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Structured to Succeed?: Strategy
Dynamics in Engineering Systems
Design and their Effect on
Collective Performance

Strategy dynamics are hypothesized to be a structural factor of interactive multi-actor
design problems that influence collective performance and behaviors of design actors.
Using a bi-level model of collective decision processes based on design optimization and
strategy selection, we formulate a series of two-actor parameter design tasks that exhibit
four strategy dynamics (harmony, coexistence, bistability, and defection) associated with
low and high levels of structural fear and greed. In these tasks, design actor pairs work
collectively to maximize their individual values while managing the trade-offs between
aligning with or deviating from a mutually-beneficial collective strategy. Results from
a human-subject design experiment indicate cognizant actors generally follow normative
predictions for some strategy dynamics (harmony and coexistence) but not strictly for
others (bistability and defection). Cumulative link model regression analysis shows a
greed factor contributing to strategy dynamics has a stronger effect on collective efficiency
and equality of individual outcomes compared to a fear factor. Results of this study
provide an initial description of strategy dynamics in engineering design and help to
frame future work to mitigate potential unfavorable effects of their underlying strategy
dynamics through social constructs or mechanism design.
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1 Introduction

Design of engineering systems involves the collective efforts
of a diverse set of actors representing multiple firms, organiza-
tions, and agencies, each pursuing individual objectives. Achiev-
ing broader objectives such as sustainability or resource efficiency
requires an integrated perspective to understand inter-dependencies
at multiple levels of abstraction [1]. This type of distributed au-
thority does not align well with existing system engineering ap-
proaches which assume a strong central actor. Rather, it resem-
bles a systems-of-systems architecting process emphasizing design
stability, component interfaces, and coordination mechanisms [2].
Cooperation among entities is often desired [3] but also proves
expensive and risky to overcome associated challenges from navi-
gating different goals, requirements, and policies [4].

Collective design problems can exhibit social dilemma from
conflicts between self-interest and collective benefit. In extreme
cases, free-riding actions provide individual benefit but collective
harm [5]. Less extreme dilemma struggle to gain or retain control
over decisions [6, 7] or balance the potential reward of collabora-
tion with downside risk of coordination failures [8].

While there has been progress in the systems engineering com-
munity to characterize and study systems-of-systems [9, 10] in-
cluding model-based approaches to coordinate constituent systems
[11, 12], this approach alone is not sufficient to capture how local
incentives of independent actors influence joint design activities.
Research on collective design decision-making highlights funda-
mental challenges in forming consistent group preferences [13],
proposes frameworks and methods to build on negotiation mech-
anisms to resolve conflicts [14, 15], and applies game theoretic
solutions such as Nash equilibria [16—18]. While existing research
focuses on general processes to administer collective design or
identify stable solutions, there is a gap to understand the dynami-
cal relationship (from a set of dynamical domains) between design
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actors and connect with actions known to stabilize or mitigate any
associated social dilemma. This perspective appears to be unique
in design literature and has the potential to accelerate transfer of
knowledge from economic theory to engineering design.

This paper investigates how the fundamental structure of a de-
sign problem facilitates or inhibits collective action through a fac-
tor described as strategy dynamics. The intent is not to optimize or
otherwise prescribe solutions to multi-actor design problems but to
understand inherent trade-offs and relationships between individ-
ual actors generalizable across several dynamical domains. While
problems in favorable dynamical domains naturally facilitate desir-
able design outcomes, others may need enhanced communication,
enforced role responsibilities, or multi-stage decisions to overcome
social dilemma. Improved understanding of how technical and or-
ganizational factors influence design behaviors through strategy
dynamics will help improve design processes, mechanisms, and
incentives to achieve desired collective results.

This paper addresses central questions about how strategy dy-
namics manifest in socio-technical problems and how they influ-
ence design decisions. Building on foundations of game theory
and value-driven design, this paper elaborates a bi-level model of
collective systems design to differentiate lower-level design deci-
sions and upper-level strategy decisions, constructs parameter de-
sign tasks with strategy dynamics drawn from four canonical social
dilemma problems, and conducts a human designer experiment to
study the effect of strategy dynamics on design outcomes. Discus-
sion compares observations with results of game theory to explain
important factors for human decisions in design. Key contributions
formulate and characterize strategy dynamics in the collective de-
sign of engineering systems and generate insights about their effect
on collective performance in parameter design tasks.

2 Background

From requirements-based to value-driven approaches, engineer-
ing design and systems engineering traditionally relies on a central

PREPRINT FOR REVIEW / 1



authority to decompose and allocate objective functions among
designers [19]. This perspective is inherently optimistic of the
willingness for independent design actors to strategically share re-
sources and align decisions with top-down goals. The need for
collaboration between design actors across disciplines and orga-
nizations becomes more important as large engineering projects
demand technologically-complex solutions. Game theory provides
a means to study and treat these collective settings by abstract-
ing designers’ decisions and interrelated objectives as strategies to
model and understand collectively-efficient courses of action.

Game theory has two main branches: non-cooperative game
theory studies player decisions to maximize individual value in
the absence of binding agreements (“strategy-oriented”) and co-
operative game theory investigates how value can be improved by
forming or joining a coalition with others (“outcome-oriented”)
[20]. Both non-cooperative and cooperative game theory offer
methods to study multi-actor interactions ranging from extreme
competition to cooperation with and without communication [21].

Yet, most game-theoretical models in engineering systems de-
sign focus on analysis of design problems with a single decision-
making authority. Contributions on this line of work use game the-
ory for multidisciplinary systems design optimization [16, 22, 23].
Design decisions treated as strategies in these applications largely
relate to the system’s functional properties and short-term objec-
tives. However, true strategic design decisions should be large
in degree of commitment and scope of potential impact to meet
designers’ long-term interests [24].

Moreover, it is a common misunderstanding that non-
cooperative game theory assumes no communication between
actors. Popular applications of game theory make this assumption
to limit influence of more complex factors such as trust, threat of
retaliation, and reputation effects. Nonetheless, non-cooperative
games are useful in circumstances where players exchange
information strategically or engage in “pre-play” negotiations that
could (but do not necessarily) lead to coalitions or “self-enforcing”
agreements among actors [25, 26].

Engineering systems design needs methods like those provided
by game theory to assess the effects of strategy-related uncertainty
on system’s performance but also to understand designers’ indi-
vidual trade-offs and collective decision-making processes. This
paper examines how the strategy dynamics that characterize collec-
tive decision-making settings apply to multi-actor design problems
and impact collective performance. The following sections discuss
background in game theory, applications in engineering systems
design, and specific objectives of this work. The Nomenclature
section describes all symbols and acronyms used in this work.

2.1 Strategy Dynamics: Definition. The notion of strategy
encapsulates the general principles that govern an actor’s decision-
making process as the most important concept in non-cooperative
game theory [27]. A strategy is a complete contingency plan of
actions developed and executed by a player to meet individual
objectives in a game. A normal-form game is a triple

G = (WS ) (M)

where

N ={l,...,n} is a finite set of players.

+ S; is a finite set of strategies for each player i € N. The set
of all collective strategies is S = S; X - - - X Sp.

e U; : § — R is a function that associates each strategy vector
s € S with the utility (or payoff) to player i.

Representing a strategic setting of collective action as a normal-
form game facilitates the analysis and interpretation of its actors’
decision-making process and outcomes [28]. The simplest normal-
form game is represented as a 2 X 2 bimatrix (one payoff matrix
per player) where rows and columns list a binary strategy space
Si = {0, 1}. Figure 1(a) shows the general form of a payoff matrix
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Player j Player j
Ui(si,sj)| sj=0 sj =1 u;i (i, s5) Defect Cooperate
si=0 U;(0,0) | U;i(0,1) Defect 0 T
si =1 U;(1,0) | U;(1,1) Cooperate S 1
(€) (b)
Fig. 1 Normal-form game: (a) player i’s payoff matrix; (b) nor-
malized payoffs as a social dilemma game
s, Normative s;
1 - 1
S T F G
(@ >0 <1 L L
() >0 >1 L H
(c) <0 <1 H L
(d) <0 >1 H H
I 0 L:Low; H:High.

Fig.2 Normative s; across S—T plane: (a) harmony; (b) coex-
istence; (c) bistability; and (d) defection dynamics [30]

for any player i where elements show the payoff U;(s) = U;(s;, 5;)
that player i would obtain if the corresponding row and column
strategies, s; and s 7, are selected.

In 2 x 2 social dilemmas (also known as mixed motives games),
strategy labels indicate whether a player chooses to cooperate (s; =
1) or defect (s; = @) and it is assumed that unanimous cooperation
is always preferred to mutual defection; i.e.

U;(1,1) > U;(0,0), VYieN. 2)
Although often aligning with semantics, cooperate and defect are
only labels and may correspond to any strategic action yielding
the corresponding dynamics. In general, the diagonal collective
strategies s = (0,0) and s = (1, 1) can be described, respectively,
as the status quo and the desired outcome.

