IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XYZ, NO. XYZ, XYZ 1

Programmable Logic Controllers
in the Context of Industry 4.0

Martin A. Sehr,! Marten Lohstroh,2 Matthew Weber,? Ines Ugalde,1 Martin Witte,3
Joerg Neidig,® Stephan Hoeme,? Mehrdad Niknami,? Edward A. Lee?

Abstract—Programmable Logic Controllers (PLCs) are an es-
tablished platform, widely used throughout industrial automation
but poorly understood among researchers. This paper gives
an overview of the state of the practice, explaining why this
settled technology persists throughout industry and presenting
a critical analysis of the strengths and weaknesses of the
dominant programming styles for today’s PL.C-based automation
systems. We describe the software execution patterns that are
standardized loosely in IEC 61131-3. We identify opportunities
for improvements that would enable increasingly complex in-
dustrial automation applications while strengthening safety and
reliability. Specifically, we propose deterministic, distributed pro-
gramming models that embrace explicit timing, event-triggered
computation, and improved security.

I. INTRODUCTION

HILE Industry 4.0, digitalization, and the Internet of

Things all promise increased use of general-purpose
software and networks in industrial applications, there are
significant risks. In such applications, safety, reliability, se-
curity, and efficiency are even more important than in many
information technology and home automation applications.
Programmable Logic Controllers (PLCs) provide an ecosystem
of relatively simple software logic, robust and ruggedized
hardware, networks with controllable real-time behaviors, and
extensive availability of interoperable components such as sen-
sors and actuators. As such, PLCs are an established platform
for factory automation and industrial process design governed
by the IEC 61131 standard [1]. The platform includes pro-
gramming style (in part 3 of the standard), networking style (in
part 5), and physical interconnects (in part 2), each enabling
composition of components in complex automation systems
with predictable behavior. No comparably robust and reliable
ecosystem has yet emerged using general-purpose operating
systems and networks with embedded software.

Today’s PLC ecosystem, however, is suffering growing
pains as the complexity of automation systems increases,
integration with Internet and wireless services becomes essen-
tial, and integration of learning, computer vision, and speech
recognition are demanded by end-users. While there have

1Sehr and Ugalde are with Corporate Technology, Siemens Corporation,
Berkeley, CA 94704, USA.

2L ohstroh, Weber, Niknami and Lee are with the EECS Department, UC
Berkeley, Berkeley, CA 94720, USA. Their work was supported in part by the
US National Science Foundation (NSF), award #CNS-1836601 (Reconciling
Safety with the Internet)

SWitte, Neidig and Hoeme are with Digital Industries, Siemens AG,
Nuremberg, 90475, Germany.

Manuscript received FIXME, 2019; revised FIXME, 2020.

been many innovative changes to PLCs over the past decades,
most of the development has been focused on integration of
improved hardware components rather than structural changes
to the programming model. For example, where early PLCs
were able to execute tens of instructions per second, modern
PLCs can perform bit operations in nanoseconds. However,
the programming model motivated by IEC 61131-3 has not
changed substantially across PLC realizations by different
vendors. We argue in this article that PLCs as a platform have
the potential to grow into the novel capabilities demanded in
modern manufacturing problems without compromising their
existing advantages. To see how to do that, we discuss essential
features of the current platform, identify weaknesses that
form barriers, and propose a list of directions for possible
improvements. We believe that the suggested adaptations will
maintain the benefits of today’s PLC designs, particularly
safety and reliability, while enabling continued widespread
application amid growing requirements.

Whereas simple systems can be designed, prototyped, and
tested in their intended deployment context, prototype-and-
test design iterations are problematic in industrial automation.
Testing low-confidence designs is not an option for complex
compositions of components [2], [3]. As a consequence, evolv-
ing and augmenting existing designs will require more reliance
on formal properties of the platform as well as virtual proto-
typing, where simulation and verification replace prototype-
and-test. It will be important, therefore, when evolving the
PLC platform, to not just increase flexibility and generality
of programming possibilities, but also to enforce constraints
ensuring predictable, analyzable, and reliable behavior.

For example, with some modern PLC models, it is possi-
ble to integrate custom C code into otherwise conventional
automation code, but with critical constraints. A C procedure
that is called synchronously from within a periodic task, for
example, will typically have a highly restricted execution
environment, limiting access to memory and APIs such as
the networking stack. These restrictions help prevent problems
in the C code (such as blocking on a network access) from
disrupting timing-critical elements of the program. To regain
flexibility, these same environments provide mechanisms for
asynchronous invocation of arbitrary C code that is much less
restricted; asynchronous invocation ensures that invoked C
modules cannot disrupt the timing of critical tasks. In more
general-purpose programming environments, such isolation is
achievable, but it requires considerable expertise and discipline
from the programmer. One of the strengths of the PLC
platform is that it enforces constraints rather than depending

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XYZ, NO. XYZ, XYZ 2

on the tenacity of programmers to follow best practices.

In this article, we examine the current state of the practice
in PLC-based industrial automation systems, focusing on
the essential properties of PLCs that make them robust and
reliable. Ultimately, we identify strengths and weaknesses of
today’s approaches and suggest paths for improvement towards
future automation platforms. Our intention with this paper is
not to address in detail the various possible solutions to these
points, but rather to raise awareness of issues to be addressed
in development of the next generation of PLCs to enable
continued widespread use throughout industrial automation.

II. PLC DEVELOPMENT
A. Historical Perspectives

PLCs were originally designed to substitute electromechan-
ical devices like relays, which implemented simple control
logic in cabinets. However, PLCs have evolved to become
standardized computers, albeit with some special properties
as compared to other control system architectures:

o PLC hardware, unlike many embedded systems, is not
designed for a specific installation space. Instead, a PLC
is a modular, reusable, and often ruggedized component
intended for installation in cabinets.

o The hardware provides a wide range of largely standard-
ized connection options (see part 5 of [1]), powered by
a rich programming and configuration system.

« Instead of a general-purpose operating system, PLCs pro-
vide a cyclic and prioritized execution model, including
cycle time monitoring, adapted to automation.

o PLCs provide a stable runtime environment with basic
functionality that prevents programming errors from com-
promising the integrity of an industrial control system.

e One need not be an expert software or control engineer
to program a PLC in a dependable way, increasing the
accessibility of the programming model.

The development of these characteristics was largely complete
in the late 1980s. Since then, runtime system and overall ex-
ecution semantics of the PLC have not changed substantially:

1) The main workload of a PLC is done in scan cycles, with
processing control tasks organized in functions.

2) Functions operate on an internal region of memory called
the I/0 image table, where inputs and outputs are updated
manually or automatically, but I/O occurs only at spec-
ified time points such as at the beginning and end of a
cycle.

Nevertheless, the requirements for PLC programming have
gradually evolved over time. In particular:

1) The number of control tasks per PLC has increased dra-
matically, increasing the risk of undesirable interactions.

2) The number of applications with differing requirements
has grown. Today, PLCs are used in processing plants,
production machines, assembly lines, and even ships.

3) The types of control applications to be handled have ex-
tended over time from simple logic control with sampling
times in the order of seconds to milliseconds to complex
control schemas, such as in high-frequency motion con-
trol for synchronized drives with sampling times down to

the order of microseconds, predictive control, or control
based on analysis of complex data.

