)



18 Aditya U. Kulkarni, Christian Wernz

α
INF2
∗ (bINF2) = 1− (20+105bINF2)−

2
3 and (20)

α
INF3
∗ (bINF3) = 1− (20+33bINF3)−

2
3 . (21)

SUP’s optimization problem OS can now be specified as

max
b

RSUP(b) =
(

1−
3

∑
m=1

bINFm
)(

205−117(20+117bINF1)−
2
3

−105∗ (20+105bINF2)−
2
3 −33∗ (20+33bINF3)−

2
3 )

)
s.t.

0≤ bINFq ≤ 1 for q ∈ {1,2,3} (22)
3

∑
q=1

bINFq ≤ 1. (23)

The optimal incentive vector b∗ = (bINF1
∗ ,bINF2

∗ ,bINF3
∗ ) is determined by solving

this nonlinear constrained optimization program OS. We used the fmincon function in
MATLAB R© to solve OS. Table 5 presents the solution of OS, and Table 6 shows the
resulting increase of INFx’s efforts and the improvements in the success probabilities
of all agents.

Table 5: Optimal incentives and reward improvements

Agent Initial reward Reward share Final reward Reward increase

SUP 191.5 -0.131 212.6 11.0 %

INF1 62.5 0.074 79.3 27.5%

INF2 62.5 0.057 75.5 21.4%

INF3 62.5 0 62.2 0%

The results show that optimally incentivizing the INFs increases SUP’s expected
reward by 11.5%. This increase accounts for the incentive SUP pays to the INFs,
which is 13.1% of her gross final reward. The increase in SUP’s expected reward is
due to an increase in SUP’s probability of success, which went from 0.31 without
incentives to 0.43 with incentives.

Though the INFs are equally skilled and have the same effort cost, SUP’s optimal
strategy is to incentivize only INF1 and INF2, but not INF3. This is due to the low
influence that INF3 has on SUP, i.e., its low change coefficient (0.11 vs 0.39 and
0.35). SUP offers INF1 a 7.4% reward share and INF2 a 5.7% reward share, which
result in effort increases of 72.1% and 53.3%, respectively.
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Table 6: Improvements in effort and chances of success

Agent Initial
effort

Final
effort

Effort
increase

Initial
success
prob.

Final
success
prob.

Prob.
increase

SUP - - - 0.31 0.43 0.12

INF1 462.1 795.1 72.1% 0.37 0.55 0.18

INF2 462.1 708.6 53.3% 0.37 0.51 0.14

INF3 462.1 462.1 0% 0.37 0.37 0

5.2 Sensitivity analysis

To assess the effect of the model parameters in our example, we perform a sensitivity
analysis. First, we study the effect of INFs’ skill and endurance parameters on SUP’s
probability of success and expected reward. We consider two metrics: ∆RSUP and
∆P(SSUP = 1|·). The metric ∆RSUP is the percentage increase in SUP’s expected
reward with optimal incentivization, and ∆P(SSUP = 1|·) is the increase in SUP’s
final probability of success due to optimal incentivization.

We vary the skill parameter v for each INFx individually while keeping the skill
parameters of the other INFs constant. Figure 2 shows ∆RSUP (left) and ∆P(SSUP =
1|·) (right) as a function of ∆vINFx(%). The graphs show how SUP’s optimal expected
reward and SUP’s optimal probability of success changes as the skill of each INF
agent changes. With increasing skill, SUP’s metrics increase, but the increase differs
for each INF. SUP benefits the most from an increase in the skill of INF1, followed
by INF2 and then INF3. The difference between the INFs is due to their different
change coefficient values.

Fig. 2: Effect of INFs’ skills on SUP. Left: Increase in optimal expected reward;
Right: Increase in final probability of success
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Next, we explore the changes in the reward shares offered to the INFs with re-
spect to changes in their skill. Figure 3 shows the reward shares offered to the INFs
when one of the INFx’s skill parameter is varied, and the others INFs’ skills are held
constant. One can see that increasing the skills of any one of the INFs leads to higher
reward shares for INF1 and INF2; for INF3 the incentive remains zero. A skill in-
crease of INF1 benefits INF1 the most; the same applies to INF2. A skill increase of
INF3 has no benefit for INF3, but benefits INF1 and INF2 — though only slightly.
In all cases, the increase in reward share for INF1 and INF2 gets amplified by the in-
crease in SUP’s gross reward, of which the INFs get a percentage (the reward share).