Any normal-form game in which Eq. (2) holds can be charac-
terized as a social dilemma by normalizing payoffs U;(s;, s;) via
the positive affine transformation

Ui(si, sj) — Ui (0,0)

Ui 1)~ Ui(0.0) " =

ui (s, 85) =
which yields u;(0,0) = 0 and u;(1,1) = 1. The off-diagonal nor-
malized payoffs obtained with Eq. (3),

S=u;(1,0) and T =u;(0,1). 4)

are referred to as the sucker’s (S) and temptation (T) payoffs in
symmetric social dilemma games, respectively.

A normal-form game with normalized payoffs is shown in
Fig. 1(b). The payoffs in Eq. (4) owe their nickname to the Pris-
oner’s Dilemma game where S represents a discouragement to co-
operate due to fear and T is an incentive to defect due to greed
[29]. More generally, strategy-induced fear is related to a player’s
expected loss of choosing to cooperate when some or all of the
other players defect. Greed is induced by the expected gain of
unilaterally deviating from a cooperative collective strategy.

A measure of relative fear (F') and greed (G) can be obtained by
dividing the total loss or gain of deviating from a diagonal strategy
by the difference between maximum and minimum payoffs [32].
For a symmetric two-player game,

1(0,0) - U;(1,0 -
U;(0,0) - U;(1 )E S )

max u; — minu;’

F

max U; — min U;
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U;|l 0|1 ui | 0|1 U;| @ 0|1 U;|l 0|1 ui | 0|1 1
0|13 0|0 | 0|1 0|3 0|2 0| 0|12 0|2
S; S; Si S; S; i
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(a) (c)

Fig. 3 Strategy dynamics, representative normal-form social dilemma games and their normalized payoffs [30, 31]: (a) harmony:
Concord game, (b) coexistence: Chicken game, (c) bistability: Stag Hunt, and (d) defection: Prisoner’s Dilemma

T-1
" maxu; —minu;

U;(0,1) - U;(1,1) _
max U; — min U;

G =

Q)

The levels of structural fear and greed and their associated val-
ues of § and T in the normal-form game in Fig. 1(b) describe
four different strategy dynamics in Fig. 2 [30]. Each domain ex-
hibits different payoff dominance conditions with respect to the
normative (or “rational”) Nash equilibrium solution concept for a
single-shot, non-cooperative game:

* Harmony. Also known as cooperation dynamics, the socially-
efficient strategy is also a pure-strategy Nash equilibrium,
i.e. unilaterally deviating from such collective strategy is
detrimental (and thus irrational) for either player. For in-
stance, in the Concord game in Fig. 3(a) (positioned within
the s; = 1 region of Fig. 2(a)), player i is always better off
by choosing s; = 1 regardless of the value of s5;. All players
naturally concur on the same collective strategy, which also
happens to yield the highest available payoff.

* Coexistence. In mixed motives games with coexistence dy-

namics, players drift between two strict equilibrium points

by coordinating between conflicting interests described by

s; # sj. Also known as anti-coordination games, they in-

clude Battle of the Sexes, Leader and, most notably, the game

of Chicken (Fig. 3(b)). A popular example of a Chicken
game features two drivers that compete to demonstrate brav-
ery by racing cars toward each other on a single-lane road

(s; = @) hoping for their opponent to “chicken out” and veer

off (s; = 1) to avoid collision. The corresponding point in

Fig. 2(b) shows a mix of normative strategies corresponding

to s; # sj with an implicit power struggle for the upper hand.

Bistability. In two-player bistable or bipolar games, such

as Stag Hunt (Fig. 3(c)), the diagonal collective strategies

are pure-strategy Nash equilibria. Both players are better off
coinciding on s; = s;, but they might perceive differently
which strategy is more favorable. In the absence of complete
information about their counterpart’s preferences, a player’s
choice of strategy becomes a matter of balancing intuition,
deliberation, and trust [35, 36]. Strategy selection in bipolar

games requires further assessment of risk dominance [37]

which segments the normative strategy between s; = 1 and

s; = 0 regions illustrated in Fig. 2(c).

* Defection. In defection games, the intersection of the play-
ers’ equilibrium strategies is a socially-inefficient outcome.
For example, the Prisoner’s Dilemma game in Fig. 3(d) (po-
sitioned within the s; = @ region of Fig. 2(d)) demonstrates
defection dynamics: two perpetrators of a crime are sepa-
rately promised a lighter jail sentence if they confess (s; = @)
instead of remaining silent (s; = 1). For either player, con-
fessing the crime and blaming it on their partner is the utility-
maximizing course of action, even though refusing to talk
is mutually beneficial. Games with defection dynamics are
common templates for the study of the evolution of coopera-
tive behaviors in conflict situations [38].

2.2 Strategy Dynamics in Engineering Design. Every
decision-making process that involves two or more actors can be
described in terms of one or more strategy dynamics regardless
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of its underlying organizational and incentive structures, mul-
tidisciplinarity, or geographic distribution of actors. Likewise,
the strategy dynamics introduced in the previous section can be
traced to cases in existing engineering design and systems engi-
neering literature; however, no existing work synthesizes design
activities across dynamical domains, a necessary step to enable
interventions to mitigate or even augment the natural strategy
dynamics. This section discusses several such collective settings,
one per strategy dynamic, and presents them as normal-form
games (Fig. 4).

2.2.1 Harmony. Sustainable consensus between decision-
makers is a desired property in any distributed design process and
is a natural, although optimistic, dynamic for engineering design.
The harmony dynamic is often characterized by a purely coopera-
tive design problem where all actors have aligned objectives and
will naturally achieve a collectively efficient outcome. In general,
any design problem in which the combination of individual
strategies preferred by each actor also yields the highest utility to
all of them can be described as a game with harmony dynamics.

An example of these dynamics in engineering design is ob-
served in a behavioral study in Ref. [33] that assessed performance
in team-based conceptual design tasks using three team configura-
tions: 1) all designers work together to generate a design concept;
2) one designer assumes a manager role and assists the design
process; and 3) all designers work alone on the task (viz. nominal
team) and the best design concept is chosen as the team’s solution.
This problem can be reduced to two strategies: “work together”
to pursue a joint effort (or manage) or “work alone” to pursue an
independent effort (or serve as managed worker).

Symmetric payoffs assume all team members receive the same
reward proportional to the quality of the team’s solution. Results
in Ref. [33] suggest that unmanaged teams provide worse design
quality than managed teams in conceptual design tasks, while the
latter were slightly outperformed by nominal teams. Translating
results into a hypothetical normal-form game in Fig. 4(a) by multi-
plying quality rating by frequency shows “work alone” is both the
payoff-dominant and the only strict equilibrium. In other words,
there is no individual or collective incentive in this type of problem
to choose other than the “work alone” strategy. Note the “cooper-
ative” strategy is not a semantically correct label in this case: the
strategic action to work alone is both preferred by and mutually
beneficial for both actors, regardless of the other’s decision.

2.2.2  Coexistence. Achieving disciplinary autonomy is yet an-
other goal in the design of complex systems that carries practical
difficulties. Although collaborative approaches boost agile sub-
system development, system-level evaluation of consistency con-
straints mitigates their benefits [39]. Integrating some constraints
at the discipline level and allowing for a hierarchy of subsystem
analyses helps engineers preserve some of the advantages of dis-
tributed design without sacrificing robustness.

Choosing between a collaborative, an independent, or a sequen-
tial multi-actor decision-making approach can be modeled as a
game with coexistence dynamics where the strategy set refers to
different levels of autonomy. Consider the design of a passenger
aircraft in Ref. [6, 7] with two disciplinary teams (Weights and
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The other designer(s) Aerodynamics team NOAA Materials Engineer
Ui (si, s;) |Work together| Work alone Ui(si, sj) Lead Collaborate U;(si, s;) | Independent | Joint System Ui(si,s;)| Freeride Commit
Work together: 14 23 Lead 1-0.262%| 1 -0.201 Independent |  0.680 0.680 Free-ride 2.00 4.01*
Work alone 23 28* Collaborate | 1 —0.255 |1 -0.213 Joint System | 0.434 0.719 Commit 0.98* 3.74
* Nominal team’s performance. * Non-cooperative/isolated actors solution. * Risk-dominant, perfectly-limited strategy. * Non-substitutable roles (zero efficiency).
(@ (b) () (d)

Fig. 4 Strategy dynamics: examples from engineering design and systems engineering literature: (a) harmony: cumulative
quality ratings of concepts generated by members of a design team [33]; (b) coexistence: Weights team performance in various
aircraft design approaches [6, 7]; (c) bistability: DoD’s payoffs from a risk dominance analysis of distributed satellite systems
[34]; and (d) defection: design engineer’s payoffs in team-based product development model [5].