4) PLCs are part of a real-time network on the factory
floor, connecting basic sensors and actuators, distributed
intelligent peripheral devices (see, e.g., a recent proposal
in [4]), and other industrial control systems such as
protection switches, motion control systems, Supervisory
Control and Data Acquisition (SCADA) systems, and
edge devices.

The PLC community has responded to changing requirements
with new programming languages, specialized prioritized scan
cycles, and dedicated I/O hardware hiding networking from
PLC programmers. Also, processing speeds and memory have
increased substantially over the years.

B. Embedded Devices

PLCs and other industrial control devices are often viewed
as embedded devices, with the idea that these devices, unlike
general purpose computers, are dedicated to performing a
specific task. An embedded device is simply a microprocessor
that is either programmed directly, without an operating sys-
tem, or indirectly using any of a range of operating systems,
including variants of Linux [5], [6]. Such devices can reside
on customized printed circuit boards that are adapted to very
particular physical settings. For relatively large volume appli-
cations, such as controllers in cars, large, complex engineering
methodologies have evolved employing model-based design,
code generation, and hardware-in-the-loop testing.

In contrast, PLCs are typically sold off-the-shelf, with
variants adapted to a wide range of environmental conditions
and spanning various protection classes and safety integrity
levels. They enjoy flexible but standardized I/O-connectivity.
The operating system of a PLC is customized to real-time con-
trol, making it easier to make reliable and robust controllers.
Moreover, their programming environments are designed for
use by specialists in automation, not software. It is cost
effective to use a PLC for individual automation problems,
where only one instance of the design is expected to ever be
deployed. It is also increasingly common for PLCs to coexist
and interact with embedded controllers.

C. CPS and IoT

Trends such as Industry 4.0 predict the use of decentralized
control and increased intelligence [7], [8]. Today, PLCs are
centralized controllers communicating with sensors and actua-
tors as part of the traditional automation pyramid (see Fig. 1).
All connected devices are viewed as I/O type devices, without
knowledge of their inherent complexities and behaviors aside
from delivered and consumed values.

In decentralized control, communication may no longer be
periodic but event-based, and ensuring deterministic results
can impose additional requirements such as timestamping on
the event-based system. Furthermore, if intelligent systems
exchange information, it is imperative to understand at least
parts of their mutual behaviors for exhibiting correct reactions.
This can be captured formally by contracts [9]. However,

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XYZ, NO. XYZ, XYZ 3

days / weeks

hours

minutes / SCADA/ HMI/ DCS
ms/s / PLC

o/ \

Fig. 1. PLCs form the control layer of the traditional Automation Pyramid,
operating between field devices, such as sensors and actuators, and supervisory
layer systems, such as SCADA, Distributed Control Systems (DCS), or
Human-Machine Interfaces (HMI). At the top layers, this data acquired within
lower layers is processed by Manufacturing Executions Systems (MES) and
Enterprise Resource Planning (ERP).

Time Horizon

Amount of Data
Number of Components

Sensors & Actuators

assumptions on the behavior of peripheral devices and physical
systems in current automation code are typically implicit.

The essential role of PLCs, in contrast to higher levels of the
automation pyramid, is to interact with sensors and actuators.
PLCs, therefore, lie at the boundary between the cyber and the
physical in CPS and between the Internet and the Things in
IoT. Their design, therefore, is not just a matter of computation
and algorithms, but also a matter of physical dynamics. Timing
becomes much more than simply a measure of performance;
it becomes central to correct operation.

D. Automation of Automation

Automation engineers often lack expertise in control the-
ory, so automation functions may be simple from a control-
theoretic standpoint. But automation of a plant is far from
trivial. The number of interacting components ranges from
thousands in an automotive production line to tens of thou-
sands in the process industry. Moreover, physical side-effects,
interlocking, error handling, start-up, shut-down, special com-
missioning testing, clean-up, functional safety, and manufac-
turing execution system communication are all aspects to be
considered in addition to control of the production process.

Integrated development environments and simulators facili-
tate the design of complex hierarchical automation systems,
but the industry is ripe for the development of more so-
phisticated computer-aided design techniques. The means for
structuring PLC code have not kept up with the growing com-
plexity. Although the programming model has been extended
with object orientation in the latest version of IEC 61131-
3 [1], the programming model lacks sufficient means for code
and data encapsulation, hardware abstraction, layered architec-
tures, and separated process spaces. Moreover, communication
mechanisms between code fragments remain primitive, relying
largely on shared memory locations and parameter lists.

Because PLCs operate at the boundary between the cyber
and the physical, their programming model must necessarily
draw from both sides. This is done today with an emphasis on
periodic computation with specified timing, but other aspects
of the computational model, such as communication between
software components, today fail to embrace the physical side.

This can be done, for example, with explicit timestamping
of messages, as we describe below. Languages and tools that
more directly embrace the physical aspects of the design
will lie cognitively closer to way of thinking of automation
engineers, rather than software engineers, and therefore may
be better suited for use on a factory floor.

III. PROGRAMMABLE LOGIC CONTROLLERS

The programming model for PLCs, loosely defined by the
standard IEC 61131-3 [1], lies at the heart of their character,
so it is worth reviewing here. We highlight its fundamental
strengths and weaknessess in order to set the stage for a
discussion (see Sec. IV-D) in which we identify opportunities
for innovation in the design space of PLCs. We do not address
in detail IEC 61499, an event-driven extension of IEC 61131-
3, predominantly because it has not achieved significant usage
in industry. For perspectives on the differences between IEC
61131-3 and IEC 61499 and, software engineering in industrial
automation in general, see [10]-[12].

Compared to general embedded control systems, PLCs
provide a more structured and constrained framework for de-
sign, with specific support for vetted, commonly-used design
patterns [13]-[15]. They can be programmed in a number of
languages at different abstraction levels, such as:

o Structured Text (imperative, based on PASCAL);

o Instruction Lists (akin to assembly language);

o Ladder Diagrams (based on ladder logic, a notation used
for hardwired relay circuits);

o Function Block Diagram (a graphical language); and

o Sequential Function Charts (graphical, akin to Petri Nets).

We next define three major components of a PLC-based
design: computational components, consisting of software to
be executed; data, sections of memory with particular roles;
and devices, providing data to the computations or use data
provided by the computations.

A. Computational Components

We next review the core elements of the programming
model defined by IEC 61131-3.

1) Tasks: Tasks are blocks of computation that are executed
in response to CPU events and often invoked on a periodic
basis via timer interrupts. There is always a main task that
executes in an infinite loop and may be preempted by other,
higher priority tasks. Every task has a notion of a single, finite
execution called cycle, and cycles of a task may be executed
repeatedly, often with an unbounded number of executions.

