Parallel Hybrid Metaheuristics with Distributed
Intensification and Diversification for Large-scale
Optimization in Big Data Statistical Analysis

Wendy K. Tam Cho
National Center for Supercomputing Applications
University of Illinois at Urbana-Champaign
Urbana, IL, USA
wendycho@illinois.edu

Abstract—Important insights into many data science problems
that are traditionally analyzed via statistical models can be
obtained by re-formulating and evaluating within a large-scale
optimization framework. However, the theoretical underpinnings
of the statistical model may shift the goal of the decision
space traversal from a traditional search for a single optimal
solution to a traversal with the purpose of yielding a set
of high quality, independent solutions. We examine statistical
frameworks with astronomical decision spaces that translate
to optimization problem but are challenging for standard op-
timization methodologies. We address the new challenges by
designing a hybrid metaheuristic with specialized intensification
and diversification protocols in the base search algorithm. Our
algorithm is extended to the high performance computing realm
using the Stampede2 supercomputer where we experimentally
demonstrate the effectiveness of our algorithm to utilize multiple
processors to collaboratively hill climb, broadcast messages to
one another regarding landscape characteristics, diversify across
the solution landscape, and request aid in climbing particularly
difficult peaks.

Index Terms—Optimization, Diversification and Intensifica-
tion, Statistics, Causal Inference

I. INTRODUCTION

Large-scale optimization problems, characterized by very
large decision spaces, have become increasingly common
with the rise in data availability. Applications of large-scale
optimization abound across all areas of science, with many
prominent applications in physics, biology, the social sciences,
and engineering. The rise in data has been met with excitement
for their enormous potential as well as a wariness for the
daunting challenges that arise for their analysis. The ability to

Yan Y. Liu’s work in this paper is partly supported by the Laboratory
Directed Research and Development Program of Oak Ridge National Labora-
tory, managed by UTBattelle, LLC, for the US Department of Energy under
contract DE-AC05-000R22725. The United States Government retains and
the publisher, by accepting the article for publication, acknowledges that the
United States Government retains a nonexclusive, paidup, irrevocable, world-
wide license to publish or reproduce the published form of this manuscript, or
allow others to do so, for United States Government purposes. The Department
of Energy will provide public access to these results of federally sponsored
research in accordance with the DOE Public Access Plan.

Both authors contributed equally to this project.

978-1-7281-0858-219$31.00 ©2019 IEEE.

Yan Y. Liu
Computational Sciences and Engineering Division
Oak Ridge National Laboratory
Oak Ridge, TN, USA
yanliu@ornl.gov

organize and analyze enormous stores of data becomes more
difficult as the desired analyses increase in sophistication.
Optimization techniques that were adequate for smaller data
sets may not scale as complexity increases, rendering these
standard techniques infeasible for large data sets.

We examine issues that arise with large-scale optimiza-
tion applications for causal inference modeling of big non-
experiment datasets, specifically at the intersection of com-
putational and statistical models. We propose a hybrid meta-
heuristic approach tailored to augment the exploration ca-
pabilities necessary for a massive decision space and in-
creased complexity. We develop intensification and diversi-
fication (I&D) protocols, two heuristic components that have
been recognized as important in the design of global search
methods [4]. Diversification refers to the search capability of
visiting many different regions of the decision space while
intensification refers to the ability to obtain high quality solu-
tions within these search regions. The diversification portion
enables a more global search of the landscape while the
intensification component reinforces a convergence search in
promising local regions [28].

In a parallel heuristic algorithm, an effective 1&D strategy
is able to catalyze global search efficiency through collective
search effects. The intensification protocol enables the employ-
ment of additional computing power to accelerate a search and,
in turn, propagates the outcome of the search more quickly,
resulting in an improvement of the optimization across all
processes. The role of the diversification protocol is to enlarge
the scope of the search by maintaining information on active
search regions and managing the effort of the processes with
the aim of avoiding overlapping and thus wasteful effort.

We must be mindful that parallel 1&D strategies usually
exhibit highly irregular communication patterns. Consider a
commonly employed loosely-coupled parallel heuristic model
where a group of independent search processes are simulta-
neously employed on a single problem instance. Here, when
1&D is implemented as a set of message passing protocols,
most of the communication is collective by nature. However,
conventional global barrier-based (blocking) collective com-

munication is ill-suited in this instance because there is no
obvious critical section in the search logic that would serve
as a synchronization communication rendezvous. Furthermore,
the 1&D notifications are conditioned dynamically on the local
search status. Forcing a communication epoch is, thus, not
only difficult to design, but inefficient. Moreover, since global
synchronization is known to be a major scalability bottleneck,
designing models with non-blocking and asynchronous proto-
cols is critical.

We design a parallel 1&D hybrid metaheuristic algo-
rithm that implements application-level non-blocking col-
lective communication. The implementation fully leverages
asynchrony to enable efficient searching on extreme-scale
computing platforms. Our hybrid metaheuristic includes an
evolutionary algorithm (EA) as the baseline algorithm for the
iterative search process and a tabu mechanism as a memory
structure for diversification. The I&D protocols interact with
the two heuristics locally and propagate information globally
among all participating processes. We evaluate our implemen-
tation by solving an NP-Hard subset selection problem and
measuring the solver’s capability to identify not only one but
many near-optimal solutions that satisfy a tight bound.