Aerodynamics) poised to either lead the design process or cooper-
ate with the other. There are three possible scenarios:

i. Both teams pursue leadership of the design process and the
lack of cooperation results in low-performing subsystems
with respect to system-level integrability.

ii. Both teams are willing to collaborate to improve integra-
bility but unwilling to lead. Such concurrency of design
decisions is limited by complexity and practicality issues.

iii. One team leads the design process and initiates the search
for feasible solutions within their domain. The other team
carries on the search at the discipline level constrained by
the leading team’s outcomes.

In the first scenario, actors make decisions in isolation, either in-
tentionally or involuntarily, while making assumptions about the
preferences of their counterparts. This scenario is modeled as an
isolated decision support problem. The second scenario encom-
passes the main principles of concurrent engineering. In practice,
this paradigm can be modeled as approximate cooperation [7]. Fi-
nally, the third scenario describes a Stackelberg/leader—follower
protocol [40].

The normal-form game in Fig. 4(b) shows the performance of
the Weights team in each scenario measured as 1 minus a deviation
function—or the difference between what the design team wants
and what they achieve [6, 7]—for each strategic scenario. (The
payoff matrix for the Aerodynamics team, not shown, is estimated
in a similar fashion and has the same payoff ordering). The indi-
vidual performance of either team is maximized when they lead
the process and the other team follows.

This scenario resembles a variant of the Chicken game called
Hawk—Dove where two actors compete for access to limited
common-pool resources and are better off letting the other take
the advantage and avoid confrontations. As an example, for the
completion of a large project within an engineering organization,
disciplinary teams competing for limited resources such as person-
nel, facilities, and equipment, need to agree on the assignment of
roles—which teams are hawks (leaders) and which ones are doves
(followers)—that generates the most positive externalities for the
organization [41].

2.2.3 Bistability. Strategic sharing of information and re-
sources by and between actors in a design process is governed
by autonomy and pursuit of individual gains. This is especially
relevant in the design of federated systems and systems-of-systems
where there is a lack of centralized control and adherence to a
common strategy is voluntary [2]. This scenario can me modeled
as a Stag Hunt game where players weigh the upside potential
of cooperative joint action and the downside risk of coordination
failure [8]. The alternative—and safer—strategy chooses indepen-
dent action, analogous to chasing hares instead of collaborating on
hunting a stag, the Pareto-dominant equilibrium [42].

Figure 4(c) shows the payoff matrix for United States govern-
ment agencies directed to coordinate efforts to develop a dis-
tributed satellite system [34]. The directive, known as Na-
tional Polar-orbiting Operational Environmental Satellite System
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(NPOESS), was a joint endeavor between the U.S. Department of
Defense (DoD) and the National Oceanic and Atmospheric Ad-
ministration (NOAA) to replace and unify existing independent
missions, combine capabilities, and save resources [43]. NPOESS
consolidation presents some upside benefits to the DoD (e.g. 0.719
for a joint system vs. 0.680 for an independent system); however,
joint operations carry additional risk of coordination failures if
other partners drop out (e.g. falling to 0.434). Similar strategic dy-
namics exist for NOAA, but with greater upside potential. Lack of
alignment between strategic sources of risk may have contributed
to disagreements along the program and its eventual dissolution
[34].

2.2.4 Defection. From mathematics and the social sciences
to biology and systems theory, the Prisoner’s Dilemma game
is widely used to represent a bargaining problem between self-
interested agents that might pass on pursuing a mutual benefit.
Similar applications in engineering design also use it as a model
to study collaboration [14]. One example is provided by Takai
[5] and presented in Fig. 4(d). This model represents a dilemma
between two disciplinary engineers in a team-based product devel-
opment process that choose between committing time to teamwork
or focusing exclusively on individual projects.

The payoffs for the design and materials engineers combine
the value obtained from individual project performances and con-
tributions to the team project performance. Allocating time to
the team project negatively affects one’s individual project perfor-
mance. Meanwhile, allocating time to an individual project pro-
duces benefits from both individual and team outcomes [44]. In
cases with a free-rider, the team project success depends on how
effective one role is for the other. In cases with low effectiveness
in Fig. 4(d), free-riding is a payoff-dominant strategy for both en-
gineers, i.e. Nash equilibrium. Although the collective efficient
solution commits to the team project, the underlying dynamics in
this problem promote free-riding as a dominant strategy.

2.3 Research Objectives. Literature in engineering design
shows two main limitations with adopting game-theoretic concepts
to explain strategy dynamics in multi-actor design problems. First,
some existing work equates strategies with design decisions follow-
ing an optimization perspective [16, 22, 23], yielding a large num-
ber of alternative strategies and limited ability to characterize the
strategy dynamics. Second, existing work that implicitly or explic-
itly adopts a more abstract strategic decision [5-7, 33, 34] focuses
on one dynamical domain at a time, rather than understanding
how the underlying problem structure contributes to the resulting
actor dynamics. As a result, there is limited knowledge about how
strategy dynamics influence engineering design decision-making.

This study works towards a theory of collective systems design
by establishing a body of evidence based on analytical and behav-
ioral experiments to address the research question:

How do the strategic components characteristic of the
structure of a design problem affect collective action?
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Fig. 5 Two-actor bi-level model of collective systems design
with lower-level design exploration and upper-level strategy se-
lection under interactive effects

Owing to the broadness of this goal, this paper focuses on the
modeling of strategic components in collective parameter design
tasks for the four social dilemma strategy dynamics previously
introduced. Research questions specific to this work are:

RQI1. How can strategy dynamics be characterized as a phe-
nomenon related to, but distinct from, design optimiza-
tion in an engineering design problem?

How can collective parameter design problems be gener-
ated to exhibit specified strategy dynamics?

How do strategy dynamics affect strategy selection, col-
lective efficiency, and equality in parameter design tasks?

RQ2.

RQ3.

To answer these questions, we formulate a multi-actor system
value modeling framework that maps lower-level design decisions
to a measure of preference over upper-level strategy profiles (Sec-
tion 3). This bi-level model serves as the basis to generate syn-
thetic two-actor parameter design tasks with specified that exhibit
steady harmony, coexistence, bistability, or defection dynamics
(Section 4). Finally, a human-subject experiment administers pair
design tasks to assess the effect of strategy dynamics on collective
design performance (Section 5).

3 Bi-level Model of Collective Systems Design

In response to RQ1 about how strategy dynamics relate to tradi-
tional design decision-making activities and processes, this section
presents a bi-level model of collective decision-making in engi-
neering design as the mathematical foundation of this work. It
assumes two types of decisions: lower-level design decisions in a
large design space and upper-level strategy decisions in a limited
strategy space. Strategy dynamics are attributed to the upper-level
decision problem, framed here as a single-shot game, which is in-
fluenced by outcomes of lower-level design decisions. Examples
in Section 2.2 reinforce the distinction between strategy decisions
(e.g. lead or collaborate across disciplines) and design decisions
(e.g. select aircraft parameters) present in this model.

This section extends prior research formulating bi-level models
for problems with bistability strategy dynamics and risk domi-
nance [45, 46] to other types of strategy dynamics present in a
design problem. As illustrated in Fig. 5, the lower-level frames
design decisions d = (d;) as an optimization problem within a
fixed strategic context while the upper-level frames strategy deci-
sions s = (s;) as a normal-form game. Initially presented as a
sequential process from lower- to upper-level, subsequent discus-
sion reveals an iterative nature of the model.

3.1 Lower-level: Design Exploration. The lower-level deci-
sion problem models engineering design as an optimization prob-
lem, reflecting dominant perspectives in decision-based design lit-
erature [13]. The process of engineering design defines and eval-
vates design solutions from the set of alternatives d € D. In
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multi-actor scenarios, the design solution can be decomposed into
a vector of elements d = (dy,...,dy) controlled by each of n
actors with corresponding design spaces d; € D;. Following ax-
iomatic design theory [47], each design element can be further
composed of individual design parameters d; = (lxi, zxi, ...) such
that the resulting design space D; is a Cartesian product of con-
tinuous (R) and discrete (Z) scalar spaces.

Various functions (models) evaluate design solutions by map-
ping the design space D to other spaces. Most relevant to decision-
based design, a lower-level value function V;(d) maps a design to a
scalar measure of actor i’s preference for it (viz. a utility function).

Diverging from most existing design literature, assume valua-
tion takes place within a limiting context as a function of a strategic
state in a set of alternatives s € S. The strategic state implicitly
defines a set of assumptions, large in both scope and correspond-
ing commitment [24], that constrain how a design delivers value.
Strategic states may arise from other actors’ decisions (e.g. partici-
pation in joint operations; build-up or reduction in arms; pursuit of
a new market) or external actions (e.g. environmental conditions;
technology maturity; public sentiment). The effect of strategic
state on value is captured by a second parameter, superscript s in
V;(d), and an equivalent function signature *V;(d) = *V;(d;, d—;)
highlights design decisions controlled by actor i and those con-
trolled by other actors (—i).

The resulting lower-level design process in Eq. (7) resembles an
optimization problem where §; : S +— D; finds the context-specific
design that maximizes value.