The main task may also be assigned a minimum cycle
time T, in which case, if it finishes a cycle before time T’
has elapsed since the cycle began, then the next cycle is
delayed until 7" has elapsed and the resulting CPU idle time
may be used for purposes such as communication, which
generally is handled outside the user program. For illustration,
Fig. 2 depicts the main cycle with minimum cycle time being
preempted by a higher priority task. If the main task is not
assigned a minimum cycle time, then it executes as fast as
possible (AFAP), in that each cycle begins as soon as the
previous cycle has ended. Note that only the lowest-priority

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XYZ, NO. XYZ, XYZ 4

Minimum Cycle Time

Cycle Time of Main Task

Read I/O

Write I/O q
/ Main Task
Image Input

Image Output

Main Task ‘

Write I/O Image
Partition Output

Read 1/O Image
Partition Input

Interrupting Task

Fig. 2. Main task with minimum cycle time interrupted by a higher
priority task; I/O image partition associated with interrupting task is updated
accordingly; Main I/O image update prior to execution of main task.

tasks on any single PLC can use this AFAP style because such
a task will block execution of any other tasks of lower priority.

Once a cycle in a task is started, it runs to completion,
possibly with temporary preemption by a higher priority
task. All tasks have distinct priorities, and no task executes
unless all other higher-priority tasks on the same PLC are
stalled between cycles. Note that this property makes it more
difficult to leverage the parallelism of multiple cores in a
multicore CPU. Any simple strategy of simply executing tasks
simultaneously on multiple cores will violate this property and
therefore change program behavior in unpredictable ways.

Consider the sketch of a schedule with four tasks shown
in Fig. 3. The horizontal axis is time in some arbitrary units.
The main task (at the bottom) has the lowest priority. It uses
the processor only when other tasks are idle. In this sketch,
the highest priority task (at the top in green) has a period of
one time unit and a worst-case execution time (WCET) of 0.5.
The sketch assumes that the task actually uses the full WCET,
although typically it will use less time than that, often a lot
less. The highest priority task always preempts other tasks and
hence executes with a regular schedule. For all other tasks, the
schedule is irregular and dependent on the actual execution
times (not the WCET) of all higher priority tasks.

In the sketch, the second highest priority task (in red) has a
period of four time units and a WCET of one time unit. Again,
the sketch assumes its execution occupies the entire WCET,
in which case it will be preempted once per cycle. The next
highest priority task (in blue) is assumed to have a period of
eight time units and a WCET of 1.5. In the worst case, this
leaves 0.5 time units for the main task in each major cycle of
eight time units.

highest priority task

1 preemption 1 1 1 preemption !

: : :

1 1 1

WCET =1 | | preemption !

h'g ~ |

N I

WCET=1.5 preemption |

lowest priority task main task .
0 2 4 6 8

Fig. 3. A nested schedule of periodic tasks.

With this sketch, we can understand a number of serious
challenges posed by the PLC model of computation. First, the
de facto standard practice of using polling to read sensor data
requires the period of the task doing the polling to be smaller
than the required response time. For example, if we have a
sporadic sensor that detects a rare condition and requires a
response within, say, 100 microseconds, then this task cannot
have a period longer than 100 microseconds. This is true even
if the sensor only very rarely produces events. This might seem
harmless because, presumably, if the sensor has not detected
an event, then the task will not have much to do and therefore
will not occupy much execution time. But the real cost is that
it will preempt whatever task is currently running.

Preemption has several costs. First, it comes with consider-
able overhead (saving and restoring processor state). Second,
it generates traffic on shared resources such as busses and
networks. Third, on almost all modern microprocessors, it
invalidates WCET analysis. WCET analysis on modern mi-
croprocessors usually requires that interrupts be disabled [16],
implying no preemption. Although our sketch implies that
preemption occurs at predictable points in the execution, this
is not actually the case because the sketch assumes that
everything is actually running as slow as possible, occupying
its full WCET. This will rarely be the case. As a consequence,
preemption occurs at an arbitrary point during execution of a
task. This affects caches, branch predictors, and other state-
dependent hardware in unpredictable ways. As a consequence,
we are forced to make pessimistic assumptions (e.g., that every
memory access is a cache miss), resulting in extremely conser-
vative WCET estimates. To ensure safety in such a situation,
we have to over provision the system by a considerable margin.

Most or all of these costs can be mitigated with a model
of computation that more directly embraces event-triggered
rather than just periodic computation, that is compatible with
multicore execution, and that can target timing-predictable
processors such as PRET machines [17], [18].

On modern PLCs, besides the main, minimum-priority task,
both cyclic and non-cyclic tasks within the user program can
be defined that will be invoked according to a number of
criteria, such as:

1) at specified times of day;

2) after time delays from trigger functions have passed;

3) at specified frequencies and phases from start-up;

4) triggered by hardware interrupts, e.g. from I/O modules;

5) triggered by network devices; and

6) isochronous interrupts, triggered by network events.
A number of other conditions may trigger task activation,
including error or fault conditions, system reset, and software
events on other processors (called multiprocessor interrupts).
Moreover, alarms can occur as a result of unforeseen or er-
roneous conditions, such as communication failures, program
errors, or timing constraint violations. By default, an alarm
causes the PLC to halt execution of its cyclic control tasks,
and, as with traditional languages such as C++, Python, or
Java, code can be provided to catch and handle the alarm. The
caveat of having these enriching features is that, by affecting
the timing of tasks, they tend to undermine the main advantage
of a periodic model of computation: analyzability.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XYZ, NO. XYZ, XYZ 5

There are a number of significant ambiguities about the tim-
ing of task execution that do not appear to be well addressed in
the IEC standard nor well-defined in software documentation
of commercial products. For example, if external events occur
at the same time, the order in which they are received from the
network is not recorded, making the response nondeterminis-
tic. Moreover, in general, sensor values are not timestamped
upon being measured, sent, or received, making it difficult to
know the staleness of observed quantities. Such ambiguities
need to be addressed in order to be able to create reliable and
verifiable PLC software.

2) Functions: As with traditional programming languages,
the building blocks of code are functions of various forms,
divided into ones with or without variables retained between
consecutive executions. A cycle of a task is given by functions
that may call others. Between cycles, the inputs and outputs
of functions are stored in a section of memory called the
I/0 image table, as we discuss in more detail in Sec. III-B.
Ideally, a function executes atomically in that its inputs do not
change during its execution, its outputs are not visible until its
computation is complete, and it has no interaction with other
functions or I/O devices except through its inputs and outputs.

In current PLC programming environments, however, it is
possible to circumvent this idealized pattern because process
memory and data may be read and written by more than one
function. Moreover, functions may preempt one another and
execute concurrently—although typically not in parallel—and
undisciplined sharing of memory can lead to nondeterminism
and unexpected behaviors. While this could be mitigated by
providing warnings through code analysis tools [19], undisci-
plined use of shared memory is unfortunately common prac-
tice. As the complexity of applications increases, it becomes
beneficial to enforce a disciplined use of memory to guarantee
the idealized model of atomic, deterministic execution. As
long as the underlying language is deterministic and the above
constraints for idealized execution are met, then each cycle
will be deterministic. Given a set of input values, it defines
exactly a set of output values and a new state for its memory.

B. I/0 Image Table and Program Data

By default, interaction between PLCs and other devices is
through the memory system rather than by directly connecting
external devices to the PLC microprocessor. Sensors write into
the I/O image table, the PLC computes and writes results to
the I/O image table, and when the PLC is done, the outputs
are transferred to actuators. In more recent PLC models, I/O
image tables may also be partitioned.

