
 

Force-Induced Formation of Twisted Chiral Ribbons
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We demonstrate that an achiral stretching force transforms disk-shaped colloidal membranes composed
of chiral rods into twisted ribbons with handedness opposite the preferred twist of the rods. Using an
experimental technique that enforces torque-free boundary conditions we simultaneously measure the
force-extension curve and the ribbon shape. An effective theory that accounts for the membrane bending
energy and uses geometric properties of the edge to model the internal liquid crystalline degrees of freedom
explains both the measured force-extension curve and the force-induced twisted shape.
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Helical shapes are ubiquitous in nature, arising in
systems ranging from microscopic assemblages such as
collagen, bacterial flagella and lipid bilayer membranes to
macroscopic seed pods and the helical structures of the
climbing plants [1–9]. Chiral superstructures are also found
in diverse synthetic materials including nanoparticle based
photovoltaic assemblages and textiles [10–12]. How the
microscopic constituents’ chirality determines the emergent
chiral shape is an important question that underlies all of
these phenomena. Besides structural considerations, it is
also important to understand how twisted helical shapes
deform in response to applied external properties.
Generally, an extensile force unwinds a helix, thus reducing
its chirality [13–15]. Here, we show that a 2D colloidal
membrane twists into a helix under an external force, with
twist increasing with extension. The membranes are one-
rod-length-thick liquid-like monolayers of aligned rods that
in the presence of non-adsorbing polymer assemble into
diverse structures [16–21]. Depending on the polymer
concentration and rod chirality, colloidal membranes form
either disks or twisted ribbons [18]. The application of
force shifts the relative stability of twisted ribbons and flat
colloidal disks. The ribbon phase requires coupling of
liquid crystalline order of the constituent chiral rods with
the shape of the membrane’s edge [22–24]. A quantitative
understanding of twisted colloidal ribbons and their
mechanical properties might be relevant for understanding
the generic pathways by which microscopic chirality is
expressed on macroscopic scales.
We first assemble chiral rod-like viruses into equilibrium

flat membranes that assume edge energy-minimizing disk-
like shapes. The rods are perpendicular to the plane of the

disk everywhere except near the edge, where they twist with
a handedness which is determined by the virus chirality [25].
Surprisingly, we find that pulling on these achiral circular
shapes causes them to twist into ribbons. The applied force
is achiral, yet it causes the microscopic chirality of the rods
to express itself in the macroscopic shape. This observation
provides a unique opportunity to study the emergence of
force-induced chiral structures for several reasons. First,
colloidal membranes have a vanishing zero-frequency in-
plane shear modulus. Consequently, in contrast to solid
elastic sheets, colloidal membranes easily reconfigure,
switch between different topologies, and change Gaussian
curvature when subjected to external forces. Second, pre-
vious work has demonstrated that shapes of colloidal
membranes can be modeled with an effective elastic theory
in which the bending deformations are described by the
Helfrich-Canham free energy [26,27], while liquid-crystal-
line degrees of freedom of edge-bound rods are described by
geometric quantities such as the length, curvature, and
geodesic torsion [18,24,25]. Most of the properties that
govern these deformation modes have been measured
independently thus allowing for rigorous parameter-free
tests of theoretical models. For example, colloidal mem-
branes have an intrinsic preference for surfaces with negative
Gaussian curvature [21,24]. The Gaussian modulus, κ̄, that
controls this preference is important in colloidal and lipid
membranes alike, but due to their larger size, slower
timescale for shape changes and tendency to form structures
with open edges, it is easier to measure κ̄ for colloidal
membranes. These features enable us to develop a quanti-
tative model that predicts the experimentally observed shape
and twist of the colloidal ribbons as a function of applied
force, without any adjustable parameters.
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We studied membranes assembled from either 0.88 μm
long fd-wt or 1.2 μm long M13-KO7 viruses that also
differ in surface charge [28,29]. At virus concentrations
high enough to make a bulk liquid crystalline phase, both
viruses form cholesteric phases with a left-handed twist
[30]. Adding a depletant changes the phase diagram.
Depending on the depletant concentration and the strength
of the temperature-dependent chiral interactions, the
viruses assemble into either flat disks or twisted ribbons
[18]. Confocal microscopy reveals that the force-free
ribbons made from fd-wt are right-handed helicoids (see
Movie 3 and Fig. S1 of the Supplemental Material [31]).
Our experimental setup allowed us to simultaneously apply
a known force on a membrane disk and observe its shape
[Fig. 1(a)] [31,38]. Two optical traps were produced using
an acousto-optical deflector. One trap held the membrane
fixed while the other trap placed on the opposite side
extended the membrane with well-defined steps. Directly
attaching trapped beads to the edge of the colloidal
membrane exerted a torque thus precluding accurate
measurements of the force-extension curve [Fig. 1(b)].
To generate torque-free boundary conditions we assembled
“flagella dumbbells” by binding two streptavidin coated
silica beads (2 μm diameter) to both ends of a rigid biotin
labeled straight flagellar filament isolated from strain SJW