8i(s) = arg max *V;(d;, 6_;) (7
d; €D;

A necessary component of multi-actor design, anticipation of oth-
ers’ design solutions J_; is based on a transient belief state. Repre-
sented here as a fixed point, more detailed design processes assign
a probabilistic belief state to maximize expected value.

3.2 Upper-level: Strategy Selection. The upper-level deci-
sion problem models engineering design as a strategic game by
considering interactive effects among actors driven by strategy
dynamics. While the lower-level problem focuses on design de-
cisions, treating the strategy as context, the upper-level problem
inverts it to focus on strategy selection, treating design solutions
as context. For clarity in presentation, consider a slight notation
shift to quantify actor i’s payoffs as 4y, (s) = Vi(d).

The resulting upper-level design process in Eq. (8) resembles
a strategic game where o; : D +— S finds the design-specific
strategy that maximizes payoff.

0i(d) = arg max Wi (si, 1) (8)

$; €5;

Similar to the lower-level problem, anticipation of others’ strategy
selections 0—; is based on a transient belief state, perhaps with
profound uncertainty due to the strategic nature of the information.
While notionally expressed as a function maximization, selecting
the payoff-maximizing strategy o;(d) may result to equilibrium
analysis or other decision rules to resolve interactive effects.

The above formulation hints at the iterative nature of the bi-level
model which is limited by large design spaces (i.e. it is impracti-
cal to solve the upper-level problem for each design alternative).
Assuming a sequential design process from lower- to upper-level
problems suggests designers first optimize the design ¢;(s) in each
strategic context s and, second, select a payoff-maximizing strategy
o;. However, the reverse process implies designers first select a
strategic state o;(d) based on generalizable strategy dynamics and,
second, optimize the design ¢; for it. In practice, both processes
likely influence decisions in an iterative scheme.
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3.3 Model Assumptions and Limitations. This model has a
number of assumptions and limitations that should be discussed.
First, it uses utility (value) functions to quantify scalar actor pref-
erence for alternatives. While a critical element of decision theory,
valid utility functions are difficult to formulate and elicit for pre-
scriptive purposes. In this theoretical application, utility functions
represent internal decision-making activities. The model does not
exchange utility functions between actors; they are only used (by
each actor) to guide internal decision processes and (by an ob-
server) to characterize the strategy dynamics.

Second, this model assumes the lower- and upper-level design
activities represent distinct decisions. The lower-level problem
explores a large design space with well-characterized interactions
between actors to facilitate evaluation and optimization of context-
specific value functions *V;. The upper-level problem deals with a
smaller strategy space where stronger interaction effects between
actors and barriers to strategic information exchange complicate
the maximization of the design-specific utility functions dy;.

Finally, although simply expressed as a maximization problem,
lower- and upper-level solution processes are, in practice, complex
activities. For simplicity of presentation, this paper presents lower-
level evaluation functions as deterministic functions, a common
but unrealistic practice [48]. Including uncertainty for lower-level
design exploration transforms Eq. (7) into an expected value max-
imization problem but nonetheless is compatible with the general
framework. Additionally, both lower-level and upper-level deci-
sion processes depend on a belief state about others’ actions (6_;
and &_;) influenced by prior relationships and information accu-
mulated in iterative design processes. Use of normal-form games
further suggests a single-shot, simultaneous upper-level strategy
selection process. However, in practice, strategy selection is more
of a sequential, multi-stage, or even iterative activity that revisits
lower-level design decisions. These dynamic effects are not repre-
sented in the static bi-level model formulation presented here but
could be incorporated in a future extension.

4 Bi-level Parameter Design Tasks

In response to RQ2 about how design problems can be generated
to exhibit specified strategy dynamics, this section formulates a
class of symmetric two-actor parameter design problems conform-
ing to the bi-level model of collective systems design described in
Section 3. The parameter design tasks represent an abstraction of
a design problem based on the following principles:

(1) Tasks exhibit static strategy dynamics characterized by pa-
rameters S and T in Section 2.1. Although unrealistic, fixing
strategy dynamics is essential to this research question.

(2) Tasks exhibit symmetry between two designer roles with
identical input decision spaces and output value spaces.
Symmetry improves experimental control and sensitivity.

(3) The upper-level strategy space S; X S considers only two
alternatives S; = {0, 1} canonically labeled defection (s; =
@) and cooperation (s; = 1) in social dilemma games.

(4) The lower-level design space D; X D;j composes two sub-
spaces X; X X (one per diagonal collective strategy) where
D; = &; X X;. Sub-spaces have small cardinality |X;| = 9
to accommodate limited resources in behavioral experimen-
tation.

(5) Lower-level value functions *V; for each strategy exhibit
locally-smooth surfaces with one local-maximizing point on
the plane of symmetry and one global-maximizing point off
the plane of symmetry. This presents a conflict where the
individually-preferred solution is not mutually preferred.

The resulting tasks are representative of engineering design only
at an abstract level. Multiple local maxima and conflicting global
maxima are common design features; however, others such as
smooth value surfaces, finite and small design spaces, symme-
try, and context independence are atypical. Therefore, results from
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Table 1 Parameter design tasks: strategy dynamics, normal-
ized payoffs, fear and greed levels, and value space ranges

Normalized payoffs [ *Vimins *Vimax |

Task Strategy

type dynamic S T F G s =00 s=11
HA  Harmony /3 2/3 -1/3 -1/3 [ 1, 49] [56,100]
CX Coexistence® 1/2  3/2 -1/3  1/3 [ 1, 33] [35 67]
BI Bistability* -1/2 1/2 1/3 -1/3 [34, 66] [68,100]
DE Defection -1 2 1/3  1/3 [34, 50] [51, 67]

« Risk dominance between strict equilibria is set neutral (i.e. R = 0). See Refs. [8, 35, 37].

these tasks may only be valid at an abstract level and care must be
taken before applying conclusions to more specific settings.

Each task type and its main characteristics are presented in Ta-
ble 1 and implementation is discussed in the following sections.
The notation introduced in this section builds upon prior work in
Ref. [49] and is listed in the Nomenclature section.

4.1 Lower-level Design Spaces. Each actor controls a design

vector with two integer parameters d; = (%%;, ''x;) where %; €
Xi = Zg = {0,...,8} targets a context with inferior collective
outcome (s = (@,0), labeled as binary digit 00) and 'x; € X;
targets a context with superior outcomes (s = (1, 1), labeled as bit
11). In other words, design variable d; composes two individual
design solutions for status quo (s = 0@) and mutually-beneficial
(s = 11) settings. The resulting design space has |D;| = |X;xX;| =
81 alternatives per actor and |D; X D;| = 6,561 joint alternatives
in total.

A context-specific value function *V;(d;,dj) € [*Vmin, *Vimax]
maps points in the joint design space to a joint value space by ex-
tracting the relevant design parameters for each context in Eq. (9).

00 (09y;, 00xj) if s =00

9
11fi(”xi,”xj) if s =11 ©)

Vid;, dj) = {

Curated context-specific value functions *f; are generated using a
similar procedure as in Ref. [49] (see the Appendix) to ensure no
point simultaneously maximizes both actors’ objectives. To en-
force symmetry, both actors are assigned the same value function,
i.e. °f; ~ °f;, which yields equal lower-level value for *x; = ;.

Strategies are labeled such that Win > Winax as listed in
Table 1 to enforce Eq. (2) and constrain U;(s) € [0, 100] during
upper-level strategy selection. The resulting lower-level problems,
shown in Table 2, appear as two &; X X; design spaces (labeled
00 and 11), presented and explored concurrently.

Additional information on the method used to generate the
lower-level design spaces used in the parameter design tasks is
provided in the Appendix.

4.2 Upper-level Strategy Spaces. The actors’ decisions se-
lected during the lower-level design exploration are mapped to a
scalar utility space with constants S and 7 in Eq. (10). Constants
for each task type in Table 1 were selected to produce two levels of
F and G across the four strategy dynamics in Fig. 2. To preserve
constant S and 7', actor i’s payoff is artificially computed as

Vi (d) if s =00 or 11
Wis) =3 -1)- () + T - "WVid) ifs;=0#s;
(1=8)- i)+ 5 - "Vi(d)

(10)
ifs; =1+ S

where d; are the lower-level designs for each actor. To exert tight
control over strategy dynamics, payofts for conflicting strategies
are a function of both 2%; and '"V;. In other words, actors observe
the direct lower-level valuation under mutual strategies (@@ or 11)
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Table 2 Sample design spaces and utility—utility tradespaces for each type of parameter design task

Task / Strategy Dynamic

HA / Harmony CX / Coexistence

BI / Bistability DE / Defection

eefi Hﬁ Geﬁ_ Hﬁ

Lower-level
design space
Vi(d;, dj)

80

(Wils), Wj(s))y - &
tradespace " x
4 40
T(dUi-de)z - \é
. %
K

00ﬁ 11fi 00ﬁ 11ﬁ

Table 3 Distribution of collective efficiency scores within each
task tradespace; pgg: top 10th percentile.