In the simplest configuration, there is a single task working
on an I/O image table, and, prior to each cycle of this main
task, the image is updated with sensor data. Only after the
cycle of the main task has completed and before the next cycle
begins are the results of the PLC computation transferred to
actuators. This strategy ensures that input values used by the
PLC computation are stable during the entire cycle and that
outputs produced by the PLC will be transferred all at once
to actuators once computation is finished.

In more elaborate configurations, the I/O image table may
be divided into subimages associated with distinct tasks. Each

subimage is updated with input data prior to execution of that
task, and outputs are transferred upon task completion. If the
relative alignment in time of cycles in different tasks is not
well defined, then neither are order and timing of the transfer
of commands to actuators, indicating a possible source of non-
determinism. Additionally, there are no constraints preventing
a task from reading or writing to the process subimage of
a different task in current frameworks. This means that for
that task, the I/O image table it is working with may not be
stable during the execution of a cycle, and that the I/O image
table data could change whenever the task is preempted, which
could lead to unexpected results.

In many PLC models, functions may also use other portions
of system memory, called, for example, data blocks in Siemens
PLCs [20]. Ideally, these data blocks store variables for use
only within a single functions. In practice, however, they are
also used for communication between functions. If the order of
execution of functions in distinct tasks is not well defined, this
may provide another source of inadvertent nondeterminism.

C. Network Communication

From a PLC programmer’s point of view, the network is in-
visible, typically abstracted away by peripheral devices. While
this helps focusing on the programming of the individual
components, one aspect of communication whose abstraction
is generally leaky is its timing behavior. Communication
occurs either regularly or irregularly, and can be categorized
by timing patterns as follows:

« Periodic (synchronized): Components communicate pe-
riodically based on a common global reference clock,
eliminating synchronization overhead during operation.

o Periodic (drifting): Components communicate periodi-
cally, but in accordance to their own local clocks which
are initially and/or periodically synchronized to a global
reference clock. In this case, local clocks may naturally
drift from the reference clock, requiring explicit clock-
synchronization logic when interfacing components.

e Quasi-periodic with time-varying periods: Communi-
cation occurs periodically with respect to a reference
clock, but the periods are allowed to vary in response
to control signals or other conditions of the system.

e Sporadic: Communication is irregular, triggered by oc-
currence of external events, for instance ones captured by
light barriers or temperature sensors.

Functions typically see network messages as inputs through
the I/O image table, but reasoning about collective behavior
of functions scattered on a network and communicating using
these patterns can be difficult. Even the simplest pattern,
synchronized periodic, may not be synchronized with the exe-
cution of functions. For example, functions within the lowest-
priority task using the AFAP policy exhibit unpredictable
timing relative to periodic network communication. This may
result in messages being missed or processed more than once.

Various components and interconnections of a control sys-
tem may have their own clocks interfacing with each others’
clock domains. Clocks that are synchronized may be synchro-
nized to periods that are multiples of each other, and phase

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XYZ, NO. XYZ, XYZ 6

shifts can be introduced to compensate for message delays, for
example in PROFINET Isochronous Real-Time (IRT) mode.
The normal synchronization of PLCs is periodic (drifting), but
it is possible to synchronize the network completely in IRT
mode, so that all communication loops are running in sync.
But if IRT mode communication is combined with devices that
use their own clocks to define periodic actions, as is common,
then the resulting timing behaviors become complex, chaotic,
and difficult to analyze.

A question that will become more important as systems
switch to Time-Sensitive Networks (TSNs) is the relationship
between the timing of isochronous actions, triggered by the
network, and the timing of periodic tasks, triggered by timer
interrupts based on a local clock. Even in the absence of TSN,
it is already common to set up a master clock on a local-
area network so that periodic events on multiple PLCs are at
least frequency-locked, if not phase-locked.! However, delays
along network communication channels can create jitter that is
difficult to predict. This is problematic because the time delay
between the arrival time of a packet and the time at which it
is loaded into the I/O image table is not tracked, and these
delays can be relatively long compared to the cycle period.

IV. OPPORTUNITIES

Industrial automation is an understandably conservative
business; disruptions to production lines can be costly and
significant safety risks have to be managed. At the same time,
market, cost, and competitive pressures demand innovation.
Complexity and demand for customizability of products within
product lines keep increasing in a competitive market. Machin-
ery on the factory floor increasingly needs to be connected
to networks in order to leverage improvements in condition-
based maintenance, energy optimization, lean supply-chain
management, and coordination across departments. To respond
to these pressures, facilities must evolve, but they must do
so in a minimally disruptive way: new equipment must be
deployed with minimal disruption to existing production, and
new configurations and interoperability of legacy and new
equipment must be tested prior to deployment.

These requirements demand important changes to PLCs:
they must operate safely in open networking environments;
they must be testable in virtual prototypes; and the behavior
of their software must be more independent of the hardware so
that new hardware can be deployed without disrupting existing
functions. We believe that these requirements call for some
crucial changes to the computational models that today form
the core of PLC design.

A. Timing Requirements

Future PLC designs must rely less on priority-based cyclic
execution models whose timing depends on unrelated tasks
running on the PLC or elsewhere in the network. Instead, PLC
designs should specify timing behaviors, such as deadlines,

“Frequency locked” means that if two periodic tasks A and B with the
same period execute on two different PLCs, then the difference between the
number cycles that A has executed and the number of cycles that B has
executed remains bounded at all times.

and hardware and operating system infrastructure should en-
sure that the behavior is as specified. This implies less reliance
on priorities because, given only priorities, the actual behavior
of one component depends on other, unrelated components.
Instead of priorities, software components should specify
timing requirements and the compilers and operating systems
should ensure that these timing requirements are met.

A clean model of time would make PLC-based designs more
testable and more faithful to virtual prototypes. Ideally, timing
should be a logical property of programs as well as a phys-
ical property of their implementation. The notion of logical
synchrony, for example, can be used even on physically asyn-
chronous systems [21]. Two events are logically synchronous
if no external observer can see that one event has occurred
and the other has not. Implementing logical synchrony does
not require that events actually occur simultaneously. Instead,
such synchrony can be realized by controlling what observers
can see, enabling a path to ensure that periodic actions are
coordinated in a predictable, repeatable and testable way.

We further argue that making a commitment to determinism
can improve testability and safety of systems. For example,
it is common among control engineers to always want to
use the most recent measurements from sensors. In complex
systems, however, a component may combine recent data from
one sensor with stale data from another, thereby building an
inconsistent view of the physical system state. Timestamping
data can help, particularly if timestamps are interpreted as a
logical property of programs. An execution environment that
ensures that every software component sees messages only in
timestamp order can go a long way towards making behaviors
both more understandable and predictable.

Physical time is easy to define for a single PLC implemented
on a microprocessor with a single real-time clock; for such a
system, physical time is simply the time revealed by that real-
time clock. For a multi-PLC system, however, physical time
is harder to define precisely, so we must not rely on it to give
semantics to the system. To achieve deterministic computation
on such a distributed system, the implementation will have
to coordinate physical time measurements across the system,
using, for example, clock synchronization protocols [22]. No
clock synchronization mechanism is perfect, but if there is a
known bound on the discrepancy between clocks, then it is
possible to enforce a consistent logical notion of time across
a distributed system [23].

