
Work-in-Progress: Programs with Ironclad Timing Guarantees
Marten Lohstroh

UC Berkeley, USA

Martin Schoeberl

TU Denmark, Denmark

Mathieu Jan

CEA, List, France

Edward Wang

UC Berkeley, USA

Edward A. Lee

UC Berkeley, USA

ABSTRACT
We discuss ongoing work towards a meta-language, execution

model, and compiler tool chain that promotes determinism and

grants first-class citizenship to the timing aspects of computation.

CCS CONCEPTS
• Computer systems organization → Real-time languages;
Real-time system specification; Embedded systems;

KEYWORDS
real-time systems, discrete events, scheduling, concurrency, deter-

minism, polyglot, meta-language, compiler, runtime environment

ACM Reference Format:
Marten Lohstroh,Martin Schoeberl, Mathieu Jan, EdwardWang, and Edward

A. Lee. 2019. Work-in-Progress: Programs with Ironclad Timing Guarantees.

In Proceedings of EMSOFT’19 Companion. ACM, New York, NY, USA, 2 pages.

https://doi.org/00.0000/0000000.0000000

1 INTRODUCTION
Precision timing plays an important role in a plethora of modern

systems, ranging from embedded control systems and robotics

to large-scale distributed systems that require some measure of

consistency. In order to effectively program these systems, there

is a need for programming models with a semantics that includes

time. In current-day general-purpose hardware and programming

languages, timing properties of software are emergent rather than

specified. According to a recent study by the Barr Group, over 95

percent of embedded-system code today is written in C or C++ [5].

For these systems, the verification of timing properties relies mostly

on testing. However, effectively testing software in the face of non-

determinism is extremely challenging.

We have recently proposed a programming model that adopts

a logical notion of time and has a concurrent execution semantics

that ensures determinism unless nondeterminism is allowed ex-

plicitly [2], for instance, to handle sporadic events. This model is

based on a variant of actors we call reactors, which are components

that consist of reactions that observe and emit timestamped events.

Opportunities for parallel execution of reactions are exposed au-

tomatically in a dependency graph that is created at compile time.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

EMSOFT’19 Companion, October 13–18, 2019, New York City, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 000-0-0000-0000-0/00/00. . . $15.00

https://doi.org/00.0000/0000000.0000000

Timing constraints relating to physical time can be specified in the

program, which, if executed on capable hardware, can be guaran-

teed statically. This aspect makes reactors particularly suited for

specifying real-time requirements.

A prerequisite for reactor programs with ironclad timing guar-

antees is that reactions must be amenable to worst-case execution

time (WCET) [4], which informs schedulability analysis. Platforms

that are optimized for predictable timing allow for tighter bounds

on WCET and more accurate release times, which leads to better

utilization and tighter synchronization to physical time, respec-

tively. We are currently developing a compiler tool chain for reac-

tors that targets both POSIX-based systems as well as bare-metal

time-predictable processors. For the latter it should hold that, if a

program compiles, it is guaranteed to obey any timing constraints

expressed in terms of delays and deadlines.

2 REACTORS
Reactors are software components that borrow concepts from ac-

tors, dataflow models, synchronous-reactive models, discrete event

systems, object-oriented programming, and reactive programming.

Thread PoolEvent Queue

Reactors
Reactions

.lf
Source

compile

schedule

execute

Figure 1: Compilation and execution of reactors

Principles. A reactor has input and output ports, (internal) ac-

tions, state, and reactions. Reactors can be composed bilaterally

or hierarchically by interconnecting their ports. Unlike classical

actors, the communication between reactors is constrained by their

connections; their communication topology is represented explic-

itly, as in dataflow models. Unlike dataflow models, reactors do not

have input buffers. Inputs are uniquely defined for each timestamp,

as is the case for ticks in synchronous-reactive models. As a conse-

quence, outputs produced by reactions have the same timestamp

as the inputs that triggered them.

Like actors, reactors do not share state, but reactions within the

same reactor do. This approach mirrors the idea of state encapsula-

tion in objects, but, unlike methods, reactions are anonymous and

https://doi.org/00.0000/0000000.0000000
https://doi.org/00.0000/0000000.0000000

EMSOFT’19 Companion, October 13–18, 2019, New York City, USA M. Lohstroh et al.

cannot be invoked directly by other reactions (not even if they are

part of the same reactor). Instead, a reaction is sensitive to a set

of inputs and/or internal actions, following the observer pattern
used in reactive programming. Reactions, however, can trigger each

other (or themselves) by scheduling an action with some specified

delay. If no scheduling delay is specified, the action will occur a mi-

crostep later in superdense time. This nuance is important because

it makes causality loops detectable.

To rule out non-determinism 1) no two reactions of the same

reactor are allowed to execute concurrently, and 2) when two or

more reactions of the same reactor are triggered at the same logical

time, they must execute in a predefined order. Reactions declare

dependencies on input ports and actions, and anti-dependencies

on output ports. Along with their ordering with respect to other

reactions, these declarations provide all the information required

to build a dependency graph. This graph encodes the constraints

that must be satisfied in order to obey the above two rules, and thus

ensure determinacy.