HA X BI DE
poo = 0.72 poo = 0.74 poo = 0.83 poo = 0.78
-8 / -8 / -8 8 /
-6 -6 6 -6
a
© U {
68| /1 63 6 38 A6 8

Table 4 Distribution of equality scores within each task
tradespace; pgo: top 40th percentile.

HA ox BI DE
Peo = 0.92

peo = 0.91 peo = 0.89 Ppeo = 0.96

but cases with conflicting strategies mix the other two outcomes
to produce desired strategy dynamics with fixed S and T'.

Tables 2 shows the joint utility tradespaces of all possible upper-
level strategy outcomes (4 X 6,561 = 26,244). It includes 6,561
outcomes (each) for upper-level solutions (9, 1) and (1, @) and 81
unique outcomes (each) for upper-level solutions @0 and 11 each
replicated 81 times to enable descriptive statistics of outcomes via
percentile ranks. Tradespace contour lines show the square root of
the product SU;(s) - U ;(s), akin to the generalized Nash product
[50] as reference for collective efficiency.

4.3 Collective Design Metrics. Two dimensions assess ac-
tors’ collective design performance in a task based on the final
design ¢ and strategy o decisions:

i. Maximization of the product of their payoffs, i.e. converg-
ing to a Pareto-efficient solution.

ii. Similarity in their payoffs, comparable to an individual
sense of equity and fairness.

The first dimension measures collective efficiency calculated as the
ratio of the product of observed payoffs 6U,<(0') and U j(0) to the
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global maximum within the utility—utility tradespace:

Ui(o) - Uj (o)

11
maxg g ay;(s) - de(s) (b

Efficiency = [0, 1].

The second dimension measures equality, calculated in terms of
the ratio of the absolute difference between the observed payofts
to the maximum possible disparity between task outcomes:

Ui (o) - %Uj(0)

12
maxg g au;(s) - de(s) 12

Equality = 1 - e [0,1].

The aforementioned collective design metrics, as well as the pa-
rameter tasks described in this work, are inherently symmetric with
respect to the design actors’ identities and roles.

Table 3 and 4 show plots collective efficiency and equality cu-
mulative distribution functions (CDFs) for outcomes of three gen-
erated design problems (red, blue, and gray lines) in each task
tradespace. Although each metric is similarly distributed across
task types and generated instances, assessment of the effect of
a strategy dynamic on collective performance uses the percentile
rank (PR) within their tradespace to allow a more direct compari-
son of outcomes.

Finally, it is worth mentioning that Eq. (11) is not intended to
represent a measure of “social efficiency” even though it mimics
Nash’s solution to bargaining games [51]. Similarly, minimizing
Eq. (12) does not translate into higher social welfare because equal
payoffs could be equally poor. Nevertheless, both metrics provide
a good starting point to assess collective design performance.

5 Design Experiment Methodology

In support of RQ3 to assess the effect of strategy dynamics
(Section 2) on outcomes of collective design tasks, we conducted
a human-subject experiment using the bi-level parameter design
tasks defined in Section 4. Observations measure the effect of four
fixed strategy dynamics with two dimensions (fear and greed) on
collective efficiency, equality, and individual strategy selection.

5.1 Experimental Design. The experiment follows a hybrid
within- and between-subjects design with replication at task and
design pair units. A design session is structured as a round-robin,
all-play-all tournament for each of the four task types. Four par-
ticipants per session provide three possible design team pairings.
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Assigning each pair to complete one task per strategy dynamic re-
quires 12 parameter design tasks per session. Across 10 sessions,
this experimental design generates 10 x 12 X 2 = 240 pair design
task observations, 60 of each strategy dynamic.

Table A.1 lists the rounds in each session (including training
rounds T1-T4), the task type (HA, CX, BI, or DE), context-specific
maxima for °f;(%%;, %%;) and "'f;("x;, "'x;) in Eq. (9), and pair-
ing of designers with indices 1—4. The algorithm generating lower-
level value spaces (see Section 4.1 and the Appendix) is further
constrained to require different local maxima between consecutive
tasks to limit anchoring effects.

5.2 Designer Interface. Human actors participate in a param-
eter design task using a graphical user interface (GUI) illustrated
in Figs. 6(a)—(b). Although embodying the bi-level parameter de-
sign task, the GUI does not label strategies or strategy dynamics.
It consists of three panels, left, right, and center of the display:

* The left and right panels give actors control over lower-level
design decisions within strategic contexts s = 00 — and
s = 11 — (1). Each actor controls the horizontal axis of a
design space and their partner controls the vertical axis.

* The center panel shows the task number (round), a timer to
complete lower-level design exploration, and a timer to com-
plete a final upper-level strategy selection.

Clicking on a panel sets actor i’s corresponding strategy s;. For
example, designer 1 in Fig. 6(a) clicks on panel 00 to set 51 = 0.

The interior of each of the @0 and 11 panels contains a colored
square grid plot of *f; (partially visible), a color bar, and one
horizontal slider:

* Actor i modifies d; using the horizontal sliders below each
grid to set design parameters (left: %;, right: ''x;). The
other actor’s decision d; appears, in real time, along the ver-

tical axis of the corresponding panel (left: ooxj, right: 11xj).

* To disguise the sameness between “f;(°x;,%x;) and
5fi(xj,%x;), the x; axes are reversed and the design
alternatives are labelled with the first |X;| = 9 letters from
the English alphabet (e.g. *x; = 0 := A and *x; = 0 := I).

* The design grid focal point expanded in Fig. 7 reveals pay-
offs for the selected design in the current context U, (si, si)
(upper-left triangle), the selected design in an alternate con-
text U (s;, 1 — s;) (lower-right triangle), and payoffs for the
4-neighborhood around ( ®x;, °x;). The numerical values cor-
respond to payoffs in the normal form bimatrix in Fig. 8;
however, it is not presented as such in the design task.

Grid plot payoft colors use the perceptually-uniform cividis
colormap optimized for color vision deficiency [52]. The
colorbar ranges from O (dark blue) to 100 (yellow).

The lower-level design process within strategic context s pro-
ceeds with designer i/ modifying parameter Sx; left-and-right and
designer j modifying parameter ij up-and-down. Designer i ob-
serves and uses nominal payoff 4y;(s) to direct the search process
while designer j likewise observes and uses payoff dy i(s). Both
pursue maximum individual values; however, lack of vertical con-
trol and competing objectives require satisficing solutions.

Although clearly an artificial design problem, the resulting in-
terface seeks to combine both perspectives of lower-level design
exploration as an optimization problem and upper-level strategy
selection as an interactive game. The visual representation of two
static design spaces with real-time exchange of design parameters
helps to elicit optimizing behaviors to maximize individual objec-
tives. Meanwhile, the display of alternative payoffs under mis-
aligned strategies and no equivalent sharing of strategy decisions
facilitates strategic behavior common in social dilemma problems.
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5.3 Experimental Protocol. The experiment protocol was
approved by Stevens Institute of Technology’s Institutional Review
Board. Framed as a game-based engineering design experiment,
each session gathers four participants for about 50 min as follows:

+ 5 min: Informed consent and demographics survey

+ 5 min: Multi-dimensional locus of control questionnaire [53]
+ 10 min: Introduction and training (4 rounds)

+ 30 min: Main design experiment (12 rounds).

The introduction explains the task formulation and instructs partic-
ipants to to maximize their individual aggregated scores (i.e. sum
of final ®U;(o) payoffs across 12 rounds) with increasing finan-
cial incentives (gift cards worth $8, $10, $12, and $15) tied to
successive ranks. Training explains how to use the designer GUI
including user interface controls, meaning of numerical displays
with respect to payoffs (scores), and the timer function. Training
consists of four parameter design tasks, one per strategy dynamic,
that differ from the main 12 tasks in S, 7', and scaling of local max-
ima (Table A.1). Subjects are prompted to ask questions about the
use of the GUI or task representation during training which can be
paused to permit sufficient explanation.

Paired subjects sit face-to-face and are allowed to talk but cannot
see or share each other’s screen. Each round allots two minutes to
find a collective solution for a bi-level parameter task as follows:

+ 1 min 45 s: Lower-level design exploration / design time
+ 15 s: Upper-level strategy selection / strategy time.

Each task is initialized at *x; = x; = 4 (non-local maximum) on
left and right panels for s = 0@ and s = 11. During design time,
subjects iterate between lower-level design exploration and upper-
level strategy selection with visibility of their partners’ actions. In
this stage, subjects navigate to desirable regions of the design space
to maximize value and improve their payoff structure, aware of
strategic trade-off and uncertainty of their partners’ final strategy.

When the design time runs out, input sliders are locked at the
final design decision ¢ and subjects have 15 seconds extra (strategy
time) to select final upper-level strategies o by clicking anywhere
on the @0 or 11 panels, viz. playing the normal-form game resulting
from lower-level design exploration (Figs. 8(a)—(b)).

