

See discussions, stats, and author profiles for this publication at: <https://www.researchgate.net/publication/337903366>

Bankfull Transport Capacity and the Threshold of Motion in Coarse-Grained Rivers

Article in *Water Resources Research* · December 2019

DOI: 10.1029/2019WR025455

CITATION

1

READS

204

2 authors:

Colin Phillips

Utah State University

23 PUBLICATIONS 215 CITATIONS

[SEE PROFILE](#)

Douglas J. Jerolmack

University of Pennsylvania

186 PUBLICATIONS 3,995 CITATIONS

[SEE PROFILE](#)

Some of the authors of this publication are also working on these related projects:

Rheology of sediment transport across environments [View project](#)

Asbestos [View project](#)

1 **Bankfull transport capacity and the threshold of motion in coarse-grained rivers**

2

3 Authors: C. B. Phillips¹ and D. J. Jerolmack²

4 ¹Civil and Environmental Engineering, Northwestern University, Evanston, IL

5 ²Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA

6

7 Corresponding author: Colin Phillips (colinbphillips@northwestern.edu)

8

9 **Key points:**

10 • In natural rivers critical Shields stress co-varies with bankfull Shields stress in a manner
11 predicted by theory

12 • Empirical relations between slope and critical Shields stress are based on a partial sample
13 of the known parameter space for gravel rivers

14 • Predictions of changes in bankfull transport capacity based on the correlation between
15 slope and the threshold of motion can be spurious

17 **Abstract**

18 The threshold stress for bed sediment transport exerts a primary control on the geometry and
19 stability of coarse-grained rivers (diameter ≥ 5 mm). Understanding how river bed mobility
20 couples to channel form is a key mechanistic link for predicting river response to external
21 perturbations such as land use practices and changing climate. Unfortunately, determination of a
22 representative threshold stress is notoriously difficult in the field. Empirical studies have
23 observed that the critical dimensionless shear (Shields) stress (τ^*_c) is correlated with channel
24 slope, a property that is substantially easier to estimate. Mechanistic models have been
25 developed to explain the observed correlation; however, limited field data precludes the
26 widespread application of these models. For practical reasons, the empirical regressions between
27 slope and τ^*_c are utilized as predictive models. Through a large compilation of field data, we
28 demonstrate that there are two significant problems with using the empirical regressions: (1) they
29 are based on a partial sampling of the observed parameter space of coarse-grained rivers; and (2)
30 they do not capture the covariation between the bankfull Shields stress (τ^*_{bf}) and τ^*_c . These
31 regressions provide spurious predictions for the bankfull transport capacity (τ^*_{bf}/τ^*_c) of gravel-
32 bed rivers. When site-specific empirical measurements of τ^*_c are made, coarse-grained rivers
33 exhibit a remarkably constant transport capacity that is in close agreement with equilibrium-
34 channel theory ($\tau^*_{bf}=1.2\tau^*_c$). From these data we advocate that, in the absence of measurements,
35 τ^*_c can be reasonably estimated from the τ^*_{bf} using equilibrium-channel theory.

36

37 **1. Introduction**

38 A longstanding interest in the science and engineering of rivers is in understanding which flows
39 are responsible for transporting sediment and how these flows both organize and are shaped by
40 the channels that convey them (Glover & Florey, 1951; Henderson, 1963; Leopold & Maddock,
41 1953; Leopold & Wolman, 1957; Wolman & Miller, 1960). This understanding is increasingly
42 important if we are to predict a river's response under future landscape and climate scenarios
43 (Hempel, 2018; Phillips et al., 2018; Schmidt & Wilcock, 2008; Slater et al., 2015; Slater &
44 Singer, 2013). River channel stability is, to first order, controlled by the transport threshold of
45 material in the bed or channel banks, whichever is harder to entrain (Dunne & Jerolmack, 2018;
46 Schumm, 1960). In coarse-grained rivers, here considered to be generally gravel-bedded (median
47 diameter, $D_{50} \geq 5$ mm), the bed sediment is most often harder to entrain than the banks and

48 hence sets the threshold for altering channel geometry. Single threaded gravel-bed river channel
49 geometry has been analytically linked to bed-load sediment transport through hydraulics (Parker,
50 1978, 1979): the summary result is that channel geometry is adjusted so that fluid stress is at the
51 threshold of motion at the toe of the river banks, and modestly above threshold in the channel
52 center. This theory has been broadly validated in natural channels and laboratory experiments
53 (Dade & Friend, 1998; Dunne & Jerolmack, 2018; Métivier et al., 2017; Parker et al., 2007;
54 Phillips & Jerolmack, 2016; Pitlick et al., 2013; Pitlick & Cress, 2002; Reitz et al., 2014;
55 Seizilles et al., 2014).

56

57 Yet, the threshold of motion in natural channels remains very challenging to accurately measure,
58 and data to evaluate hypotheses remain sparse (Buffington & Montgomery, 1997; King et al.,
59 2004; Mueller et al., 2005) when compared to the available databases of river hydraulic
60 geometry (see Church & Rood, 1983; Li et al., 2014; Trampush et al., 2014). Standard practice is
61 to assess mobility through the use of the Shields curve, which is perhaps most valid under
62 idealized conditions such as normal flow and unimodal bed sediments (Lamb et al., 2008;
63 Shields, 1936; Wiberg & Smith, 1987). However, even in idealized laboratory conditions the
64 threshold of motion varies with particle protrusion, bed texture, grain size distribution, and the
65 structure of the granular bed (Houssais et al., 2015; Kirchner et al., 1990; Masteller & Finnegan,
66 2017; Pender et al., 2007; Prancevic & Lamb, 2015b; Shvidchenko & Pender, 2000; Wilcock,
67 1998; Zimmermann et al., 2010). For natural flows where conditions are decidedly less uniform
68 or steady, the threshold of motion is commonly treated as the measurable motion of a surface
69 layer (Parker, 1990) and varies both spatially within a reach, temporally within a flood, from
70 flood to flood, with sediment supply and availability, and with the method of measurement
71 (Buffington & Montgomery, 1997; Johnson, 2016; Lisle et al., 2000; Marquis & Roy, 2012;
72 Masteller et al., 2019; Pfeiffer et al., 2017; Prancevic & Lamb, 2015b; Turowski et al., 2011;
73 Yager et al., 2012, 2018). Within a reach, spatial heterogeneity in grain size organization can
74 result in unequal mobility especially at shear stresses near the threshold, where smaller particles
75 are susceptible to turbulent bursts and bed-load flux measurements may strongly reflect partial
76 transport and not the entire bed (Paola & Seal, 1995; Recking, 2013; Wilcock & McArdell,
77 1997). These phenomena may be described by some distribution of the threshold for a given
78 reach; however, additional lines of evidence indicate that even this distribution may be non-

79 stationary and may drift through time due to changes in the river bed state (Charru et al., 2004;
80 Houssais et al., 2015; Johnson, 2016; Masteller et al., 2019).

81
82 In natural streams and rivers, a large variety of methods and techniques have been used to
83 measure bed-load flux and the threshold of motion. These methods largely fall into two
84 categories, active or passive monitoring. Active methods involve direct measurement of the flux
85 via physical samplers or registering of impacts (for examples see Bunte et al., 2013; Gray et al.,
86 2010; King et al., 2004; Reid et al., 1985; Rickenmann et al., 2012) while passive techniques
87 involve visual determination, tracer particles, competence or largest mobilized particle,
88 acoustics, and seismometers (see Barton, 2006; Hsu et al., 2011; Phillips et al., 2013; Phillips &
89 Jerolmack, 2014; Rickenmann et al., 2012; Roth et al., 2016; Wilcock, 1992). However, these
90 methods remain resource intensive and are not guaranteed to produce a robust estimate of a
91 threshold of motion unless sampled over larger space and timescales (Monsalve et al., 2016;
92 Recking, 2013). In some cases, acquiring sufficient bed-load flux measurements could take years
93 due to the recurrence intervals of floods that are capable of transporting sediment. Despite the
94 threshold's importance, there is currently a lack of low-cost reliable methodologies to rapidly
95 assess this variable in the field.

96
97 Natural and laboratory estimates of the threshold of motion have been observed to possess a
98 positive correlation with channel slope (Lamb et al., 2008; Mueller et al., 2005). Though initially
99 counter intuitive, that sediment particles become harder to move at higher gradients, mechanistic
100 grain-scale models incorporating relative roughness, reduced turbulent intensity, partitioning of
101 the total shear stress, particle friction angles, and particle lift and drag forces have explained this
102 correlation under a variety of experimental conditions (Ferguson, 2012; Lamb et al., 2008,
103 2017a, 2017b; Prancevic et al., 2014; Prancevic & Lamb, 2015a, 2015b; Recking, 2009). Many
104 of the aforementioned processes necessarily covary with slope and relative roughness, however
105 additional experiments have isolated reduced turbulent intensity and the lift force as primary
106 causes for the increase of the threshold of motion with slope (Lamb et al., 2017a). Despite these
107 advances, the difficulty of measuring the threshold of motion in the field, combined with the
108 challenge in measuring the necessary parameters to apply the mechanistic models, has led to an
109 over-reliance on empirical regressions between slope and threshold for natural rivers. In this

110 contribution, we demonstrate that there are two significant problems with using slope-based
111 empirical regressions as they: (1) are based on a partial sampling of the parameter space of bed-
112 load rivers, and cannot be extrapolated outside of that range; and (2) do not capture the observed
113 covariation between the bankfull (τ^{*bf}) and critical (τ^{*c}) Shields stresses and thus can provide
114 spurious predictions of the bankfull transport capacity (τ^{*bf}/τ^{*c}). An important point to note here
115 is that none of the authors of the original studies exploring the correlation between slope and the
116 threshold of motion (Ferguson, 2012; Lamb et al., 2008; Mueller et al., 2005; Recking, 2009)
117 suggested that the empirical regressions be used in a predictive fashion, or in lieu of actual
118 measurements. The use of the empirically based regressions, due to the aforementioned
119 problems, can lead one to conclude that bankfull transport capacity varies among gravel-bed
120 rivers, while direct measurements of the threshold indicate that τ^{*bf}/τ^{*c} is remarkably constant
121 and in quantitative agreement with theoretical predictions (Parker, 1978, 1979). Due to the close
122 match with theory, we suggest that the bankfull Shields stress can be used to estimate the
123 threshold of motion as an alternative to the slope-based regressions. Additionally, we illustrate
124 how using an empirical slope-based regression can lead one to draw potentially incorrect
125 conclusions, through various sampling strategies of the compiled gravel-bed rivers.
126

127 **2. Data and Methods**

128 Two types of field sites are used within this study: (1) field sites where the threshold of motion
129 can be reliably estimated from bed-load flux estimates (n=68), and (2) a compilation (n=739) of
130 coarse-grained river hydraulic geometry to place the hydraulic geometry of the sites where the
131 threshold of motion was measured into a broader context. For clarity, we refer to the first set as
132 the ‘threshold’ data and the second as the ‘compilation’ data throughout the remainder of the
133 manuscript. The compilation and threshold sites both represent samples of the global population
134 of gravel rivers, however the compilation provides a more complete picture of the variability
135 within gravel rivers, while the threshold sites represent a smaller partial sample of the of the
136 compilation’s hydraulic geometry parameter space. The majority of the threshold field sites
137 come from the study of Mueller et al. (2005) with additional data compiled from the works of
138 Recking (2010, 2013), King et al. (2004), and others (Andrews, 1994, 2000; Andrews & Erman,
139 1986; Bunte, 1998; Erwin et al., 2011; Ferguson & Church, 2009; Hinton et al., 2017; Jones &
140 Seitz, 1980; May et al., 2009; May & Pryor, 2013; McLean et al., 1999; Milhous, 1973; Mueller

141 & Pitlick, 2014; Parker et al., 1982; Phillips & Jerolmack, 2014; Rankl & Smalley, 1992; Ryan
 142 et al., 2005; Ryan & Emmett, 2002; Smalley et al., 1994; Whitaker & Potts, 2007; Wilcock et al.,
 143 1996). The compilation data represent field measurements at bankfull conditions of slope (S),
 144 width (W , m), discharge (Q , m^3/s), depth (H , m), and the median bed surface grain size (D_{50} , m).
 145 These data represent the combination of coarse-grained single thread gravel bed rivers compiled
 146 by Li et al. (2015), Trampush et al. (2014), Church and Rood (1983), and Phillips and Jerolmack
 147 (2016). All of the above parameters are not available for each site as the compilation reflects the
 148 state of the data as collected by the original authors with duplicates removed.

