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Key points: 9 

• In natural rivers critical Shields stress co-varies with bankfull Shields stress in a manner 10 

predicted by theory 11 

• Empirical relations between slope and critical Shields stress are based on a partial sample 12 

of the known parameter space for gravel rivers 13 

• Predictions of changes in bankfull transport capacity based on the correlation between 14 

slope and the threshold of motion can be spurious  15 

  16 
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Abstract 17 

The threshold stress for bed sediment transport exerts a primary control on the geometry and 18 

stability of coarse-grained rivers (diameter ≥ 5 mm). Understanding how river bed mobility 19 

couples to channel form is a key mechanistic link for predicting river response to external 20 

perturbations such as land use practices and changing climate. Unfortunately, determination of a 21 

representative threshold stress is notoriously difficult in the field. Empirical studies have 22 

observed that the critical dimensionless shear (Shields) stress (τ*c) is correlated with channel 23 

slope, a property that is substantially easier to estimate. Mechanistic models have been 24 

developed to explain the observed correlation; however, limited field data precludes the 25 

widespread application of these models. For practical reasons, the empirical regressions between 26 

slope and τ*c are utilized as predictive models. Through a large compilation of field data, we 27 

demonstrate that there are two significant problems with using the empirical regressions: (1) they 28 

are based on a partial sampling of the observed parameter space of coarse-grained rivers; and (2) 29 

they do not capture the covariation between the bankfull Shields stress (τ*bf) and τ*c. These 30 

regressions provide spurious predictions for the bankfull transport capacity (τ*bf /τ*c) of gravel-31 

bed rivers. When site-specific empirical measurements of τ*c are made, coarse-grained rivers 32 

exhibit a remarkably constant transport capacity that is in close agreement with equilibrium-33 

channel theory (τ*bf=1.2τ*c). From these data we advocate that, in the absence of measurements, 34 

τ*c can be reasonably estimated from the τ*bf using equilibrium-channel theory. 35 

 36 

1. Introduction 37 

A longstanding interest in the science and engineering of rivers is in understanding which flows 38 

are responsible for transporting sediment and how these flows both organize and are shaped by 39 

the channels that convey them (Glover & Florey, 1951; Henderson, 1963; Leopold & Maddock, 40 

1953; Leopold & Wolman, 1957; Wolman & Miller, 1960). This understanding is increasingly 41 

important if we are to predict a river’s response under future landscape and climate scenarios 42 

(Hempel, 2018; Phillips et al., 2018; Schmidt & Wilcock, 2008; Slater et al., 2015; Slater & 43 

Singer, 2013). River channel stability is, to first order, controlled by the transport threshold of 44 

material in the bed or channel banks, whichever is harder to entrain (Dunne & Jerolmack, 2018; 45 

Schumm, 1960). In coarse-grained rivers, here considered to be generally gravel-bedded (median 46 

diameter, D50  ≥ 5 mm), the bed sediment is most often harder to entrain than the banks and 47 
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hence sets the threshold for altering channel geometry. Single threaded gravel-bed river channel 48 

geometry has been analytically linked to bed-load sediment transport through hydraulics (Parker, 49 

1978, 1979): the summary result is that channel geometry is adjusted so that fluid stress is at the 50 

threshold of motion at the toe of the river banks, and modestly above threshold in the channel 51 

center. This theory has been broadly validated in natural channels and laboratory experiments 52 

(Dade & Friend, 1998; Dunne & Jerolmack, 2018; Métivier et al., 2017; Parker et al., 2007; 53 

Phillips & Jerolmack, 2016; Pitlick et al., 2013; Pitlick & Cress, 2002; Reitz et al., 2014; 54 

Seizilles et al., 2014).  55 

 56 

Yet, the threshold of motion in natural channels remains very challenging to accurately measure, 57 

and data to evaluate hypotheses remain sparse (Buffington & Montgomery, 1997; King et al., 58 

2004; Mueller et al., 2005) when compared to the available databases of river hydraulic 59 

geometry (see Church & Rood, 1983; Li et al., 2014; Trampush et al., 2014). Standard practice is 60 

to assess mobility through the use of the Shields curve, which is perhaps most valid under 61 

idealized conditions such as normal flow and unimodal bed sediments (Lamb et al., 2008; 62 

Shields, 1936; Wiberg & Smith, 1987). However, even in idealized laboratory conditions the 63 

threshold of motion varies with particle protrusion, bed texture, grain size distribution, and the 64 

structure of the granular bed (Houssais et al., 2015; Kirchner et al., 1990; Masteller & Finnegan, 65 

2017; Pender et al., 2007; Prancevic & Lamb, 2015b; Shvidchenko & Pender, 2000; Wilcock, 66 

1998; Zimmermann et al., 2010). For natural flows where conditions are decidedly less uniform 67 

or steady, the threshold of motion is commonly treated as the measurable motion of a surface 68 

layer (Parker, 1990) and varies both spatially within a reach, temporally within a flood, from 69 

flood to flood, with sediment supply and availability, and with the method of measurement 70 

(Buffington & Montgomery, 1997; Johnson, 2016; Lisle et al., 2000; Marquis & Roy, 2012; 71 

Masteller et al., 2019; Pfeiffer et al., 2017; Prancevic & Lamb, 2015b; Turowski et al., 2011; 72 

Yager et al., 2012, 2018). Within a reach, spatial heterogeneity in grain size organization can 73 

result in unequal mobility especially at shear stresses near the threshold, where smaller particles 74 

are susceptible to turbulent bursts and bed-load flux measurements may strongly reflect partial 75 

transport and not the entire bed (Paola & Seal, 1995; Recking, 2013; Wilcock & McArdell, 76 

1997). These phenomena may be described by some distribution of the threshold for a given 77 

reach; however, additional lines of evidence indicate that even this distribution may be non-78 
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stationary and may drift through time due to changes in the river bed state (Charru et al., 2004; 79 