While the interface exchanges real-time design selections dur-
ing the lower-level design exploration activity, no updates are dis-
played during the upper-level strategy selection activity to preserve
strategic information. When the task ends, the GUI turns black and
participants proceed to switch partners for the next task. Partici-
pants cannot see final payoffs after each parameter design task to
limit positive or negative reputation effects. Aggregated scores for
the main 12 tasks are announced only at the end of the session.

5.4 Participant Demographics. A total of 40 subjects were
recruited in 10 study sessions. All participants previously com-
pleted or were in their last year of science, technology, engineer-
ing, or mathematics (STEM) undergraduate studies. Participants
reported age, gender, years of education, professional experience,
English proficiency level, and familiarity with each other:

* The subjects ranged between 21-38 years of age with a me-
dian of 26.5 and a mode of 23 (8 occurrences).

* 14 subjects identified as female and 26 as male.

¢ Post-secondary STEM education ranged between 4—13 years

with a median of 7.0 and a mode of 5 (12 occurrences).

Professional experience ranged between 0-10 years with a

median of 2.0 years and a mode of 1 year (12 occurrences).

Regarding English proficiency, 18 reported TOEFL scores

above 95 (IELTS > 7.0), 9 between 85-94 (IELTS 6.5-7.0), 4

below 84 (IELTS < 6.0). Others are fluent/native speakers.

Finally, participants generally had limited prior interaction with
each other. At least one participant did not know any other partici-
pant in 8 of 10 sessions. Most participants knew at least one other
person and only nine participants across 5 of 10 sessions reported
knowing at least two others.
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Fig.6 Snapshot of parameter design task CX. 3 between designers i = 1 and j = 4 (round No. 5, pair 2, in Table A.1): (a) designer
1: dy = (9%, x1) = (3,7); (b) designer 4: ds = (%%x,,"'x4) = (3,5). Current selected collective strategy is s = (0,1).

Fig.7 Visible value subspace for strategic context s € {00, 11}
in the designer GUI. Values of dU,-(s) fors; = s; and s; # s;
calculated using Eq. (10).

Designer 4 Designer 1
4y, (s) 00,=3 | "x4=5 Ay, (s) Oy =3 [ My =7
%0y,=3 18 48 %0x,=3 18 92
ey =7 28 38 Mxy=5 43 67

(@ (b)

Fig. 8 Payoff matrices for snapshot of parameter design task
in Fig. 6 exhibiting coexistence dynamics: (a) designer 1’s pay-
off matrix; (b) designer 4’s payoff matrix

6 Results and Analysis

The outcomes of the design experiment, i.e. the final decisions
selected by each actor and the resulting payoffs realized for each
task, were aggregated by task type. Cumulative link model (CLM)
regression analyzes the effect of the strategy dynamics, in terms of
fear and greed factors, on collective design outcomes.

6.1 Experimental Results. Table 5 summarizes final joint
strategies (o) for 60 design pairs and individual strategies (o;)
for 120 designers across each task type. In brief:

* Harmony dynamics show frequent selection of the payoft-
dominant collective strategy individually (104/120 choose
o = 1) and in pairs (49/60 choose o; = o = 1), align-
ing with normative strategies in Fig. 2(a).
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» Coexistence dynamics show mixed strategy selection individ-
ually (55/120 choose o; = 0, 65/120 choose o; = 1) and
anti-coordination strategies as a pair (37/60 choose oy # ),
aligning with normative strategies in Fig. 2(b).

* Bistability dynamics show frequent selection of the payoft-
dominant collective strategy individually (101/120 choose
o; = 1) and in pairs (47/60 choose oy = oj = 1), in contrast
to the normative strategy in Fig. 2(c) that makes no distinction
between the two strategies.

* Defection dynamics show mixed strategy selection individu-
ally (66/120 choose o; = 0, 54/120 choose o; = 1) and in
pairs (21/60 choose o; = o = @), in partial alignment with
normative strategies of collective inefficiency in Fig. 2(d).

In addition to strategy selection, collective design performance
also depends on value-driven outcomes of the lower-level design
exploration phase. Figure 9 shows a box plot of percentile rank
(PR) collective efficiency and equality observed during upper-level
strategy selection, contrasting outcomes of the most collectively-
efficient strategy s = arg maxg Sy, (s)-U j(s) and the final selected
strategy o-. For collective efficiency:

» Lower-level design activities are generally productive across
all tasks, generating collectively-efficient upper-level alterna-
tives with a median percentile rank above 97%.

* The median percentile rank of collective efficiency for final
strategy selections scored above 97% for harmony and bista-
bility dynamics, slightly declined to 87% for coexistence dy-
namics, and greatly declined to 60% for defection dynamics.

For equality:

* The median percentile rank of equality for the most
collectively-efficient upper-level alternative was 100% for har-
mony and bistability dynamics compared to 65% for coexis-
tence, and 69% for defection, suggesting design search was
more equitable under harmony and bistability dynamics.

* The final percentile rank of equality remained at 100% for
harmony and bistability dynamics but further dropped to
37% and 55% for coexistence and defection dynamics, re-
spectively, indicating the final strategy selection amplified in-
equality in those settings.

The aforementioned results suggest that strategy-induced greed, a
differentiating factor of coexistence and defection dynamics com-
pared to harmony and bistability dynamics, has a stronger impact
on collective action than fear which differentiates harmony from
bistability and coexitence from defection. The following section
performs statistical analysis to further investigate this insight.
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Table 5 Observed upper-level strategy selection in collective
parameter design tasks for each strategy dynamic

Table 6 Analysis of deviance test* on random effects of par-
ticipants in the design experiment

Strategy dynamic

Joint o Harmony  Coexistence Bistability = Defection
oi=0;=0 8.33% 15.00% 10.00% 35.00%
o #0j 10.00% 61.67% 11.67% 40.00%
oi=0j =1 81.67% 23.33% 78.33% 25.00%
argmax, °U; - %U; o e Mean ==- Median
I I I I
HA — E HA — H
iH = NNNNNAN
.......... . ‘ ‘ ‘
X i X 1 :
s [P RO T HEOERENRN
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- = L
DE . DE - :
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2 4 .6 8 2 4 6 8
PR (Efficiency) PR (Equality)

Fig. 9 Observed percentile ranks of collective efficiency and
equality outcome metrics compared to those possible under
strategy arg maxg 5U,- . ‘SUJ-, the most-collectively efficient so-
lution available after completing lower-level design exploration

6.2 Effect of Strategy Dynamics. Initial analysis suggests
qualitative differences among the four strategy dynamics. Addi-
tional statistical analysis evaluates the effect of fear (F) and greed
(G) factors on collective design with respect to dependent variables
PR(Efficiency) and PR(Equality). They are, by definition, ordinal
variables, requiring non-parametric statistical methods. CLM re-
gression is appropriate to evaluate interaction and random effects.

The proposed model

logit(Pr(¥; < 1)) = 6 — B (F) - Bi(G) - B(F:G)  (13)
computes the cumulative probability of the k-th score falling in the
[-th category or below, where k indexes the 240 observations (¥y),
[ indexes response categories, and 6; is the threshold for the /-th
logit [54]. For the sake of simplicity, we assume such thresholds
are equally-spaced by A6. Finally, B; coefficients estimate effects
of F, G, and the interaction F:G.

In fitting Eq. (13), we tested the appropriateness of including a
normally-distributed blocking variable in the CLM regression anal-
ysis to account for repeated measures for subjects. Results from
an analysis of deviance test on the differences between candidate
models with and without the aforementioned random effect are
presented in Table 6. At a statistical significance level of @ = 5%,
there is insufficient evidence to conclude that blocking by partici-
pants has an impact on the goodness-of-fit of the candidate models
for collective efficiency and equality. We continue our analysis on
the effect of structural fear and greed on collective performance as-
suming independence between repeated measures on participants.

Table 7 lists goodness-of-fit statistics for two fixed-effects can-
didate logistic regression models per dependent variable including
the baseline “null model” logit(Pr(¥; < [)) = 1 for verification.
Model selection considers three methods: Akaike Information Cri-
terion (AIC) score, Bayesian Information Criterion (BIC) score,
and analysis of deviance to assess differences between candidate
models. The AIC scores favor the interaction effects model for
analysis of collective efficiency (albeit with relatively small differ-
ences between candidate models). The BIC method recommends
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No interaction With interaction

Dimension LR ~ y?2 p-value LR ~ y?2 p-value
Efficiency 3.5183 0.0607 3.1842 0.0744
Equality 3.3112 0.0688 3.2023 0.0735

* The models with and without random effects are not significantly different at @ = 5%.

Table 7 Information criteria estimates™ and likelihood ratio
test comparison between fixed-effect CLMs used to assess the
effect of fear and greed on collective efficiency and equality

Statistic Null model No interaction ~With interaction
LL —1146.3665 —1105.3090 -1104.1171
7 AIC 2296.7331 2218.6181 2218.2341
§ BIC 2303.6943 2232.5406 2235.6373
2 | LR~x? 0.0000 82.1150 84.4989
H p-value -- < 0.0001* < 0.0001*
Deviance -- -- 0.1226
LL —778.2249 -770.1624 —-770.0206
o AIC 1560.4499 1548.3248 1550.0411
% BIC 1567.4112 1562.2474 1567.4443
2 | LR ~ 42 0.0000 16.1250 16.4086
Bl povalue - 0.0003* 0.0009*
Deviance -- -- 0.5943

+ Select the model that minimizes the loss of information (lower AIC and BIC scores).
* The alternative models are significantly different from the null model at @ = 5%.