II. LITERATURE REVIEW

A number of algorithms have been proposed to extend
basic heuristic models, termed metaheuristics (MHs) [12],
including a set that is intended to augment decision space
exploration capabilities. Classic MHs include, for example,
simulated annealing (SA), tabu search (TS), evolutionary algo-
rithms (EAs), which include genetic algorithms (GAs), and ant
colony (AC). Extending the scope of the search space clearly
becomes increasingly important and difficult as the size of the
search space increases. One avenue for increasing search space
capability that has been pursued is combining the favorable
features of multiple MHs. The resulting combinations are
termed hybrid metaheuristics (HMHs).

HMHs have focused on different aspects of the search
process. To expand search exploration, intensification and
diversification have been seen as important features [4]. In
addition, because of its central stochastic component, EAs
have been highlighted as a favored component of an HMH to
facilitate search diversification [13]. Many different proposals
have been made in this vein. For instance, [41] proposed an
adaptive random search with intensification and diversification
combined with a genetic algorithm (RasID-GA). [1] presented
Meta-RaPS with Path Relinking, a metaheuristic that controls
intensification and diversification strategies by adjusting ran-
domness levels via the algorithm parameters which set the
number of iterations, priority percentages, restriction percent-
age, and improvement percentage. [5] controlled diversity by
eliminating duplication in the population and controlling the
survival of non-elite solutions with deterministic and stochastic
selection. [23] developed an algorithm that utilizes a variable
population size and issues a periodic partial reinitialization of
the population in the form of a saw-tooth function.

While EAs have been primarily seen as contributing on the
diversification front, they have also been combined with other
heuristics in HMHs to augment the intensification side. [22]
combined a microgenetic algorithm to conduct neighborhood
generalized hill-climbing in areas identified by the EA. [27]
followed a similar path, using a memetic algorithm to imple-
ment crossover hill-climbing from solutions found by the ge-
netic operators. [34] similarly implemented a crossover-based
adaptive local search (LS) operation to intensify searches in
particular regions, and, thus, aid in the effectiveness of the EA
for global optimization.

Some EA hybrid algorithms have been implemented on
parallel architecture. [35] proposed a distributed GA that
utilized four subpopulations or species. [15] proposed het-
erogeneous distributed GAs with different subpopulations,
distinguished by their crossover probabilities and different
degrees of exploration versus exploitation intentions. Within
the heterogeneous distributed GA framework, [39] suggested
varying population sizes with populations gaining and losing
population based on their fitness. In addition to these types
of teamwork hybridizations, [2] proposed to run collaborative
GAs in parallel, each with an HMH integrating EA, TS, and
LS, and communicating with an adaptive memory of the search
history. Distributed 1&D in parallel evolutionary algorithm
(PEA) falls into biological distributed algorithms (BDA) [36],
which has been an emerging research area in the distributed
computing domain.

Indeed, intensification and diversification in evolutionary
computation has been an active area of research. Our purpose
is to adapt HMH for effective and efficient traversal of massive
solution spaces with the goal of producing large sets of
solutions that would be suitable for statistical modeling. Here,
the need for solution independence highlights the role of
the diversification component while the requirement for high
quality or nearly optimal solutions harkens back to the aims
of the intensification component.

III. SUBSTANTIVE APPLICATION: OPTIMAL SUBSET
SELECTION FOR CAUSAL INFERENCE

To study the effectiveness of our algorithm, we apply it to
the problem of Optimal Subset Selection (OSS), an NP-Hard
problem that has been shown to translate directly to causal
inference models, which seek to establish causal effects from
non-experimental data. Experimental research via randomized
control trials has long been an important and central research
tool across many fields. However, experiments, which require
significant investment of both time and resources may not be
possible [21]. Moreover, even if a researcher does possess the
time and money to conduct a randomized experiment, some
questions, such as whether smoking causes lung cancer or the
effects of radiation, plainly do not lend themselves to this
framework. These experiments, despite their value to society
and science, simply cannot be conducted because they violates
moral and ethical considerations.

When a randomized experiment is not possible, we may
hope to gain some traction on obviously important questions

through observational data. When feasible, this route is appeal-
ing since observational data for a large number of phenomena
often abound. We can, for instance, easily observe a large
number of people who have chosen, on their own accord, to
smoke. Hence, the ability to use observational data to make
causal inferences would be highly valuable.

However, using observational data to make causal inferences
is far from trivial. The lack of random assignment precludes
the ability to ascribe differences in response to the treatment.
Applying standard statistical models to observational data
generally allows only associational inferences. If observa-
tional data can be used to successfully mimic experimental
data, then we can theoretically derive causal inferences from
observational data [19]. Although causal inference models
have been developed primarily in the realm of statistical
models, [8] demonstrate how an optimization/computational
approach nicely dovetails with the theoretic statistical under-
pinnings and both extends and makes possible new insights
from this type of statistical analysis.

Enhancing the ability to make causal inferences from obser-
vational data will stimulate research in a wide variety of fields
and enhance our understanding of a broad array of phenomena.
Existing studies examine, for example, the effects of Do Not
Resuscitate (DNR) orders, the impact of utero exposure to
phenobarbital on intelligence, and school choice programs, to
name but a few [16], [17], [32], [37].