Houssais et al., 2015; Johnson, 2016; Masteller et al., 2019).  80 

 81 

In natural streams and rivers, a large variety of methods and techniques have been used to 82 

measure bed-load flux and the threshold of motion. These methods largely fall into two 83 

categories, active or passive monitoring. Active methods involve direct measurement of the flux 84 

via physical samplers or registering of impacts (for examples see Bunte et al., 2013; Gray et al., 85 

2010; King et al., 2004; Reid et al., 1985; Rickenmann et al., 2012) while passive techniques 86 

involve visual determination, tracer particles, competence or largest mobilized particle, 87 

acoustics, and seismometers (see Barton, 2006; Hsu et al., 2011; Phillips et al., 2013; Phillips & 88 

Jerolmack, 2014; Rickenmann et al., 2012; Roth et al., 2016; Wilcock, 1992). However, these 89 

methods remain resource intensive and are not guaranteed to produce a robust estimate of a 90 

threshold of motion unless sampled over larger space and timescales (Monsalve et al., 2016; 91 

Recking, 2013). In some cases, acquiring sufficient bed-load flux measurements could take years 92 

due to the recurrence intervals of floods that are capable of transporting sediment. Despite the 93 

threshold’s importance, there is currently a lack of low-cost reliable methodologies to rapidly 94 

assess this variable in the field. 95 

 96 

Natural and laboratory estimates of the threshold of motion have been observed to possess a 97 

positive correlation with channel slope (Lamb et al., 2008; Mueller et al., 2005). Though initially 98 

counter intuitive, that sediment particles become harder to move at higher gradients, mechanistic 99 

grain-scale models incorporating relative roughness, reduced turbulent intensity, partitioning of 100 

the total shear stress, particle friction angles, and particle lift and drag forces have explained this 101 

correlation under a variety of experimental conditions (Ferguson, 2012; Lamb et al., 2008, 102 

2017a, 2017b; Prancevic et al., 2014; Prancevic & Lamb, 2015a, 2015b; Recking, 2009). Many 103 

of the aforementioned processes necessarily covary with slope and relative roughness, however 104 

additional experiments have isolated reduced turbulent intensity and the lift force as primary 105 

causes for the increase of the threshold of motion with slope (Lamb et al., 2017a). Despite these 106 

advances, the difficulty of measuring the threshold of motion in the field, combined with the 107 

challenge in measuring the necessary parameters to apply the mechanistic models, has led to an 108 

over-reliance on empirical regressions between slope and threshold for natural rivers. In this 109 
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contribution, we demonstrate that there are two significant problems with using slope-based 110 

empirical regressions as they: (1) are based on a partial sampling of the parameter space of bed-111 

load rivers, and cannot be extrapolated outside of that range; and (2) do not capture the observed 112 

covariation between the bankfull (τ*bf) and critical (τ*c) Shields stresses and thus can provide 113 

spurious predictions of the bankfull transport capacity (τ*bf /τ*c). An important point to note here 114 

is that none of the authors of the original studies exploring the correlation between slope and the 115 

threshold of motion (Ferguson, 2012; Lamb et al., 2008; Mueller et al., 2005; Recking, 2009) 116 

suggested that the empirical regressions be used in a predictive fashion, or in lieu of actual 117 

measurements. The use of the empirically based regressions, due to the aforementioned 118 

problems, can lead one to conclude that bankfull transport capacity varies among gravel-bed 119 

rivers, while direct measurements of the threshold indicate that τ*bf /τ*c is remarkably constant 120 

and in quantitative agreement with theoretical predictions (Parker, 1978, 1979). Due to the close 121 

match with theory, we suggest that the bankfull Shields stress can be used to estimate the 122 

threshold of motion as an alternative to the slope-based regressions. Additionally, we illustrate 123 

how using an empirical slope-based regression can lead one to draw potentially incorrect 124 

conclusions, through various sampling strategies of the compiled gravel-bed rivers. 125 

 126 

2. Data and Methods 127 

Two types of field sites are used within this study: (1) field sites where the threshold of motion 128 

can be reliably estimated from bed-load flux estimates (n=68), and (2) a compilation (n=739) of 129 

coarse-grained river hydraulic geometry to place the hydraulic geometry of the sites where the 130 

threshold of motion was measured into a broader context. For clarity, we refer to the first set as 131 

the ‘threshold’ data and the second as the ‘compilation’ data throughout the remainder of the 132 

manuscript. The compilation and threshold sites both represent samples of the global population 133 

of gravel rivers, however the compilation provides a more complete picture of the variability 134 

within gravel rivers, while the threshold sites represent a smaller partial sample of the of the 135 

compilation’s hydraulic geometry parameter space. The majority of the threshold field sites 136 

come from the study of Mueller et al. (2005) with additional data compiled from the works of 137 

Recking (2010, 2013), King et al. (2004), and others (Andrews, 1994, 2000; Andrews & Erman, 138 

1986; Bunte, 1998; Erwin et al., 2011; Ferguson & Church, 2009; Hinton et al., 2017; Jones & 139 

Seitz, 1980; May et al., 2009; May & Pryor, 2013; McLean et al., 1999; Milhous, 1973; Mueller 140 
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& Pitlick, 2014; Parker et al., 1982; Phillips & Jerolmack, 2014; Rankl & Smalley, 1992; Ryan 141 

et al., 2005; Ryan & Emmett, 2002; Smalley et al., 1994; Whitaker & Potts, 2007; Wilcock et al., 142 

1996). The compilation data represent field measurements at bankfull conditions of slope (S), 143 

width (W, m), discharge (Q, m3/s), depth (H, m), and the median bed surface grain size (D50, m). 144 

These data represent the combination of coarse-grained single thread gravel bed rivers compiled 145 

by Li et al. (2015), Trampush et al. (2014), Church and Rood (1983), and Phillips and Jerolmack 146 

(2016). All of the above parameters are not available for each site as the compilation reflects the 147 

state of the data as collected by the original authors with duplicates removed. 148 