Table 8 CLM regression’ estimates of collective efficiency
and equality versus fear and greed (no interaction effects)

Statistic 0, Ad Br(F) Bi(G)
. Estimate —4.0901 0.0483 -0.3740 —1.5533
5 SE 0.2636 0.0028 0.1610 0.1833
5 p-value -- -- 0.0201* < 0.0001*
E PO (nominal) -- - - 0.1306 0.2490
PO (scale) - - - - 0.3811 0.3369
Estimate —2.7582 0.0369 0.2461 -0.6291
z SE 0.2095 0.0027 0.1691 0.1720
El p-value -- -- 0.1457 0.0003*
& | PO (nominal) -- - - 0.0443* 0.0643
PO (scale) - - - - 0.0610 0.0559

« Statistically-significant results at @ = 5%. Insufficient evidence to accept PO at @ = 5%.

a no-interaction model for both estimations. Finally, analysis of
deviance between candidate models for both collective efficiency
and equality results in lack of evidence to suggest difference at
a = 5%. We select the no-interaction model for both collective
efficiency and equality based on the latter two criteria.

Table 8 shows coefficient maximum likelihood estimates, stan-
dard errors (SE), and p-values from the fixed-effect CLMs with no
interaction effects. Results on the proportional odds assumption
(PO) test validity of the CLM regression. The hypothesis in these
tests is that the goodness-of-fit of the model will not improve by
relaxing the proportional odds assumption [54]. At @ = 5%, the
PO nominal and scale tests for fear and greed cannot be rejected
for collective efficiency, thus confirming CLM regression is appro-
priate. However, the PO test for nominal effects is rejected for the
fear estimate in the equality model, indicating this variable is not
a good ordinal predictor of equality outcomes.

CLM regression results indicate both fear and greed have signif-
icant negative effects on collective efficiency with greed showing
a stronger impact than fear. Additionally, greed has a significant
negative effect on equality; however, this result needs further in-
spection as the proportional odds assumption was violated for fear.
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6.3 Discussion. Results show collective efficiency during
lower-level design exploration is not significantly influenced by
differences in strategy dynamics. This supports viewing the lower-
level decisions as design optimization unimpeded by strategic in-
formation barriers associated with unfavorable dynamics. Never-
theless, a design alternative that ranks high in collective efficiency
using Eq. (11) does not guarantee a fair distribution of payoffs,
particularly in tasks that exhibit coexistence and defection dynam-
ics. The low equality scores, as measured using Eq. (12), resulting
from lower-level design exploration in such tasks point at how the
absence of upper-level incentives for cooperation affects overall
system performance under high levels of structural greed.

At the upper-level, strategy selection follows the normative Nash
equilibrium criteria for dynamics with low levels of structural fear,
namely harmony and coexistence. Although the underlying dy-
namics for both the coexistence and bistability parameter design
tasks anticipate a similar frequencies for o; = @ and o; = 1, most
subjects pursue the payoff-dominant equilibrium for bistability dy-
namics. This result could be attributed to increased trust between
participants in the face-to-face experimental setting. Similarly,
the normative predictions of non-cooperative behavior were not
accurate for the majority of tasks with defection dynamics, with
a considerable amount of final individual strategies selecting the
socially-efficient alternative.

While experimental results concerning collective behavior in
symmetric and asymmetric games with harmony dynamics are
scarce in the literature, the empirical evidence gathered in this
study is comparable to previous findings in the field of behav-
ioral economics for coexistence, bistability, and defection dynam-
ics. For coexistence games, while results in this work show a
selection frequency of the Nash equilibria o; # o7 around 62%,
work by Cabrales et al. [S5] reports rates around 51-74% after
adding up frequencies for both o = (0,1) and o = (1,0). In the
case of bistability dynamics, Schmidt et al. [35] reports a selection
frequency of the mutually-beneficial Nash equilibrium (o = 1)
between 40-60% versus 84% in this work. It is worth noting,
however, than two of four normal-form games in Schmidt et al.’s
work exhibit risk dominance conditions that favor selection of the
inefficient equilibrium (o; = 0), i.e. R > 0, while in the other
two games, as well as in this work, risk dominance is neutral,
i.e. R = 0. Finally, for defection dynamics, Ahn et al. [56] report
cooperation rates up to 35% in symmetric and 43% in asymmetric
games versus 25% in this work, while a review paper by Rand &
Nowak [57] shows first-round cooperation rates between 10-90%
in repeated Prisoner’s Dilemma games. More careful assessment
of the differences in experimental results between works must ac-
count for not only actual levels of structural fear and greed but
also factors such as type of game (e.g. simultaneous, sequential),
players’ backgrounds and history of play, and asymmetry between
normalized individual payoffs, among others.

Results comparing bistability and defection dynamics suggest
the structural fear factor may be sensitive to how subjects interact.
While participants did not generally have prior working experience
with each other, they all attend the same university and can com-
municate with each other face-to-face during the task. Rich verbal
and non-verbal communication may mitigate concerns about pos-
sible defection. Similar mitigating actions may be beneficial as
interventions in broader design problems identified to have a sub-
stantial structural fear component.

Further analysis identifies strategy-induced greed as the factor
with stronger negative influence on both collective performance
and equality in the parameter design tasks. Results from CLM re-
gression for collective efficiency show that the coefficient estimate
for structural greed is larger in magnitude than fear. Although the
latter has a significant effect on collective efficiency, we do not
have enough evidence to suggest that strategy-induced fear has a
significant effect on equality. These results are consistent with pre-
vious findings by Ahn et al. [32] that suggest only structural greed,
not fear, has a significant effect on cooperative behavior.

Results also show that low-greed harmony and bistability strat-
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egy dynamics are desirable to improve efficiency and fairness in
collective systems design processes. Eliciting these dynamics in
multi-actor design problems may be possible by changes in in-
centives or management action. For example, a technological race
modeled as a Prisoner’s Dilemma can turn into a Deadlock (a game
with harmony dynamics) by including the potential for scientific
breakthroughs resulting from strategic competition [58]. From this
perspective, the collectively-inefficient course of action to “stay on
the race” can turn into a Pareto-efficient strategy. Similarly, ad-
justments to resource allocation and substitutability of engineers in
a multidisciplinary design project can bring about multiple strict
equilibria that lead to mutually-beneficial outcomes [5].

Finally, analysis provided in this section primarily compares ex-
perimental results to single-shot games as a simple strategic setting
with two main shortcomings. First, while the experiment did not
enforce negotiated agreements (in alignment with non-cooperative
game theory), participants were allowed to communicate before
final strategy selection. Connecting results to research on strategic
information exchange [59] would help understand strategic impli-
cations of the design exploration period. Second, despite exper-
imental controls to hide strategy selection outcomes, the design
tasks carry partial information about actors based on facial expres-
sions, cultural background, etc. Applications of Bayesian games
with incomplete information [60] would help understand how fac-
tors such as trust and reputation shape strategy selection.

7 Conclusion

This paper describes and demonstrates strategy dynamics as
the fundamental interactive relationship between multiple, inde-
pendent design actors. A bi-level model of collective design uses
concepts from game theory to propose distinct lower- and upper-
level processes based on design optimization and strategy selec-
tion. Constructed parameter design tasks exhibit fixed harmony,
coexistence, bistability, and defection dynamics. Finally, a de-
signer experiment collects observations of design behavior across
a set of design tasks. Results contrast observations with results of
single-shot game theory, showing that the greed factor associated
with defection and coexistence dynamics has a stronger negative
effect than the fear factor associated with bistability dynamics.

