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Abstract: Significant resources have been spent in collecting and storing large and heterogeneous
radar datasets during expensive Arctic and Antarctic fieldwork. The vast majority of data available is
unlabeled, and the labeling process is both time-consuming and expensive. One possible alternative
to the labeling process is the use of synthetically generated data with artificial intelligence. Instead
of labeling real images, we can generate synthetic data based on arbitrary labels. In this way,
training data can be quickly augmented with additional images. In this research, we evaluated the
performance of synthetically generated radar images based on modified cycle-consistent adversarial
networks. We conducted several experiments to test the quality of the generated radar imagery.
We also tested the quality of a state-of-the-art contour detection algorithm on synthetic data and
different combinations of real and synthetic data. Our experiments show that synthetic radar images
generated by generative adversarial network (GAN) can be used in combination with real images for
data augmentation and training of deep neural networks. However, the synthetic images generated
by GANs cannot be used solely for training a neural network (training on synthetic and testing on
real) as they cannot simulate all of the radar characteristics such as noise or Doppler effects. To the
best of our knowledge, this is the first work in creating radar sounder imagery based on generative
adversarial network.

Keywords: convolutional neural network; generative adversarial network; ice tracking; radar imagery

1. Introduction

Ice loss in Greenland and Antarctica has accelerated in recent decades. Melting polar ice sheets
and mountain glaciers have considerable influence on sea-level rise (SLR) and ocean currents; potential
floods in coastal regions could put millions of people around the world at risk. Precise calculation of
ice thickness is very important for sea level and flood monitoring. The shape of the landscape beneath
the thick ice sheets is an important factor in predicting ice flow. Radars are one of the most important
sensors that can penetrate through ice and give us information about the ice thickness.

Several semi-automated and automated methods exist for layer finding and estimating ice
thickness in radar images [1–6]. Crandall et al. [1] used probabilistic graphical models for detecting
the ice layer boundary in echogram images from Greenland and Antarctica. The extension of this work
was presented in [2] where they used Markov-chain Monte Carlo to sample from the joint distribution
over all possible layers conditioned on an image. Mitchell et al. [3] used a level set technique for
estimating bedrock and surface layers. However, for every single image, the user needs to re-initialize
the curve manually and as a result, the method is quite slow and was applied only to a small dataset.
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This problem was fixed in [4,5], where authors introduced a distance regularization term in the level
set approach to maintain the regularity of level set intrinsically. Therefore, it does not need any
manual re-initialization and was automatically applied to a large dataset. However, their technique has
difficulty in detecting the ice bottom when it is faint. The issue of detecting faint layers was improved
in [6] based on an electric charged particle concept. The main issue with the current techniques is that
they are based on feature engineering techniques, which means a set of parameters need to be defined
and tuned for each case and cannot be scaled to big data.

In recent years, the research community has witnessed advances in artificial intelligence (AI).
Recent advances in deep neural networks (DNNs) and massive datasets have facilitated progress in
AI tasks such as classification [7–10], object recognition [11,12], counting [13–15], contour and edge
detection [16] and semantic segmentation [17–19]. Despite this progress, these algorithms are limited
to cases where large labeled datasets are available.

The vast majority of data available in the remote sensing community is unlabeled, and the labeling
process is both time-consuming and expensive. One possible alternative to the labeling process is the
use of synthetically generated data. The standard way for generating synthetic radar data (such as
from a radar depth sounder used to measure ice thickness) is to simulate the radar scattering response
using digital elevation models (DEM) of the ice surface and bottom. Usually, the DEM is represented
by a sheet of points or facets and the total scattering response is the superposition of the scattering
from all of these targets. This data can then be processed through the regular radar data processing
chain to produce a simulated radar image. However, data generation based on a physics simulation is
compute-intensive and cannot be used for generating large data sets.

The goal of this research is to generate synthetic radar images that can be used to train data-driven
algorithms such as deep convolutional neural nets. By synthetic radar image, we mean a radar
image that is generated by data-driven methods without any knowledge of the physics of the
sensor or the environment. In other words, our synthetic radar image simulates the appearance
of real radar imagery. Using some random polynomials that represent the bottom and surface of
the ice, we can generate synthetic radar images that correspond to each label. In this way, we can
generate unlimited pairs of labels and images. In this research, we developed a data-driven machine
learning approach, Generative Adversarial Networks (GANs), for generating synthetic radar data.
A GAN [20] is composed of two simultaneously trained parts called a generator and discriminator.
The discriminator is trained to tell the difference between real and fake images. The generator is
trained to generate realistic-looking images and fool the discriminator. Both components improve until
the synthetic images are indistinguishable from the real images. The discriminators accuracy reduces
to 0.5, indicating that is simply guessing when it makes its decision. For generating synthetic radar
images from labeled data, contours showing the ice surface and ice bottom, (Figure 1-left), we adopted
the CycleGAN framework [21] over other image to image translation based GAN’s primarily due to
the standard static architecture, it’s ability to train with unpaired images, performance, and its ability
to handle texture changes well. Figure 1(right) shows the synthetic radar image which is generated
from an arbitrary polynomial representing ice surface and bottom.
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Figure 1. Generated radar depth sounder image (right) from arbitrary polynomials representing the surface
and bottom of the ice (left). The horizontal axis is the flight path and the vertical axis is the ice depth.