 149 

2.1 Calculating the Threshold of Motion 150 

For the threshold sites we follow the methodology of Mueller et al. (2005) for determining the 151 

threshold of motion. Their thorough compilation and analysis form the core dataset from which 152 

the correlations between slope and the threshold of motion have been drawn. We summarize the 153 

methodology here as it pertains to understanding the current contribution. The primary data 154 

represent measurements and estimates of the reach-scale fluid driving stress (nondimensionalized 155 

as the Shields stress, τ*) and sediment flux per stream width (qs, kg/m/s). From these data we 156 

define the threshold of motion as the dimensionless critical Shields stress (τ*c). The reach and 157 

cross section scale Shields stress is estimated using hydraulic geometry variables as: 158 

(1)  𝜏∗ =
𝜏

(𝜌𝑠−𝜌)𝑔𝐷50
 159 

where τ is the shear stress (Pa), ρs is the density of sediment (taken here as 2650 kg/m3), ρ is the 160 

density of water (1000 kg/m3), and g is the acceleration due to gravity (9.81 m/s2). We 161 

approximate the shear stress via the depth-slope product as τ=ρghS, where h is the flow depth. 162 

To standardize the measurements across field sites, we nondimensionalize the transport rate as:  163 

(2) 𝑊∗ =
𝑅𝑔𝑞𝑠

𝜌𝑠(𝜏 𝜌⁄ )1.5
 164 

where R=1.65 is the submerged specific density of the sediment (see Parker et al., 1982; Parker, 165 

1990). The threshold of motion is determined as the median value of Shields stress at which the 166 

dimensionless transport rate intersects a reference transport rate of W*=0.002 (Parker, 1990; 167 

Mueller et al., 2005). The use of a reference transport rate to determine a threshold of motion 168 

means that, strictly speaking, we have determined the reference Shields stress (τ*r), which is 169 

close but not necessarily equal to τ*c. Throughout the rest of the manuscript references to the 170 
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threshold of motion and data analysis specifically refer to τ*r as a proxy for τ*c. For field sites 171 

where the bulk of the sediment flux measurements are either above or below the reference 172 

transport rate, we estimate the point of intersection by fitting a surface-based transport relation 173 

W*=0.002(τ/τr)
14.2 (Parker, 1990). All told we have examined sediment transport data for 132 174 

sites and retained 68 of them for the following analysis. Of the 68 sites, one site (the Mameyes 175 

River) used tracer particles to estimate the threshold of motion (see Phillips and Jerolmack, 176 

2014). The 64 excluded sites were not retained for a variety of reasons, the most common being 177 

missing data, insufficient sample size, and conflicting parameter estimates. In some cases, field 178 

sites were excluded if we could not estimate a reliable reference threshold due to the absence of a 179 

trend within the flux measurements. This occurs in several channels with large sand fractions and 180 

for sites where particles approaching the size of the stream bed D50 were never mobilized. Both 181 

of these issues result in no relation between Shields stress and flux for the range of stresses 182 

reported. For a broader discussion of potential problems with these and similar data see Recking 183 

(2010; 2013). 184 

 185 

2.2 Estimating the Channel Bankfull Transport Capacity 186 

The bankfull transport capacity (τ*bf /τ*r) is estimated for the threshold data using equation (1) for 187 

τ*bf, while τ*r is determined from bed-load flux measurements. In other words, τ*bf is determined 188 

from channel morphology, and hence independently from τ*r. In a few cases, our estimates of the 189 

variables required to compute τ*bf and τ*r based on the raw data differ from the values reported in 190 

the original studies.  These differences are generally small, and we use the reported values in 191 

deference to the previous authors. We have only used sites that characterize the bankfull depth as 192 

a morphologic break between the active channel and a flood plain or non-channelized area (refer 193 

to Williams (1978) for additional common metrics of bankfull depth), as expansive flood plains 194 

are not always evident in mountain channels. For several field sites with irregular cross sections 195 

or large gravel bars we estimated the bankfull depth as the average depth across the active 196 

channel, which excludes the banks and large gravel bars from the height estimates. For these 197 

sites, the hydraulic radius becomes increasingly skewed by the bar and no longer reasonably 198 

approximates the stress imposed on the stream bank adjacent to the flow. Overall this results in a 199 

slightly higher estimate of the bankfull depth for some reaches, but matches the hydraulic radius 200 

calculations for more uniform or rectangular cross sections. We have excluded field sites where 201 
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we cannot reliably estimate both τ*r and τ*bf; difficulties in calculating the latter are due to 202 

insufficient data to calculate H, S, and the D50. In some cases, we have excluded field sites where 203 

there are no raw data available and we are not able to acquire reliable estimates of these 204 

parameters from other sources. Additionally, we have excluded several field sites where multiple 205 

sources report conflicting estimates of the same hydraulic geometry parameters and we cannot 206 

determine which ones are representative of the channel in question due to the absence of the raw 207 

data. 208 

 209 

3. Results 210 

3.1 Correlation and Covariation between the Reference Shields Stress and Slope 211 

The slope of a mountain river reach is, all things considered, one of the more reliable parameters 212 

that can be measured. It is one of the few parameters that can be directly measured from aerial 213 

lidar and satellite derived topographic digital elevation models, whereas τ*r is not an easy 214 

parameter to measure. The correlation between τ*r and S (Figure 1a) previously observed within 215 

a compilation of mountain rivers (Mueller et al., 2005; Lamb et al., 2008) represented a 216 

pragmatic path towards estimating a key parameter, even though it lacks the physical basis laid 217 

out in the mechanistic models (see Prancevic and Lamb (2015b) for a field application of a 218 

mechanistic model). The correlation between S and τ*r has been reported as following both linear 219 

and non-linear relations (see Lamb et al., 2008; Mueller et al., 2005; Pitlick et al., 2008; Recking, 220 

2009). We find that the best fit, in a least-squares sense, is a non-linear relation of the form 221 

(3)  𝜏∗𝑟 = 𝑘𝑆𝛼, 222 

where k=0.27 and α=0.38 (standard error of 0.045) represent the best fit coefficient and exponent 223 