1660 [Fig. 1(b)] [39]. The beads were also coated with an
antibody for filamentous viruses which induced strong
binding to the membrane edge. Experiments were per-
formed in a microfluidic T chamber where a membrane-
forming suspension of viruses (100 or 125 mM NaCl and
20 mM tris, pH ¼ 8.15) and Dextran (M.W 500 000) was
flowed into the vertical stem. A suspension of biotinylated
flagellar filaments, Dextran, streptavidin, and antibody
coated silica beads in the same buffer were flowed into
the perpendicular arm of the channel. The sample was
prepared 24 hours before experiments and kept hydrated to
allow colloidal membranes to assemble. Two flagella
dumbbell handles were first constructed in the vertical
arm using steerable optical traps. Subsequently, using the
same traps the “flagella dumbbell” handles were moved to
the center of the T stem. One bead of each dumbbell was
attached to the opposite sides of an isolated membrane,
and the free beads were optically trapped. The dumbbells
accurately propagate the applied force due to the
large rigidity of flagellar filaments (persistence length
∼1 mm) [39].
Using this setup we characterized the response of

colloidal membranes to applied force. For any given
membrane the measurements were highly repeatable, and
there was no hysteresis; we measured the same curve with
increasing or decreasing extension [Fig. 2(a)]. However, for
different membranes of comparable diameter, measure-
ments had 20% variability in the force extension curve
[Fig. 2(a), inset], presumably due to variations in dumb-
bell attachment to the membranes. The measured force-
extension curves exhibited three regimes, with the structures

FIG. 1. Stretching a colloidal membrane induces twist. (a) Sche-
matic of a setup that applies a stretching force with a torque-free
boundary condition. Side view of flagellar dumbbells attached to
an unstretched membrane (top) and a twisted ribbon (bottom).
(b) Left: directly trapping colloidal membranes generates an
external torque. With increasing extension the ribbon twists when
the internal torque generated by the twist overcomes the external
torque induced by the optical trap (see Movie 1 of the Supple-
mental Material [31]). Right: a membrane stretched with flagellar
dumbbells twists continuously since the trap is removed from the
membrane and symmetric trapped beads freely rotate (see Movie
2 of the Supplemental Material [31]). Dashed circles indicate
positions of optical traps. Scale bars, 5 μm.

FIG. 2. (a) Measurement of the force-extension curve for a
single fd-wt membrane (6.4 mm diameter, 45 mg=ml Dextran
and 125 mM NaCl). At low extensions (green bar) the force is
directly proportional to extension. At intermediate forces one
observes a force plateau (blue bar), and then again a linear
increase in force (magenta bar). Inset: Force-extension curves for
three different membranes of comparable size (∼6.2 μm,
50 mg=ml Dextran, 100 mM NaCl) showing sample to sample
measurement variation. (b) Shapes of twisted membrane corre-
sponding to the measured force-extension curve. Extension is
given in microns. Scale bar, 5 μm.
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relaxing to the initial circular membrane when the laser
tweezers are shut off. For small extensions, the force
increased linearly with extension, and the membrane
elongated but exhibited no measurable twist [Fig. 2(b)].
The onset of measurable twist roughly coincided with the
appearance of a force plateau, where force hardly changed
even as the extension changed by up to several hundred
percent. At even higher extension the plateau regime
transitioned to a second linear regime [Fig. 2(a)]. The
membrane twisted gradually rather than abruptly with
extension, and the handedness of the twist was always
the same.
We measured how the force-extension curve depends on

the diameter for membranes assembled from M13-KO7
virus that have an edge tension of ∼1000 kBT=μm
[Fig. 3(a)]. The initial slope in the weak force extension

regime increased with decreasing membrane size
[Fig. 3(b)]. Furthermore, the transition from the plateau
to the second linear regime occurred at lower extensions for
smaller diameter membranes. Notably, for the smallest
membranes, we observed no discernible force plateau as
the first and second linear regimes effectively merged. We
also examined how the force-extension curve depends on
the membrane edge energy. To accomplish this we studied
colloidal membranes assembled from fd-wt which had a
line tension of ∼380 kBT=μm (Fig. 4). The magnitude of
the force plateau was dependent on the edge tension, being
2–3 pN for the low tension fd-wt membranes (Fig. 4), and
6–10 pN for the high tension M13-KO7 membranes
[Fig. 3(a)]. Finally, our setup allowed us to quantify
the spontaneous twist as a function of the extension
(Fig. 4, inset) (see Movies 2 and 4 of the Supplemental
Material [31]). Since the pitch is defined to be twice the
distance between two nodes of the twisted ribbon, it was
difficult to measure the pitch at small extensions when there
is one or no node.
To understand how extension induces twist, and how the

rod twist near the edge relates to ribbon twist, we use an
effective model of colloidal membranes which assumes that
membrane thickness is small compared to its radius of
curvature, and that the membrane size is large compared to
the width of the region near the edge where the twist
penetrates into the membrane [24]. In this limit the bending
energy is given by the Canham-Helfrich energy, ECH ¼
ðκ=2Þ R dAð2HÞ2 þ κ̄