Another requirement is a common logical time origin, by
which we mean that all tasks are launched logically simulta-
neously at the beginning of the execution of the application.
Hence, two periodic tasks A and B that have the same period
P have logically simultaneous cycles, although the actual
order of execution of their cycles will depend on their priorities
(if they are executing on the same CPU) or on scheduling (if
they are executing parallel). To maintain logical simultaneity,
all that is required is that any observer that has seen n
executions of A has also seen n executions of B.

On a single CPU, a notion of logical synchrony of periodic
tasks is relatively easy to maintain. We can ensure that during
execution, the number of cycles completed by A does not
differ by more than one from the number of cycles completed

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XYZ, NO. XYZ, XYZ 7

by B. Moreover, all tasks with lower priorities than both A and
B or higher priorities than both A and B can never observe any
difference in the number of cycles of A and B that have been
executed. In this sense, A and B are logically simultaneous.
A task with priority between those of A and B will always
observe a difference of exactly one between the number of
invocations of A and B. If A and B have the same priority,
then the order of their execution can be determined by data
precedences, if one uses data computed by the other, or can
be arbitrary, if there is no interaction between them.

Once there is a notion of logical simultaneity, it becomes
possible even for the absence of an event to convey informa-
tion. At a logical time instant, either two events are present si-
multaneously, one is present and the other is absent, or both are
absent. Such semantics is realized in synchronous languages
such as SCADE [24], which is used in safety-critical avionics
software. Such software has a rigorous meaning that can be
modeled and analyzed mathematically. Consider a situation
where A sends data to B in each cycle of periodic execution,
and execution of B depends on execution of A having been
completed first. Such dependencies can be handled in intercon-
nected components that execute logically simultaneously if the
data exchanged is semantically the fixed-point of a monotonic
function in a generalized metric space [25]. Moreover, the
implementation of such semantic models can be extremely
efficient [26], at least on a single computer.

Maintaining such logical synchrony in a multicore or dis-
tributed system implementation is more challenging, but real-
izable by leveraging synchronized clocks [23]. Global logical
synchrony may be, on the other hand, excessively restrictive
for some applications. For such applications, we could intro-
duce logical clock domains, as done in [27]. Logical clock
domains can provide islands of synchrony where interactions
across the islands are asynchronous.

B. Deterministic Execution & Parallelism

The designs should also be more deterministic, by which
we mean that the response to a given set of input conditions
should be defined by the software and be unique. Specifically,
a response should not depend on how clocks are drifting with
respect to one another nor on detailed execution times of soft-
ware on the PLC. Determinism improves testability: defining
a single correct response to a set of input conditions means
that those input conditions can be used to test the system and
help enable virtual prototyping. For the same reasons, these
changes also make programs more independent of deployment
hardware; if the hardware on which the software executes is
updated, system behavior will be unaltered provided the new
hardware can deliver correctly the specified timing.

Most PLCs today are realized by software on commercial
off-the-shelf microprocessors. Today, most microprocessors
have multiple cores, something that traditional PLC program-
ming models do not easily accommodate or benefit from. Our
suggestions of extending or changing the programming model
to address timing specifications and determinism would also
allow ensuring any revised programming model is able to
effectively and safely exploit multiple cores, requiring better

mechanisms for software components to interact with one
another. Using shared variables in memory, for example, can
work well when execution of functions is atomic and mutually
exclusive, but if functions are executed in parallel on multiple
cores, the behavior may be affected by uncontrolled low-level
timing effects. Message-passing communication mechanisms,
among others, can mitigate this risk, preserving determinism
while allowing for parallel execution.

C. Event Handling

The current cyclic execution semantics and common I/O
image table of a PLC can, because of their simplicity, create
issues for event-based control problems. For such problems,
many functions start with a has-something-changed code frag-
ment before processing their logic, conceptually recreating an
event-based system in an ad-hoc manner via polling. Excessive
polling, however, can overload the network, which prevents the
ability to use the network for other purposes. For rare events,
this becomes particularly inefficient.

Any event that is handled by a cyclic task with period 7" has
a worst-case response time of at least 7'. If an event requires
a quick response, then 7" must be small, meaning that the
frequency of the task must be high. This can lead to increased
processing load and network traffic. Moreover, if any two
events that are mapped to the same cyclic tasks with period 7',
then the order which these events occur becomes ambiguous
if they occur within time period T'. For events where order is
important, this could again lead to an excessively small period
T. When information is exchanged across non-synchronized
networks, cyclic processing of events can increase delays due
to cycle misalignments. The worst-case latencies add.

Events, especially rare ones, could be handled better by an
event-based rather than a polling-based programming model
(see also [28]). Indeed, an event-based style was attempted in
IEC 61499 (see for example [29]), but the programming model
proposed in this standard proved to be nondeterministic [30]
and too complicated to gain wide adoption in industry. We
should not give up, however, because of an unsuccessful
standard. Event-based scheduling should become intrinsically
supported by peripherals and should be performed at a granular
level in future PLC software.

We believe that alternative event-based programming mod-
els should be explored, particularly those that can be com-
bined with traditional periodic task execution. The so-called
“reactor” model of computation, introduced in [31], uses
timestamped events and deadlines to combine periodic and
sporadic tasks in such a way that latencies can be controlled
without resorting to polling. This model of computation,
if combined with processor architectures with controllable
timing (so-called PRET machines [17], [18]), can even de-
liver deterministic latencies on combinations of sporadic tasks
without increasing worst-case latencies [32].

The reactor model of computation has recently been realized
as a coordination language called Lingua Franca [33]. This
realization looks particularly promising for the PLC context
because it reportedly delivers extremely high performance (up
to 2.5 million reactions per second per core on a laptop

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XYZ, NO. XYZ, XYZ 8

computer), it is able to exploit multiple cores without sac-
rificing determinism, it is able to run on platforms with little
or no operating system infrastructure, and the programming
functionality can be written in C, perhaps the most portable
and low-overhead language in use today [33].

According to [26], [34], the reactor model of computation is
also well suited to distributed execution on network-connected
computers using a technique called PTides [23]. PTides is
based on the same discrete-event (DE) model of computation
as Lingua Franca, where communication between components
occurs via timestamped messages. DE models have been
shown to be deterministic, even in distributed settings. More-
over, they generalize synchronous-reactive models [35], [36],
which have been used in safety-critical avionics system de-
signs [24], [37] and excel at periodic task execution. Moreover,
the PTides technique has been shown to scale even to globally
distributed systems by Google, which uses the technique in a
distributed database systems called Spanner [38].

D. Network Access & Communication

Assuming time-sensitive networking (TSN) gains traction
in industry [39], additional opportunities present themselves:
high precision synchronized clocks could enable better co-
ordination of code running on separate PLCs; time-slotted,
reservation-based network traffic could improve determinism;
time-sensitive traffic shaping could improve safety. This would
expand on existing industrial Ethernet protocols such as
PROFINET, which already provide a level of deterministic
message delivery.

If the programming model of PLCs is to change, a number
of other improvements should be considered. For example,
sandboxing, private memories, and temporal isolation [40]
could make programs more composable and even allow exe-
cution of unverified code. Another opportunity is to introduce
state-of-the-art authentication, authorization, and encryption,
a prerequisite to opening networks to outside traffic [41]. To
support situations where shared data is required, infrastructure
for private memory and local communication, such as via pipes
or message-passing, could be provided to make sharing data in
memory safer than shared variables. In addition, if messages
and sensor data are timestamped as proposed above, then
runtime systems can regulate the order of message delivery and
prevent stale data from being combined with fresh data [23].