(R2=0.53) for these data, respectively (Figure 1a). This fitted equation is similar to that 224 

determined by Pitlick et al. (2008) and possesses a slightly steeper slope than that of Lamb et al. 225 

(2008). The differences among the empirical regressions are minor, and arise due to (i) the 226 

addition of new field sites present here and (ii) the exclusion of laboratory data from the fit in 227 

equation (3). Throughout the rest of the manuscript we will utilize equation (3) when providing 228 

examples of τ*r as estimated via an empirical regression, though the issues raised in the following 229 

sections are inherent to all such regressions on these or subsets of these data. The non-linear 230 

relation provides a better fit to the data, however a linear fit is also reasonable. We also observe 231 

that τ*bf possesses a similar non-linear correlation with slope (also observed by Mueller et al., 232 
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2005 and Pitlick et al., 2008). The best-fit regression line between τ*bf and S is vertically offset of 233 

that between τ*r and S, indicating that τ*bf is slightly larger than τ*r in a consistent manner 234 

(τ*bf=0.29S0.35, R2=0.48 with a standard error of 0.046 for α, Figure 1a). The compilation data 235 

represent a larger range of τ*bf and a steeper trend with S (τ*bf=0.55S0.45, R2=0.28 with a standard 236 

error of 0.025 for α).  237 

 238 

To understand how the ratio of τ*bf/τ*r computed with measured values compares with the same 239 

ratio where τ*r is calculated from the empirical regression we combine equations (1) and (3): 240 

(4)  
𝜏∗𝑏𝑓

𝜏∗𝑟⁄ ~
𝜏∗𝑏𝑓

𝑘𝑆𝛼⁄ =
ℎ𝑆

𝑘𝑆𝛼𝑅𝐷50
=

ℎ𝑆1−𝛼

𝑘𝑅𝐷50
. 241 

The primary effect of estimating τ*bf/τ*r with equation (4) is to increase the contribution of slope 242 

and minimize the role of the median particle size (for k<1) within the Shields stress. Recall that 243 

since the slope is always less than one, as the quantity (1-α) approaches zero the slope term 244 

approaches a value of one. Using equation (4) the computed average transport capacity is < 245 

τ*bf/kSα>=1.26 (arithmetic mean of 1.4), which is close to the observed value of <τ*bf/τ*r>=1.27 (< 246 

> denotes a geometric mean of the bracketed quantity). However, the shape and variance of the 247 

distributions are poor matches (Figure 1b), even though equation (4) was fit to these data. Note 248 

that equation (4) produces transport capacities that extend well below one, which is a non-249 

physical result as transport was observed in these rivers for sub bankfull flow. The same exercise 250 

can be performed for the compilation data using equation (4), which produces an even larger 251 

variance (gray PDF in Figure 1b). The larger variance is a result of not capturing the covariation 252 

present in τ*r and τ*bf, as each set of observations are pairs. Where τ*r for a given site is 253 

larger/smaller relative to equation (3), τ*bf is also larger/smaller for the same site. The covariation 254 

between τ*bf and measured τ*r is so strong that no trend is apparent when we take the ratio of 255 

τ*bf/τ*r and compare it to S, H/D50, and even τ*bf (Figure 1c). As the required variables to compute 256 

τ*bf are commonly available or easier to measure, equations (3) and (4) – or variants thereof – are 257 

used frequently to estimate τ*r, despite the fact that the covariation between τ*bf and τ*r produces 258 

a spurious result for the transport capacity. Through the use of equation (4) the estimated 259 

bankfull transport capacity for both datasets become positively correlated with relative 260 

submergence and τ*bf, even though the actual value of τ*bf/τ*r is constant (Figure 1c). These 261 

correlations are spurious due to the variables’ underlying correlation with slope (Figure 1c). The 262 
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same degree of correlation is not observed between slope and equation (4), because the relation 263 

between H/D50 almost precisely cancels out the effect of plotting slope against itself (Figure 1c).  264 

 265 

3.2 Parameter Space of the Threshold Field Sites 266 

The second significant issue when computing τ*r with equation (3) results from the partial range 267 

of parameter space covered by the field sites from which the regression is based. The broader 268 

compilation of field sites represents a more diverse set of gravel rivers and provides context for 269 

the range and frequency of the different hydraulic variables (H, S, D50, W, and Q). In general, 270 

their probability density histograms do not appear to follow a normal distribution and are better 271 

represented by their natural logarithm (Harman et al., 2008). Thus, we natural-log transform the 272 

hydraulic variables for the threshold and compilation sites prior to computing the histograms. 273 

Compared to the compilation dataset, the threshold site channels are generally shallower, 274 

narrower and steeper, with lower bankfull discharges and coarser beds (Figure 2a-f). In other 275 

words, sites used for the threshold regressions are a non-representative subset of the larger 276 

compilation of gravel rivers. In terms of τ*bf, however, these sites match the central tendency of 277 

the larger compilation well (Figure 2f); but they under sample both high and low values of τ*bf 278 

relative to the larger compilation. The τ*bf of the compilation appears to be well described by a 279 

log-normal distribution yielding a geometric average of <τ*bf>=0.054 for single thread coarse-280 

grained rivers (Figure 2f). A two-tailed Kolmogorov-Smirnov test for a log-normal distribution 281 

(K-Sstat=0.045 with a Pvalue=0.097) suggests that we cannot reject the null hypothesis that τ*bf is 282 

log-normally distributed (i.e. we accept that τ*bf does not differ from a log-normal distribution at 283 

a Pvalue of ~0.1). Additionally, the threshold distribution of τ*bf also follows a log-normal 284 

distribution (K-Sstat=0.095 with a Pvalue=0.55), though not the same distribution as the 285 

compilation (Two sample KS-test, K-Sstat=0.17 with Pvalue=0.042). It is perhaps not surprising 286 

that the threshold sites are non-representative of the larger compilation, as these sites are by-and-287 

large geographically biased to mountain rivers primarily within the Rocky Mountains and the 288 

states of Colorado, Wyoming, and Idaho whereas the compilation samples a broader geographic 289 

range (continental United States and Canada). 290 

 291 

The consequences of the geographic bias in measured τ*r and equation (3) can be further 292 

explored by removing the self-correlation (slope occurs in both axis) present within Figure (1). 293 
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We can examine the relationships between both datasets by exploring the parameter space 294 

between H/D50 and S, the two free dimensionless variables within Shields stress while holding 295 

the quantity ρ/(ρs-ρ) constant (Figure 3). When viewed this way the compilation data form a 296 

scattered cloud in which bankfull relative submergence (H/D50) trends inversely with slope. 297 