The OSS problem showcases both the enormous gain as
well as the additional challenges brought forth from requiring
the decision space traversal to produce a large set of identi-
fied solutions where the individual solutions are statistically
independent from one another.

A. Solution Landscape

A key obstacle for optimization algorithms for the OSS
problem is its large-scale and computational complexity. The
solution landscape in the decision space for the subset selec-
tion problem is idiosyncratic. At a rough level of granularity,
the solution landscape is rugged. At fine levels of granularity,
it is essentially flat. That is, while the solution landscape is
hilly in the sense that it has the usual peaks and valleys, these
peaks and valleys are not a rapid succession of precipices,
but instead, a series of vast plateaus, and hence, not rugged
in the usual sense. For this particular problem, these expan-
sive plateaus manifest themselves throughout the landscape
because many subsets significantly overlap with one another.
It is evident that, if one swaps out only a single observation
from a subset, the new subset is substantially similar. Indeed,
for any subset, there is a slew of such minor modifications.

In addition to the distinctive nature of the solution land-
scape, the decision space is heroically large. Consider that if
there are 100 units from which to choose a subset of 10, there
are (11000) = 1.73 x 10'® possible subsets. More pointedly,
substantive applications of the subset selection problem are
much larger, often with tens of thousands of units from which
one commonly wishes to choose subsets of a few hundred.

B. Problem Description of NP-Hard OSS Problem

We will now formally define the Optimal Subset Selection
problem, a decision problem that has been shown to be NP-
Complete [33].

Let A = {A41,As,...,A,} be a given set of n units
where each unit ¢ has some set of k attributes, X; =
{Xi, Xz, Xan)

Let C = {C4,Cy,...,Cy,} be a set of m units where
each unit ¢ has the same set of k attributes, X, =
{Xﬂ, Xio... ,sz} In addition, m > n.

For any B C C, define the function h : 24 x 2B — [0, 1]
to be a similarity measure between subsets A and B.

Find the subset B such that |B| = |A|, and h is minimized.

IV. PARALLEL HYBRID METAHEURISTIC ALGORITHM

To tackle the OSS problem, we implement a hybrid op-
timization metaheuristic that incorporates features from evo-
lutionary algorithms and tabu search. Evolutionary algorithms
have been successfully deployed on a variety of problems [29],
[42], [43]. Likewise, tabu search has also been a good general
framework for many optimization problems [6], [24]. A known
problem with EAs is premature convergence. TS can aid in
preventing premature convergence by maintaining a memory
of the search process so that the search engine can be diverted
from areas that have already been searched. In this way, EAs
and TS are natural partners in HMHs [11], [30], [46].

A sequential EA has been implemented for OSS [7]. For the
benchmark Lal.onde data set in this literature, this sequential
EA identifies a better solution than that identified by any
other proposed optimization method [9], [10], [40]. Whether
there exists a better solution is an open question, since no
one has conducted an exhaustive search of the approximately
(151’5?20) > 10390 possibilities. More interestingly, for the
particular application to causal inference modeling, which
is why it is particularly apt for our study here, is that the
application requires not simply an optimal solution, but a set
of independent solutions that surpasses a particular threshold
of subset similarity.

The independence requirement behooves a diversified search
as well as an intensified search in local areas. Hence, in this
application, diversification plays a dual role. First, it fulfills
its traditional role by likely resulting in better solutions since
more of the decision space is being searched. Second, spanning
out across the decision space is also essential to ensure that
the identified solutions are independent of one another.

Figure 1 outlines our parallel hybrid algorithm in a flow
chart format. The sequential part of the algorithm follows
the “survival of the fittest” principle of EAs that conducts
generational, instead of steady-state, update steps to the current
population. Each step randomly picks two solutions in the
population and probabilistically applies a crossover and a
mutation operator to generate a new solution. If this new
solution is an improvement, it is incorporated into the next
generation of the population. This process terminates when the
stopping criteria are met. We enhanced the baseline algorithm
in [7] by adding a homogeneity check to detect the degree of

solution similar in the population. If the current population is
sufficiently homogeneous, a random start is triggered in the

Data structures: Messages: next iteration.

P: population g - intensification request
T: tabu list I . :intensification response A. Asynchronous Communication for Distributed 1&D
M: incoming message queue [: intensification termination . .

) & ged stop T . It has been demonstrated that the inter-process communica-
S: search state D ., : diversification message . .

D gg - diversification - tabu update tion cost of a parallel EA (PEA) employing global synchro-
tabu

| nization can command more than 50% of the total execution

time when more than 1000 processes are utilized. [26]
implement an asynchronous migration strategy through MPI
(message passing interface) non-blocking calls that eliminates
the costly global synchronization. In their implementation, a
grid topology was deployed whereby each EA process com-

| nitialize P

Y
—’| m, soln = deq(M) | - -

save(s) i municates with its four directly connected neighbors. Here,

restart(soln, P) — i we employ a similar asynchronous communication strategy.

mode: Solo—Iworker . In contrast to [26], however, the coordination of the I&D

@ % i protocsﬂ must invol.Ve 2.111 EA processes and requires a scalable
res = Nl ¢ i collective communication solution.