These innovations would allow a change in vision for the
PLC from a highly specialized controller on a closed network
to a more general platform for specialized control and service
composition on an open network. Such a PLC could combine
local control with a modern microservice architecture in which
loosely coupled cloud services are integrated with the primary
control application. For example, a PLC could be connected to
a cloud-based speech recognition service to translate spoken
commands into changes in high level control modes.

A semantic notion of time and more deterministic execution
model can enable the integration of microservices without
sacrificing the reliable control of local devices that PLCs are
traditionally intended for. While the level of reliability of a
cloud-based microservice is not expected to match that of

an industrial controller with real-time requirements, careful
integration can ameliorate the impact of unexpected behaviors.
For instance, in the scenario where a PLC is the client of
a cloud-based microservice, it is likely problematic if the
microservice were to silently fail. By enforcing deadlines and
catching service failures and network timeouts on the client
side, these situations can be handled in a predictable manner.

On the networking side, timing also provides regulation of
the open aspects of the network. TSN specifically enables
such mixed criticality use of the network via open and closed
time slices. Similarly, deterministic execution guarantees that
microservice requests (but not necessarily responses) are pre-
dictably executed. An example of such a component archi-
tecture for deterministic microservice composition is found
in [42], which primarily targets the Internet of Things. PLCs
could benefit from a similar architecture.

E. Virtual Prototyping

A virtual prototype is a software model to be used for
simulation or analysis. Virtual prototyping has proven very
effective in VLSI design, where physical prototypes are costly.
In industrial automation, however, effective virtual prototyp-
ing has proven elusive, although recent efforts have made
progress on this front. SDCworks [43], for instance, provides
a framework for formalizing and verifying controllers for
smart manufacturing systems. Another model-based approach
is discussed in [44]. A key challenge is that while the behavior
of physical machinery is timing dependent, the timing behavior
of software is difficult to control. Hence, a simulation model
may need to include excessive low-level detail about the
implementation, rendering analysis intractable and simulation
slow or impossible.

In [45], Lee and Sirjani distinguish what they call scientific
models, which are intended to reflect the behavior of preexist-
ing systems, from what they call engineering models, which
are intended to specify the behavior of a system to be built.
They point out that it is important to recognize whether a
model is to be used for a scientific or an engineering purpose.
An engineering model can serve as a specification, a detailing
of requirements that a physical realization must satisfy. If the
engineering model is built in such a way that its requirements
can be met in a cost effective way, then it can be used to
validate a design before any physical prototype is constructed.
In VLSI design, a VHDL or Verilog program is an engineering
model of a chip and almost all verification and validation tasks
can be carried out on the model without constructing physical
hardware. The challenge we pose here is to make engineering
models of industrial automation systems as effective.

A scientific model of a factory automation system, in
contrast, needs to model the timing of software execution
in great detail if that timing causes significant effects on the
physical plant. For example, timing actions running AFAP will
depend on every detail of the microprocessor implementing
the PLC, its pipeline, memory architecture and I/O system.
On the other hand, a minimum-priority task with a minimum
cycle time can be effectively modeled at much higher level.

The interactions between the software and the physical plant
can even be made deterministic under certain assumptions.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XYZ, NO. XYZ, XYZ 9

Deterministic models are easier to validate. A simulation
of a virtual prototype under specified inputs, if the model
is deterministic, reveals the one unique behavior that will
be expected under those inputs. For such a deterministic
model to be faithful to the physical realization, the following
assumptions must be satisfied:

1) First, all periodic tasks must complete execution within
one period. Any task that has a minimum cycle time
(rather than a period) will also have to complete execution
in each iteration before that minimum cycle time expires.
This makes the task periodic. Variations in execution time
will be masked.

2) In order to guarantee (1), we will need to determine the
worst-case execution time (WCET) of each task. Despite
decades of progress, such analysis can be challenging in
practice and may involve unrealistic assumptions [16],
such as an assumption that interrupts are disabled. But
disabling interrupts of lower priority tasks is clearly not
a good idea (see Figs. 2 and 3). An alternative approach
may be to implement PLCs on top of PRET machines,
which have been shown to be able to support interrupts
without invalidating WCET analysis [17], [18].

3) More than just verifying individual task WCETs, we
must verify that all combinations of periodic and sporadic
tasks that are allowed by the software remain feasible,
meaning that deadlines are met. For periodic tasks, the
deadline must be no longer than the period. If WCETs are
known, proving feasibility is challenging. One possible
analytical approach that works at least for some models
uses network calculus [46].

4) Deterministic interaction between software and its phys-
ical environment requires controlling not just when sens-
ing is performed but also when actuation is performed.
There is a tendency in many applications to perform
actuation as soon as the software knows what actuation
needs to be performed, but then the timing of such
actuation is difficult to control. An alternative is to delay
actuation until a pre-specified time (which becomes a
deadline for the software) or until the end of a cycle
for periodic actuation without deadlines. Such delayed
actuation is anathema to many automation engineers, who
are guided by the mantra that low delay in feedback
control loops is always preferable. However, delayed
actuation can eliminate timing jitter in actuators, which
could reduce wear on physical components and make
behavior more repeatable and testable. Moreover, in a
safety-critical system, we have to validate the behavior
of the system under worst-case timing conditions, so we
have to design the system to work with worst-case delays
anyway. Finally, the biggest benefit of delayed actuation
may be the resulting simplicity in simulation and analysis.
Immediate actuation requires detailed modeling of the
software timing, an extremely challenging proposition.

The Lingua Franca language described in Sec. IV-C is
explicit about periods and deadlines, and hence holds promise
as a specification (an engineering model) against which an
implementation can be evaluated. Even if Lingua Franca does

not prove to be the ideal programming model for industrial
automation, it embodies an existence proof for effective virtual
prototyping. We strongly believe that there are opportuni-
ties for development of more specialized, domain-specific
programming models closer to current PLC practice while
enabling effective virtual prototyping.

V. THE FUTURE OF PLCs

The trend of technology evolving towards more sophis-
ticated networks, multicore architectures, and increasingly
complex microprocessor architectures, poses formidable chal-
lenges to current PLC platforms. The specialized program-
ming model used in PLCs makes it difficult to accommodate
and take advantage of these new technologies, and attempts
to do so tend to compromise the ability guarantee safety.
Verifying and simulating PLC designs that use these modern
technologies has become impossibly complicated. To address
this tension, we believe a paradigm shift is necessary. The
desirable properties of future PLCs that we have outlined
include:

e Programs specify timing, not priorities.

o Timing as a logical notion (logical synchrony).

o Deterministic concurrency and multicore execution.
« Event-triggered computation as well as periodic.

o Synchronized clocks.

o Common logical time origin across a distributed system.
o Logical clock domains.

o Message passing to replace shared variables.

o Less reliance on polling.

o Sandboxing.

e Private memories.

o Temporal isolation.

o Authentication and authorization.

o Encrypted communication.

e Mixed criticality networking.

« Faithful virtual prototypes.