These data show that for the same value of τ*bf there exist low gradient rivers with high relative 298 

submergence, and steep gradient rivers with low relative submergence. Particularly, these data 299 

show that there is quite a range in τ*bf, and that high Shields stresses are not solely the domain of 300 

steep rivers. Within this parameter space the threshold sites tend to be overly representative of 301 

the steepest rivers (Figure 3). There are few if any threshold field sites occupying the region of 302 

the parameter space characterized by low slope, high relative submergence rivers. Within these 303 

data a pattern with τ*r emerges showing an additional dependence on H/D (also highlighted by: 304 

Mueller et al., 2005; Recking 2009). Equation (3) runs askew to the primary trend of the 305 

compilation data, and doesn’t capture the overall pattern of τ*r within this parameter space. 306 

Interestingly, the pattern in τ*r follows isolines of increasing Shields stress, in that steep rivers 307 

with low relative submergence appear to have the same value of τ*r as low gradient rivers with 308 

high relative submergence (Figure 3). For example, using equation (3) to estimate τ*r at any 309 

value of S would indicate that as H/D50 increases so too does the transport capacity of the river. 310 

However, the measured values of τ*bf/τ*r do not vary systematically with H/D50 or S. From these 311 

data it becomes apparent that a third variable, which combines both H/D and S, may be a better 312 

predictor of the observed τ*r pattern. However, it is not necessary to fit such a regression as the 313 

third variable is the bankfull Shields stress (equation 1). 314 

 315 

3.3 Relation between the Bankfull and Reference Shields Stresses 316 

The observed correlation between τ*bf and τ*r is a strong linear trend (Figure 4). It is important to 317 

note that the methodology that calculates τ*r is independent of that used to determine τ*bf, as τ*r is 318 

determined from a range of flow and flux measurements while τ*bf is determined from channel 319 

geometry. The correlation between τ*bf and τ*r, and by extension τ*c, was previously shown 320 

(Mueller et al., 2005) to be linear with a subset of the threshold data used here. Mueller et al. 321 

(2005) concluded that this trend indicated that gravel-bedded streams were adjusted to have a 322 

constant bankfull excess Shields stress (τ*bf - τ*c). The analytic model for the equilibrium channel 323 

geometry of gravel-bedded rivers developed by Parker (1978) provides an explanation for the 324 
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observed correlation and an expected functional form of τ*bf =(1+e)τ*c, where ‘e’ is a small 325 

positive value. The prediction for a channel with cohesionless unimodal sediment provides that 326 

e=0.2 yielding a predicted relation of τ*bf =1.2τ*c for a specified value of τ*c. The best fit relation 327 

of this form from the data is τ*bf =1.19τ*r (R
2=0.96), which is remarkably close to the analytical 328 

prediction (Figure 4). Combining these ideas together provides an avenue to predict τ*r from τ*bf 329 

by rearranging the confirmed analytical equation to yield τ*r=0.83τ*bf. From this relation we can 330 

estimate the residuals and compare estimates with equation (3). Histograms of the residuals show 331 

a positively skewed distribution from equation (3) and a mostly symmetric and narrower 332 

distribution for the analytical prediction (Figure 4 inset). 333 

 334 

3.4 Illustration of Perceived Differences in Transport Capacity via Subsampling  335 

To illustrate problems with subsampling the parameter space of gravel bed rivers while using 336 

equation (4) to compute the transport capacity, we created a set of contrived subsamples from the 337 

larger compilation dataset based on S, H/D50, τ*bf, Q/W, and f (flow resistance). These 338 

subsamples are similar to how a researcher might collect field data or values from the literature 339 

to compute τ*bf, and through equation (4) estimate the bankfull transport capacity to compare 340 

different regions or catchments. It is important to note that selecting field sites within a particular 341 

geographic region is something that is commonly done and acceptable practice, but yields a 342 

selection of rivers with a limited range in values of S, H/D50, τ*bf, Q/W, and f. Throughout the 343 

following exercise we show how application of the slope-based regressions (equation 3) to such 344 

data can yield erroneous conclusions. The expected distribution based on the measured τ*r is 345 

narrowly distributed around the theoretical prediction (Figure 1b & reproduced in Figure 5a). To 346 

facilitate a more direct comparison with the threshold field sites (n=68), we selected 70 random 347 

field sites from the full parameter space of the larger compilation (Figure 5a). We chose 70 348 

random samples for the contrived sampling scheme as this number is close to the number of 349 

threshold sites, represents a low relative standard error (< 5%), and produces a reasonable 350 

distribution. The error in computing the mean is relatively low even for a small set of random 351 

samples (Figure 5a), because the natural log-transformed distribution of τ*bf is a normal 352 

distribution. The contrived sampling schemes were created by randomly selecting two sets of 70 353 

sites from the compilation dataset from above and below the geometric mean for S, H/D50, τ*bf, 354 

and Q/W (Figure 5b), while sampling criteria for f was based on the arithmetic mean value. Flow 355 
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resistance was computed using the Variable Power Equation (8/𝑓)1/2 = 𝑎1𝑎2(𝐻/𝐷)/[𝑎1
2 +356 