R
dAK, where H is the mean curva-

ture and K is the Gaussian curvature [26,27]. In contrast to

FIG. 3. Membrane diameter determines its stiffness. (a) Exper-
imental force-extension curves (full lines) for colloidal mem-
branes of diameter that increases from 6.6 μm to 15.0 μm. The
membranes are composed of 96% M13-KO7 and 4% M13 wt.
For clarity, each membrane is offset by 5 pN. Theoretical
predictions (dashed lines) assume the following parameters: edge
tension γ ¼ 1000 kBT=μm [18], Gaussian curvature modulus
κ̄ ¼ 200 kBT [21], edge moduli B ¼ B0 ¼ 100 kBTμm [18,24]
and chiral coupling c� ¼ 50 kBT [24]. (b) First linear regime of
the force-extension curves shown in panel (a). Dashed lines
are predictions of Eq. (2). Membranes were assembled at
47 mgmL−1 Dextran, 100 mM NaCl.

FIG. 4. Experimental data (full lines) and numerical solutions
(dashed lines) for force-extension curves for fd-wt membranes
with 6.5 μm (red) and 8.1 μm (blue) diameters (see Movies 2 and
3 in the Supplemental Material [31]). The line tension is
380 kBT μm. Other parameters used in the numerical calculation
are the same as those for the M13-KO7 membranes. Dextran
concentration is 50 mg=mL and 100 mM NaCl. Inset: compari-
son between experimentally measured (circles) and numerically
computed (dashed lines) pitch of the twisted ribbon as a function
of membrane extension.
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surfactants or lipid bilayers for which κ and κ̄ are typically
comparable [40,41], experiments and simple models
suggest κ ≈ 15; 000 kBT [42] while κ̄ ≈ 200 kBT [21,24].
Thus, we assume the colloidal membranes in our
study only form minimal surfaces (H ¼ 0) like planes or
helicoids.
We do not explicitly use the Frank free energy on a

curved surface [22] to account for rod twist. Instead, since
the only contribution to this free energy comes from the
thin region near the edge, we use an effective edge energy
Eedge ¼

R
ds½γ þ ðB=2Þk2 þ ðB0=2Þðτg − τ�gÞ2�, where s is

arclength, γ is the edge tension, k is the edge curvature, B
and B0 are moduli, τg is the geodesic torsion (the rate that
the surface normal rotates about the edge [43]), and τ�g is the
spontaneous geodesic torsion [24]. For both membrane
types, B ≈ 100 kBT μm [18]. This bending rigidity stems
from the configuration of the rods near the edge, which
twist away from the membrane normal over the character-
istic twist penetration length scale, inducing a local in-plane
orientational order that resists bending [see [25], and
especially Fig. 1(b) of [18] ]. We define a chiral coupling
c� ≡ −B0τ�g, and assume B0 ¼ B. To determine the sign of
τ�g, consider a helicoid-shaped membrane [the lower shape
of Fig. 1(a)] with pitch p, and let d be the rod director field.
We suppose that the rods only twist about the axis across
the span of the helicoid, with θ the angle between the
surface normal and d. The twist is

d · ∇ × d ¼ ∂rθ þ
α sin θðsin θ þ αr cos θÞ

1þ α2r2

≈ ∂rθ þ τg sin θ2 þ k sin θ cos θ; ð1Þ
where r is the coordinate running along the spanwise
direction of the helicoid, α ¼ 2π=p, and the approximation
follows because θ is small except near the helicoid edge.
Now, suppose the rods are chiral with a preference for
d · ∇ × d > 0; then ∂rθ and τg are both positive, which
means the cholesteric twist of the rods at the edge is left
handed, and the twist of the ribbon is right handed, as
observed in our experiments on force-free ribbons.
The above described model limits our analysis to the

initial linear and plateau regions of the force-extension
curve. To solve the model, we assume a surface
Yðr; zÞ ¼ ðr cos αz; r sin αz; zÞ, where 0 ≤ r ≤ RðzÞ and
0 ≤ z ≤ Z. Here, Z ¼ 2aþ z is the stretched length, a is
the initial disk radius, and z is the extension; note that
vanishing mean curvature implies uniform α. By the
Gauss-Bonnet theorem,