The CycleGAN network works with two different sets of images. Each set of images has its own
discriminator. Two different mapping functions are used, called G and F. Each mapping function
translates an image from one set to the other. The network works with the intuition that if an image
from one set is translated to the other, and that the resulting image is translated back to the original set,
the final result should be approximately the same as the original. The difference in these images is
termed cycle-consistency loss, and is what the network tries to minimize.

Our contributions are summarized as followings:

• Generating synthetic radar images and their corresponding labels based on modified cycle-consistent
adversarial networks.

• Testing and evaluation of generated synthetic imagery based on both qualitative and quantitative
similarity indexes.

• Testing of the generated images for data augmentation and training of a contour detection algorithm.
• Collecting a novel data set of radar imagery from the Arctic and Antarctic.

To the best of our knowledge, this is the first work in creating radar sounder imagery based on
generative adversarial network.

2. Related Work

Generative adversarial networks (GANs) originally proposed by Goodfellow [20] are comprised
of two separate networks called the generator and discriminator. These two components are trained in
a competitive framework, with each learning the features of the input image data set. The task of the
discriminator is to learn the difference between real and fake images, while the generator attempts to
generate realistic images that can fool the discriminator. GANS can be distinguished by the type of
input used as the seed for generating the output. Radford et al. [22] presented a network referred to as
deep convolutional GAN (DCGAN) where the authors emphasize the use of stridden convolutions
over pooling layers, the use of batch normalization, the removal of fully-connected layers, and the
use of ReLU and leaky ReLU activation functions. In paired input GANs, the random noise input
is replaced with a conditional image. Extending the framework of the DCGAN, Conditional GANs
(cGANs) [23] use input in the form of an edge map, semantic label, or gradient field. The cGAN
allows for “translation” of one representation of an image to another. Experiments shown in the
work include translating between maps and aerial photos, black and white image to color image,
and architectural labels to photo. The limitation of needing paired input can be addressed by using
other GAN implementations that work with unpaired input. In another extension to the DCGAN
framework, CycleGAN [21] learns features from two input datasets at the domain level. Two mapping
functions are used that allow translation to happen in a bidirectional manner. After translating
an image to a different domain, the additional mapping function is also used to “reconstruct” the
original image. The difference between these images is the basis for the “cycle-consistency loss” which
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is used to train the network. Recent works have built on the ideas introduced by CycleGAN to suite
their problem and dataset [24–29]. Similar to the idea of building of the CycleGAN we modify the
cycle consistency portion of the loss function to suit our problem.

GANs are notorious for being difficult to train; when training a GAN we have to focus on
both the generator and discriminator. While training they both exploit the modulations in the
data. This ultimately results in a mode collapse of either the generator or the discriminator [30–33].
Mode regularization [30] takes a look into the issue of GANs sensitivities to diminishing gradients by
introducing ways to regularize GANs through regularization, manifold-diffusion training, and a mode
missing metric [30]. CycleGAN focuses on assessing mode collapse by using a history of generated
data to be used in the discriminator [21,34].

GANs have recently been used in many applications including generating images of buildings
from a facade mask, road maps from aerial images, visible imagery from SAR imagery, and multi-sensor
data fusion [21,23,35–37]. In [37], the cGANs framework was used to generate artificial templates to
help with the problem of multi-sensor data fusion, dealing specifically with optical and SAR images.
Using cGANs, the feature extraction step usually needed for template generation can be skipped.
Artificial SAR-like templates were generated from the optical images and used to increase the matching
accuracy of both similarity-based and feature-based approaches. In [36] a single-channel noisy SAR
image was mapped into a visible-like RGB image using GANs. Here we generate a novel dataset of
synthetic Radar depth Sounder Imagery of Ice sheets based on the arbitrary polynomials of ice surface
and bottom boundaries.

GANs have also been used for data augmentation in several cases [38–41]. In [38], the DCGAN
framework was used to supplement a dataset of computed tomography (CT) images of liver lesions.
The enriched dataset was used to train a classification CNN to determine the specific type of lesion
from three categories. The experiment showed that the synthetic images allowed the classifier to
achieve better performance beyond the previous maximum. A similar use can be seen in [39] where
positron emission tomography (PET) images were synthesized from CT images. Conditional GANs
have been used to generate synthetic images of plants given an input mask. The generated images
were used to combat a scarcity of data for phenotyping problems [40]. Similar to this work there is also
a scarcity of mammogram classification datasets mainly due to privacy concerns. A type of conditional
GAN was used to generate malignant and non-malignant images using Infilling [41]. In this work,
we compare multiple dataset samples to assess how a contour detection network is improved by
introducing augmented data generated by GAN.