149

150 **2.1 Calculating the Threshold of Motion**

151 For the threshold sites we follow the methodology of Mueller et al. (2005) for determining the
 152 threshold of motion. Their thorough compilation and analysis form the core dataset from which
 153 the correlations between slope and the threshold of motion have been drawn. We summarize the
 154 methodology here as it pertains to understanding the current contribution. The primary data
 155 represent measurements and estimates of the reach-scale fluid driving stress (nondimensionalized
 156 as the Shields stress, τ^*) and sediment flux per stream width (q_s , $\text{kg}/\text{m}/\text{s}$). From these data we
 157 define the threshold of motion as the dimensionless critical Shields stress (τ_{*c}). The reach and
 158 cross section scale Shields stress is estimated using hydraulic geometry variables as:

$$159 \quad (1) \quad \tau_* = \frac{\tau}{(\rho_s - \rho)gD_{50}}$$

160 where τ is the shear stress (Pa), ρ_s is the density of sediment (taken here as $2650 \text{ kg}/\text{m}^3$), ρ is the
 161 density of water ($1000 \text{ kg}/\text{m}^3$), and g is the acceleration due to gravity ($9.81 \text{ m}/\text{s}^2$). We
 162 approximate the shear stress via the depth-slope product as $\tau = \rho g h S$, where h is the flow depth.
 163 To standardize the measurements across field sites, we nondimensionalize the transport rate as:

$$164 \quad (2) \quad W_* = \frac{Rgq_s}{\rho_s(\tau/\rho)^{1.5}}$$

165 where $R=1.65$ is the submerged specific density of the sediment (see Parker et al., 1982; Parker,
 166 1990). The threshold of motion is determined as the median value of Shields stress at which the
 167 dimensionless transport rate intersects a reference transport rate of $W^*=0.002$ (Parker, 1990;
 168 Mueller et al., 2005). The use of a reference transport rate to determine a threshold of motion
 169 means that, strictly speaking, we have determined the reference Shields stress (τ_{*r}), which is
 170 close but not necessarily equal to τ_{*c} . Throughout the rest of the manuscript references to the

171 threshold of motion and data analysis specifically refer to τ_{*r} as a proxy for τ_{*c} . For field sites
172 where the bulk of the sediment flux measurements are either above or below the reference
173 transport rate, we estimate the point of intersection by fitting a surface-based transport relation
174 $W* = 0.002(\tau/\tau_r)^{14.2}$ (Parker, 1990). All told we have examined sediment transport data for 132
175 sites and retained 68 of them for the following analysis. Of the 68 sites, one site (the Mameyes
176 River) used tracer particles to estimate the threshold of motion (see Phillips and Jerolmack,
177 2014). The 64 excluded sites were not retained for a variety of reasons, the most common being
178 missing data, insufficient sample size, and conflicting parameter estimates. In some cases, field
179 sites were excluded if we could not estimate a reliable reference threshold due to the absence of a
180 trend within the flux measurements. This occurs in several channels with large sand fractions and
181 for sites where particles approaching the size of the stream bed D_{50} were never mobilized. Both
182 of these issues result in no relation between Shields stress and flux for the range of stresses
183 reported. For a broader discussion of potential problems with these and similar data see Recking
184 (2010; 2013).

185

186 **2.2 Estimating the Channel Bankfull Transport Capacity**

187 The bankfull transport capacity (τ_{*bf}/τ_{*r}) is estimated for the threshold data using equation (1) for
188 τ_{*bf} , while τ_{*r} is determined from bed-load flux measurements. In other words, τ_{*bf} is determined
189 from channel morphology, and hence independently from τ_{*r} . In a few cases, our estimates of the
190 variables required to compute τ_{*bf} and τ_{*r} based on the raw data differ from the values reported in
191 the original studies. These differences are generally small, and we use the reported values in
192 deference to the previous authors. We have only used sites that characterize the bankfull depth as
193 a morphologic break between the active channel and a flood plain or non-channelized area (refer
194 to Williams (1978) for additional common metrics of bankfull depth), as expansive flood plains
195 are not always evident in mountain channels. For several field sites with irregular cross sections
196 or large gravel bars we estimated the bankfull depth as the average depth across the active
197 channel, which excludes the banks and large gravel bars from the height estimates. For these
198 sites, the hydraulic radius becomes increasingly skewed by the bar and no longer reasonably
199 approximates the stress imposed on the stream bank adjacent to the flow. Overall this results in a
200 slightly higher estimate of the bankfull depth for some reaches, but matches the hydraulic radius
201 calculations for more uniform or rectangular cross sections. We have excluded field sites where

202 we cannot reliably estimate both τ_{*r} and τ_{*bf} ; difficulties in calculating the latter are due to
 203 insufficient data to calculate H , S , and the D_{50} . In some cases, we have excluded field sites where
 204 there are no raw data available and we are not able to acquire reliable estimates of these
 205 parameters from other sources. Additionally, we have excluded several field sites where multiple
 206 sources report conflicting estimates of the same hydraulic geometry parameters and we cannot
 207 determine which ones are representative of the channel in question due to the absence of the raw
 208 data.

209

210 **3. Results**211 **3.1 Correlation and Covariation between the Reference Shields Stress and Slope**

212 The slope of a mountain river reach is, all things considered, one of the more reliable parameters
 213 that can be measured. It is one of the few parameters that can be directly measured from aerial
 214 lidar and satellite derived topographic digital elevation models, whereas τ_{*r} is not an easy
 215 parameter to measure. The correlation between τ_{*r} and S (Figure 1a) previously observed within
 216 a compilation of mountain rivers (Mueller et al., 2005; Lamb et al., 2008) represented a
 217 pragmatic path towards estimating a key parameter, even though it lacks the physical basis laid
 218 out in the mechanistic models (see Prancevic and Lamb (2015b) for a field application of a
 219 mechanistic model). The correlation between S and τ_{*r} has been reported as following both linear
 220 and non-linear relations (see Lamb et al., 2008; Mueller et al., 2005; Pitlick et al., 2008; Recking,
 221 2009). We find that the best fit, in a least-squares sense, is a non-linear relation of the form

$$222 \quad (3) \quad \tau_{*r} = kS^\alpha,$$

223 where $k=0.27$ and $\alpha=0.38$ (standard error of 0.045) represent the best fit coefficient and exponent
 224 ($R^2=0.53$) for these data, respectively (Figure 1a). This fitted equation is similar to that
 225 determined by Pitlick et al. (2008) and possesses a slightly steeper slope than that of Lamb et al.
 226 (2008). The differences among the empirical regressions are minor, and arise due to (i) the
 227 addition of new field sites present here and (ii) the exclusion of laboratory data from the fit in
 228 equation (3). Throughout the rest of the manuscript we will utilize equation (3) when providing
 229 examples of τ_{*r} as estimated via an empirical regression, though the issues raised in the following
 230 sections are inherent to all such regressions on these or subsets of these data. The non-linear
 231 relation provides a better fit to the data, however a linear fit is also reasonable. We also observe
 232 that τ_{*bf} possesses a similar non-linear correlation with slope (also observed by Mueller et al.,

233 2005 and Pitlick et al., 2008). The best-fit regression line between τ_{bf} and S is vertically offset of
 234 that between τ_r and S , indicating that τ_{bf} is slightly larger than τ_r in a consistent manner
 235 ($\tau_{bf}=0.29S^{0.35}$, $R^2=0.48$ with a standard error of 0.046 for α , Figure 1a). The compilation data
 236 represent a larger range of τ_{bf} and a steeper trend with S ($\tau_{bf}=0.55S^{0.45}$, $R^2=0.28$ with a standard
 237 error of 0.025 for α).

238

239 To understand how the ratio of τ_{bf}/τ_r computed with measured values compares with the same
 240 ratio where τ_r is calculated from the empirical regression we combine equations (1) and (3):

$$241 \quad (4) \quad \frac{\tau_{bf}}{\tau_r} \sim \frac{\tau_{bf}}{kS^\alpha} = \frac{hs}{kS^\alpha RD_{50}} = \frac{hs^{1-\alpha}}{kRD_{50}}.$$

242 The primary effect of estimating τ_{bf}/τ_r with equation (4) is to increase the contribution of slope
 243 and minimize the role of the median particle size (for $k<1$) within the Shields stress. Recall that
 244 since the slope is always less than one, as the quantity $(1-\alpha)$ approaches zero the slope term
 245 approaches a value of one. Using equation (4) the computed average transport capacity is $<\tau_{bf}/kS^\alpha>=1.26$ (arithmetic mean of 1.4), which is close to the observed value of $<\tau_{bf}/\tau_r>=1.27$ ($<\mathbf{>}$ denotes a geometric mean of the bracketed quantity). However, the shape and variance of the
 247 distributions are poor matches (Figure 1b), even though equation (4) was fit to these data. Note
 248 that equation (4) produces transport capacities that extend well below one, which is a non-
 249 physical result as transport was observed in these rivers for sub bankfull flow. The same exercise
 250 can be performed for the compilation data using equation (4), which produces an even larger
 251 variance (gray PDF in Figure 1b). The larger variance is a result of not capturing the covariation
 252 present in τ_r and τ_{bf} , as each set of observations are pairs. Where τ_r for a given site is
 253 larger/smaller relative to equation (3), τ_{bf} is also larger/smaller for the same site. The covariation
 254 between τ_{bf} and measured τ_r is so strong that no trend is apparent when we take the ratio of
 255 τ_{bf}/τ_r and compare it to S , H/D_{50} , and even τ_{bf} (Figure 1c). As the required variables to compute
 256 τ_{bf} are commonly available or easier to measure, equations (3) and (4) – or variants thereof – are
 257 used frequently to estimate τ_r , despite the fact that the covariation between τ_{bf} and τ_r produces
 258 a spurious result for the transport capacity. Through the use of equation (4) the estimated
 259 bankfull transport capacity for both datasets become positively correlated with relative
 260 submergence and τ_{bf} , even though the actual value of τ_{bf}/τ_r is constant (Figure 1c). These
 261 correlations are spurious due to the variables' underlying correlation with slope (Figure 1c). The

263 same degree of correlation is not observed between slope and equation (4), because the relation
264 between H/D_{50} almost precisely cancels out the effect of plotting slope against itself (Figure 1c).
265

