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Structured to Succeed?: Strategy
Dynamics in Engineering Systems
Design and their Effect on
Collective Performance
Strategy dynamics are hypothesized to be a structural factor of interactive multi-actor
design problems that influence collective performance and behaviors of design actors.
Using a bi-level model of collective decision processes based on design optimization and
strategy selection, we formulate a series of two-actor parameter design tasks that exhibit
four strategy dynamics (harmony, coexistence, bistability, and defection) associated with
low and high levels of structural fear and greed. In these tasks, design actor pairs work
collectively to maximize their individual values while managing the trade-offs between
aligning with or deviating from a mutually-beneficial collective strategy. Results from
a human-subject design experiment indicate cognizant actors generally follow normative
predictions for some strategy dynamics (harmony and coexistence) but not strictly for
others (bistability and defection). Cumulative link model regression analysis shows a
greed factor contributing to strategy dynamics has a stronger effect on collective efficiency
and equality of individual outcomes compared to a fear factor. Results of this study
provide an initial description of strategy dynamics in engineering design and help to
frame future work to mitigate potential unfavorable effects of their underlying strategy
dynamics through social constructs or mechanism design.

Keywords: design decision-making, strategy dynamics, game theory, systems engineering,
human-subject experimentation.

1 Introduction1

Design of engineering systems involves the collective efforts2

of a diverse set of actors representing multiple firms, organiza-3

tions, and agencies, each pursuing individual objectives. Achiev-4

ing broader objectives such as sustainability or resource efficiency5

requires an integrated perspective to understand inter-dependencies6

at multiple levels of abstraction [1]. This type of distributed au-7

thority does not align well with existing system engineering ap-8

proaches which assume a strong central actor. Rather, it resem-9

bles a systems-of-systems architecting process emphasizing design10

stability, component interfaces, and coordination mechanisms [2].11

Cooperation among entities is often desired [3] but also proves12

expensive and risky to overcome associated challenges from navi-13

gating different goals, requirements, and policies [4].14

Collective design problems can exhibit social dilemma from15

conflicts between self-interest and collective benefit. In extreme16

cases, free-riding actions provide individual benefit but collective17

harm [5]. Less extreme dilemma struggle to gain or retain control18

over decisions [6, 7] or balance the potential reward of collabora-19

tion with downside risk of coordination failures [8].20

While there has been progress in the systems engineering com-21

munity to characterize and study systems-of-systems [9, 10] in-22

cluding model-based approaches to coordinate constituent systems23

[11, 12], this approach alone is not sufficient to capture how local24

incentives of independent actors influence joint design activities.25

Research on collective design decision-making highlights funda-26

mental challenges in forming consistent group preferences [13],27

proposes frameworks and methods to build on negotiation mech-28

anisms to resolve conflicts [14, 15], and applies game theoretic29

solutions such as Nash equilibria [16–18]. While existing research30

focuses on general processes to administer collective design or31

identify stable solutions, there is a gap to understand the dynami-32

cal relationship (from a set of dynamical domains) between design33
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actors and connect with actions known to stabilize or mitigate any34

associated social dilemma. This perspective appears to be unique35

in design literature and has the potential to accelerate transfer of36

knowledge from economic theory to engineering design.37

This paper investigates how the fundamental structure of a de-38

sign problem facilitates or inhibits collective action through a fac-39

tor described as strategy dynamics. The intent is not to optimize or40

otherwise prescribe solutions to multi-actor design problems but to41

understand inherent trade-offs and relationships between individ-42

ual actors generalizable across several dynamical domains. While43

problems in favorable dynamical domains naturally facilitate desir-44

able design outcomes, others may need enhanced communication,45

enforced role responsibilities, or multi-stage decisions to overcome46

social dilemma. Improved understanding of how technical and or-47

ganizational factors influence design behaviors through strategy48

dynamics will help improve design processes, mechanisms, and49

incentives to achieve desired collective results.50

This paper addresses central questions about how strategy dy-51

namics manifest in socio-technical problems and how they influ-52

ence design decisions. Building on foundations of game theory53

and value-driven design, this paper elaborates a bi-level model of54

collective systems design to differentiate lower-level design deci-55

sions and upper-level strategy decisions, constructs parameter de-56

sign tasks with strategy dynamics drawn from four canonical social57

dilemma problems, and conducts a human designer experiment to58

study the effect of strategy dynamics on design outcomes. Discus-59

sion compares observations with results of game theory to explain60

important factors for human decisions in design. Key contributions61

formulate and characterize strategy dynamics in the collective de-62

sign of engineering systems and generate insights about their effect63

on collective performance in parameter design tasks.64

2 Background65

From requirements-based to value-driven approaches, engineer-66

ing design and systems engineering traditionally relies on a central67
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authority to decompose and allocate objective functions among68