𝑎2
2(𝐻/𝐷)5/3]1/2 with coefficients a1=7.3 and a2=2.3 (Ferguson, 2007), as this equation was 357 

previously demonstrated by Ferguson (2007) to match a large compilation of field data well. The 358 

final category is a combination of H/D and S that samples from opposite corners of the 359 

compilation parameter space in Figure 3. The differences in transport capacity through the use of 360 

equation (4) between the two sets of subsamples for each criterion are illustrated in Figure 5b 361 

(see Figure 5c to see the selected sites within the relative submergence-slope parameter space). 362 

Some of the contrived subsamples have similar median values for transport capacity to the 363 

measured threshold sites; however, all subsamples have substantially larger inner quartile ranges 364 

and standard deviations (Figure 5b). Whether a subsample differs from its partner sample is 365 

completely dependent on how the selected sites relate to where equation (3) crosses the 366 

parameter space (Figure 5c). Subsamples showing little difference from each other are those 367 

based on S and Q/W, while the rest of the subsamples (H/D50, τ*bf, f, H/D50 & S) would indicate 368 

that transport capacity differs for these sets of gravel rivers. These differences, while statistically 369 

significant, are artefacts of the bias that arises by sampling a limited range of the parameter space 370 

relative to equation (3).  371 

 372 

4. Discussion 373 

Here we start by discussing the quality and bias issues of the threshold data set, as several types 374 

of errors are potentially present. The majority of these issues are likely a consequence of the 375 

complicated nature of measuring sediment transport and channel hydraulic parameters, which 376 

represent snapshots of a dynamic system. For τ*bf the potential sources of error are in determining 377 

H, D50, and S at each field site. The largest source of error for this study is related to defining the 378 

bankfull depth (Williams, 1978), because errors in both S and D50 are less likely to affect the 379 

transport capacity as both of these parameters are part of the calculations necessary to compute τ* 380 

and τ*r through equation (2). The error in measuring the bankfull depth is relatively low and 381 

decreases with the number of cross sections (Harman et al., 2008), though it remains an open 382 

question as to the minimum number of cross sections required to achieve a representative 383 

average bankfull depth, and exactly how to treat the bankfull depth (hydraulic radius or average 384 

active channel depth) for irregular or complicated cross sections. Our intent is to understand the 385 

ratio τ*bf/τ*r as it relates to channel stability, therefore we have chosen to calculate H using the 386 
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average active channel depth for irregular cross sections and the hydraulic radius where the two 387 

metrics closely agree. A full accounting of this problem is not possible given the current datasets, 388 

as most field sites have no more than three cross sections from which to compute H; however, 389 

the difference between both methods is small, at least for the field sites we have examined here. 390 

Defining H as a morphologic break in the channel cross section, we were able to independently 391 

reproduce the bankfull depths reported by the original authors of the studies from which the 392 

threshold data are compiled. Sources of error for τ*r are potentially more numerous as bed-load 393 

transport measurements are notoriously noisy data; for a thorough analysis and discussion of the 394 

potential sources of error see Recking (2013). The largest areas of error for the threshold dataset 395 

are related to sampling bed-load transport at low transport rates and the choice of sampler used to 396 

collect the samples. Mobile samplers (e.g. Helley-Smith) measure higher flux rates for low 397 

transport conditions, compared to pit and trap type samplers (Bunte et al., 2008). This 398 

oversampling can result in flat (trendless) relations between flux and stress at low transport rates 399 

and may have resulted in the exclusion of several field sites where higher transport rates were not 400 

available to distinguish a trend. A larger concern with these data is in how representative a single 401 

measurement of τ*r is of the threshold, as both the spatial and temporal variability of τ*r remains 402 

uncertain. The temporal variability, however, may be less worrisome long term as it appears to 403 

be normally distributed where it has been measured (Masteller et al., 2019). Suffice to say, 404 

understanding the dynamics of the threshold of motion remains an area in need of additional 405 

research. Therefore, we caution the reader from focusing on a single field site or exact numerical 406 

values, and instead recommend that the overall trends are more robust. 407 

 408 

In terms of data bias of the compilation parameter space coverage, we can only speculate given 409 

the available data as to how representative some of these parameters are when compared to the 410 

timescales of channel adjustment. In a sense, the reach-scale channel geometry integrates over 411 

some yet unknown number of flood events, or may even alternate between different states of 412 

adjustment (Pizzuto, 1994; Slater & Singer, 2013; Wolman & Gerson, 1978; Yu & Wolman, 413 

1987). It is not currently definitively known how much the bed composition changes over time 414 

and thus how representative a single grain size measurement is, or how sensitive natural channel 415 

geometry is to changes in bed composition (e.g. MacKenzie & Eaton, 2017). Similarly, it 416 

remains an open question if the sampled bed grain size distribution is reflective of the current 417 
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measured channel geometry. These are questions though that cannot necessarily be addressed 418 

with the current data compilations, but are worth keeping in mind when considering rivers as 419 

dynamic systems. In addition, it cannot be definitively concluded that the compilation dataset 420 

fully represents the spectrum of τ*bf in coarse-grained rivers, as the compiled field sites 421 

necessarily represent the site selection criteria within the original studies. For example, the 422 

sampling of field sites is strongly biased geographically towards North America. In particular, 423 

field measurements in dryland, arctic or periglacial, and tropical environments are notably 424 

lacking. However, given the close fit to a log-normal distribution (Figure 2f) it is not clear to the 425 

authors that more globally representative sampling would not simply make any fit better. 426 

 427 

Regardless of how representative the compilation dataset is of global rivers, a significant pitfall 428 

of using equation (3) to predict τ*r is that the field sites on which equation (3) is based do not 429 

sample the full parameter space of the compilation of coarse-grained rivers used in this study 430 

(Figure 2 and 3). We note that this is the largest compilation of coarse-grained rivers to date. 431 

This uneven sampling is strongly biased towards moderate to high slopes and low relative 432 

submergence rivers. Noticeably under sampled are rivers with higher relative submergence for 433 

all slopes (H/D > 20), and rivers with lower slopes (S < 0.002) in general. Caution should be 434 

exercised when attempting to extrapolate predictions for τ*r to regions of the parameter space that 435 

are not sampled, especially for sites with higher values of H/D relative to equation (3) (Figure 3). 436 