266 **3.2 Parameter Space of the Threshold Field Sites**

267 The second significant issue when computing τ_{*r} with equation (3) results from the partial range
268 of parameter space covered by the field sites from which the regression is based. The broader
269 compilation of field sites represents a more diverse set of gravel rivers and provides context for
270 the range and frequency of the different hydraulic variables (H , S , D_{50} , W , and Q). In general,
271 their probability density histograms do not appear to follow a normal distribution and are better
272 represented by their natural logarithm (Harman et al., 2008). Thus, we natural-log transform the
273 hydraulic variables for the threshold and compilation sites prior to computing the histograms.
274 Compared to the compilation dataset, the threshold site channels are generally shallower,
275 narrower and steeper, with lower bankfull discharges and coarser beds (Figure 2a-f). In other
276 words, sites used for the threshold regressions are a non-representative subset of the larger
277 compilation of gravel rivers. In terms of τ_{*bf} , however, these sites match the central tendency of
278 the larger compilation well (Figure 2f); but they under sample both high and low values of τ_{*bf}
279 relative to the larger compilation. The τ_{*bf} of the compilation appears to be well described by a
280 log-normal distribution yielding a geometric average of $\langle \tau_{*bf} \rangle = 0.054$ for single thread coarse-
281 grained rivers (Figure 2f). A two-tailed Kolmogorov-Smirnov test for a log-normal distribution
282 ($K-S_{\text{stat}}=0.045$ with a $P_{\text{value}}=0.097$) suggests that we cannot reject the null hypothesis that τ_{*bf} is
283 log-normally distributed (i.e. we accept that τ_{*bf} does not differ from a log-normal distribution at
284 a P_{value} of ~ 0.1). Additionally, the threshold distribution of τ_{*bf} also follows a log-normal
285 distribution ($K-S_{\text{stat}}=0.095$ with a $P_{\text{value}}=0.55$), though not the same distribution as the
286 compilation (Two sample KS-test, $K-S_{\text{stat}}=0.17$ with $P_{\text{value}}=0.042$). It is perhaps not surprising
287 that the threshold sites are non-representative of the larger compilation, as these sites are by-and-
288 large geographically biased to mountain rivers primarily within the Rocky Mountains and the
289 states of Colorado, Wyoming, and Idaho whereas the compilation samples a broader geographic
290 range (continental United States and Canada).

291
292 The consequences of the geographic bias in measured τ_{*r} and equation (3) can be further
293 explored by removing the self-correlation (slope occurs in both axis) present within Figure (1).

294 We can examine the relationships between both datasets by exploring the parameter space
295 between H/D_{50} and S , the two free dimensionless variables within Shields stress while holding
296 the quantity $\rho/(\rho_s-\rho)$ constant (Figure 3). When viewed this way the compilation data form a
297 scattered cloud in which bankfull relative submergence (H/D_{50}) trends inversely with slope.
298 These data show that for the same value of τ_{bf}^* there exist low gradient rivers with high relative
299 submergence, and steep gradient rivers with low relative submergence. Particularly, these data
300 show that there is quite a range in τ_{bf}^* , and that high Shields stresses are not solely the domain of
301 steep rivers. Within this parameter space the threshold sites tend to be overly representative of
302 the steepest rivers (Figure 3). There are few if any threshold field sites occupying the region of
303 the parameter space characterized by low slope, high relative submergence rivers. Within these
304 data a pattern with τ_r^* emerges showing an additional dependence on H/D (also highlighted by:
305 Mueller et al., 2005; Recking 2009). Equation (3) runs askew to the primary trend of the
306 compilation data, and doesn't capture the overall pattern of τ_r^* within this parameter space.
307 Interestingly, the pattern in τ_r^* follows isolines of increasing Shields stress, in that steep rivers
308 with low relative submergence appear to have the same value of τ_r^* as low gradient rivers with
309 high relative submergence (Figure 3). For example, using equation (3) to estimate τ_r^* at any
310 value of S would indicate that as H/D_{50} increases so too does the transport capacity of the river.
311 However, the measured values of τ_{bf}^*/τ_r^* do not vary systematically with H/D_{50} or S . From these
312 data it becomes apparent that a third variable, which combines both H/D and S , may be a better
313 predictor of the observed τ_r^* pattern. However, it is not necessary to fit such a regression as the
314 third variable is the bankfull Shields stress (equation 1).

315

316 **3.3 Relation between the Bankfull and Reference Shields Stresses**

317 The observed correlation between τ_{bf}^* and τ_r^* is a strong linear trend (Figure 4). It is important to
318 note that the methodology that calculates τ_r^* is independent of that used to determine τ_{bf}^* , as τ_r^* is
319 determined from a range of flow and flux measurements while τ_{bf}^* is determined from channel
320 geometry. The correlation between τ_{bf}^* and τ_r^* , and by extension τ_c^* , was previously shown
321 (Mueller et al., 2005) to be linear with a subset of the threshold data used here. Mueller et al.
322 (2005) concluded that this trend indicated that gravel-bedded streams were adjusted to have a
323 constant bankfull excess Shields stress ($\tau_{bf}^* - \tau_c^*$). The analytic model for the equilibrium channel
324 geometry of gravel-bedded rivers developed by Parker (1978) provides an explanation for the

325 observed correlation and an expected functional form of $\tau_{bf}^* = (1+e)\tau_c^*$, where ‘ e ’ is a small
 326 positive value. The prediction for a channel with cohesionless unimodal sediment provides that
 327 $e=0.2$ yielding a predicted relation of $\tau_{bf}^* = 1.2\tau_c^*$ for a specified value of τ_c^* . The best fit relation
 328 of this form from the data is $\tau_{bf}^* = 1.19\tau_r^*$ ($R^2=0.96$), which is remarkably close to the analytical
 329 prediction (Figure 4). Combining these ideas together provides an avenue to predict τ_r^* from τ_{bf}^*
 330 by rearranging the confirmed analytical equation to yield $\tau_r^* = 0.83\tau_{bf}^*$. From this relation we can
 331 estimate the residuals and compare estimates with equation (3). Histograms of the residuals show
 332 a positively skewed distribution from equation (3) and a mostly symmetric and narrower
 333 distribution for the analytical prediction (Figure 4 inset).

334

335 **3.4 Illustration of Perceived Differences in Transport Capacity via Subsampling**

336 To illustrate problems with subsampling the parameter space of gravel bed rivers while using
 337 equation (4) to compute the transport capacity, we created a set of contrived subsamples from the
 338 larger compilation dataset based on S , H/D_{50} , τ_{bf}^* , Q/W , and f (flow resistance). These
 339 subsamples are similar to how a researcher might collect field data or values from the literature
 340 to compute τ_{bf}^* , and through equation (4) estimate the bankfull transport capacity to compare
 341 different regions or catchments. It is important to note that selecting field sites within a particular
 342 geographic region is something that is commonly done and acceptable practice, but yields a
 343 selection of rivers with a limited range in values of S , H/D_{50} , τ_{bf}^* , Q/W , and f . Throughout the
 344 following exercise we show how application of the slope-based regressions (equation 3) to such
 345 data can yield erroneous conclusions. The expected distribution based on the measured τ_r^* is
 346 narrowly distributed around the theoretical prediction (Figure 1b & reproduced in Figure 5a). To
 347 facilitate a more direct comparison with the threshold field sites ($n=68$), we selected 70 random
 348 field sites from the full parameter space of the larger compilation (Figure 5a). We chose 70
 349 random samples for the contrived sampling scheme as this number is close to the number of
 350 threshold sites, represents a low relative standard error (< 5%), and produces a reasonable
 351 distribution. The error in computing the mean is relatively low even for a small set of random
 352 samples (Figure 5a), because the natural log-transformed distribution of τ_{bf}^* is a normal
 353 distribution. The contrived sampling schemes were created by randomly selecting two sets of 70
 354 sites from the compilation dataset from above and below the geometric mean for S , H/D_{50} , τ_{bf}^* ,
 355 and Q/W (Figure 5b), while sampling criteria for f was based on the arithmetic mean value. Flow

356 resistance was computed using the Variable Power Equation $(8/f)^{1/2} = a_1 a_2 (H/D) / [a_1^2 +$
357 $a_2^2 (H/D)^{5/3}]^{1/2}$ with coefficients $a_1=7.3$ and $a_2=2.3$ (Ferguson, 2007), as this equation was
358 previously demonstrated by Ferguson (2007) to match a large compilation of field data well. The
359 final category is a combination of H/D and S that samples from opposite corners of the
360 compilation parameter space in Figure 3. The differences in transport capacity through the use of
361 equation (4) between the two sets of subsamples for each criterion are illustrated in Figure 5b
362 (see Figure 5c to see the selected sites within the relative submergence-slope parameter space).
363 Some of the contrived subsamples have similar median values for transport capacity to the
364 measured threshold sites; however, all subsamples have substantially larger inner quartile ranges
365 and standard deviations (Figure 5b). Whether a subsample differs from its partner sample is
366 completely dependent on how the selected sites relate to where equation (3) crosses the
367 parameter space (Figure 5c). Subsamples showing little difference from each other are those
368 based on S and Q/W , while the rest of the subsamples (H/D_{50} , τ_{bf} , f , H/D_{50} & S) would indicate
369 that transport capacity differs for these sets of gravel rivers. These differences, while statistically
370 significant, are artefacts of the bias that arises by sampling a limited range of the parameter space
371 relative to equation (3).

372

373 **4. Discussion**

374 Here we start by discussing the quality and bias issues of the threshold data set, as several types
375 of errors are potentially present. The majority of these issues are likely a consequence of the
376 complicated nature of measuring sediment transport and channel hydraulic parameters, which
377 represent snapshots of a dynamic system. For τ_{bf} the potential sources of error are in determining
378 H , D_{50} , and S at each field site. The largest source of error for this study is related to defining the
379 bankfull depth (Williams, 1978), because errors in both S and D_{50} are less likely to affect the
380 transport capacity as both of these parameters are part of the calculations necessary to compute τ^*
381 and τ_{*r} through equation (2). The error in measuring the bankfull depth is relatively low and
382 decreases with the number of cross sections (Harman et al., 2008), though it remains an open
383 question as to the minimum number of cross sections required to achieve a representative
384 average bankfull depth, and exactly how to treat the bankfull depth (hydraulic radius or average
385 active channel depth) for irregular or complicated cross sections. Our intent is to understand the
386 ratio τ_{bf}/τ_{*r} as it relates to channel stability, therefore we have chosen to calculate H using the

387 average active channel depth for irregular cross sections and the hydraulic radius where the two
388 metrics closely agree. A full accounting of this problem is not possible given the current datasets,
389 as most field sites have no more than three cross sections from which to compute H ; however,
390 the difference between both methods is small, at least for the field sites we have examined here.
391 Defining H as a morphologic break in the channel cross section, we were able to independently
392 reproduce the bankfull depths reported by the original authors of the studies from which the
393 threshold data are compiled. Sources of error for τ_{*r} are potentially more numerous as bed-load
394 transport measurements are notoriously noisy data; for a thorough analysis and discussion of the
395 potential sources of error see Recking (2013). The largest areas of error for the threshold dataset
396 are related to sampling bed-load transport at low transport rates and the choice of sampler used to
397 collect the samples. Mobile samplers (e.g. Hellely-Smith) measure higher flux rates for low
398 transport conditions, compared to pit and trap type samplers (Bunte et al., 2008). This
399 oversampling can result in flat (trendless) relations between flux and stress at low transport rates
400 and may have resulted in the exclusion of several field sites where higher transport rates were not
401 available to distinguish a trend. A larger concern with these data is in how representative a single
402 measurement of τ_{*r} is of the threshold, as both the spatial and temporal variability of τ_{*r} remains
403 uncertain. The temporal variability, however, may be less worrisome long term as it appears to
404 be normally distributed where it has been measured (Masteller et al., 2019). Suffice to say,
405 understanding the dynamics of the threshold of motion remains an area in need of additional
406 research. Therefore, we caution the reader from focusing on a single field site or exact numerical
407 values, and instead recommend that the overall trends are more robust.