3. Materials And Methods

3.1. Formulation

The initial goal inherited from the CycleGAN is to learn the mapping functions between the
two domains X and Y [21] (Figure 2). In the first stage, adversarial loss [20] is applied to asses each
generator that will be responsible for learning one domain: G : X → Y and F : Y ← X. Additionally
each mapping function will also be paired with a discriminator DX and DY. The adversarial loss [20]
for the mapping function can expressed as [21]:

LGAN(G, DY, X, Y) = Ey∼pdata(y)[logDY(y)] + Ex∼pdata(x)[log(1−DY(G(x)))], (1)

where G attempts to generate images G(x) that look similar to the images of domain Y, while DY
will try to discriminate between the translated samples G(x) and the real samples y. G’s goal is to
minimize this objective against its adversary D while D will aim to maximize it. Using this we can
also apply it to another mapping function F : Y → X and its discriminator DX[21].
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Figure 2. Starting with an input image that is fed into a generator either Gx or Gy, we can map that
input to the desired output. This output can then be fed into the opposite generator to return back to
the original domain.

Using the adversarial loss these networks can, in theory, learn mappings G and F that produce
outputs identical to the target domains X and Y if G and F are stochastic functions [42]. However,
with large enough capacity, a network can map the same set of input images to any random
permutation of images in the target domain, where any of the learned mappings can induce an output
distribution that matches the target distribution. The cycle constancy loss is defined according to the
following formula:

Lcyc(G, F) = Ex∼pdata(x)[‖F(G(x))− x‖] +Ey∼pdata(y)[‖G(F(y))− y‖]. (2)

Here we have used a more numerically stable function (L2 loss) comparing to L1 loss. A comparison
between L1 and L2 loss is discussed further in the result section.

The full objective that is inherited from CycleGAN [21] is the combination of the two losses with
an addition of the λ parameter that control importance of the losses.

L(G, F, DX , DY) = LGAN(G, DY, X, Y) + LGAN(F, DX , Y, X) + λLcyc(G, F). (3)

Each of the GAN losses apply mean squared error as the criterion. Training the G to minimize
Ex∼pdata(x)[D(G(x))− 1]2 and train the D to minimize Ey∼pdata(y)[D(y)− 1]2 + Ey∼pdata(x)[D(G(x))]2 [21].
This proves to be suitable for images that have larger values or have less discrete values. Additionally, it is
also a suitable criterion for generalization.

3.2. Network

The architecture of the generator network is depicted in Figure 3. This network includes two stride
of two convolutions and nine residual blocks [43] followed by two deconvolution layers. Additionally
each convolution is also activated by a rectified linear unit (ReLu).

Figure 3. Architecture of the generator network (left). Residual block [43] is the main component of
generator network (right).

For the discriminator we maintain the network used by CycleGAN [21] which is a convolutional
neural network with five convolutions. The discriminator network is shown in Figure 4. Additionally,
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each operation is also followed by an instance normalization [44]. Using these residual connections
shows higher stability in unpaired image to image translation, versus a U-net type network with
the skip connections based on an encoding and decoding pathway. This can lead to instability with
unpaired training due to less information being available.

Figure 4. Architecture of the discriminator network.

We also use Shrivastava’s strategy [34] to reduce model oscillation [42] by updating the
discriminators using a history of generated output. This allows the discriminator to view past
generated images that may look worse than a newly generated image; giving the discriminator a sort
of memory [34]. This generated output is stored in an image pool that will fill until it has reached
its maximum size. After that size is reached then the images that have been stored will be swapped
with newly generated images as more images are generated. For training we test different values for
hyperparameters and based on our experimental results we set λ = 10.0 for both domains, use the
Adam Optimizer [42] with a learning rate of 0.0002. The overall flowchart of our method is shown
in Figure 5.
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Figure 5. Flowchart of generating synthetic radar images from ice surface and bottom layer data. F and
GY are the generative networks while DX is the discriminator network.

4. Experimental Results

4.1. Dataset

The images used in this research are CReSIS standard output products collected with a radar
depth sounder (RDS) from the years 2009 to 2017. The horizontal axis is along the flight path and the
vertical axis represents depth. The dark line on the top of the image is the boundary between air and
ice while the more irregular lower boundary represents the boundary between the ice and the terrain.

To train the CycleGAN network we used the RDS dataset and the ground-truth images which are
produced by human annotators. The RDS dataset includes images of various sizes. These images were
then split up into slices which are 512 by 1024 pixels. For the sake of this network, the input images are
downsized to 128 by 256 pixels. Our dataset is comprised of 20,463 training images and 8769 testing
images and the ground-truth images (boundary layers) associated with them.

To test and evaluate the performance of CycleGAN approach we conducted several experiments
including (1) extracting labels from the real radar images using mapping function Y, (2) generating
synthetic images from the ground-truth labels using mapping function G (3) generating synthetic
images from arbitrary polynomial labels and (4) testing and evaluation of state-of-the-art contour
detection algorithm for detecting labels on the synthetic radar images generated by CycleGAN and its
combination with real data.
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4.2. Qualitative Results

The result of generating labels from the real radar data and also generating synthetic images from
ground-truth labels are displayed in Figures 6 and 7, correspondingly.