N insert(soln, P) E’)i In the parallel componfent of our algor.lthr.n, we 1mplem'ent
scatter(P) S an asynchronous 1&D design as a set of distributed computing
update(T) e protocols. An intensification request broadcasts a solution that

€ i represents a decision region for which an intensified search
Irelf)i(i)er:egv)orker—»Solo— i is requested to all processes. When an EA process receives
' this request, it probabilistically chooses whether to aid in
scatter(soln, P) l_ E the intensified search. A diversification request broadcasts
i c a solution that represents a tabu decision region to all EA
update(7) l_ i .(g“ processes. In such a configuration, a non-blocking collective
5 communication mechanism similar to the MPI non-blocking
z collective calls [18] is implemented at the application level in
i order to avoid the costly global barrier in collective commu-
nications.
Py p, = select(P) < The distributed 1&D protocols are implemented using non-
f;‘;fl‘if:(vc e;(”f’ P)) = blocking MPI calls. MPI Isend and MPI Testall are used
/= ﬁmess(c)l 5 to send an I&D message. A parameter, send_parallelism,
® controls the number of send operations that can be initiated
% before MPI_Testall is called to complete them. MPI_Iprobe
0} and MPI_Recv are used to receive an I&D message. An EA

send(lres,P(;)l Iworker
beast(l, , Pj)|Imaster—

process relays messages to its directly connected neighbors.
To avoid duplicate messages, we employ a balanced spanning
tree topology to define the connectivity of the EA processes.
The height of the tree is log, np, where np is the number of
EA processes, and d is the connectivity degree or the number
of directed neighbors. A message reaches all of processes in
this topology in at most 2log,;np hops. Compare this with
the /np/2 hops, which would be required in a grid topology.
The number of hops for broadcasting thus becomes shorter
than the grid topology when np is sufficiently large. Although
it takes a few hops for a message to reach all EA processes,
PEA is known to be resilient to such delays because the delays
introduce additional randomness in the search [14].

We considered using MPI non-blocking collectives
(nbcolls). Although the message handling part of the
algorithm provides a rendezvous for receiving messages,
Fig. 1. The parallel EA+tabu algorithm with the I&D protocol. the stochastic nature of the EA search makes it extremely
difficult, if not impossible, to identify a sending rendezvous
because 1&D notifications are conditioned on an uncertain

—
=3
@
o]
=
=
=
S
3

stop
mode: —Solo

beast(D_ ., ¢) I— i
o

beast(l , ¢)

beast(I_, P)
req’ ~ 0
mode: Solo—Imaster

beast(l,, Py)

stop
mode: Imaster—Solo

beast(D,, . ©) —
restart(P)

restart(P) I_

timing of satisfying various I&D thresholds. Implementing
non-blocking collective communications at the application
level gives us explicit control over the degree of parallelism
exhibited in our hybrid metaheuristic algorithm. For example,
our algorithm is able to immediately switch to computing
after an I&D call is returned. The search logic does not
block on broadcast completion. This type of computing and
communication overlap occurs at a finer grained level than
that supported by MPI non-blocking collectives since MPI
non-blocking collectives still assume pseudo synchronization
that arises from data dependencies at each process on the
broadcast topology (e.g., a binomial tree).

B. Distributed Diversification and Intensification

Although the decision space for a large optimization is
enormous, we often observe that multiple processes search in
similar regions that may be represented by overlapping alleles.
Our distributed diversification is designed to maintain various
search efforts in distinct parts of the decision space. It is
implemented via a distributed tabu list. In particular, a tabu list
is maintained at each process to direct search effort, preventing
overlapping searches. When a process identifies a new solution
satisfying the goodness threshold, which is a tight solution
bound, the solution is saved and outputted, and its alleles are
added to the tabu list. The alleles are then broadcast as a Dy,p,
message. Other processes, upon receiving this message, then
update their tabu list to register those alleles as “tabu.” Since
only alleles are registered, the tabu list does not introduce a
significant memory requirement. When a process detects that
it is searching in similar regions, identified by the tabu list, a
random start is initiated.

An additional diversification feature is introduced at regular
intervals once a process has exceeded a particular solution
quality threshold. In this situation, a function, scatter(), is
invoked to diversify the local population away from portions
of the solution space that exceed a particular threshold even if
a solution in this area has not yet been identified. In this case,
a Dmsg message is also broadcast to other processes, which
then invoke scatter() on their populations.

The distributed intensification protocol enables collaborative
hill climbing at difficult points in the optimization. When a
process is stuck in a search region for too long without making
progress, it broadcasts an intensification request, Ireq. It then
also alters its search mode, Solo, into the Imaster mode. The
Solo mode indicates that a process is operating independently
of all other processes. The Imaster mode indicates that a
process has invoked an intensification request and is now
potentially searching in conjunction with other processes in the
same region. When another process receives an intensification
request, it makes a probabilistic decision to aid or not in
the intensified search. This probability is proportional to the
tightness of the solution bound in the request as well as
the total number of processes. Requests from processes in
more difficult regions invoke a larger number of helpers,
proportional to the total number of processes. A process that
chooses to help then saves its current state and turns into the

o successful unsuccessful ongoing
m'“f‘“” message handler intensification intensification intensification
Ireq ;
Ires H
Ires
Istop

: Dmsg i
I Dtabu §

Fig. 2. Sequence diagram for I&D message passing.