408
409 In terms of data bias of the compilation parameter space coverage, we can only speculate given
410 the available data as to how representative some of these parameters are when compared to the
411 timescales of channel adjustment. In a sense, the reach-scale channel geometry integrates over
412 some yet unknown number of flood events, or may even alternate between different states of
413 adjustment (Pizzuto, 1994; Slater & Singer, 2013; Wolman & Gerson, 1978; Yu & Wolman,
414 1987). It is not currently definitively known how much the bed composition changes over time
415 and thus how representative a single grain size measurement is, or how sensitive natural channel
416 geometry is to changes in bed composition (e.g. MacKenzie & Eaton, 2017). Similarly, it
417 remains an open question if the sampled bed grain size distribution is reflective of the current

418 measured channel geometry. These are questions though that cannot necessarily be addressed
419 with the current data compilations, but are worth keeping in mind when considering rivers as
420 dynamic systems. In addition, it cannot be definitively concluded that the compilation dataset
421 fully represents the spectrum of τ_{bf}^* in coarse-grained rivers, as the compiled field sites
422 necessarily represent the site selection criteria within the original studies. For example, the
423 sampling of field sites is strongly biased geographically towards North America. In particular,
424 field measurements in dryland, arctic or periglacial, and tropical environments are notably
425 lacking. However, given the close fit to a log-normal distribution (Figure 2f) it is not clear to the
426 authors that more globally representative sampling would not simply make any fit better.

427

428 Regardless of how representative the compilation dataset is of global rivers, a significant pitfall
429 of using equation (3) to predict τ_r^* is that the field sites on which equation (3) is based do not
430 sample the full parameter space of the compilation of coarse-grained rivers used in this study
431 (Figure 2 and 3). We note that this is the largest compilation of coarse-grained rivers to date.
432 This uneven sampling is strongly biased towards moderate to high slopes and low relative
433 submergence rivers. Noticeably under sampled are rivers with higher relative submergence for
434 all slopes ($H/D > 20$), and rivers with lower slopes ($S < 0.002$) in general. Caution should be
435 exercised when attempting to extrapolate predictions for τ_r^* to regions of the parameter space that
436 are not sampled, especially for sites with higher values of H/D relative to equation (3) (Figure 3).
437 Capturing the covariation between τ_r^* and τ_{bf}^* is especially important for estimating bed load
438 transport due to flux equations' non-linear dependence on transport stage (τ^*/τ_r^*) and/or excess
439 shields stress ($\tau^* - \tau_r^*$) (Mueller et al., 2005). For example, the difference between $\tau_{bf}^*/\tau_r^* = 1.2$ and
440 $\tau_{bf}^*/\tau_r^* = 2$, seems small given the variation in the data; yet when viewed through a common bed-
441 load transport equation (see Wilcock & Crowe, 2003) this becomes a factor of ~20 in terms of
442 flux and grows non-linearly with increasing values of τ^*/τ_r^* . As there are very few estimates of
443 τ_r^* in high Shields stress ($\tau^* > 0.12$) regions of the parameter space, and especially low slope and
444 high relative submergence sites, further research is still required to determine the range of τ^*/τ_r^*
445 within these regions. The available data do not, however, support the use of equations (3) and (4)
446 to determine τ_r^* in these regions. These equations would predict that bankfull transport capacity,
447 and hence bed-load flux, increases with τ_{bf}^* – despite the available measured data indicating that
448 $\tau_{bf}^*/\tau_r^* \sim \text{constant}$ (Figure 1 inset and Figure 4). Interestingly, while the correlation between slope

449 and high values of τ^*_c is becoming increasingly well understood (see Lamb et al., 2008; Recking,
450 2009; Prancevic and Lamb, 2015a), to date the explanation for the increase of τ^*_r with H/D for
451 regions of low slope remains uncertain to the authors.

452

453 The second issue with the approach laid out in equation (4) is that it does not capture the co-
454 variation between τ^*_b and τ^*_r at each site. These two parameters are ‘paired’ in a sense, and using
455 either fitted regression relation (see figure 1) to estimate τ^*_{bf} or τ^*_r from slope alone will result in
456 an incorrect prediction for the ratio τ^*_{bf}/τ^*_r . This pairing of the data is evident when considering
457 the relation between τ^*_{bf} and τ^*_r (Figure 4), which closely matches theory (Parker, 1978)
458 indicating support for a causative relation. While there is some deviation from this trend within
459 the data (Figure 4) the residuals possess no meaningful correlation with the available hydraulic
460 variables (H , W , Q , $D50$, H/D , f , and S). It remains unclear to the authors if the degree of scatter
461 in τ^*_{bf}/τ^*_r reflects actual ranges of channel behavior, or represents a combination of error or bias
462 in the measurements and under-sampling of the various hydraulic parameters or random noise in
463 a dynamic system. Of the explored relations and correlations, the simple linear relation $\tau^*_{bf}=1.2\tau^*_r$
464 remains the best predictor to date. In a sense, this model can serve as a null hypothesis. Absent
465 independent measurements of τ^*_c , this null model states that $\tau^*_{bf}=1.2\tau^*_c$ or $\tau^*_c=0.83\tau^*_{bf}$. With this
466 in mind and the observation that τ^*_{bf} is approximately log-normally distributed ($\langle\tau^*_{bf}\rangle=0.054$),
467 then τ^*_c would also be log-normally distributed and we can estimate its mean as $\langle\tau^*_c\rangle=0.045$
468 (close to the prediction of the Shields curve). The value in this approximation is that it places
469 statistical bounds on the extent of both τ^*_{bf} and τ^*_c in natural channels. We have demonstrated
470 several potential outcomes of this sampling bias through a variety of field site selection criteria
471 (Figure 5b). Though the demonstrated selection criteria were strictly related to simple statistical
472 splits of hydraulic variables, the discussed bias applies equally to samples drawn based on
473 geography or regional climate. The upshot here is that an empirical slope-based predictor is not
474 broadly reliable for estimating the threshold of motion or predicting the transport capacity,
475 because the data it is based on represent a biased sampling of alluvial gravel rivers and does not
476 account for the covariation between τ^*_{bf} and τ^*_r . We advocate that τ^*_r can be estimated from τ^*_{bf}
477 due to the remarkable consistency observed in channel geometry and the close connection to
478 theory which provides a physical basis for the prediction. Using channel geometry to predict the
479 threshold of motion provides an implicitly time and space averaged reach-scale value for τ^*_c ,

480 however the extent of the averaging will depend on the number of flows responsible for shaping
481 the current channel geometry.

482

483 Lacking an alternative easily implementable approach to predicting τ^*_{*c} , we recommend using the
484 null model ($\tau^*_{bf}/\tau^*_{*c}=1.2$) in theory, numerical, and analytical based approaches, while for strictly
485 empirical approaches error can be incorporated through the observed distribution and standard
486 deviation ($\langle\tau^*_{bf}/\tau^*_{*r}\rangle=1.27 \times / \div 1.16$). The null model provides a closure for studies in gravel-bed
487 rivers where τ^*_{*c} needs to be estimated. For example, predicting spatial patterns of grain size and
488 morphology for in stream management and habitat suitability (Phillips & Scatena, 2013; Snyder
489 et al., 2013), and management of river corridors below major river modifications (Minear, 2010;
490 Schmidt & Wilcock, 2008). For field sites where the identification of the bankfull depth is
491 difficult to assess we recommend checking the data against the compilation dataset parameter
492 space (Figure 3) for a variety of flow depths to assess a likely range. This approach is also
493 insightful to assess potential bias for geographically based sampling. For steeper river channels
494 ($S > 0.01$ and $H/D < 10$) where one absolutely requires an approximation of τ^*_{*r} based on metrics
495 extracted from topography alone, the slope-based regression in equation (3) and other published
496 variants may be suitable with the former caveats in mind. We recommend the field based
497 empirical regressions over those that incorporate laboratory measurements, because the field
498 based regressions capture processes (and errors) inherent to the field that are absent in the lab
499 such as the difference between measured particle size and mass in steep channels (see Miller et
500 al., 2014). We do not have a recommendation for bedrock rivers, as the concept of bankfull does
501 not always exist and a bankfull analogue with morphological significance has yet to be fully
502 established. Research in this area is still developing, however field and flume experiments
503 (Johnson et al., 2009; Johnson & Whipple, 2010) have demonstrated that bedrock rivers appear
504 to adjust towards a condition of steady state to pass the sediment flux and water discharge
505 supplied. This is similar to the statistical concept of the ‘effective flood’ in alluvial rivers which
506 is a bankfull analogue and represents the average stress above the threshold of motion (Phillips
507 & Jerolmack, 2016; Torizzo & Pitlick, 2004; Wolman & Miller, 1960).

508

509 **5. Conclusion**

510 Through the use of an expanded dataset, we demonstrate that empirical regressions based on the
511 correlation between slope and the threshold of motion can easily result in erroneous conclusions
512 when considering the channel's transport capacity. This occurs because the empirical regressions
513 are based on a limited sampling of the parameter space of bed-load rivers and do not capture the
514 covariation between τ^{*bf} and τ^{*r} . Predicting the threshold of motion in natural channels remains a
515 considerable challenge, and a critical knowledge gap for understanding rivers' roles within their
516 catchments. We recommend site-specific empirical determination of the threshold from
517 independent measurements of bed-load transport; while this is challenging, the rapid uptake of
518 seismic, acoustic, and other methods makes this prospect increasingly more feasible. Barring
519 direct measurement, the threshold of motion's strong correlation with the bankfull Shields stress
520 remains the most accurate predictor. The covariation of threshold and bankfull Shields stresses is
521 a consequence of the organization of bed-load rivers to be close to the threshold of motion. The
522 average bankfull transport capacity determined from available data is in remarkable agreement
523 with the prevailing theory for gravel-bed river geometry (Parker, 1978). Observed deviation from
524 this theory when using these empirical regressions is an artefact of the sampling bias inherent in
525 their construction; future studies will need to address this bias rigorously with independent
526 observations of the threshold in order to disprove the null hypothesis.

527

528 **Acknowledgements**

529 Research was supported by the NSF INSPIRE program (EAR-1344280), a NSF-Postdoctoral
530 Fellowship (EAR-1349776) and a Nature Conservancy NatureNet Fellowship (P105251)
531 awarded to CBP, and through an Army Research Office grant (W911-NF-16-1-0290) to DJJ. We
532 thank the Associate Editor, J. Prancevic, J. Johnson, and an anonymous reviewer for thorough
533 and constructive reviews that improved this manuscript. New data compiled within this study are
534 available as supplemental material, while the larger compilation of river geometry is publicly
535 available from the original sources.

536

537 **References**

538 Andrews, E. D. (1994). Marginal bed load transport in a gravel bed stream, Sagehen Creek,
539 California. *Water Resources Research*, 30(7), 2241–2250.
540 <https://doi.org/10.1029/94WR00553>

541 Andrews, E. D. (2000). Bed material transport in the Virgin River, Utah. *Water Resources*
542 *Research*, 36(2), 585–596. <https://doi.org/10.1029/1999WR900257>

543 Andrews, E. D., & Erman, D. C. (1986). Persistence in the Size Distribution of Surficial Bed
544 Material During an Extreme Snowmelt Flood. *Water Resources Research*, 22(2), 191–
545 197. <https://doi.org/10.1029/WR022i002p00191>

546 Barton, J. (2006). *Passive acoustic monitoring of coarse bedload in mountain streams* (Ph.D.).
547 The Pennsylvania State University, State College, PA.