Figure 6. Image to label (Y) results paired with the actual labels (right) for comparison. The input to
the network is the image (left) while it generates the label (middle).
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Figure 7. Label to Image (G) results paired with the actual radar image (right) for comparison.
The input to the network is the label (left) while it generates the image (middle).

Figure 6 shows that overall the algorithm can generate correct labels. The left column in Figure 6
shows the real radar images, the second column shows the labels generated by Generator Y and the
right column shows the corresponding ground-truth labels. As we can see in the Figure, when there is
a direct path signal at the top of the image, Generator Y detects both the direct path and the actual
ice surface. Moreover, when there is a faint bottom layer, the generator is not able to detect it well
(Top row in Figure 6).

Figure 7 shows that mapping function G can generate high-quality synthetic radar images. In this
figure, the inputs to the algorithm are ground-truth labels (left column). The Generator G generated
the synthetic images using the input labels (middle column). The generated synthetic images look very
much like real radar images (right column). It only struggles with minor details; for example, it cannot
generate the direct path signal at the top of the image.

In addition to generating radar images from actual labeled data, we also generated radar images
from arbitrary labels. Using the idea of tracing an image, we created lines by selecting a starting point
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at random position and then for the top line moving along the x-axis and changing the y coordinate
value by one. This slight change keeps the deviation slight for the top line. Secondly, the bottom
line contains a more visible deviation. Similar to the top line, we select a random point to start
drawing our line at a random position. The only difference is that the y coordinate will change by
two versus one. Figure 8 displays several images that were generated by G(x) with synthetic labels as
the input. This shows that we are able to generate fully-synthetic images using the mapping function
G(x). This process can help in data augmentation of deep neural networks when labeled data are
not available.

Figure 8. Fully synthetic images generated by G(x) by feeding in randomly generated ground truth
labels. Observing these results, we can see that the generative adversarial network (GAN) produces
synthetic images that resemble the structure of original images. Additionally, these results show that
we can use this model for further data augmentation.

4.3. Quantitative Results: Survey

To evaluate the quality of the images that are generated by our algorithm, we conducted
a survey in addition to calculating similarity matrices. In the survey, we first displayed real images to
20 individuals showing the respondent what a real ice image looks like. After that, they were asked to
view 20 images and determine if the image in front of them was real or fake. The results showed that
out of 20 images (10 real and 10 fake) they were collectively unable to determine if the images were
real or fake. In average they scored 50.18% of images as real and 49.81% as fake.

4.4. Quantitative Results: Similarity Metrics

Along with the survey, we also include two other metrics namely structural similarity index
(SSIM) [45–47] and peak signal to noise ratio (PSNR).
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The structural similarity index is expressed as [45,46]:

SSIM(x, y) = I(x, y)∝C(x, y)βS(x, y)γ, (4)

where I is luminance, C is contrast, and S is structure [45,46]. The SSIM attempts to model the
structural change of an image by comparing small windows or sub-samples in the image to compare
the luminance, contrast, and structure of the two images [46]. This metric gives us a robust measure of
the perceived changes in the image. The closer the SSIM is to 1.0 the higher the quality image we
have [46,48]. Another evaluation metric is peak signal to noise ratio (PSNR) or signal to noise ratio
(SNR) [49,50] which is commonly used in the signal processing area as an image quality metric. PSNR
is expressed as [51]:

PSNR = 10log10
2552

〈n(x, y)2〉 , (5)

where 〈n(x, y)2〉 gives mean square error [51]. The higher the PSNR (in dB), the better the quality of
the generated image [48]. Using these two metrics we can show how well the generated synthetic
images look like the real images. In our experiment, the average SSIM is equal to 0.824 and the average
PSNR is equal to 25.716 dB. The SSIM value is close to 1 which means two sets of images are very
similar. PSNR is usually around 20 dB for the visible images generated by GAN algorithm. PSNR for
Radar imagery is usually between 25–30 dB. This shows that our generated images have similar noise
content and comparable image quality to real radar imagery.

4.5. Cycle Loss Evaluation

To display how using L2 loss versus L1 loss affected our experiment we ran a number of
experiments to show how changing the cycle consistency loss and also hyperparameters can affect
the network’s performance. We performed extensive testing on a small dataset for selecting our loss
function and hyperparameters. Overall L2 loss (MSE loss) performed better for all hyperparameters as
it can be seen in Tables 1 and 2.

Table 1. Comparison between L1 and L2 cycle loss function on different image quality metrics for
a small dataset.

Loss Function SSIM (Avg) SSIM (Min) SSIM (Max) PSNR (Avg) PSNR (Min) PSNR (Max)

L1 Cycle Loss [21] 0.68 0.016 0.79 19.15 4.67 24.44

L2 Cycle Loss 0.72 0.57 0.8 20.93 17.78 23.32

Table 2. Comparison between L1 and L2 cycle loss function on different edge detection metrics for
a small dataset.