VI. CONCLUSION

PLCs are an old but tenacious technology. They survive
in part because general-purpose software technology fails to
deliver properties that are essential to industrial automation,
such as precise control over timing. The programming model
for PLCs, however, needs to evolve to support the increasing
complexity and more extensive network integration demanded
by Industry 4.0. This evolution cannot compromise on safety
requirements, which remain the highest priority.

We believe it is time to reexamine the core PLC pro-
gramming model with an eye towards achieving determinism,
enabling virtual prototyping, taking advantage of multicore
architectures, leveraging networking innovations like time-
sensitive networks (TSN), and strengthening safety guarantees.
We have pointed to some proofs that such programming
models exist, and we hope that this article will inspire further
innovation in this direction.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XYZ, NO. XYZ, XYZ

[1]
[2]

[5]
[6]
[7]

[8]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

REFERENCES

International Electrotechnical Commission, International Standard IEC
61131: Programmable Controllers, 4th ed. 1EC, 2017.

A. Guignard, J.-M. Faure, and G. Faraut, “Model-based testing of PLC
programs with appropriate conformance relations,” IEEE Transactions
on Industrial Informatics, vol. 14, no. 1, pp. 350-359, 2017.

W. Wang, N. Niu, M. Alenazi, and L. Da Xu, “In-place traceability
for automated production systems: A survey of PLC and SysML tools,”
IEEE Transactions on Industrial Informatics, vol. 15, no. 6, pp. 3155—
3162, 2018.

H. Pearce, S. Pinisetty, P. S. Roop, M. M. Kuo, and A. Ukil, “Smart
I/0 modules for mitigating cyber-physical attacks on industrial control
systems,” IEEE Transactions on Industrial Informatics, 2019.

H. Kopetz, Real-Time Systems: Design Principles for Distributed Em-
bedded Applications. Springer Science & Business Media, 2011.

E. A.Lee and S. A. Seshia, Introduction to Embedded Systems: A Cyber-
Physical Systems Approach, 2nd ed. MIT Press, 2017.

L. Da Xu, W. He, and S. Li, “Internet of things in industries: A survey,”
IEEE Transactions on Industrial Informatics, vol. 10, no. 4, pp. 2233—
2243, 2014.

L. Li, S. Li, and S. Zhao, “QoS-aware scheduling of services-oriented
internet of things,” IEEE Transactions on Industrial Informatics, vol. 10,
no. 2, pp. 1497-1505, 2014.

P. Derler, E. A. Lee, M. Torngren, and S. Tripakis, “Cyber-physical
system design contracts,” in 2013 ACM/IEEE International Conference
on Cyber-Physical Systems (ICCPS), April 2013, pp. 109-118.

K. Thramboulidis, “IEC 61499 vs. 61131: A comparison based on
misperceptions,” arXiv preprint arXiv:1303.4761, 2013.

A. Zoitl and V. Vyatkin, “Different perspectives: Face to face; IEC 61499
function block model: Facts and fallacies — IEC 61499 architecture
for distributed automation: The ‘glass half full’ view,” IEEE Industrial
Electronics Magazine, vol. 3, no. 4, pp. 7-23, 2009.

V. Vyatkin, “Software engineering in industrial automation: State-of-the-
art review,” IEEE Transactions on Industrial Informatics, vol. 9, no. 3,
pp. 1234-1249, 2013.

W. Bolton, Programmable logic controllers, 6th ed. Newnes, 2015.
R. W. Lewis, Programming industrial control systems using IEC 1131-3.
IET, 1998.

J. W. Webb and R. A. Reis, Programmable logic controllers: principles
and applications, 5th ed. Prentice Hall PTR, 2002.

R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing et al., “The
worst-case execution-time problem - overview of methods and survey
of tools,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 7, no. 3, pp. 1-53, 2008.

S. A. Edwards and E. A. Lee, “The case for the precision timed (PRET)
machine,” in Design Automation Conference (DAC), 2007, Conference
Proceedings.

M. Zimmer, D. Broman, C. Shaver, and E. A. Lee, “FlexPRET: A
processor platform for mixed-criticality systems,” in Real-Time and
Embedded Technology and Application Symposium (RTAS), 2014, Con-
ference Proceedings.

H. Prihofer, F. Angerer, R. Ramler, and F. Grillenberger, “Static code
analysis of IEC 61131-3 programs: Comprehensive tool support and
experiences from large-scale industrial application,” IEEE Transactions
on Industrial Informatics, vol. 13, no. 1, pp. 3747, 2016.

H. Berger, Automating with SIMATIC: Controllers, Software, Program-
ming, Data Communication, Operator Control, and Process Monitoring,
3rd ed. Publicis Corporate Publishing, 2006.

L. Sha, A. Al-Nayeem, M. Sun, J. Meseguer, and P. Olveczky,
“PALS: Physically asynchronous logically synchronous systems,” Univ.
of Illinois at Urbana Champaign (UIUC), Report, 2009. [Online].
Available: http://hdl.handle.net/2142/11897

J. C. Eidson, Measurement, Control, and Communication Using IEEE
1588. Springer, 2006.

J. Eidson, E. A. Lee, S. Matic, S. A. Seshia, and J. Zou, “Distributed
real-time software for cyber-physical systems,” Proceedings of the IEEE
(special issue on CPS), vol. 100, no. 1, pp. 45-59, 2012.

G. Berry, “The effectiveness of synchronous languages for the
development of safety-critical systems,” Esterel Technologies, Report,
2003, Overview of SCADE/Lustre. [Online]. Available: http://www.
esterel-technologies.com

A. Cataldo, E. Lee, X. Liu, E. Matsikoudis, and H. Zheng, “Discrete-
event systems: Generalizing metric spaces and fixed point semantics,”
EECS Department, University of California, Report Technical Report
UCB/ERL MO05/12, April 8 2005.

[26]

[27]

[28]

[29]

(30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

M. Lohstroh and E. A. Lee, “Deterministic actors,” in 2019 Forum for
Specification and Design Languages, FDL 2019, Southampton, United
Kingdom, September 2-4, 2019. 1EEE, 2019, pp. 1-8.

C. Jerad and E. A. Lee, “Deterministic timing for the industrial internet
of things,” in IEEE Int. Conf. on Industrial Internet (ICII). IEEE, 2018,
Conference Proceedings.

M. Chmiel and E. Hrynkiewicz, “An idea of event-driven program tasks
execution,” in IFAC Proceedings Volumes, vol. 42, no. 1. Elsevier,
2009, pp. 17-22.

V. Vyatkin, “IEC 61499 as enabler of distributed and intelligent
automation: State-of-the-art review,” IEEE Transactions on Industrial
Informatics, vol. 7, no. 4, pp. 768-781, 2011.

G. Cengic, O. Ljungkrantz, and K. Akesson, “Formal modeling of
function block applications running in IEC 61499 execution runtime,”
in 11th IEEE International Conference on Emerging Technologies and
Factory Automation, 2006, Conference Proceedings.

M. Lohstroh, M. Schoeberl, A. Goens, A. Wasicek, C. Gill, M. Sirjani,
and E. A. Lee, “Actors revisited for time-critical systems,” in Proceed-
ings of the 56th Annual Design Automation Conference 2019, DAC 2019,
Las Vegas, NV, USA, June 02-06, 2019. ACM, 2019, p. 152.