R
dAK ¼ −

R
dskg (up to a con-

stant), where kg is geodesic curvature [44]. Therefore, the
problem of finding the optimal membrane surface is
reduced to finding the contour on a helicoid that minimizes
the energy E ¼ Eedge −

R
dsκ̄kg. We employed a con-

strained interior-point optimization [45] to solve for
the twist rate α and continuously differentiable curve
XðzÞ ¼ ½RðzÞ cos αz; RðzÞ sin αz; z� that minimize E

subject to the constraints of surface area πa2 and length
Z. To simplify the analysis, we introduce ψ , the angle
between ∂sX and the r axis [46]: ð∂sR; ∂szÞ ¼ ðcosψ ;
− sinψ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2R2

p
Þ. It follows that kn ¼ −sinð2ψÞ=αl2,

kg ¼ ∂sψ þ ðR sinψÞ=l2, and τg ¼ ð1 − 2 cos2 ψÞ=αl2,
with k2 ¼ k2n þ k2g and l2 ¼ α−2 þ R2. Once the shape is
determined, the force is F ¼ dE=dZ.
We first make analytical predictions about FðzÞ.

Assuming z ≪ a, B ≪ γa2, and p → ∞, we find
F ¼ ksz, where the effective spring constant is

ks ¼ πγ=ð2aÞ þ π2=4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
γB=a4

q
þ; � � � : ð2Þ

This expression qualitatively reproduces the experimental
finding that smaller membranes are effectively stiffer.
Using independently determined values for a, B and γ
we find the above approximation is in quantitative agree-
ment with the experiments for membranes with diameter
≳10 μm [Fig. 3(b)]; a nonzero value of the edge bending
stiffness B is essential for obtaining this agreement. As
membrane size becomes comparable to twist penetration
length, the plateau regime disappears and the theory
underestimates the effective membrane stiffness.
The model also provides an estimate of the magnitude of

the plateau regime. When z ≫ a, we approximate the
membrane as a twisted rectangular strip in the achiral case
c� ¼ 0 and find F → 2γ − κ̄2=B; the force saturates at a
value independent of the membrane size. Line tension,
Gaussian curvature modulus, and edge bending stiffness
are primarily responsible for the force in the first linear and
plateau regimes. Including the chiral coupling c� term
yields a more complicated form for the asymptotic force but
a similar numerical value for experimentally relevant
parameters.
All parameters of our model are determined independ-

ently, allowing us to numerically calculate the force-
extension curves as a function of membrane diameter
(Fig. 3). For the three largest membranes, the discrepancy
between theory and experiment is comparable to the 20%
variation between different experiments. For the two
smallest membranes, which do not exhibit the plateau
regime, the agreement is poor. In this regime, the small
extension Hooke’s law regime seems to directly transition
to the second linear regime, which is not treated by our
theory. Furthermore, since our effective model has no
fitting parameters, one should not expect uniformly good
quantitative agreement across a range of membrane sizes.
Most of these parameters are only well defined when the
half-micron twist penetration depth is significantly smaller
than the membrane size. Numerical results showed quanti-
tative agreement with experimentally measured force and
pitch for two differently sized fd-wtmembranes with lower
edge tension (Fig. 4). Here, the agreement between theory
and experiment for the force-extension curve is better due

PHYSICAL REVIEW LETTERS 125, 018002 (2020)

018002-4



to the presence of plateaus. The agreement for the pitch-
extension curve is also reasonable once the extension is
large enough for an accurate measure of the twist. We note
that the model predicts the ribbon twists continuously as a
function of extension and a nonzero value of c� was
required for visible twisting, implying that microscopic
chirality is essential for producing ribbons in the range of
applied extensions.
To summarize, in the absence of external force disk-

shaped colloidal membranes are stabilized by line tension
and edge bending energy, despite the tendency of chirality
and positive Gaussian modulus κ̄ to induce twisted shapes.
Pulling on the membrane increases its perimeter, and
forming helical edges lowers the twist energy enough to
overcome the additional cost in edge length and edge
bending. The predictions of the proposed effective theory
are in semiquantitative agreement with the experimental
measurements. Quantitative discrepancies occur in the
regime where the theory is expected to break down.
Future theoretical work should account more explicitly
for the liquid crystalline degrees of freedom of the
constituent rods and remove the constraint of fixed area;
generalizing the theory in this way may allow us to address
the second linear regime. Experimentally, it has been
demonstrated that lowering the edge tension by increasing
the chirality of the constituent rods spontaneously trans-
forms disk-like membranes into twisted ribbons [18]. The
methods developed here could be used to map the free
energy landscape associated with such morphological
transitions.
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