548 Buffington, J. M., & Montgomery, D. R. (1997). A systematic analysis of eight decades of
549 incipient motion studies, with special reference to gravel-bedded rivers. *Water Resources*
550 *Research*, 33(8), PP. 1993–2029. <https://doi.org/10.1029/96WR03190>

551 Bunte, K. (1998). *Development and field testing of a stationary net-frame bedload sampler for*
552 *measuring entrainment of pebble and cobble particles* (Report) (p. 74). Fort Collins, CO:
553 Stream System Technology Center, Rocky Mountain Research Station, U.S. Dept. of
554 Agriculture Forest Service.

555 Bunte, K., Abt, S. R., Potyondy, J. P., & Swingle, K. W. (2008). A Comparison of Coarse
556 Bedload Transport Measured with Bedload Traps and Helleys-Smith Samplers.
557 *Geodinamica Acta*, 21(1–2), 53–66. <https://doi.org/10.3166/ga.21.53-66>

558 Bunte, K., Abt, S. R., Swingle, K. W., Cenderelli, D. A., & Schneider, J. M. (2013). Critical
559 shields values in coarse-bedded steep streams. *Water Resources Research*, 7427–7447.
560 <https://doi.org/10.1002/2012WR012672>

561 Charru, F., Mouilleron, H., & Eiff, O. (2004). Erosion and deposition of particles on a bed
562 sheared by a viscous flow. *Journal of Fluid Mechanics*, 519, 55–80.
563 <https://doi.org/10.1017/S0022112004001028>

564 Church, M., & Rood, K. (1983). *Catalogue of alluvial river channel regime data*. Vancouver:
565 University of British Columbia.

566 Dade, W. B., & Friend, P. F. (1998). Grain-size, sediment-transport regime, and channel slope in
567 alluvial rivers. *Journal of Geology*, 106(6), 661.

568 Dunne, K. B. J., & Jerolmack, D. J. (2018). Evidence of, and a proposed explanation for,
569 bimodal transport states in alluvial rivers. *Earth Surface Dynamics*, 6(3), 583–594.
570 <https://doi.org/10.5194/esurf-6-583-2018>

571 Erwin, S. O., Schmidt, J. C., & Nelson, N. C. (2011). Downstream effects of impounding a
572 natural lake: the Snake River downstream from Jackson Lake Dam, Wyoming, USA.
573 *Earth Surface Processes and Landforms*, 36(11), 1421–1434.
574 <https://doi.org/10.1002/esp.2159>

575 Ferguson, R. I. (2007). Flow resistance equations for gravel- and boulder-bed streams. *Water
576 Resources Research*, 43, 12 PP. <https://doi.org/10.1029/2006WR005422>

577 Ferguson, R. I. (2012). River channel slope, flow resistance, and gravel entrainment thresholds.
578 *Water Resources Research*, 48(5), W05517. <https://doi.org/10.1029/2011WR010850>

579 Ferguson, R. I., & Church, M. (2009). A critical perspective on 1-D modeling of river processes:
580 Gravel load and aggradation in lower Fraser River. *Water Resources Research*, 45(11).
581 <https://doi.org/10.1029/2009WR007740>

582 Freedman, D., & Diaconis, P. (1981). On the histogram as a density estimator: L2 theory.
583 *Zeitschrift Für Wahrscheinlichkeitstheorie Und Verwandte Gebiete*, 57(4), 453–476.
584 <https://doi.org/10.1007/BF01025868>

585 Glover, R. E., & Florey, Q. L. (1951). *Stable channel profiles* (Tech. Rep. U.S. Bur.
586 Reclamation). Denver, CO. USA.

587 Gray, J. R., Laronne, J. B., & Marr, J. D. G. (2010). *Bedload-surrogate monitoring technologies*
588 (U.S. Geological Survey Scientific Investigations Report No. 2010–5091) (p. 37). United
589 States Geological Survey.

590 Harman, C., Stewardson, M., & DeRose, R. (2008). Variability and uncertainty in reach bankfull
591 hydraulic geometry. *Journal of Hydrology*, 351(1), 13–25.
592 <https://doi.org/10.1016/j.jhydrol.2007.11.015>

593 Hempel, L. A. (2018). *The Effects of the Flow Regime on Stream Channel Form and Processes*
594 (Ph.D.). Oregon State University, Corvalis, OR.

595 Henderson, F. M. (1963). Stability of alluvial channels. *T. Am. Soc. Civ. Eng.*, 128, 657–686.

596 Hinton, D., Hotchkiss, R., & Ames, D. P. (2017). Comprehensive and Quality-Controlled
597 Bedload Transport Database. *Journal of Hydraulic Engineering*, 143(2), 06016024.
598 [https://doi.org/10.1061/\(ASCE\)HY.1943-7900.0001221](https://doi.org/10.1061/(ASCE)HY.1943-7900.0001221)

599 Houssais, M., Ortiz, C. P., Durian, D. J., & Jerolmack, D. J. (2015). Onset of sediment transport
600 is a continuous transition driven by fluid shear and granular creep. *Nature
601 Communications*, 6, 6527. <https://doi.org/10.1038/ncomms7527>

602 Hsu, L., Finnegan, N. J., & Brodsky, E. E. (2011). A seismic signature of river bedload transport
603 during storm events. *Geophysical Research Letters*, 38.
604 <https://doi.org/10.1029/2011GL047759>

605 Johnson, J. P. L. (2016). Gravel threshold of motion: a state function of sediment transport
606 disequilibrium? *Earth Surface Dynamics*, 4(3), 685–703. <https://doi.org/10.5194/esurf-4-685-2016>

608 Johnson, J. P. L., & Whipple, K. X. (2010). Evaluating the controls of shear stress, sediment
609 supply, alluvial cover, and channel morphology on experimental bedrock incision rate.
610 *Journal of Geophysical Research-Earth Surface*, 115.
611 <https://doi.org/10.1029/2009JF001335>

612 Johnson, J. P. L., Whipple, K. X., Sklar, L. S., & Hanks, T. C. (2009). Transport slopes,
613 sediment cover, and bedrock channel incision in the Henry Mountains, Utah. *Journal of
614 Geophysical Research*, 114, 21 PP. <https://doi.org/10.1029/2007JF000862>

615 Jones, M. L., & Seitz, H. R. (1980). *Sediment transport in the Snake and Clearwater rivers in the
616 vicinity of Lewiston, Idaho* (No. OFR-80-690). United States Geological Survey.

617 King, J. G., Emmett, W. W., Whiting, P. J., Kenworthy, R. P., & Barry, J. J. (2004). *Sediment
618 transport data and related information for selected coarse-bed streams and rivers in
619 Idaho* (No. Gen. Tech. Rep. RMRS-GTR-131). Fort Collins, CO: U.S. Department of
620 Agriculture, Forest Service, Rocky Mountain Research Station.

621 Kirchner, J. W., Dietrich, W. E., Iseya, F., & Ikeda, H. (1990). The variability of critical shear
622 stress, friction angle, and grain protrusion in water worked sediments. *Sedimentology*, 37,
623 647–672.

624 Lamb, M. P., Dietrich, W. E., & Venditti, J. G. (2008). Is the critical Shields stress for incipient
625 sediment motion dependent on channel-bed slope? *Journal of Geophysical Research: Earth
626 Surface*, 113(F2), F02008. <https://doi.org/10.1029/2007JF000831>

627 Lamb, M. P., Brun, F., & Fuller, B. M. (2017a). Direct measurements of lift and drag on
628 shallowly submerged cobbles in steep streams: Implications for flow resistance and
629 sediment transport. *Water Resources Research*, 53(9), 7607–7629.
630 <https://doi.org/10.1002/2017WR020883>

631 Lamb, M. P., Brun, F., & Fuller, B. M. (2017b). Hydrodynamics of steep streams with planar
632 coarse-grained beds: Turbulence, flow resistance, and implications for sediment

633 transport. *Water Resources Research*, 53(3), 2240–2263.
634 <https://doi.org/10.1002/2016WR019579>

635 Leopold, L. B., & Maddock, T. (1953). The Hydraulic Geometry of Stream Channels and Some
636 Physiographic Implications. *U.S. Geological Survey Professional Paper*, 252.
637 <https://doi.org/10.3133/pp252>

638 Leopold, L. B., & Wolman, M. G. (1957). *River Channel Patterns: Braided, Meandering, and*
639 *Straight* (No. PP-282-B). United States Geological Survey.

640 Li, C., Czapiga, M. J., Eke, E. C., Viparelli, E., & Parker, G. (2014). Variable Shields number
641 model for river bankfull geometry: bankfull shear velocity is viscosity-dependent but
642 grain size-independent. *Journal of Hydraulic Research*, 0(0), 1–13.
643 <https://doi.org/10.1080/00221686.2014.939113>

644 Lisle, T. E., Nelson, J. M., Pitlick, J., Madej, M. A., & Barkett, B. L. (2000). Variability of bed
645 mobility in natural, gravel-bed channels and adjustments to sediment load at local and
646 reach scales. *Water Resources Research*, 36(12), 3743–3755.
647 <https://doi.org/10.1029/2000WR900238>

648 MacKenzie, L. G., & Eaton, B. C. (2017). Large grains matter: contrasting bed stability and
649 morphodynamics during two nearly identical experiments. *Earth Surface Processes and*
650 *Landforms*, 42(8), 1287–1295. <https://doi.org/10.1002/esp.4122>

651 Marquis, G. A., & Roy, A. G. (2012). Using multiple bed load measurements: Toward the
652 identification of bed dilation and contraction in gravel-bed rivers. *Journal of Geophysical*
653 *Research*, 117(F1), F01014. <https://doi.org/10.1029/2011JF002120>

654 Masteller, C. C., & Finnegan, N. J. (2017). Interplay between grain protrusion and sediment
655 entrainment in an experimental flume. *Journal of Geophysical Research: Earth Surface*,
656 122(1), 2016JF003943. <https://doi.org/10.1002/2016JF003943>

657 Masteller, C. C., Finnegan, N. J., Turowski, J. M., Yager, E. M., & Rickenmann, D. (2019).
658 History-Dependent Threshold for Motion Revealed by Continuous Bedload Transport
659 Measurements in a Steep Mountain Stream. *Geophysical Research Letters*, 46(5), 2583–
660 2591. <https://doi.org/10.1029/2018GL081325>

661 May, C. L., & Pryor, B. S. (2013). Initial Motion and Bedload Transport Distance Determined by
662 Particle Tracking in a Large Regulated River. *River Research and Applications*, 30(4),
663 508–520. <https://doi.org/10.1002/rra.2665>

664 May, C. L., Pryor, B., Lisle, T. E., & Lang, M. (2009). Coupling hydrodynamic modeling and
665 empirical measures of bed mobility to predict the risk of scour and fill of salmon redds in
666 a large regulated river. *Water Resources Research*, 45(5).
667 <https://doi.org/10.1029/2007WR006498>

668 McLean, D. G., Church, M., & Tassone, B. (1999). Sediment transport along lower Fraser River:
669 1. Measurements and hydraulic computations. *Water Resources Research*, 35(8), 2533–
670 2548. <https://doi.org/10.1029/1999WR900101>

671 Métivier, F., Lajeunesse, E., & Devauchelle, O. (2017). Laboratory rivers: Lacey's law,
672 threshold theory, and channel stability. *Earth Surface Dynamics*, 5(1), 187–198.
673 <https://doi.org/10.5194/esurf-5-187-2017>

674 Milhous, R. T. (1973). *Sediment transport in a gravel-bottomed stream* (Ph.D.). Oregon State
675 University, Corvalis, OR.