Loss Function Precision Recall F1 F2

L1 Cycle Loss [21] 0.007 0.008 0.007 0.008

L2 Cycle Loss 0.04 0.1 0.04 0.048

On a small dataset, we tested different combinations of hyperparameters which both λ varied
between 5–15, β between 0.3–0.7 and learning rate between 0.00002–0.002. On a small dataset and with
L2 loss function the following combinations of hyperparameters show the best performance which we
finally tested on our entire large dataset.

In Table 3 the first two columns (SSIM and PSNR) evaluate the quality of generated images while
the rest of the columns evaluate the quality of generated labels.
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Table 3. Comparison between different hyperparameters on our entire dataset. These hyperparameters
are chosen after extensive test with different combinations of hyperparameters on small dataset.

Hyper Parameters SSIM PSNR Precision Recall F1 F2

λA = 5, λB = 5, β = 0.7, R = 0.0002 0.75 23.69 0.048 0.058 0.05 0.06

λA = 10, λB = 10, β = 0.5, R = 0.0002 0.82 25.71 0.33 0.49 0.38 0.43

4.6. Quantitative Results: Improving Edge Detection

One of the goals of creating additional synthetic images through a GAN is to attempt to improve
the performance of contour detection algorithms [47,52–54]. Deep learning approaches are data hungry;
providing a large dataset of labeled data is both time-consuming and expensive. Through training with
synthetic data along with real data, we hypothesize that this training method will improve the results
comparing to training with only real data. The reason behind it is not only increasing the number of
training images but also augmenting quality images. Our synthetic images are less noisy comparing to
the real images.

To approach this experiment we used holistically-nested edge detection (HED) [52]. The HED
uses the VGG16 architecture with the addition of five side outputs to provide multi-scale images
and multi-scale feature learning. The HED is composed of five convolutional blocks each containing
a number of convolutions. At the end of each convolutional block, there is a side output that consists
of a 1×1 convolution followed by deconvolution to upsample the output to match the input size.
Then once the five side outputs are produced they are concatenated and then fused together by
a 1×1 convolution [52].

There are two image sets, real and synthetic and they both contain the same number of images.
There were six experiments conducted to evaluate the effectiveness of adding the additional data.
The first two experiments are the real and synthetic datasets meaning that the HED algorithm was
trained and tested on real data, and synthetic data, correspondingly. The next four experiments use
various dataset combinations. Mixture 1 for training uses the equal number of real and synthetic
images for training (20,463 real and 20,463 synthetic images) and an equal number of real and synthetic
data for testing (8769 real images and 8769 synthetic images). Mixture 2 for training uses the real
training images and half of the synthetic training images. For testing uses the real testing images
and the synthetic testing images. Mixture 3 for training uses the synthetic training images and for
testing uses the real testing images. Mixture 4 for training uses half of the real training images and the
synthetic training images and for testing uses the real testing images. Table 4 shows the number of the
images used for training and testing at each experiment and also the results of the six experiments.

Table 4. Comparison between training an holistically-nested edge detection (HED) [52] with six types
of datasets.

Dataset Used Number of Train/Test Samples Precision Recall F1 Score F2 Score

Real 20,463/8769 0.518 0.586 0.507 0.534

Synthetic 20,463/8769 0.417 0.500 0.451 0.478

Mixture 1 40,926/17538 0.575 0.660 0.590 0.621

Mixture 2 30,694/17538 0.522 0.528 0.506 0.510

Mixture 3 20,463/8769 0.172 0.136 0.139 0.134

Mixture 4 30,694/8769 0.394 0.680 0.463 0.551

As displayed in Table 4, Mixture 1 has the highest F scores; It shows that adding synthetic images
will increase the performance of the edge detection algorithm. Adding more synthetic images during
training will increase the performance. That is the reason that mixture 1 has higher accuracy comparing
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to mixture 2. However, mixture 3 has the lowest F scores as it is trained on synthetic data but tested
in real images. Therefore it is important that the algorithm sees some sample of real data during the
training. When we add half of real training data to synthetic training data but still test it on real data
(mixture 4), F scores are improved comparing to mixture 3. F-scores of mixture 4 are higher than when
we train and test on synthetic images (compare synthetic row with mixture 4 row) and F2 score is even
higher than the training and testing on real images.

In general, there is an improvement to the network once we introduce synthetic examples. F-scores
are increased by introducing the synthetic training examples along with the real data (mixture 1).
Based on our observations, although GANs generate synthetic images that look very much like real
data, they cannot simulate all radar characteristics and that is why training on synthetic and testing on
real data (mixture 3) cannot produce high accuracy results. The reason that mixture 1 has the highest
F-score is that there is an equal distribution of real and synthetic images during both training and
testing while mixture 4 is mainly dominated with synthetic images during training.

Figures 9 and 10 shows some qualitative results. As can be seen in this figure, mixture 1 that has
the highest number of synthetic images during the training has the highest quality while mixture 3
which is trained on synthetic images and tested on real images, has the lowest quality.

Figure 9. HED results after training with the six dataset splits. These results include real image examples.
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Figure 10. HED results after training with the six dataset splits. These results include synthetic data
during both training and testing.