Lingua Franca. Because dependency declarations are part of

the interface of reactions, the body of reactions can be treated as

a black box. Exploiting this fact, we started developing a polyglot

compiler tool chain.While reactors are defined and composed in our

own meta-language called Lingua Franca (LF), the body of reactions
is specified in target language code. The role of the compiler is to

generate target code that brings declared ports and actions into re-

action scope, and to construct a dependency graph that governs the

execution of reactions at any given time step. Cyclic dependencies

are detected and reported as error conditions because they repre-

sent a causality loop. We are currently developing C and TypeScript

back ends for our LF compiler.

Execution Model. As illustrated in Fig. 1, scheduled events

enter into an event queue, which is a priority queue that sorts

events by timestamp. Execution entails popping events from the

event queue and executing all the reactions that it enables; an event

can trigger one or more reactions, and each reaction can produce

outputs that trigger more reactions. Reactions can also add new

events to the event queue. The dependency graph arranges all

reactions enabled at a given time into a partial order that informs as

to whether a given reaction can be executed or has to wait for any

anti-dependent reaction(s) to complete. Since reactions are partially
ordered, reactions in parallel dependency chains can be executed

in parallel.

One of the challenges with understanding our model is that there

are two distinct timelines in play, the logical timeline along which

events are ordered, and an implied physical timeline, or wall-clock

time, in which reactions are executed. In our model, delays are
associated with actions (i.e., scheduled reactions), and deadlines
are associated with reactions to input (i.e., synchronous reactions).

Actions may be scheduled asynchronously (e.g., in response to the

arrival of a sporadic sensor reading or interrupt), and when this

happens, the logical time at which the reaction occurs will be de-

rived from the current physical time obtained from the platform.

While the execution of each reaction takes physical time, logical

time does not advance during reactions. In principle, no event can

be processed before physical time exceeds logical time of its trig-

gering event. This is to prevent asynchronously scheduled actions

from acquiring a timestamp that is smaller than the current logical

time. The extent to which logical time may lag behind physical time

at the release of the reaction(s) triggered by some input is specified

by a deadline. If accurate execution time bounds can be obtained,

then deadlines at actuators imply precise, inferred deadlines up-

stream in the dependence graph. This allows for the specification

of closed-loop deterministic cyber-physical models with predefined

latencies from physical sensing to physical actuation. When a dead-

line is specified, a reaction to a violation of the deadline can also

be specified. This enables designs that can react to faults.

Unlike many models involving precedence graphs, not all reac-

tions in the graph are always expected to execute at each logical

time. This renders most classical scheduling techniques useless,

and opens up an interesting research area for new scheduling algo-

rithms and run time optimizations.

Target Platforms. We have focused our initial efforts on gen-

erating C code for reactors that is executable on POSIX-compliant

systems. Our current implementation is single-threaded, and pre-

liminary results show that we can handle on the order of 2.5 million

reactions per second on a 2.6 GHz Intel Core i7. Our next step is to

implement a thread pool and exploit concurrency in the scheduler

as depicted in Fig. 1 and collect proper benchmarks.

Our second target is Patmos [3], an architecture that is specif-

ically designed to simplify WCET analysis and is supported by

several WCET analysis tools. At this time we have already suc-

cessfully ran reactors on Patmos and have computed WCET for

reactions. A closer integration between the LF and Patmos compiler

is planned. In particular, the goal of WCET analysis would be to

prove that a specified deadline can never be violated.

Lastly, we plan to target Precision-Timed Machines (PRET ma-

chines) [1] which achieve repeatable timing by using a thread-

interleaved pipeline, scratchpad memory instead of caches, and a

specialized DRAM controller. FlexPRET [6] distinguishes between

soft and hard real-time threads, and supports an arbitrary interleav-

ing of threads for better utilization given workloads with limited

parallelism. We plan to explore the derivation of FlexPRET sched-

ules from real-time constraints expressed in LF programs.

ACKNOWLEDGMENTS
The work in this paper was supported in part by the National Sci-

ence Foundation (NSF), award #CNS-1836601 (Reconciling Safety

with the Internet) and the iCyPhy Research Center (Industrial

Cyber-Physical Systems), supported by Avast, Camozzi Industries,

Denso, Ford, Siemens, and Toyota.

REFERENCES
[1] Liu, I., et al. A PRET microarchitecture implementation with repeatable tim-

ing and competitive performance. In 2012 IEEE 30th international conference on
computer design (ICCD) (2012), IEEE, pp. 87–93.

[2] Lohstroh, M., Schoeberl, M., Goens, A., Wasicek, A., Gill, C., Sirjani, M., and

Lee, E. A. Actors revisited for time-critical systems. In Proceedings of the 56th
Annual Design Automation Conference 2019, DAC 2019, Las Vegas, NV, USA, June
02-06, 2019 (2019), ACM, pp. 152:1–152:4.

[3] Schoeberl, M., Puffitsch, W., Hepp, S., Huber, B., and Prokesch, D. Patmos: A

time-predictable microprocessor. Real-Time Systems 54(2) (Apr 2018), 389–423.
[4] Wilhelm, R., et al. Theworst-case execution time problem – overview of methods

and survey of tools. Trans. on Embedded Computing Sys. 7, 3 (2008), 1–53.
[5] Wilson, R. Is tomorrow’s embedded-systems programming language still C?

[Online, accessed June 2019].

[6] Zimmer, M., Broman, D., Shaver, C., and Lee, E. A. FlexPRET: A processor

platform for mixed-criticality systems. In Real-Time and Embedded Technology
and Application Symposium (RTAS) (2014).

	Abstract
	1 Introduction
	2 Reactors
	Acknowledgments
	References