Capturing the covariation between τ*r and τ*bf is especially important for estimating bed load 437 

transport due to flux equations’ non-linear dependence on transport stage (τ*/τ*r) and/or excess 438 

shields stress (τ* -τ*r) (Mueller et al., 2005). For example, the difference between τ*bf /τ*r =1.2 and 439 

τ*bf /τ*r =2, seems small given the variation in the data; yet when viewed through a common bed-440 

load transport equation (see Wilcock & Crowe, 2003) this becomes a factor of ~20 in terms of 441 

flux and grows non-linearly with increasing values of τ* /τ*r. As there are very few estimates of 442 

τ*r in high Shields stress (τ* > 0.12) regions of the parameter space, and especially low slope and 443 

high relative submergence sites, further research is still required to determine the range of τ* /τ*r 444 

within these regions. The available data do not, however, support the use of equations (3) and (4) 445 

to determine τ*r in these regions. These equations would predict that bankfull transport capacity, 446 

and hence bed-load flux, increases with τ*bf – despite the available measured data indicating that 447 

τ*bf /τ*r ~constant (Figure 1 inset and Figure 4). Interestingly, while the correlation between slope 448 
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and high values of τ*c is becoming increasingly well understood (see Lamb et al., 2008; Recking, 449 

2009; Prancevic and Lamb, 2015a), to date the explanation for the increase of τ*r with H/D for 450 

regions of low slope remains uncertain to the authors. 451 

 452 

The second issue with the approach laid out in equation (4) is that it does not capture the co-453 

variation between τ*b and τ*r at each site. These two parameters are ‘paired’ in a sense, and using 454 

either fitted regression relation (see figure 1) to estimate τ*bf or τ*r from slope alone will result in 455 

an incorrect prediction for the ratio τ*bf /τ*r. This pairing of the data is evident when considering 456 

the relation between τ*bf and τ*r (Figure 4), which closely matches theory (Parker, 1978) 457 

indicating support for a causative relation. While there is some deviation from this trend within 458 

the data (Figure 4) the residuals possess no meaningful correlation with the available hydraulic 459 

variables (H, W, Q, D50, H/D, f, and S). It remains unclear to the authors if the degree of scatter 460 

in τ*bf/τ*r reflects actual ranges of channel behavior, or represents a combination of error or bias 461 

in the measurements and under-sampling of the various hydraulic parameters or random noise in 462 

a dynamic system. Of the explored relations and correlations, the simple linear relation τ*bf=1.2τ*r 463 

remains the best predictor to date. In a sense, this model can serve as a null hypothesis. Absent 464 

independent measurements of τ*c, this null model states that τ*bf=1.2τ*c or τ*c=0.83τ*bf. With this 465 

in mind and the observation that τ*bf is approximately log-normally distributed (<τ*bf>=0.054), 466 

then τ*c would also be log-normally distributed and we can estimate its mean as <τ*c>=0.045 467 

(close to the prediction of the Shields curve). The value in this approximation is that it places 468 

statistical bounds on the extent of both τ*bf and τ*c in natural channels. We have demonstrated 469 

several potential outcomes of this sampling bias through a variety of field site selection criteria 470 

(Figure 5b). Though the demonstrated selection criteria were strictly related to simple statistical 471 

splits of hydraulic variables, the discussed bias applies equally to samples drawn based on 472 

geography or regional climate. The upshot here is that an empirical slope-based predictor is not 473 

broadly reliable for estimating the threshold of motion or predicting the transport capacity, 474 

because the data it is based on represent a biased sampling of alluvial gravel rivers and does not 475 

account for the covariation between τ*bf and τ*r. We advocate that τ*r can be estimated from τ*bf 476 

due to the remarkable consistency observed in channel geometry and the close connection to 477 

theory which provides a physical basis for the prediction. Using channel geometry to predict the 478 

threshold of motion provides an implicitly time and space averaged reach-scale value for τ*c, 479 
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however the extent of the averaging will depend on the number of flows responsible for shaping 480 

the current channel geometry. 481 

 482 

Lacking an alternative easily implementable approach to predicting τ*c, we recommend using the 483 

null model (τ*bf /τ*c=1.2) in theory, numerical, and analytical based approaches, while for strictly 484 

empirical approaches error can be incorporated through the observed distribution and standard 485 

deviation (<τ*bf /τ*r>=1.27 ×/÷1.16). The null model provides a closure for studies in gravel-bed 486 

rivers where τ*c needs to be estimated. For example, predicting spatial patterns of grain size and 487 

morphology for in stream management and habitat suitability (Phillips & Scatena, 2013; Snyder 488 

et al., 2013), and management of river corridors below major river modifications (Minear, 2010; 489 

Schmidt & Wilcock, 2008). For field sites where the identification of the bankfull depth is 490 

difficult to assess we recommend checking the data against the compilation dataset parameter 491 

space (Figure 3) for a variety of flow depths to assess a likely range. This approach is also 492 

insightful to assess potential bias for geographically based sampling. For steeper river channels 493 

(S > 0.01 and H/D < 10) where one absolutely requires an approximation of τ*r based on metrics 494 

extracted from topography alone, the slope-based regression in equation (3) and other published 495 

variants may be suitable with the former caveats in mind. We recommend the field based 496 

empirical regressions over those that incorporate laboratory measurements, because the field 497 

based regressions capture processes (and errors) inherent to the field that are absent in the lab 498 

such as the difference between measured particle size and mass in steep channels (see Miller et 499 

al., 2014). We do not have a recommendation for bedrock rivers, as the concept of bankfull does 500 

not always exist and a bankfull analogue with morphological significance has yet to be fully 501 

established. Research in this area is still developing, however field and flume experiments 502 

(Johnson et al., 2009; Johnson & Whipple, 2010) have demonstrated that bedrock rivers appear 503 

to adjust towards a condition of steady state to pass the sediment flux and water discharge 504 

supplied. This is similar to the statistical concept of the ‘effective flood’ in alluvial rivers which 505 

is a bankfull analogue and represents the average stress above the threshold of motion (Phillips 506 