5. Conclusions

Here we developed an architecture based on the CycleGAN network to generate synthetic
radar depth sounder images. This method can also be used to generate other types of radar images.
We conducted several experiments for testing the generated synthetic images based on qualitative
survey and qualitative similarity metrics. Based on qualitative survey users were not able to distinguish
between real and simulated data. Similarity metrics also demonstrate high statistical proximity of
AI-generated results to the real radar data. We also tested the performance of a contour detection
algorithm based on different combinations of real and synthetic data. Our experiments show that
synthetic radar images generated by GANs can be used in combination with real images for data
augmentation and training of deep neural networks. However, the synthetic images generated by
GANs cannot be used solely for training a neural network because they cannot simulate all of the radar
characteristics such as noise or Doppler effects. This shows that our simulated data are very similar to
real data from the appearance and statistical point of view but the model cannot simulate the physics.
Moving forward we plan to apply the simulated data generation to snow radar data that contain more
than two layers. This will also lead us to develop a stronger label creator that can take more factors
into consideration such as the geometric shapes of layers. We will also explore the combination of AI
and physics simulators for a more realistic radar data simulator.



Sensors 2019, 19, 5479 15 of 17

Author Contributions: M.R. and J.J. conceived and designed the experiments; J.P. was involved in the real
data collection and supervised the data processing and the manual labeling of these data. J.J. performed the
experiments; M.R. supervised the whole project. M.R. and J.J. analyzed the data; All three authors wrote the paper.

Acknowledgments: This work is partially supported by NSF BIGDATA awards (IIS-1838230, IIS-1838024), IBM,
and Amazon.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Crandall, D.J.; Fox, G.C.; Paden, J.D. Layer-finding in radar echograms using probabilistic graphical
models. In Proceedings of the 21st International Conference on Pattern Recognition (ICPR), Tsukuba, Japan,
11–15 November 2012; IEEE: Hoboken, NJ, USA, 2012; pp. 1530–1533.

2. Lee, S.; Mitchell, J.; Crandall, D.J.; Fox, G.C. Estimating bedrock and surface layer boundaries and confidence
intervals in ice sheet radar imagery using MCMC. In Proceedings of the IEEE International Conference on
Image Processing (ICIP), Paris, France, 27–30 October 2014; IEEE: Hoboken, NJ, USA, 2014, pp. 111–115.

3. Mitchell, J.E.; Crandall, D.J.; Fox, G.C.; Rahnemoonfar, M.; Paden, J.D. A semi-automatic approach
for estimating bedrock and surface layers from multichannel coherent radar depth sounder imagery.
In Proceedings of the SPIE Remote Sensing, Dresden, Germany, 23–26 September 2013; International
Society for Optics and Photonics: Bellingham, WA, USA, 2013; p. 88921E.

4. Rahnemoonfar, M.; Yari, M.; Fox, G.C. Automatic polar ice thickness estimation from SAR imagery.
In Proceedings of the SPIE Defense + Security, Baltimore, MD, USA, 17–21 April 2019; International Society
for Optics and Photonics: Bellingham, WA, USA, 2016; p. 982902.

5. Rahnemoonfar, M.; Fox, G.C.; Yari, M.; Paden, J. Automatic Ice Surface and Bottom Boundaries Estimation
in Radar Imagery Based on Level-Set Approach. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5115–5122.
[CrossRef]

6. Rahnemoonfar, M.; Abbassi, A.; Paden, J.; Fox, G.C. Automatic ice thickness estimation in radar imagery
based on charged particle concept. In Proceedings of the IEEE International Geoscience and Remote Sensing
Symposium, Fort Worth, TX, USA, 23–28 July 2017.

7. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems 25; Curran Associates, Inc.: Red Hook, NY, USA, 2012;
pp. 1097–1105.

8. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv
2014, arXiv:1409.1556.

9. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9.

10. Sheppard, C.; Rahnemoonfar, M. Real-time scene understanding for UAV imagery based on deep
convolutional neural networks. In Proceedings of the 2017 IEEE International Geoscience and Remote
Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; IEEE: Hoboken, NJ, USA, 2017;
pp. 2243–2246.

11. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and
Semantic Segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern
Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587.

12. Hariharan, B.; Arbeláez, P.; Girshick, R.; Malik, J. Simultaneous Detection and Segmentation. In Computer
Vision—ECCV 2014; Proceedings of the 13th European Conference, Zurich, Switzerland, 6–12 September 2014;
Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer International Publishing: Cham, Switzerland,
2014; Part VII, pp. 297–312.