Iworker mode. Once the multi-process search surpasses set
optimization thresholds, indicating a sufficient progress in the
search, the processes resume with their normal independent
search effort. The thresholds are set adaptively and respond
to rises and falls in the number of iterations that are required
before solution improvement is observed. If progress is made
by the Imaster, an Iy,p, message is broadcast. If progress
is made by an Iworker, an I..; message that includes the
new solution is sent back to the Imaster, followed by an
Istop broadcast by the Imaster. Participants then all return to
normal search mode. Ir.; messages may still arrive after an
Imaster sends Igop. These are handled by simply extracting
the solutions into the local population.

Figure 2 presets a sequence diagram of the I&D messages.
All message communications except s are broadcast.

V. EMPIRICAL EVALUATION

We conducted a series of experiments with our search pro-
tocols using the seminal Lalonde CPS data set [25], which is
often used to benchmark causal inference models. Within this
data set, we randomly inserted 100 non-overlapping subsets of
size 25 into the first 15,000 observations of the data set. Each
of these subsets has a different outcome value and provides a
well-matched subset to a simulated treatment group.

We define well-matched with a balance or subset similarity

measure, b,
ZC ok o2
b= wi(KSi+ti|+ O'CQZ_U?Z) (1)

i=1
where i indexes the attribute variable, X;, C is the number
of attribute variables, w is a weight, K.S; is the Kolmogorov-
Smirnov statistic, ¢ is the ¢-statistic for the difference of means,
and o? and o? indicate the variance of the treatment and
control groups, respectively.

For the optimization to be effective in this setting, it needs
to identify 100 distinct subsets. While this example is smaller
than many common applications of OSS to identify causal
inferences, it is large enough to require significant computation

0.8 1 ® Tsend

0.6 1 i Trecv

0.4 4

Communication Time (in seconds)

0.2 4

01— mmi’ I . B
128 256 512

1024

Number of Processors

Fig. 3. Sending and receiving time in one-hour runs.

from which we can derive insights into how to design 1&D
protocols in a parallel computing environment.

Our algorithm is coded in ANSI C and MPI. Experiments
are conducted using the Knights Landing computing nodes
(Intel Xeon Phi 7250 CPU. 68 cores per node) on the Stam-
pede2 supercomputer at the Texas Advanced Computing Cen-
ter (TACC). To generate a unique random number sequence
on each of the separate processors, we utilize the Scalable
Parallel Random Number Generators Library, SPRNG 2.0 [31]
to ensure that no two processes repeat the same random
number sequence. Notice that starting two processes with
different seeds is not sufficient because it does not preclude
using the same random number sequence, which would have
the undesirable result of similar search paths for processors
running independently even without external random noise.
When we initialized random number sequences on multiple
MPI processes with unique random seeds, we noticed difficulty
in diversifying across the decision space.

For all of our experiments, the size of a local EA popluation
is 100. To avoid buffer overflow issues in the asynchronous
communication [26], MPI_Iprobe is invoked four times in an
iteration. The topology of the broadcast is a balanced spanning
tree.

A. Communication Cost

Since a heuristic search is memory- and compute-intensive,
we examine the communication cost and scalability. The algo-
rithm is run with diversification only because Dpsg is sent on
regular basis (every 300 iterations) with dynamic notifications
conditioned on scatter() and tabu update. Each scenario is run
for one hour. Summary statistics from 5 separate runs (one set
for each of 128, 256, 512, and 1024 processors) are calculated.
Per-processor measures are reported.

Figure 3 shows the distribution of sending and receiving
time during each of the one-hour runs. Message receiving
time dominates the communication because message probing
(MPI_Iprobe) occurs more often than sending completion test
(MPI_Testall). Figure 4 depicts the proportion of receiving op-
eration time in iterations that involve receiving and computing

1.00%

0.98%
0.96%
0.94%
< 0.92%
?&; 0.90%
Q
O 0.88%
0.86%
0.84%
0.82%
0.80%
128 256 512 1024
Number of procesors
Fig. 4. Receiving cost.
4500 4
4000 A
¢ 3500 A
&
» 3000 A
172
(]
€ 2500 4
€
3 2000 4 p
< 1
5 500 4
Q
€ 1000
=}
z
500 A
0 + .
128 256 512 1024
-500 -

Number of processors

Fig. 5. Message count on sending (mean and standard deviation).

(instead of counting all iterations). Even in such iterations,
the communication cost is low. Overall, the communication
cost increases only slightly as more processors lead to more
broadcasts, but remains under 1% with 1024 cores.

Figure 5 counts the total number of messages sent by each
process. High variation is observed since leaf nodes on the
broadcast tree forward messages less frequently than non-leaf
nodes. Receiving is balanced because most of messages are
broadcasts that reach every processor.

B. Intensification and Diversification Protocol Run Separately

Table I shows the result of our diversification and inten-
sification protocols when they are run separately. We ran
experiments utilizing 136, 272, 544, and 1088 processor cores
and recorded the time (in seconds) that it took to recover
100 solutions. The first through third columns show the
results when only the diversification protocol is invoked. The
difference in the columns is that we vary the fitness threshold
at which we invoke the scatter() feature. As the fitness value
approaches zero, the quality of the solution increases. For
all of the threshold values tested, it appears that the diver-
sification protocol is effective and significantly improves the

TABLE I
Results for Diversification and Intensification Protocol Run Separately

Diversification

Intensification

Processors Threshold 0.02

Threshold 0.05

Threshold 0.10

136
272
544

1088

1592.82
923.83
396.87
253.64

1388.66

1738.47
749.26
451.74
258.78

2912.08
1567.44
675.79
308.51

684.86
446.04
263.32

Time shown in seconds

performance of the search. Moreover, the scalability of the
algorithm is maintained as the number of processes increases.
However, it does appear that the level of effectiveness of
the diversification protocol is related to the point in the
optimization at which it is evoked. In particular, while setting
the threshold at 0.02 is more effective than not invoking
the diversification protocol at all, invoking the protocol a
bit further from an optimal solution (at a threshold of 0.05)
produces an even better result. At the same time, when the
threshold is set even further, the performance is still better
than without the protocol, but degrades from the threshold
level of 0.05.