676 Miller, K. L., Szabó, T., Jerolmack, D. J., & Domokos, G. (2014). Quantifying the significance
677 of abrasion and selective transport for downstream fluvial grain size evolution. *Journal of*
678 *Geophysical Research: Earth Surface*, 119(11), 2412–2429.
679 <https://doi.org/10.1002/2014JF003156>

680 Minear, J. T. (2010). *The Downstream Geomorphic Effects of Dams: A Comprehensive and*
681 *Comparative Approach*. UC Berkeley. Retrieved from
682 <https://escholarship.org/uc/item/1f8612f9>

683 Monsalve, A., Yager, E. M., Turowski, J. M., & Rickenmann, D. (2016). A probabilistic
684 formulation of bed load transport to include spatial variability of flow and surface grain
685 size distributions. *Water Resources Research*, 52(5), 3579–3598.
686 <https://doi.org/10.1002/2015WR017694>

687 Mueller, E. R., & Pitlick, J. (2014). Sediment supply and channel morphology in mountain river
688 systems: 2. Single thread to braided transitions. *Journal of Geophysical Research: Earth*
689 *Surface*, 119(7), 2013JF003045. <https://doi.org/10.1002/2013JF003045>

690 Mueller, E. R., Pitlick, J., & Nelson, J. M. (2005). Variation in the reference Shields stress for
691 bed load transport in gravel-bed streams and rivers. *Water Resources Research*, 41(4),
692 W04006. <https://doi.org/10.1029/2004WR003692>

693 Paola, C., & Seal, R. (1995). Grain-Size Patchiness as a Cause of Selective Deposition and
694 Downstream Fining. *Water Resources Research*, 31(5), 1395–1407.
695 <https://doi.org/10.1029/94WR02975>

696 Parker, G. (1978). Self-formed straight rivers with equilibrium banks and mobile bed. Part 2 The
697 gravel river. *Journal of Fluid Mechanics*, 89(1), 127–146.

698 Parker, G. (1979). Hydraulic Geometry of Active Gravel Rivers. *Journal of the Hydraulics
699 Division-Asce*, 105(9), 1185–1201.

700 Parker, G. (1990). Surface-based bedload transport relation for gravel rivers. *Journal of
701 Hydraulic Research*, 28(4), 417. <https://doi.org/10.1080/00221689009499058>

702 Parker, G., Klingeman, P., & Mclean, D. (1982). Bedload and Size Distribution in Paved Gravel-
703 Bed Streams. *Journal of the Hydraulics Division-Asce*, 108(4), 544–571.

704 Parker, G., Wilcock, P. R., Paola, C., Dietrich, W. E., & Pitlick, J. (2007). Physical basis for
705 quasi-universal relations describing bankfull hydraulic geometry of single-thread gravel
706 bed rivers. *Journal of Geophysical Research*, 112, 21 PP.
707 <https://doi.org/10.1029/2006JF000549>

708 Pender, G., Shvidchenko, A. B., & Chegini, A. (2007). Supplementary data confirming the
709 relationship between critical Shields stress, grain size and bed slope. *Earth Surface
710 Processes and Landforms*, 32(11), 1605–1610. <https://doi.org/10.1002/esp.1588>

711 Pfeiffer, A. M., Finnegan, N. J., & Willenbring, J. K. (2017). Sediment supply controls
712 equilibrium channel geometry in gravel rivers. *Proceedings of the National Academy of
713 Sciences*, 114(13), 3346–3351. <https://doi.org/10.1073/pnas.1612907114>

714 Phillips, C. B., & Jerolmack, D. J. (2014). Dynamics and mechanics of bed-load tracer particles.
715 *Earth Surface Dynamics*, 2(2), 513–530. <https://doi.org/10.5194/esurf-2-513-2014>

716 Phillips, C. B., & Jerolmack, D. J. (2016). Self-organization of river channels as a critical filter
717 on climate signals. *Science*, 352(6286), 694–697. <https://doi.org/10.1126/science.aad3348>

718 Phillips, C. B., & Scatena, F. N. (2013). Reduced channel morphological response to
719 urbanization in a flood-dominated humid tropical environment. *Earth Surface Processes
720 and Landforms*, 38(9), 970–982. <https://doi.org/10.1002/esp.3345>

721 Phillips, C. B., Martin, R. L., & Jerolmack, D. J. (2013). Impulse framework for unsteady flows
722 reveals superdiffusive bed load transport. *Geophysical Research Letters*, 40(7), 1328–
723 1333. <https://doi.org/10.1002/grl.50323>

724 Phillips, C. B., Hill, K. M., Paola, C., Singer, M. B., & Jerolmack, D. J. (2018). Effect of Flood
725 Hydrograph Duration, Magnitude, and Shape on Bed Load Transport Dynamics.
726 *Geophysical Research Letters*, 45, 8264–8271. <https://doi.org/10.1029/2018GL078976>

727 Pitlick, J., & Cress, R. (2002). Downstream changes in the channel geometry of a large gravel
728 bed river. *Water Resources Research*, 38(10), 34–1–34–11.
729 <https://doi.org/10.1029/2001WR000898>

730 Pitlick, J., Mueller, E. R., Segura, C., Cress, R., & Torizzo, M. (2008). Relation between flow,
731 surface-layer armoring and sediment transport in gravel-bed rivers. *Earth Surface
732 Processes and Landforms*, 33(8), 1192–1209. <https://doi.org/10.1002/esp.1607>

733 Pitlick, J., Marr, J., & Pizzuto, J. (2013). Width adjustment in experimental gravel-bed channels
734 in response to overbank flows. *Journal of Geophysical Research-Earth Surface*, 118(2),
735 553–570. <https://doi.org/10.1002/jgrf.20059>

736 Pizzuto, J. E. (1994). Channel adjustments to changing discharges, Powder River, Montana. *GSA
737 Bulletin*, 106(11), 1494–1501. [https://doi.org/10.1130/0016-
738 7606\(1994\)106<1494:CATCDP>2.3.CO;2](https://doi.org/10.1130/0016-7606(1994)106<1494:CATCDP>2.3.CO;2)

739 Prancevic, J. P., & Lamb, M. P. (2015a). Particle friction angles in steep mountain channels.
740 *Journal of Geophysical Research: Earth Surface*, 120(2), 2014JF003286.
741 <https://doi.org/10.1002/2014JF003286>

742 Prancevic, J. P., & Lamb, M. P. (2015b). Unraveling bed slope from relative roughness in initial
743 sediment motion. *Journal of Geophysical Research: Earth Surface*, 120(3),
744 2014JF003323. <https://doi.org/10.1002/2014JF003323>

745 Prancevic, J. P., Lamb, M. P., & Fuller, B. M. (2014). Incipient sediment motion across the river
746 to debris-flow transition. *Geology*, 42(3), 191–194. <https://doi.org/10.1130/G34927.1>

747 Rankl, J. G., & Smalley, M. L. (1992). *Transport of sediment by streams in the Sierra Madre,
748 southern Wyoming* (USGS Numbered Series No. 92–4091). U.S. Geological Survey;
749 Open-File Reports.

750 Recking, A. (2009). Theoretical development on the effects of changing flow hydraulics on
751 incipient bed load motion. *Water Resources Research*, 45(4), W04401.
752 <https://doi.org/10.1029/2008WR006826>

753 Recking, A. (2010). A comparison between flume and field bed load transport data and
754 consequences for surface-based bed load transport prediction. *Water Resources Research*,
755 46. <https://doi.org/10.1029/2009WR008007>

756 Recking, A. (2013). An analysis of nonlinearity effects on bed load transport prediction. *Journal*
757 *of Geophysical Research: Earth Surface*, 118(3), 1264–1281.
758 <https://doi.org/10.1002/jgrf.20090>

759 Reid, I., Frostick, L. E., & Layman, J. T. (1985). The incidence and nature of bedload transport
760 during flood flows in coarse-grained alluvial channels. *Earth Surface Processes and*
761 *Landforms*, 10(1), 33–44. <https://doi.org/10.1002/esp.3290100107>

762 Reitz, M. D., Jerolmack, D. J., Lajeunesse, E., Limare, A., Devauchelle, O., & Métivier, F.
763 (2014). Diffusive evolution of experimental braided rivers. *Physical Review E*, 89(5),
764 052809. <https://doi.org/10.1103/PhysRevE.89.052809>

765 Rickenmann, D., Turowski, J. M., Fritschi, B., Klaiber, A., & Ludwig, A. (2012). Bedload
766 transport measurements at the Erlenbach stream with geophones and automated basket
767 samplers. *Earth Surface Processes and Landforms*, 37(9), 1000–1011.
768 <https://doi.org/10.1002/esp.3225>

769 Roth, D. L., Brodsky, E. E., Finnegan, N. J., Rickenmann, D., Turowski, J. M., & Badoux, A.
770 (2016). Bed load sediment transport inferred from seismic signals near a river. *Journal of*
771 *Geophysical Research: Earth Surface*, 121(4), 725–747.
772 <https://doi.org/10.1002/2015JF003782>

773 Ryan, S. E., & Emmett, W. W. (2002). The nature of flow and sediment movement in Little
774 Granite Creek near Bondurant, Wyoming. *Gen. Tech. Rep. RMRS-GTR-90. Ogden, UT:*
775 *U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.* 48 p.,
776 090. <https://doi.org/10.2737/RMRS-GTR-90>

777 Ryan, S. E., Porth, L. S., & Troendle, C. A. (2005). Coarse sediment transport in mountain
778 streams in Colorado and Wyoming, USA. *Earth Surface Processes and Landforms*,
779 30(3), 269–288. <https://doi.org/10.1002/esp.1128>

780 Schmidt, J. C., & Wilcock, P. R. (2008). Metrics for assessing the downstream effects of dams.
781 *Water Resources Research*, 44(4). <https://doi.org/10.1029/2006WR005092>

782 Schumm, S. A. (1960). *The Shape of Alluvial Channels in Relation To Sediment Type*
783 (Geological Survey Professional Paper No. 352- B).

784 Seizilles, G., Lajeunesse, E., Devauchelle, O., & Bak, M. (2014). Cross-stream diffusion in
785 bedload transport. *Physics of Fluids (1994-Present)*, 26(1), 013302.
786 <https://doi.org/10.1063/1.4861001>

787 Shields, A. (1936). *Application of similarity principles and turbulence research to bed-load*
788 *movement* (Ph.D.). Mitt. Preuss. Vers. Wasserbau Schiffbau.

789 Shvidchenko, A. B., & Pender, G. (2000). Flume study of the effect of relative depth on the
790 incipient motion of coarse uniform sediments. *Water Resources Research*, 36(2), 619–
791 628. <https://doi.org/10.1029/1999WR900312>

792 Slater, L. J., & Singer, M. B. (2013). Imprint of climate and climate change in alluvial riverbeds:
793 Continental United States, 1950–2011. *Geology*, 41(5), 595–598.
794 <https://doi.org/10.1130/G34070.1>

795 Slater, L. J., Singer, M. B., & Kirchner, J. W. (2015). Hydrologic versus geomorphic drivers of
796 trends in flood hazard. *Geophysical Research Letters*, 42(2), 370–376.
797 <https://doi.org/10.1002/2014GL062482>

798 Smalley, M. L., Emmett, W. W., & Wacker, A. M. (1994). *Annual replenishment of bed material*
799 *by sediment transport in the Wind River near Riverton, Wyoming* (USGS Numbered
800 Series No. 94–4007). U.S. Geological Survey; USGS Earth Science Information Center,
801 Open-File Reports Section.