13. Rahnemoonfar, M.; Sheppard, C. Deep count: Fruit counting based on deep simulated learning. Sensors
2017, 17, 905. [CrossRef] [PubMed]

14. Rahnemoonfar, M.; Sheppard, C. Real-time yield estimation based on deep learning. In Autonomous Air and
Ground Sensing Systems for Agricultural Optimization and Phenotyping II; International Society for Optics and
Photonics: Bellingham, WA, USA, 2017; Volume 10218, p. 1021809.

http://dx.doi.org/10.1109/TGRS.2017.2702200
http://dx.doi.org/10.3390/s17040905
http://www.ncbi.nlm.nih.gov/pubmed/28425947


Sensors 2019, 19, 5479 16 of 17

15. Rahnemoonfar, M.; Dobbs, D.; Yari, M.; Starek, M.J. DisCountNet: Discriminating and counting network for
real-time counting and localization of sparse objects in high-resolution UAV imagery. Remote Sens. 2019,
11, 1128. [CrossRef]

16. Kamangir, H.; Rahnemoonfar, M.; Dobbs, D.; Paden, J.; Fox, G.C. Detecting ice layers in Radar images with
deep hybrid networks. In Proceedings of the IEEE Conference on Geoscience and Remote Sensing (IGARSS),
Valencia, Spain, 22–27 July 2018.

17. Farabet, C.; Couprie, C.; Najman, L.; LeCun, Y. Learning Hierarchical Features for Scene Labeling.
IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1915–1929. [CrossRef] [PubMed]

18. Mostajabi, M.; Yadollahpour, P.; Shakhnarovich, G. Feedforward semantic segmentation with zoom-out
features. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Boston, MA, USA, 7–12 June 2015; pp. 3376–3385.

19. Rahnemoonfar, M.; Robin, M.; Miguel, M.V.; Dobbs, D.; Adams, A. Flooded area detection from UAV images
based on densely connected recurrent neural networks. In Proceedings of the 2017 IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 22–27 July 2018; IEEE: Hoboken, NJ,
USA, 2018; pp. 3743–3746.

20. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y.
Generative adversarial nets. In Advances in Neural Information Processing Systems; NIPS: San Diego, CA, USA,
2014; pp. 2672–2680.

21. Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation Using Cycle-Consistent
Adversarial Networks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV),
Venice, Italy, 22–29 October 2017. [CrossRef]

22. Radford, A.; Metz, L.; Chintala, S. Unsupervised Representation Learning with Deep Convolutional
Generative Adversarial Networks. arXiv 2015, arXiv:1511.06434.

23. Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks.
In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Honolulu,
HI, USA, 21–26 July 2017. [CrossRef]

24. Ganguli, S.; Garzon, P.; Glaser, N. GeoGAN: A Conditional GAN with Reconstruction and Style Loss to
Generate Standard Layer of Maps from Satellite Images. arXiv 2019, arXiv:1902.05611.

25. Liu, Y.; Chen, W.; Liu, L.; Lew, M.S. SwapGAN: A Multistage Generative Approach for Person-to-Person
Fashion Style Transfer. IEEE Trans. Multimed. 2019, 21, 2209–2222. [CrossRef]

26. Wu, L.; Wang, Y.; Shao, L. Cycle-consistent deep generative hashing for cross-modal retrieval. IEEE Trans.
Image Process. 2019, 28, 1602–1612. [CrossRef]

27. Shah, M.; Chen, X.; Rohrbach, M.; Parikh, D. Cycle-Consistency for Robust Visual Question Answering.
arXiv 2019, arXiv:1902.05660.

28. Qiao, T.; Zhang, W.; Zhang, M.; Ma, Z.; Xu, D. Ancient Painting to Natural Image: A New Solution for
Painting Processing. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision
(WACV), Waikoloa Village, HI, USA, 7–11 January 2019; IEEE: Hoboken, NJ, USA, 2019; pp. 521–530.

29. Almahairi, A.; Rajeswar, S.; Sordoni, A.; Bachman, P.; Courville, A.C. Augmented CycleGAN: Learning
Many-to-Many Mappings from Unpaired Data. arXiv 2018, arXiv:1802.10151.

30. Che, T.; Li, Y.; Jacob, A.P.; Bengio, Y.; Li, W. Mode regularized generative adversarial networks. arXiv 2016,
arXiv:1612.02136.

31. Kodali, N.; Abernethy, J.; Hays, J.; Kira, Z. On Convergence and Stability of GANs. arXiv 2017,
arXiv:1705.07215.

32. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein GAN. arXiv 2017, arXiv:1701.07875.
33. Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A. Improved Training of Wasserstein GANs.

arXiv 2017, arXiv:1704.00028.
34. Shrivastava, A.; Pfister, T.; Tuzel, O.; Susskind, J.; Wang, W.; Webb, R. Learning from simulated and unsupervised

images through adversarial training. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [CrossRef]

35. Kim, T.; Cha, M.; Kim, H.; Lee, J.K.; Kim, J. Learning to Discover Cross-Domain Relations with Generative
Adversarial Networks. arXiv 2017, arXiv:1703.05192.

http://dx.doi.org/10.3390/rs11091128
http://dx.doi.org/10.1109/TPAMI.2012.231
http://www.ncbi.nlm.nih.gov/pubmed/23787344
http://dx.doi.org/10.1109/iccv.2017.244
http://dx.doi.org/10.1109/CVPR.2017.632
http://dx.doi.org/10.1109/TMM.2019.2897897
http://dx.doi.org/10.1109/TIP.2018.2878970
http://dx.doi.org/10.1109/cvpr.2017.241


Sensors 2019, 19, 5479 17 of 17

36. Wang, P.; Patel, V.M. Generating high quality visible images from SAR images using CNNs. In Proceedings of
the 2018 IEEE Radar Conference (RadarConf18), Oklahoma City, OK, USA, 23–27 April 2018; IEEE: Hoboken,
NJ, USA, 2018; pp. 570–575.