Our intensification protocol is adaptive, invoked when no
new elite has been identified for some number of iterations.
Processes choose probabilistically to provide aid, with the
probability increasing as the number of iterations without
the identification of a new elite chromosome increases. The
results from our intensification protocol are shown in the last
column in Table I. Here, as when the diversification protocol
was invoked alone, invoking just the intensification protocol
also produces an improvement over when no intensification
protocol is used. The improvement, however, is not as large
as when the diversification protocol is invoked.

The key to efficiency in an intensification effort is to
balance the need for computational effort and communica-
tion overhead. When the number of processes is lower, the
intensification protocol utilizes a larger proportion of the
resources, which may not be ideal. Ideally, this is tuned to
the difficulty of the search and the available resources. In
addition, if a search is intensified when less effort is needed
for search progress, then the communication cost is purely a
cost without a counterbalancing substantial benefit. As such,
identifying a useful point at which to invoke the intensification
protocol, which must be application specific, seems critical
for performance. We note that we also observed with the
diversification protocol that there appears to be a “sweet
spot” at which invoking these protocols results in the greatest
performance gain.

C. Intensification and Diversification Protocols Run Together

Figure 6 shows our results when we run the intensification
and diversification protocols simultaneously, with diversifica-
tion threshold 0.05. The boxplot produces a graphic display of
a set of 5 runs for the various numbers of processors. There
is the most variance with 136 processes, with increasingly

2000

1500

Time
1000

500
|

I I I |
136 272 544 1088
Number of Processors

Fig. 6. Intensification and Diversification Protocols Run Simultaneously

less variance as the number of processes increases. When the
protocols were run simultaneously, the average amount of time
required was lower than either diversification or intensification
alone for the 544 and 1088 processor runs. Different thresholds
on diversification were also tested. Using both protocols was
better in all instances when the Threshold was 0.02 or 0.10,
but the values when the Threshold was 0.05 with 136 and
272 processes were slightly better with just the diversification
protocol.

VI. DISCUSSION

To harness massively parallel computing power for big data
statistical analysis, an efficient and effective 1&D strategy
becomes more pertinent. Inefficiencies in individual search
processes must be minimized as more computing resources
are used. In addition, the benefits of collaborative search can
proliferate in such parallel environment, perhaps improving
performance at greater than linear speeds. We have explored

asynchrony in parallel EA computing and communication and
developed a parallel intensification and diversification strategy
in a hybrid metaheuristic to address both needs.

Our work shows that our protocol parameters affect the
efficiency of our algorithm. In future work, we intend to
dynamically tune the optimal problem-specific thresholds and
parameters of our protocols within the algorithm itself. This
would involve some data keeping to identify, for any particular
application, problem regions that require an intensified search
effort. As well, we would employ a similar process to identify
when the fitness value achieves a level at which diversification
would be helpful.

In the exascale computing era, asynchronous communica-
tion and communication avoidance/reduction are major com-
ponents in the development of highly scalable algorithms. The
algorithms and heuristics that we develop exhibit desirable
scalability and have a general framework for straightforward
adaptation to other large-scale optimization problems. Our
work lays the foundation for a parallel EA library that provides
an application programming interface for leveraging fine-
grained computing and communication overlap for highly
scalable evolutionary computation. We plan to employ this
library to generate a large number of samples from massive
observational datasets for causal inference modeling in real-
world applications.

VII. ACKNOWLEDGEMENTS

The experiments conducted in this paper used the Extreme
Science and Engineering Discovery Environment (XSEDE)
resources, which are supported by National Science Foun-
dation grant number ACI-1548562. Specifically, the authors
acknowledge the Texas Advanced Computing Center (TACC)
at The University of Texas at Austin for providing HPC
resources, i.e., the Stampede2 system, that have contributed
to the research results reported within this paper.

REFERENCES

[1] Arif Arin and Ghaith Rabadi. 2016. “Performance of an Intensification
Strategy Based on Learning in a Metaheuristic: Meta-RaPS with Path
Relinking.” In Heuristics, Metaheuristics and Approximate Methods in
Planning and Scheduling, Ghaith Rabadi (Ed.). Springer.

[2] Vincent Bachelet and El-Ghazali Talbi. 2000. “COSEARCH: a Co-
Evolutionary Metaheuristic.” In Proceedings of the 2000 Congress on
Evolutionary Computation, Vol. 2. 1550-1557.

[3] Thomas Back, David B. Fogel, and Zbigniew Michalewicz (Eds.).
1997.Handbook of Evolutionary Computation. 10P Publishing Ltd.,
Bristol, UK, UK.