802 Snyder, N. P., Nesheim, A. O., Wilkins, B. C., & Edmonds, D. A. (2013). Predicting grain size
803 in gravel-bedded rivers using digital elevation models: Application to three Maine
804 watersheds. *GSA Bulletin*, 125(1–2), 148–163. <https://doi.org/10.1130/B30694.1>

805 Torizzo, M., & Pitlick, J. (2004). Magnitude-frequency of bed load transport in mountain
806 streams in Colorado. *Journal of Hydrology*, 290(1–2), 137–151.
807 <https://doi.org/10.1016/j.jhydrol.2003.12.001>

808 Trampush, S. M., Huzurbazar, S., & McElroy, B. (2014). Empirical assessment of theory for
809 bankfull characteristics of alluvial channels. *Water Resources Research*, 50(12), 9211–
810 9220. <https://doi.org/10.1002/2014WR015597>

811 Turowski, J. M., Badoux, A., & Rickenmann, D. (2011). Start and end of bedload transport in
812 gravel-bed streams. *Geophysical Research Letters*, 38, 5 PP.
813 <https://doi.org/10.1110.1029/2010GL046558>

814 Whitaker, A. C., & Potts, D. F. (2007). Coarse bed load transport in an alluvial gravel bed
815 stream, Dupuyer Creek, Montana. *Earth Surface Processes and Landforms*, 32(13),
816 1984–2004. <https://doi.org/10.1002/esp.1512>

817 Wiberg, P. L., & Smith, J. D. (1987). Calculations of the Critical Shear Stress for Motion of
818 Uniform and Heterogeneous Sediments. *Water Resources Research*, 23(8), 1471–1480.
819 <https://doi.org/10.1029/WR023i008p01471>

820 Wilcock, P. R. (1992). Flow competence: A criticism of a classic concept. *Earth Surface
821 Processes and Landforms*, 17(3), 289–298. <https://doi.org/10.1002/esp.3290170307>

822 Wilcock, P. R. (1998). Two-Fraction Model of Initial Sediment Motion in Gravel-Bed Rivers.
823 *Science*, 280(5362), 410–412. <https://doi.org/10.1126/science.280.5362.410>

824 Wilcock, P. R., & Crowe, J. C. (2003). Surface-based Transport Model for Mixed-Size
825 Sediment. *Journal of Hydraulic Engineering*, 129(2), 120.

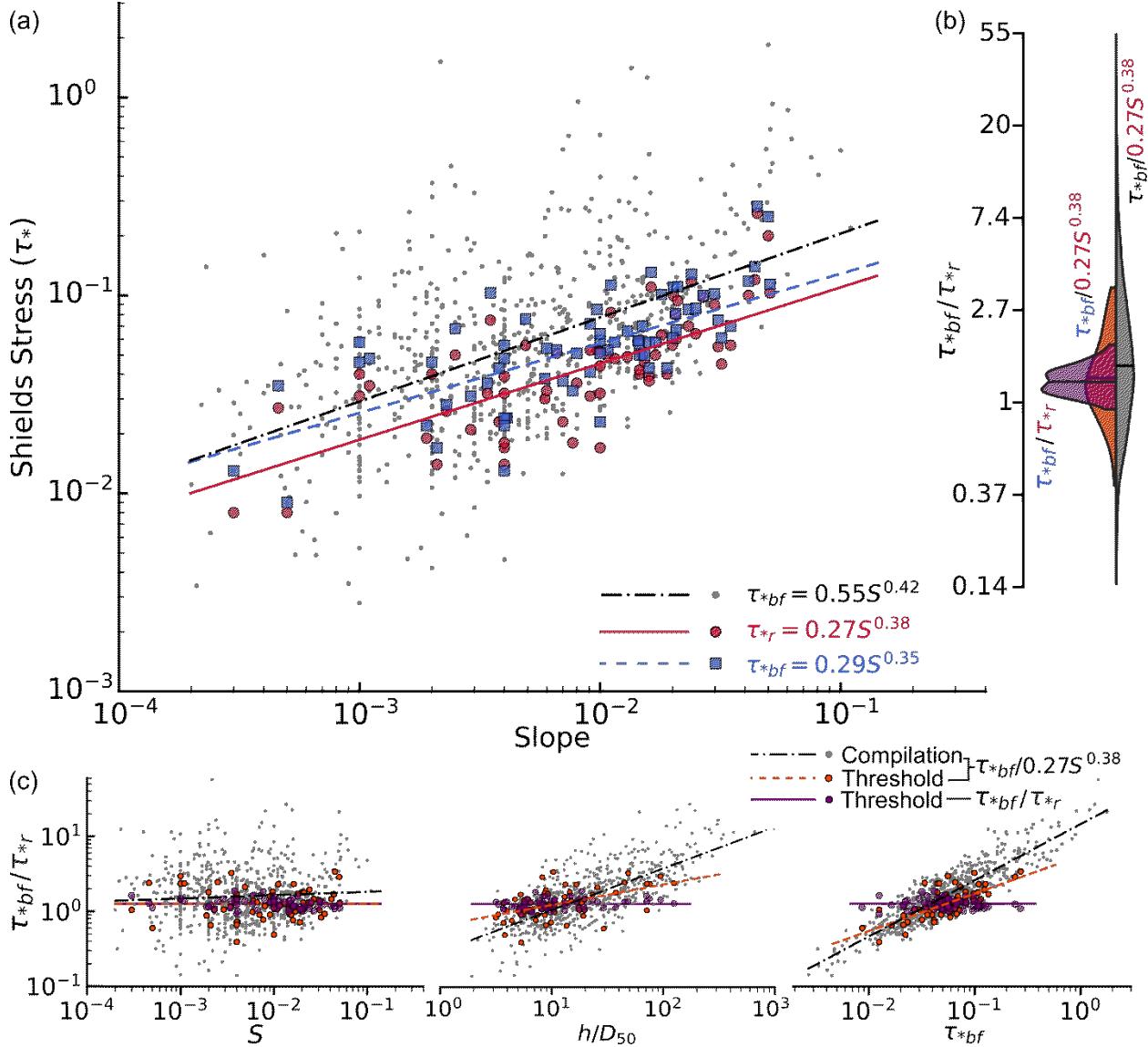
826 Wilcock, P. R., & McArdell, B. W. (1997). Partial transport of a sand/gravel sediment. *Water
827 Resources Research*, 33(1), 235–245. <https://doi.org/10.1029/96WR02672>

828 Wilcock, P. R., Barta, A. F., Shea, C. C., Kondolf, G. M., Matthews, W. V. G., & Pitlick, J.
829 (1996). Observations of Flow and Sediment Entrainment on a Large Gravel-Bed River.
830 *Water Resources Research*, 32(9), P. 2897. <https://doi.org/10.1029/96WR01628>

831 Williams, G. P. (1978). Bank-full discharge of rivers. *Water Resources Research*, 14(6), 1141–
832 1154. <https://doi.org/10.1029/WR014i006p01141>

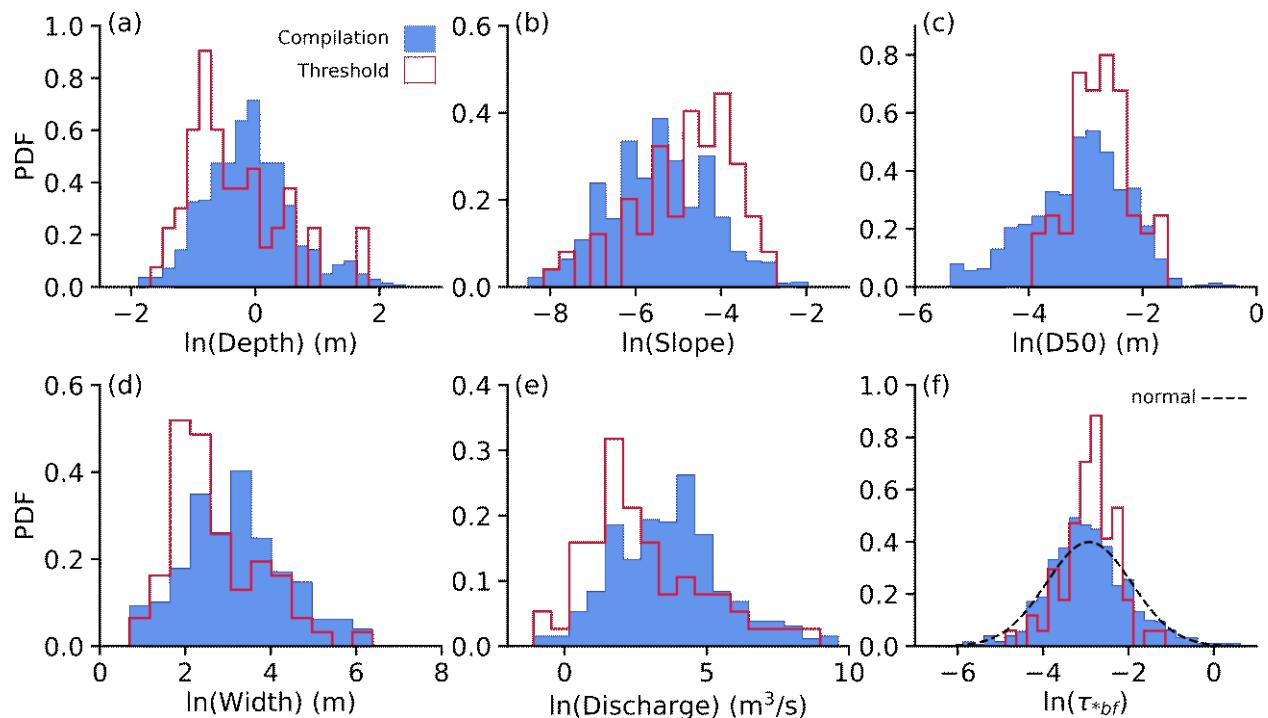
833 Wolman, M. G., & Gerson, R. (1978). Relative scales of time and effectiveness of climate in
834 watershed geomorphology. *Earth Surface Processes*, 3(2), 189–208.
835 <https://doi.org/10.1002/esp.3290030207>

836 Wolman, M. G., & Miller, J. P. (1960). Magnitude and Frequency of Forces in Geomorphic
837 Processes. *The Journal of Geology*, 68(1), 54–74.