& Jerolmack, 2016; Torizzo & Pitlick, 2004; Wolman & Miller, 1960).  507 

 508 

5. Conclusion 509 
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Through the use of an expanded dataset, we demonstrate that empirical regressions based on the 510 

correlation between slope and the threshold of motion can easily result in erroneous conclusions 511 

when considering the channel’s transport capacity. This occurs because the empirical regressions 512 

are based on a limited sampling of the parameter space of bed-load rivers and do not capture the 513 

covariation between τ*bf and τ*r. Predicting the threshold of motion in natural channels remains a 514 

considerable challenge, and a critical knowledge gap for understanding rivers’ roles within their 515 

catchments. We recommend site-specific empirical determination of the threshold from 516 

independent measurements of bed-load transport; while this is challenging, the rapid uptake of 517 

seismic, acoustic, and other methods makes this prospect increasingly more feasible. Barring 518 

direct measurement, the threshold of motion’s strong correlation with the bankfull Shields stress 519 

remains the most accurate predictor. The covariation of threshold and bankfull Shields stresses is 520 

a consequence of the organization of bed-load rivers to be close to the threshold of motion. The 521 

average bankfull transport capacity determined from available data is in remarkable agreement 522 

with the prevailing theory for gravel-bed river geometry (Parker, 1978). Observed deviation from 523 

this theory when using these empirical regressions is an artefact of the sampling bias inherent in 524 

their construction; future studies will need to address this bias rigorously with independent 525 

observations of the threshold in order to disprove the null hypothesis. 526 
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 851 

Figure 1. Correlation between slope, bankfull Shields stress, and the threshold of motion. (a) 852 

Observed correlation for the threshold data between reach-scale slope, and the reference (τ*r, red 853 

circles) and bankfull Shields stresses (τ*bf, blue squares). Red (solid) and blue (dashed) lines 854 

represent loglog least-squares regressions excluding two outliers (τ*r>0.2). Gray points represent 855 

τ*bf for the compilation data with a least-squares regression line (black dash-dot line). (b) Split 856 

violin plot of the distributions of the bankfull transport capacity (τ*bf /τ*r) where τ*r is estimated 857 

from flux measurements (purple), and the slope-based regression (τ*r=0.27S0.38) for the threshold 858 

(orange) and compilation data (gray). The solid line within the distribution represents the median 859 

and the the upper and lower edges of the distribution are clipped at the extents of the data. (c) 860 

Relations between slope, bankfull relative submergence (H/D50), and τ*bf with τ*bf /τ*r for the 861 
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threshold (purple and orange circles) and compilation data (gray points). Horizontal lines 862 

represent the geometric mean (<τ*bf /τ*r>=1.27) where there is no correlation between the data. 863 

Note that the trends observed for H/D50 and τ*bf result from spurious correlation with slope 864 

within equation (4). 865 
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 867 

Figure 2. Probability density histograms for sites where τ*r was determined from bed-load flux 868 

measurements (red line, n=68) compared with a larger data compilation (shaded blue, n=739) of 869 

gravel-bedded rivers. All data were natural-log transformed prior to computing the histograms 870 

and bin width for both datasets used the Freedman-Diaconis rule (Freedman & Diaconis, 1981) 871 

based on the larger compilation. The variables are (a) bankfull depth (n=725), (b) slope (n=739), 872 

(c) D50 (n=739), (d) bankfull width (n=272), (e) bankfull discharge (n=418), and (f) bankfull 873 

Shields stress (n=725). Sample sizes vary according to data availability. The bankfull Shields 874 

stress (f) is well described by a normal distribution (black dashed line) in natural log space. 875 

 876 
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 877 

Figure 3. Parameter space of bankfull relative submergence (H/D50) and slope for sites with 878 

measured τ*r (shaded circles) and the larger river compilation (gray ‘+’ symbol). The shaded 879 

color and colorbar denote the measured reference Shields stress. The black dashed line represents 880 

the best fit regression between slope and τ*r (equation 3). The multicolored diagonal lines are, by 881 

definition, the Shields stress. Note that the shaded color pattern is parallel to the Shields stress 882 

isolines (i.e. light orange points follow the orange isolines and the purple points follow the 883 

purple lines) and not the regression line. 884 
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 886 

Figure 4. Relation between the reference and the bankfull Shields stresses. The gray dashed lines 887 

represent increasing values for the ratio τ*bf /τ*r in increments of 0.2 for reference, while the red 888 

dashed line represents the best fit function of the form τ*bf=(1+e)τ*r. (inset) Residuals for 889 

estimating τ*r using the relation with τ*bf (red line) and equation (3) (black line).  890 
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 892 

 893 

Figure 5. Illustration of bias in estimating transport capacity for various sampling strategies using 894 

equation (4). (a) Split violin showing the measured transport capacity for the threshold field sites 895 

(purple, n=68, identical to Figure 1b) and a random sample (blue, n=70) from the compilation 896 

dataset where the transport capacity is calculated via equation (4). (a) and (b) share the same 897 

vertical axis. (b) Transport capacity calculated via equation (4) for various data sampling 898 

strategies from the compilation data. Each column represents sampling the larger compilation 899 

based on the variable listed below and each half represents 70 randomly selected field sites for 900 

the adjacently labeled condition. All data except flow resistance are natural log transformed prior 901 

to computing the distributions. (c) Illustration of the random samples used to compute the 902 

distributions in (a) and (b) from the larger compilation (small gray dots). All columns in (c) share 903 

the same axes. Blue crosses correspond to the right half and red dots represent the left half of the 904 

split violins in (b) directly above each data cloud. The black dashed line is equation (3). Note the 905 

distributions illustrate how one can observe a potential difference in transport capacity between 906 

gravel-bedded rivers based on how the samples relate to equation (3). The observed difference is 907 

spurious due to the selection variable’s underlying correlation with slope.  908 
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