[4] Christian Blum and Andrea Roli. 2003. “Metaheuristics in Combina-
torial Optimization: Overview and Conceptual Comparison.” Comput.
Surveys 35, 3 (September 2003), 268-308.

[5] Nachol Chaiyaratana, Theera Piroonratana, and Nuntapon Sangkawelert.
2007. “Effects of Diversity Control in Single-Objective and Multi-
Objective Genetic Algorithms.” Journal of Heuristics 13, 1 (February
2007), 1-34.

[6] J. Chakrapani and J. Skorin-Kapov. 1993. “Connection Machine Im-
plementation of a Tabu Search Algorithm for the Traveling Salesman
Problem.” Journal of Computing and Information Technology 1, 1 (29—
36 1993).

[71 Wendy K. Tam Cho. 2018. “An Evolutionary Algorithm for Subset
Selection in Causal Inference Models.” Journal of the Operational
Research Society 69, 4 (2018), 630-644.

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

(16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

Wendy K. Tam Cho, Jason J. Sauppe, Alexander G. Nikolaev, Shel-
don H. Jacobson, and Edward C. Sewell. 2013. “An Optimization
Approach for Making Causal Inferences.” Statistica Neerlandica 67, 2
(May 2013), 211-226.

Rajeev H. Dehejia and Sadek Wahba. 1999. “Causal Effects in Non-
Experimental Studies: Re-Evaluating the Evaluation of Training Pro-
grams.” J. Amer. Statist. Assoc. 94, 448 (1999), 1053-1062.

Alexis Diamond and Jasjeet S. Sekhon. 2013. “Genetic Matching for
Estimating Causal Effects: A General Multivariate Matching Method
for Achieving Balance in Observational Studies.” Review of Economics
and Statistics 95, 3 (2013), 932-945.

Gautam Garai and B.B. Chaudhurii. 2013. “A Novel Hybrid Genetic Al-
gorithm with Tabu Search for Optimizing Multi-dimensional Functions
and Point Pattern Recognition.” Information Sciences 221 (February
2013), 28-48.

Fred W. Glover and Gary A. Kochenberger (Eds.). 2003. Handbook of
Metaheuristics. Kluwer Academic Publishers, Massachusetts.

Crina Grosan and Ajith Abraham. 2007. “Hybrid Evolutionary Algo-
rithms: Methodologies, Architectures, and Reviews.” In Hybrid Evolu-
tionary Algorithms, Ajith Abraham, Crina Grosan, and Hisao Ishibuchi
(Eds.). Studies in Computational Intelligence, Vol. 75. Springer Berlin
Heidelberg, 1-17.

William E. Hart, Scott B. Baden, Richard K. Belew, and Scott R. Kohn.
1996. “Analysis of the Numerical Effects of Parallelism on a Parallel
Genetic Algorithm.” In IPPS '96: Proceedings of the 10th International
Parallel Processing Symposium. IEEE Computer Society, Washington,
DC, USA, 606-612.

Francisco Herrera and Manuel Lozano Lozano. 2000. “Gradual Dis-
tributed Real-Coded Genetic Algorithms.” IEEE Transactions in Evolu-
tionary Computation 4, 1 (2000), 43-63.

Jennifer L. Hill, Donald B. Rubin, and Neal Thomas. 2000. “The Design
of the New York School Choice Scholarships Program Evaluation.” In
Research Designs: Donald Campbell’s Legacy, Leonard Bickman (Ed.).
Sage, 155-180.

Daniel E. Ho. 2005. “Affirmative Action’s Affirmative Actions: A Reply
to Sander.” Yale Law Journal 114 2011-2016.

Torsten Hoefler, Andrew Lumsdaine, and Wolfgang Rehm. 2007. “Im-
plementation and performance analysis of non-blocking collective oper-
ations for MPL” In Proceedings of the 2007 ACM/IEEE conference on
Supercomputing. ACM, 52.

Paul W. Holland. 1986. “Statistics and Causal Inference.” J. Amer
Statist. Assoc. 81, 396 (1986), 945-960.

Kosuke Imai. 2005. “Do Get-Out-The-Vote Calls Reduce Turnout? The
Importance of Statistical Methods for Field Experiments.” American
Political Science Review 99, 2 (2005), 283-300.

S.C. Johnston, J.D. Rootenberg, S. Katrak, W.S. Smith, and J.S. Elkins.
2006. “Effect of a U.S. National Institutes of Health Programme of
Clinical Trials on Public Health and Costs.” Lancet 367, 9519 (April
2006), 1319-1327.

S. A. Kazarlis, S. E. Papadakis, J. B. Theocharis, and V. Petridis. 2001.
“Microgenetic Algorithms as Generalized Hill-Climbing Operators for
GA Optimization.” IEEE Transactions in Evolutionary Computation 5,
3 (June 2001), 204-217.

V. Koumousis and C. Katsaras. 2006. “A Saw-Tooth Genetic Algorithm
Combining the Effects of Variable Population Size and Reinitialization
to Enhance Performance.” IEEE Transactions in Evolutionary Compu-
tation 10, 1 (2006), 19-28.

Manuel Laguna, J.P. Kelly, J. L. Gonzalez-Velarde, and Fred Glover.
1995. “Tabu Search for the Multilevel Generalized Assignment Prob-
lem.” European Journal of Operational Research 82 (1995), 176-189.