Contributions from this paper provide new constructs to support
the study of strategy dynamics in engineering design problems.
While highly simplified in the parameter design tasks employed
in this paper, future research must distill the strategy dynamics
present in a larger class of design problems, including classifying
regions of a lower-level design space that exhibit similar strategy
dynamics. Increased knowledge of strategy dynamics in the design
of engineering systems will enable new methods and processes to
mitigate potentially unfavorable effects of an underlying dynamic
or even induce strategic trade-offs that favor cooperative behav-
iors through the application of mechanism design. This type of
research will ultimately cross the domains of engineering systems
design, behavioral economics, and cognitive psychology, requiring
a significant theoretical foundation on which to build future studies
and motivating new design efforts to develop incentives or other
coordination mechanisms to align objectives of design actors.
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Nomenclature

00 = bit representing strategic context s = (0, @)
11 = bit representing strategic context s = (1, 1)
D =Dy x--- XDy, set of all n-actor design decisions
d={dy,...,dy), a multi-actor design decision
d; = (°%;, 'x;), actor i’s design decision vector
F = structural/strategy-induced fear
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fi(x) = raw value function

G = a normal-form game

G = structural/strategy-induced greed
i = a design actor
J = a design actor different from i

N ={1,...,n} is the set of design actors

R = Risk dominance measure (bipolar games) [37]
s =(S1,...,8n), strategic context (strategy vector)
S =8 X -+ x 8y, set of all pure-strategy profile vectors
S = sucker’s payoff

T = temptation payoff

U; = utility (payoff) function for actor i

dy,(s) = design-specific utility function for actor i
u; = normalized payoft for actor i

V; = transformed value function for design actor i
V;(d) = context-specific value function for actor i
*Vinax = maximum individual value in strategic context s
*Vinin = minimum individual value in strategic context s
X; = set of design alternatives
x =(x1,...,xn), a vector of design alternatives
Sx; = a context-specific design alternative for actor i

Y; = k-th observation/datum in the experiment

Greeks

a = Statistical significance level

B = Fixed effect ordinal regression parameter

6 =(d1,...,0p) is a selected n-actor design decision
6; = Structured threshold (intercept) for the /-th logit
o ={0y,...,0) is a selected n-actor strategy vector
X2 = Chi-squared distribution value

Acronyms

AIC = Akaike information criterion
BIC = Bayesian information criterion
CDF = Cumulative distribution function
GUI = Graphical user interface
LL = Log-likelihood
LR = likelihood-ratio test statistic
PO = Proportional odds assumption test results (as p-values)
PR = percentile rank function
SE = Standard error

Appendix A: Value Space Generation

Lower-level design valuation uses a normalized multimodal
function °f; defined for design parameters *x = (*x;, *x;) (indices i
and j are interchangeable) in strategic context s, ranging between
limits “Vinin and *Vpax and rounded to the nearest integer (~):

% (x) = Vinin + (Svmax - min) [fasym(sx) + fsym(sx)] , (A

composing asymmetric ( fasym) and symmetric (fsym) functions

~a| (vi=xt) 4 (-x7)’]

fasym(xis xj) =€ s

* )2 x* 2
fsym(xi, x]) —c. e—b[(X[_xsym) +(XJ sym) ]’ (A3)

with 0 < a,b,c¢ < 1 (this work uses a = b = 0.31 and ¢ = 0.60).
Here, symmetry refers to the set of design parameters with x; = x;.

Equations (A.2) and (A.3) are based on a similar multimodal test
optimization function in Ref. [61] (the original equation includes
stochastic components not considered here). Each value space is

generated through heuristic sampling of critical points x*, x*, and
L

(A2)

st*ym until the following consistency constraints are met:
xl-* #* x;‘, (A4)
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Xym = argmaxfi(xi, %) (A.5)
st X =xj, X ¢ {xi*, x}(},
1
Joym > max 3 [ fiGxi x) + f(xj, )] (A.6)

—_— . . *
st X=X, X # Xsym-

Two additional constraints specific to this work were added to
increase topology similarities between generated value spaces:

<Xl-*, x;) - <x:ymv x:ym> = (4,2),
xs’g,m ¢ [3,5]

Each of these consistency constraints is described below:

(A7)
(A.8)

* Eq. (A.4): forces asymmetry between individual global max-
imizers x* and x;.*

* Eq. (A.5): finds a symmetric (local) maximizer x;‘ym that dif-
fers from either x* and xj’.‘

* Eq. (A.6): forces the symmetric maximizer x;;,m to yield the
highest aggregated value

* Eq. (A.7): forces a fixed separation between the symmetric
and individual global maximizers

* Eq. (A.8): guarantees that the symmetric maximizer xs’g,m
does not fall on x = (4,4) (the initial point) or its 8-
neighborhood to stimulate design exploration.

Table A.1 lists the symmetric and global maxima and maximiz-
ers of the value spaces generated for each of the parameter design
tasks in the design experiment.

Appendix B: Example of Calculation of Payoffs for a
Parameter Design Task

This end-to-end example shows how to calculate payofts 4y;(s)
and de(s) in a parameter design task, viz. CX.3 (round No. 5) in
Table A.1, given design decision d = (d;, d;) visible in Fig. 6:

<0@xi’ 'I'Ixi) — <3’7>’
di = (%;, "x;) = (3.5).

Step 0: Generate Lower-level Value Spaces. From Table 1,
for parameter design tasks exhibiting coexistence dynamics:
S=1/2; T=3/2
00Vmin =1 00Vmax =33, 11Vmin =35; 11Vmax =67.

From Table A.1, and in accordance with consistency constraints
Eqgs. (A.4-A.8), we require:

00, % _ 4. 00, . x _ . 00, x _ Q.
xXF =4 XY =2; Xeym = 8;
* . * . * .

Hxi =5 H'x]' =7 11xsym= 1;

After substituting into Egs. (A.1-A.3), we obtain the value
model for task CX. 3:

~0.31] (xi-4) "+ (x;-2)’

00£(%%) ~ 1 +32.0-¢

B.1
+19.2 - 6_0'31[(xi_8)2+(xj—8)2] (B.1)
(T ~ 35 4 320 - & 031 -9+ b)) (B.2)
] ®
+19.2 - e ;

Figures B.1(a) and B.1(b) show grid plots of the value functions
Egs. (B.1) and (B.2), respectively.
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Table A.1

Experimental design round sequence: parameter design tasks, critical points, and pairing of participants 1 to 4

Round Local Maxima for %°f; Local Maxima for ''f; Des. Pair 1 Des. Pair 2

No. Dynamic Task ID OOXE\' eex; OOf;* OOXSf;m 00‘]2;[“ HX? Hx;( Hf;'* ”'xs*ym 11]2;[“ i j i j
Tl Harmony HA. @ 4 2 100 8 60 5 7 100 1 60 4 1 2 3
T2 Coexistence CX.0 3 1 67 7 54 2 0 100 6 60 4 1 2 3
T3 Bistability BI.0 2 0 100 6 60 5 7 67 1 54 4 2 1 3
T4 Defection DE.0 3 1 67 7 54 4 2 67 8 54 1 2 3 4
1 Coexistence X 17 2 0 67 6 54 5 7 33 1 20 1 3 4 2
2 Harmony HA.2 3 1 49 7 30 4 2 100 8 81 1 4 3 2
3 Bistability BI.1f 4 2 100 8 87 3 1 66 7 53 3 4 1 2
4 Defection DE. 17 5 7 67 1 61 2 0 50 6 44 2 4 1 3
5 Coexistence CX.3 4 2 33 8 20 5 7 67 1 54 2 3 1 4
6 Harmony HA. 1T 3 1 100 7 81 2 0 49 6 30 2 1 3 4
7 Defection DE.2 5 7 50 1 44 2 0 67 6 61 4 1 3 2
8 Bistability BI.3 4 2 66 8 53 3 1 100 7 87 4 2 3 1
9 Defection DE.3 3 1 50 7 44 4 2 67 8 61 4 3 2 1
10 Bistability BI.2f 2 0 100 6 53 5 7 66 1 87 4 1 2 3
11 Harmony HA.3 5 7 49 1 30 4 2 100 8 81 3 1 2 4
12 Coexistence cx.2f 2 0 67 6 54 3 1 33 7 20 2 1 3 4

1 The visual ordering of lower-level design value spaces @0 and 11 are reversed on the GUI to mitigate visual anchoring effects but the task is otherwise unchanged.

Step 1: Get Lower-level Values. Using Eq. (9), for s = 00:

*Wildi, dj) = 2°fi(*x;, ;) = °%£(3,3) = 18;
Ov;(dj, di) = 2f; (%%, %%;) = °°f;(3,3) = 18.

For s =11:

"Widi,dy) = "/ x xg) = 11£(7,5) = 38;
11Vj(djv dl) — 'I'If}('l'lxj’ﬂxi) — Hf}'(i 7) = 67.

Step 2: Obtain Payoff Structure. Using Eq. (10), for actor i:

18 if s = 00
dU<( ) = (1-3/2)(18) + (3/2)(38) ifs;=0#s,
i(s) = (1-1/2)(18) + (1/2)(38) ifs; =1#3s,
38 if s =11
For actor j:
18 if s = 00
d (s) = (1-3/2)(18) + (3/2)(67) if 5; =0 # 5
J (1= 1/2)(18) + (1/2)(67) if sj =1#s;
67 if s =11

The above payoff structures are shown as a normal-form game in
Fig. 6 with i = 1 and j = 4 (note inverted axes where labeled
to disguise symmetry). Note that a design actor’s payoff matrix
is affected instantaneously by changes in their counterpart lower-
level decisions. For instance, if actor j moves %xj from 3 to 4,

%0y, drops from 18 to 8 while 00\/]- rises from 18 to 24. This also
affects payoffs dUi(si, s;) and de(sj, s;) for s; # sj, but it does

not affect payofts 4y;(1,1) or dU (1, 1) which only depend on both

Hxi and ij'.
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