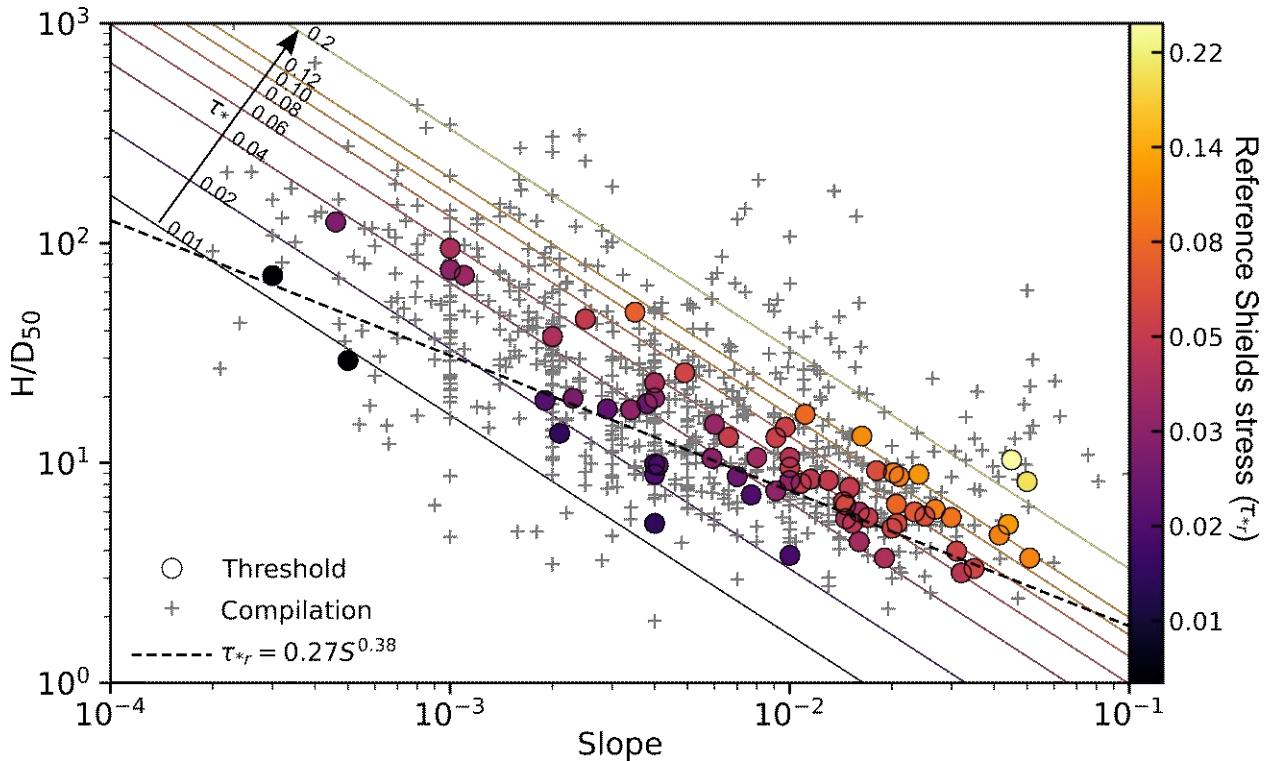

838 Yager, E. M., Turowski, J. M., Rickenmann, D., & McArdell, B. W. (2012). Sediment supply,
839 grain protrusion, and bedload transport in mountain streams. *Geophysical Research
840 Letters*, 39. <https://doi.org/10.1029/2012GL051654>

841 Yager, E. M., Schmeeckle, M. W., & Badoux, A. (2018). Resistance Is Not Futile: Grain
842 Resistance Controls on Observed Critical Shields Stress Variations. *Journal of
843 Geophysical Research: Earth Surface*, 123(12), 3308–3322.
844 <https://doi.org/10.1029/2018JF004817>

845 Yu, B., & Wolman, M. G. (1987). Some dynamic aspects of river geometry. *Water Resources*
846 *Research*, 23(3), 501–509. <https://doi.org/10.1029/WR023i003p00501>

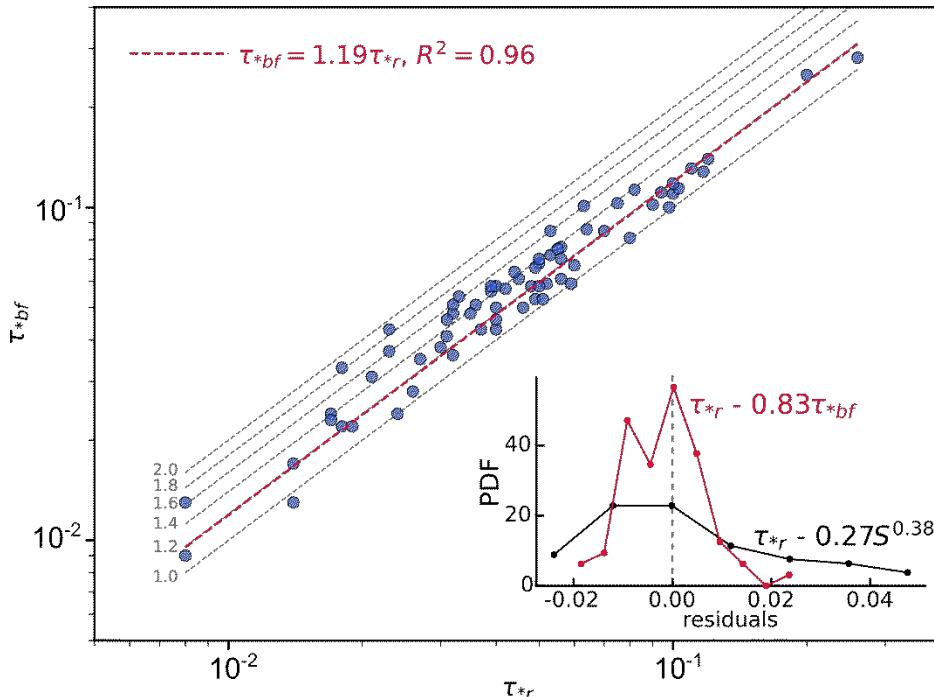

847 Zimmermann, A., Church, M., & Hassan, M. A. (2010). Step-pool stability: Testing the jammed
848 state hypothesis. *Journal of Geophysical Research: Earth Surface*, 115(F2).
849 <https://doi.org/10.1029/2009JF001365>

850


851
 852 Figure 1. Correlation between slope, bankfull Shields stress, and the threshold of motion. (a)
 853 Observed correlation for the threshold data between reach-scale slope, and the reference (τ_{*r} , red
 854 circles) and bankfull Shields stresses (τ_{*bf} , blue squares). Red (solid) and blue (dashed) lines
 855 represent loglog least-squares regressions excluding two outliers ($\tau_{*r}>0.2$). Gray points represent
 856 τ_{*bf} for the compilation data with a least-squares regression line (black dash-dot line). (b) Split
 857 violin plot of the distributions of the bankfull transport capacity (τ_{*bf}/τ_{*r}) where τ_{*r} is estimated
 858 from flux measurements (purple), and the slope-based regression ($\tau_{*r}=0.27S^{0.38}$) for the threshold
 859 (orange) and compilation data (gray). The solid line within the distribution represents the median
 860 and the upper and lower edges of the distribution are clipped at the extents of the data. (c)
 861 Relations between slope, bankfull relative submergence (H/D_{50}), and τ_{*bf} with τ_{*bf}/τ_{*r} for the

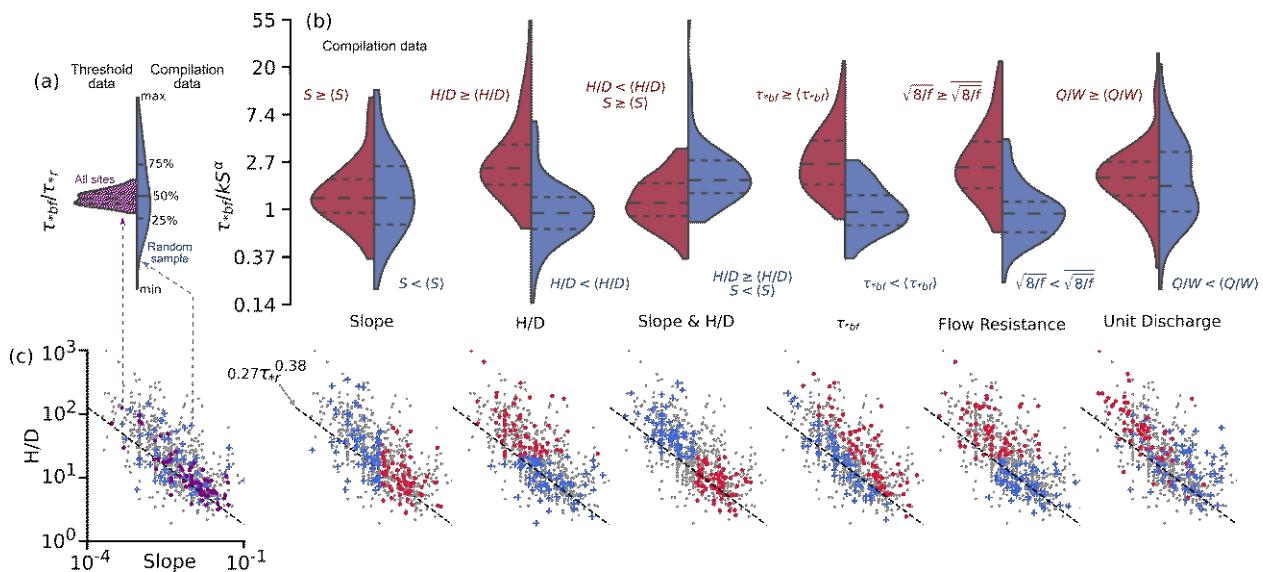
862 threshold (purple and orange circles) and compilation data (gray points). Horizontal lines
863 represent the geometric mean ($\langle \tau^{*bf}/\tau^{*r} \rangle = 1.27$) where there is no correlation between the data.
864 Note that the trends observed for H/D_{50} and τ^{*bf} result from spurious correlation with slope
865 within equation (4).
866

867
868
869
870
871
872
873
874
875
876


Figure 2. Probability density histograms for sites where τ_{*r} was determined from bed-load flux measurements (red line, $n=68$) compared with a larger data compilation (shaded blue, $n=739$) of gravel-bedded rivers. All data were natural-log transformed prior to computing the histograms and bin width for both datasets used the Freedman-Diaconis rule (Freedman & Diaconis, 1981) based on the larger compilation. The variables are (a) bankfull depth ($n=725$), (b) slope ($n=739$), (c) D_{50} ($n=739$), (d) bankfull width ($n=272$), (e) bankfull discharge ($n=418$), and (f) bankfull Shields stress ($n=725$). Sample sizes vary according to data availability. The bankfull Shields stress (f) is well described by a normal distribution (black dashed line) in natural log space.

877

878 Figure 3. Parameter space of bankfull relative submergence (H/D_{50}) and slope for sites with
 879 measured τ_{*r} (shaded circles) and the larger river compilation (gray '+' symbol). The shaded
 880 color and colorbar denote the measured reference Shields stress. The black dashed line represents
 881 the best fit regression between slope and τ_{*r} (equation 3). The multicolored diagonal lines are, by
 882 definition, the Shields stress. Note that the shaded color pattern is parallel to the Shields stress
 883 isolines (i.e. light orange points follow the orange isolines and the purple points follow the
 884 purple lines) and not the regression line.


885

886
887
888
889
890
891

Figure 4. Relation between the reference and the bankfull Shields stresses. The gray dashed lines represent increasing values for the ratio τ_{*bf}/τ_{*r} in increments of 0.2 for reference, while the red dashed line represents the best fit function of the form $\tau_{*bf} = (1+e)\tau_{*r}$. (inset) Residuals for estimating τ_{*r} using the relation with τ_{*bf} (red line) and equation (3) (black line).

892

893

Figure 5. Illustration of bias in estimating transport capacity for various sampling strategies using equation (4). (a) Split violin showing the measured transport capacity for the threshold field sites (purple, $n=68$, identical to Figure 1b) and a random sample (blue, $n=70$) from the compilation dataset where the transport capacity is calculated via equation (4). (a) and (b) share the same vertical axis. (b) Transport capacity calculated via equation (4) for various data sampling strategies from the compilation data. Each column represents sampling the larger compilation based on the variable listed below and each half represents 70 randomly selected field sites for the adjacently labeled condition. All data except flow resistance are natural log transformed prior to computing the distributions. (c) Illustration of the random samples used to compute the distributions in (a) and (b) from the larger compilation (small gray dots). All columns in (c) share the same axes. Blue crosses correspond to the right half and red dots represent the left half of the split violins in (b) directly above each data cloud. The black dashed line is equation (3). Note the distributions illustrate how one can observe a potential difference in transport capacity between gravel-bedded rivers based on how the samples relate to equation (3). The observed difference is spurious due to the selection variable's underlying correlation with slope.