Fig. 3: Effect of INF’s skill on reward shares. Top Left: Variation of INF1’s skill; Top
Right: Variation of INF2’s skill; Bottom Center: Variation of INF3’s skill

We observed similar results when we performed a sensitivity analysis on the en-
durance parameters of the INFs. SUP’s optimal expected reward and probability of
success increases when the endurance of an INFx increases. This is because an in-
crease in the endurance of INFx lowers its effort cost, and thus INFx is able to choose
a higher effort, improving its and thereby SUP’s chance of success. As before, SUP’s
optimal strategy is to not offer an incentive to INF3.

Next, we analyze the impact of INFs’ change coefficients on SUP. We varied
the change coefficients such that the sum of the three cINFx and the sum of the three
c̃INFx remained constant. We explored change coefficient changes for each of the three
INFs. The three cases are summarized in Table 7. For case 1, we decreased c̃INF1 and
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redistributed the influence evenly across the other two change coefficients, c̃INF2 and
c̃INF3. For case 2, we did the same for INF2’s change coefficient cINF2. For case 3, we
increased c̃INF3 and cINF3 equally, and correspondingly decreased c̃INF1 and cINF2.

Table 7: Change coefficient variation for sensitivity analysis

Agent Variation for sensitivity analysis Adjustment to satisfy unity

INF1 c̃INF1−∆ c̃INF2 +∆/2, c̃INF3 +∆/2

INF2 cINF2−∆ cINF1 +∆/2, cINF3 +∆/2

INF3 c̃INF3 +∆ , cINF3 +∆ c̃INF1−∆ , cINF2−∆

Fig. 4: Effect of influence on SUP. Left: Variation in optimal expected reward; Right:
Variation in final probability of success

Figure 4 shows the results for ∆RSUP (left) and ∆P(SSUP = 1|·) (right). The sen-
sitivity analysis for ∆RSUP reveals a distinctive trough with local minima for all
three cases. The reason for the minima and the convexity of ∆RSUP is that SUP’s
expected reward decreases the more distributed the influence among the INFs. In ad-
dition, as the influence of one of the INFs drops below a certain threshold, SUP no
longer incentivize that INFx, and thereby loses that agent’s extra effort. The influence
thresholds and incentivization transitions are the reasons for the kinks in the graph of
∆P(SSUP = 1|·), which is a linear function of the change coefficients.

The incentivization transition points are shown explicitly in Figure 5. Comparing
Figures 4 and 5, one can see that at the minima of ∆RSUP and at the corresponding
kinks in ∆P(SSUP = 1|·), a transition in the incentivization of an INF occurs. Specif-
ically, for case 1 (Figure 5, top left), moving from the right towards the minimum of
∆RSUP in Figure 4, the incentivization of INF1 stops. INF2 is the only agent receiv-
ing an incentive, and thereby exerting an extra effort. The top right graph of Figure 5
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shows that incentivization transition for INF 2, and the bottom center graph the one
for INF 3.

Fig. 5: Effect of influence on optimal reward share. Top left: Case 1–variation in
INF1’s influence; Top right: Case 2–variation in INF2’s influence; Bottom center:

Case 3–variation in INF3’s influence

6 Conclusions

In this paper, we developed a model that can capture the interactions and interdepen-
dencies in supervised teams. The objective was to identify an effective incentivization
scheme, and to determine the optimal decision responses of team members and the
supervisor. In particular, we determined the optimal incentives, as a share of the su-
pervisor’s reward, and the optimal effort response by the team members. The model
formulation is based on multiscale decision theory (MSDT). It uses MSDT’s influ-
ence function concept, which describes how efforts and outcomes at lower levels
affect the chances of success of the supervisor.

Our results show how optimal incentives and effort responses can be calculated.
By only assuming general functional properties, including continuity, monotonicity
and concavity/convexity, we proved that the supervisor can always determine an op-
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timal and unique incentive for each team member through a Taylor series approxima-
tion.

We further showed that each team member’s incentive can be calculated in isola-
tion. Even though all team members jointly affect the supervisor, the supervisor can
analyze one team member at a time, which reduces the computational complexity of
her incentivization challenge.

For the team members, we showed that given the incentive offer by the supervisor,
they can calculate their optimal effort response, and do so with little information and
reduced communication requirements. Specifically, team members only need to know
their personal information and aggregate information from and about the supervisor,
but not any information from other team members. This result is non-intuitive, since
the efforts and outcomes of the other team members affect the incentives they receive
in the end.

In addition to the model analysis, we presented a data-driven estimation approach
based on linear regression that the supervisor can use to assess and isolate the influ-
ence of each team member based on overall team performance data. We presented a
three step approach that describes (1) what data needs to be obtained, (2) how quali-
tative information that the supervisor has on the team can be integrated, and (3) how
the necessary model parameters can be computed through linear regression.