37. Merkle, N.; Fischer, P.; Auer, S.; Müller, R. On the possibility of conditional adversarial networks for multi-sensor
image matching. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS),
Fort Worth, TX, USA, 23–28 July 2017; pp. 2633–2636. [CrossRef]

38. Frid-Adar, M.; Klang, E.; Amitai, M.; Goldberger, J.; Greenspan, H. Synthetic Data Augmentation using
GAN for Improved Liver Lesion Classification. arXiv 2018, arXiv:1801.02385.

39. Ben-Cohen, A.; Klang, E.; Raskin, S.P.; Soffer, S.; Ben-Haim, S.; Konen, E.; Amitai, M.M.; Greenspan, H.
Cross-Modality Synthesis from CT to PET using FCN and GAN Networks for Improved Automated Lesion
Detection. Eng. Appl. Artif. Intell. 2019, 78, 186–194. [CrossRef]

40. Zhu, Y.; Aoun, M.; Krijn, M.; Vanschoren, J. Data augmentation using conditional generative adversarial
networks for leaf counting in arabidopsis plants. In Proceedings of the British Machine Vision Conference,
Newcastle, UK, 3–6 September 2018.

41. Wu, E.; Wu, K.; Cox, D.; Lotter, W. Conditional Infilling GANs for Data Augmentation in Mammogram
Classification. In Image Analysis for Moving Organ, Breast, and Thoracic Images; Lecture Notes in Computer
Science; Springer: Berlin/Heidelberg, Germany, 2018; pp. 98–106. [CrossRef]

42. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.
43. He, K.; Zhang, X.; Ren, S.; Sun, J. Identity mappings in deep residual networks. arXiv 2016, arXiv:1603.05027.
44. Ulyanov, D.; Vedaldi, A.; Lempitsky, V. Instance normalization: The missing ingredient for fast stylization.

arXiv 2016, arXiv:1607.08022.
45. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to

structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [CrossRef]
46. Ridgeway, K.; Snell, J.; Roads, B.; Zemel, R.S.; Mozer, M.C. Learning to generate images with perceptual

similarity metrics. arXiv 2015, arXiv:1511.06409.
47. Kahaki, S.M.M.; Nordin, M.J.; Ashtari, A.H.; Zahra, S.J. Invariant feature matching for image registration

application based on new dissimilarity of spatial features. PLoS ONE 2016, 11, e0149710.
48. Borji, A. Pros and Cons of GAN Evaluation Measures. arXiv 2018, arXiv:1802.03446.
49. Korhonen, J.; You, J. Peak signal-to-noise ratio revisited: Is simple beautiful? In Proceedings of the

Fourth International Workshop on Quality of Multimedia Experience, Yarra Valley, Australia, 5–7 July 2012;
pp. 37–38. [CrossRef]

50. Wang, Z.; Bovik, A.C. Mean squared error: Love it or leave it? A new look at Signal Fidelity Measures.
IEEE Signal Process. Mag. 2009, 26, 98–117. [CrossRef]

51. Yao, S.; Lin, W.; Ong, E.; Lu, Z. Contrast signal-to-noise ratio for image quality assessment. In Proceedings
of the IEEE International Conference on Image Processing 2005, Genova, Italy, 14 September 2005; Volume 1,
pp. 397–400. [CrossRef]

52. Xie, W.; Noble, J.A.; Zisserman, A. Microscopy Cell Counting with Fully Convolutional Regression Networks.
Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2018, 6, 283–292. [CrossRef]

53. Kahaki, S.; Nordin, M.; Ashtari, A. Contour-based corner detection and classification by using mean
projection transform. Sensors 2014, 14, 4126–4143. [CrossRef]

54. Grigorescu, C.; Petkov, N.; Westenberg, M.A. Contour detection based on nonclassical receptive field
inhibition. IEEE Trans. Image Process. 2003, 12, 729–739. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/IGARSS.2017.8127535
http://dx.doi.org/10.1016/j.engappai.2018.11.013
http://dx.doi.org/10.1007/978-3-030-00946-5_11
http://dx.doi.org/10.1109/TIP.2003.819861
http://dx.doi.org/10.1109/QoMEX.2012.6263880
http://dx.doi.org/10.1109/MSP.2008.930649
http://dx.doi.org/10.1109/ICIP.2005.1529771
http://dx.doi.org/10.1080/21681163.2016.1149104
http://dx.doi.org/10.3390/s140304126
http://dx.doi.org/10.1109/TIP.2003.814250
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Materials And Methods
	Formulation
	Network

	Experimental Results
	Dataset
	Qualitative Results
	 Quantitative Results: Survey
	 Quantitative Results: Similarity Metrics
	Cycle Loss Evaluation
	Quantitative Results: Improving Edge Detection 

	Conclusions
	References