E. A. Lee, J. Reineke, and M. Zimmer, “Abstract PRET machines,”
in IEEE Real-Time Systems Symposium (RTSS), December 5 2017,
Conference Proceedings, invited TCRTS award paper.

M. Lohstroh, M. Schoeberl, M. Jan, E. Wang, and E. A. Lee, “Work-in-
progress: Programs with ironclad timing guarantees,” in Proceedings of
the International Conference on Embedded Software Companion, New
York, NY, USA, October 13-18, 2019. ACM, 2019, pp. 1-2.

M. Lohstroh, if Romeo, A. Goens, P. Derler, J. Castrillon, E. A. Lee,
and A. Sangiovanni-Vincentelli, “Reactors: A deterministic model for
composable reactive systems,” in Cyber Physical Systems. Model-Based
Design, R. Chamberlain, M. Edin Grimheden, and W. Taha, Eds. Cham:
Springer International Publishing, February 2020, pp. 59-85.

E. A. Lee and H. Zheng, “Leveraging synchronous language principles
for heterogeneous modeling and design of embedded systems,” in
EMSOFT. ACM, 2007, Conference Proceedings, pp. 114 — 123.

A. Benveniste and G. Berry, “The synchronous approach to reactive
and real-time systems,” Proceedings of the IEEE, vol. 79, no. 9, pp.
1270-1282, 1991.

S. P. Miller, D. D. Cofer, S. Lui, J. Meseguer, and A. Al-Nayeem,
“Implementing logical synchrony in integrated modular avionics,” in
Digital Avionics Systems Conference, 2009. DASC ’09. IEEE/AIAA 28th,
2009, Conference Proceedings, pp. 1.A.3-1-1.A.3-12, pALS: Physically
asynchronous and logically synchronous systems.

J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost et al., “Spanner:
Google’s globally-distributed database,” ACM Transactions on Computer
Systems (TOCS), vol. 31, no. 8, 2013.

M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The future of industrial
communication: Automation networks in the era of the internet of things
and industry 4.0,” IEEE Industrial Electronics Magazine, vol. 11, no. 1,
pp. 17-27, 2017.

D. Bui, E. A. Lee, L. Liu, H. D. Patel, and J. Reineke, “Temporal isolation
on multiprocessing architectures,” in Design Automation Conference
(DAC). ACM, 2011, Conference Proceedings.

H. Kim and E. A. Lee, “Authentication and authorization for the Internet
of Things,” IT Professional, vol. 19, no. 5, pp. 27-33, 2017.

C. X. Brooks, C. Jerad, H. Kim, E. A. Lee, M. Lohstroh, V. Nouvellet,
B. Osyk, and M. Weber, “A component architecture for the internet of
things,” Proceedings of the IEEE, vol. 106, no. 9, pp. 1527-1542, 2018.
M. Potok, C.-Y. Chen, S. Mitra, and S. Mohan, “SDCworks: A formal
framework for software defined control of smart manufacturing sys-
tems,” in Proceedings of the 9th ACM/IEEE International Conference
on Cyber-Physical Systems, ser. ICCPS ’18. Piscataway, NJ, USA:
IEEE Press, 2018, pp. 88-97.

E. Estevez and M. Marcos, “Model-based validation of industrial control
systems,” IEEE Transactions on Industrial Informatics, vol. 8, no. 2, pp.
302-310, 2011.

E. A. Lee and M. Sirjan, “What good are models?” in Formal Aspects
of Component Software (FACS), vol. LNCS 11222. Springer, 2018,
Conference Proceedings.

J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of Determin-
istic Queuing Systems for the Internet, ser. Lecture Notes in Computer
Science (LNCS), G. Goos, J. H. Hartmanis, and J. van Leeuwen, Eds.
Springer-Verlag, 2001, vol. 2050.

http://hdl.handle.net/2142/11897
http://www.esterel-technologies.com
http://www.esterel-technologies.com

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XYZ, NO. XYZ, XYZ 11

Martin A. Sehr Martin A. Sehr received his PhD in Dynamic Systems and
Control from UC San Diego in 2017. Since then, he has been working on
research in industrial automation and robotics.

Marten Lohstroh Marten Lohstroh received a B.S. degree in computer
science and an M.S. degree in grid computing from the University of
Amsterdam. He is currently a Ph.D. Candidate at UC Berkeley. His research
is focused on deterministic models of concurrent computation.

Mathew Weber Matthew Weber is a postdoctoral researcher at UC Berkeley.
He earned a B.S. in Computer Engineering from the University of Virginia
and a PhD in Computer Science from UC Berkeley. His research focus is
on cyber-physical systems, in particular technologies for modeling real-world
context and coordinating the interaction of connected devices.

Ines Ugalde Ines Ugalde is a Research Scientist at Siemens Corporation,
Corporate Technology in Berkeley, CA. She has received a B.S. in Telecom-
munications Engineering from the University of the Basque Country and
a M.Sc. in Electrical and Computer Engineering from Rutgers University,
where she continues to be affiliated as a PhD Candidate. Her academic
work is focused on connected vehicles, wireless signal propagation modeling
and communication simulation. At Siemens Corporation, she has focused
on robotic vision, manipulation and artificial intelligence for manufacturing
processes. Her work has been showcased at several international industrial
trade fairs.

Martin Witte Martin Witte is a Senior Principal key expert at Siemens AG,
Germany. He has received his M.Sc. in Mathematics at Syracuse University, a
Diploma in mathematical economics and a Dr. rer nat. in Mathematics at the
University of Ulm. He has been at Siemens AG for almost 30 years, working
in the areas of Simulation, Software and System Engineering, and Industrial
Automation. He holds multiple patents in this areas. His latest interest is in
semantic methods for engineering environments.

Stephan Hoeme Stephan Home is a research engineer at Siemens AG,
Germany. He received a Diploma in Electrical Engineering and a Dr.-Ing.
in Automation Engineering at University Magdeburg. He is working in the
area of industrial automation, his current focus is on industrial communication
systems.

Mehrdad Niknami Mehrdad Niknami is a graduate student researcher at UC
Berkeley. His interests intersect various areas of computer science, including
programming languages, information security, and traffic engineering. His
most recent research has been on improving the programming model of control
systems used in industrial automation.

Edward A. Lee Edward A. Lee has been working on embedded software
systems for 40 years. After detours through Yale, MIT, and Bell Labs, landed
at Berkeley, where he is now Professor of the Graduate School in EECS.
His research is focused on cyber-physical systems. He is author of leading
textbooks on embedded systems and digital communications, and has recently
been writing books on philosophical and social implications of technology.

	Introduction
	PLC Development
	Historical Perspectives
	Embedded Devices
	CPS and IoT
	Automation of Automation

	Programmable Logic Controllers
	Computational Components
	Tasks
	Functions

	I/O Image Table and Program Data
	Network Communication

	Opportunities
	Timing Requirements
	Deterministic Execution & Parallelism
	Event Handling
	Network Access & Communication
	Virtual Prototyping

	The Future of PLCs
	Conclusion
	References
	Biographies
	Martin A. Sehr
	Marten Lohstroh
	Mathew Weber
	Ines Ugalde
	Martin Witte
	Stephan Hoeme
	Mehrdad Niknami
	Edward A. Lee