We illustrated the data-driven estimation approach through an example with a
three-person team. We then built upon this example to develop a comprehensive ex-
ample for the entire method presented in the paper, and showed how specific incen-
tive and effort responses can be calculated. For the example, we assumed certain
functional forms of effort, skill and effort cost. For these functions, we were able to
derive closed-formed analytic solutions for optimal incentives and effort responses.

We performed a sensitivity analysis for the example and showed how changes in
agent’s skill and influence affect the supervisor and team members. We observed that
when a team member’s influence on the supervisor’s chance of success is below a
certain threshold, the supervisor no longer incentivizes that team member.

In future research, this two-level model can be extended to a multi-level model.
Using the MSDT extension concepts [42], we expect that computationally scalable
solutions can be found, and that under certain conditions, closed-form solutions can
be derived.
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Appendix A

Using equation (12), the first order derivative of eINFx
∗ (bINFx) is given by

deINFx
∗ (bINFx)

dbINFx =−

(
(cINFx + c̃INFx)(hSUP− lSUP)

d
deINFx α

INFx(eINFx
∗ (bINFx)

))/
((

(hINFx−lINFx)+bINFx(c̃INFx+cINFx)(hSUP−lSUP)
) d2

d(eINFx)2 α
INFx(eINFx

∗ (bINFx)
)

d2

d(eINFx)2 kINFx(eINFx
∗ (bINFx)

))
. (24)

Using equations (12) and (24), the second order derivative of eINFx
∗ (bINFx) is given by

d2eINFx
∗ (bINFx)

d(bINFx)2 =

−

(
2(cINFx + c̃INFx)(hSUP− lSUP)

d2

d(eINFx)2 α
INFx(eINFx

∗ (bINFx)
)
× deINFx

∗ (bINFx)

dbINFx

+
(

bINFx(c̃INFx+cINFx)(hSUP−lSUP)+(hINFx−lINFx)
) d3

d(eINFx)3 α
INFx(eINFx

∗ (bINFx)
)

− d3

d(eINFx)3 kINFx(eINFx
∗ (bINFx)

))
×
(deINFx

∗ (bINFx)

dbINFx

)2
)/
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) d2

d(eINFx)2 α
INFx(eINFx

∗ (bINFx)
)
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d(eINFx)2 kINFx(eINFx
∗ (bINFx)

))
. (25)

Appendix B

Proof of Theorem 2
From equation (24), we know that deINFx

∗ (bINFx)
/

dbINFx > 0 for all x and for all

b ∈ (0,1]n. In addition, if
∂ 2

∂ (eINFx)2

(
∂

∂eINFx RINFx(e,b)
)
≤ 0, then

(
bINFx(cINFx + c̃INFx)(hSUP− lSUP)+(hINFx− lINFx)

) d3

d(eINFx)3 α
INFx(eINFx)

− d3

d(eINFx)3 kINFx(eINFx) ≤ 0

for all x and for all e. From equation (25) it follows that d2eINFx
∗ (bINFx)

/
d(bINFx)2 < 0

for all x and for all b ∈ (0,1]n. The second order partial derivatives of RSUP(b) are

∂ 2RSUP(b)
∂ (bINFx)2 =

−2(cINFx + c̃INFx)(hSUP− lSUP)
d

deINFx α
INFx(eINFx

∗ (bINFx)
)
× deINFx

∗ (bINFx)

dbINFx

+
(

1−
n

∑
k=1

bINFk
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(cINFx + c̃INFx)(hSUP− lSUP)× . . .(

d2

d(eINFx)2 α
INFx(eINFx

∗ (bINFx)
)
×
(deINFx

∗ (bINFx)

dbINFx

)2

+
d

deINFx α
INFx(eINFx

∗ (bINFx)
)
× d2eINFx

∗ (bINFx)

d(bINFx)2

)
(26)

and

∂ 2RSUP(b)
∂bINFx∂bINFw =−(cINFx + c̃INFx)(hSUP− lSUP)× . . .(

d
deINFx α

INFx(eINFx
∗ (bINFx)

)
× deINFx

∗ (bINFx)

dbINFx

+
d

deINFw α
INFw(eINFw

∗ (bINFw)
)deINFw

∗ (bINFw)

dbINFw

)
(27)

for w∈ {1, . . . ,n} and w 6= x. Since all the second order partial derivatives of RSUP(b)
are negative, we know that the Hessian matrix of RSUP(b) is negative definite for all
b ∈ (0,1]n. This implies that RSUP(b) is strictly concave for all b ∈ (0,1]n. ut