Robert LaLonde. 1986. “Evaluating the Econometric Evaluations of
Training Programs with Experimental Data.” American Economic Re-
view 76 (September 1986), 604-20.

Yan Y. Liu and Shaowen Wang. 2015. “A Scalable Parallel Genetic
Algorithm for the Generalized Assignment Problem.” Parallel Comput.
46 (July 2015), 98-119.

Manuel Lozano, Francisco Herrera, Natalio Krasnogor, and Daniel
Molina. 2004. “Real-Coded Memetic Algorithms with Crossover Hill-
Climbing.” Evolutionary Computation 12, 3 (September 2004), 273-302.
M. Lozano and C. Garcia-Martinez 2010. “Hybrid metaheuristics with
evolutionary algorithms specializing in intensification and diversifica-
tion: Overview and progress report.”” Computers & Operations Research
37: 481-497.

[29]

[30]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

0.Z. Maimon and D. Braha. 1998. “A Genetic Algorithm Approach
to Scheduling PCBs on a Single Machine.” International Journal of
Production Research 36, 3 (1998), 761-784.

K.L. Mak and D. Sun. 2009. “A New Hybrid Genetic Algorithm
and Tabu Search Method for Yard Cranes Scheduling with Inter-crane
Interference.” In Proceedings of the World Congress on Engineering
(WCE 2009). London, UK.

Michael Mascagni and Ashok Srinivasan. 2000. “Algorithm 806:
SPRNG: A Scalable Library for Pseudorandom Number Generation.”
ACM Trans. Math. Software 26, 3 (2000), 436—461.

Martin W. Mclntosh and Donald B. Rubin. 1999. “On Estimating the
Causal Effects of DNR Orders.” Medical Care 37, 8 (1999), 722-726.
Alexander G. Nikolaev, Sheldon H. Jacobson, Wendy K. Tam Cho,
Jason J. Sauppe, and Edward C. Sewell. 2013. “Balance Optimization
Subset Selection (BOSS): An Alternative Approach for Causal Inference
with Observational Data.” Operations Research 61 (March/April 2013),
398-412.

Naimul Noman and Hitoshi Iba. 2008. “Accelerating Differential Evo-
lution Using an Adaptive Local Search.” IEEE Transactions in Evolu-
tionary Computation 12, 1 (2008), 107-125.

J.C. Potts, T.D. Giddens, and S.B. Yadav. 1994. “The Development
and Evaluation of an Improved Genetic Algorithm based on Migration
and Artificial Selection.” [EEE Transactions on Systems, Man and
Cybernetics 24, 1 (January 1994), 73-86.

Mira Radeva. 2014. “Review of BDA Workshop 2014.” SIGACT News
45 (2014), 100-104.

Lune Machover Reinisch, Stephanie A. Sanders, Erik Lykke Mortensen,
and Donald B. Rubin. 1995. “In Utero Exposure to Phenobarbital
and Intelligence Deficits in Adult Men.” The Journal of the American
Medical Association 274 (1995), 1518-1525.

Donald B. Rubin. 2001. “Using Propensity Scores to Help Design
Observational Studies: Application to the Tobacco Litigation.” Health
Services & Outcomes Research Methodology 2, 1 (2001), 169-188.
Dirk Schlierkamp-Voosen and Heinz Miihlenbein. 1994. “Strategy Adap-
tation by Competing Subpopulations.” In Parallel Problem Solving from
Nature (PPSN I1I). Springer-Verlag, 199-208.

Jeffrey A. Smith and Petra E. Todd. 2005. “Does Matching Overcome
Lalonde’s Critique of Nonexperimental Estimators?” Journal of Econo-
metrics 125, 1-2 (2005), 305-353.

Dongkyu Sohn, K. Hirasawa, and Jinglu Hu. 2005. “Adaptive Random
Search with Intensification and Diversification Combined with Genetic
Algorithm.” In The 2005 IEEE Congress on Evolutionary Computation,
Vol. 2. 1462-1469.

Cuong C. To and Jiri Vohradsky. 2007. “A Parallel Genetic Algorithm
for SIngle Class Pattern Classification and its Application for Gene
Expression Profiling in Streptomyces Coelicolor”” BMC Genomics 8,
49 (2007), 1-13.

Shuqin Wang, Yan Wang, Wei Du, Fangxun Sun, Xiumei Wang, Chun-
guang Zhou, and Yanchun Liang. 2007. “A Multi-Approaches-Guided
Genetic Algorithm with Application to Operon Prediction.” Artificial
Intelligence in Medicine 41, 2 (2007), 151-159.

Christopher Winship and Stephen Morgan. 1999. “The estimation of
causal effects from observational data.” Annual Review of Sociology 25
(1999), 659-707.

Herman A. Witkin, Sarnoff A. Mednick, Fini Schulsinger, Eskild Bakke-
strom, Karl O. Christiansen, Donald R. Goodenough, Kurt Hirschhorn,
Claes Lundsteen, David R. Owen, John Philip, Donald B. Rubin, and
Martha Stocking. 1976. “Criminality in XYY and XXY Men.” Science
193 (1976), 547-555.

Q. Zhang, H. Manier, and M.-A. Manier. 2012. “A Genetic Algorithm
with Tabu Search Procedure for Flexible Job Shop Scheduling with
Transportation Constraints and Bounded Processing Times.” Computers
& Operations Research 39, 7 (2012), 1713-1723.