designers [19]. This perspective is inherently optimistic of the69

willingness for independent design actors to strategically share re-70

sources and align decisions with top-down goals. The need for71

collaboration between design actors across disciplines and orga-72

nizations becomes more important as large engineering projects73

demand technologically-complex solutions. Game theory provides74

a means to study and treat these collective settings by abstract-75

ing designers’ decisions and interrelated objectives as strategies to76

model and understand collectively-efficient courses of action.77

Game theory has two main branches: non-cooperative game78

theory studies player decisions to maximize individual value in79

the absence of binding agreements (“strategy-oriented”) and co-80

operative game theory investigates how value can be improved by81

forming or joining a coalition with others (“outcome-oriented”)82

[20]. Both non-cooperative and cooperative game theory offer83

methods to study multi-actor interactions ranging from extreme84

competition to cooperation with and without communication [21].85

Yet, most game-theoretical models in engineering systems de-86

sign focus on analysis of design problems with a single decision-87

making authority. Contributions on this line of work use game the-88

ory for multidisciplinary systems design optimization [16, 22, 23].89

Design decisions treated as strategies in these applications largely90

relate to the system’s functional properties and short-term objec-91

tives. However, true strategic design decisions should be large92

in degree of commitment and scope of potential impact to meet93

designers’ long-term interests [24].94

Moreover, it is a common misunderstanding that non-95

cooperative game theory assumes no communication between96

actors. Popular applications of game theory make this assumption97

to limit influence of more complex factors such as trust, threat of98

retaliation, and reputation effects. Nonetheless, non-cooperative99

games are useful in circumstances where players exchange100

information strategically or engage in “pre-play” negotiations that101

could (but do not necessarily) lead to coalitions or “self-enforcing”102

agreements among actors [25, 26].103

Engineering systems design needs methods like those provided104

by game theory to assess the effects of strategy-related uncertainty105

on system’s performance but also to understand designers’ indi-106

vidual trade-offs and collective decision-making processes. This107

paper examines how the strategy dynamics that characterize collec-108

tive decision-making settings apply to multi-actor design problems109

and impact collective performance. The following sections discuss110

background in game theory, applications in engineering systems111

design, and specific objectives of this work. The Nomenclature112

section describes all symbols and acronyms used in this work.113

2.1 Strategy Dynamics: Definition. The notion of strategy114

encapsulates the general principles that govern an actor’s decision-115

making process as the most important concept in non-cooperative116

game theory [27]. A strategy is a complete contingency plan of117

actions developed and executed by a player to meet individual118

objectives in a game. A normal-form game is a triple119

G =
(
N , ⟨Si⟩, ⟨Ui⟩

)
(1)

where120

• N = {1, . . . , n} is a finite set of players.121

• Si is a finite set of strategies for each player i ∈ N . The set122

of all collective strategies is S = Si × · · · × Sn.123

• Ui : S ↦→ R is a function that associates each strategy vector124

s ∈ S with the utility (or payoff ) to player i.125

Representing a strategic setting of collective action as a normal-126

form game facilitates the analysis and interpretation of its actors’127

decision-making process and outcomes [28]. The simplest normal-128

form game is represented as a 2 × 2 bimatrix (one payoff matrix129

per player) where rows and columns list a binary strategy space130

Si = {0, 1}. Figure 1(a) shows the general form of a payoff matrix131
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*8 (0, 0) *8 (0, 1)
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Fig. 1 Normal-form game: (a) player i ’s payoff matrix; (b) nor-
malized payoffs as a social dilemma game
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Fig. 2 Normative si across S–T plane: (a) harmony; (b) coex-
istence; (c) bistability; and (d) defection dynamics [30]

for any player i where elements show the payoff Ui(s) = Ui(si, sj )132

that player i would obtain if the corresponding row and column133

strategies, si and sj , are selected.134

In 2 × 2 social dilemmas (also known as mixed motives games),135

strategy labels indicate whether a player chooses to cooperate (si =136

1) or defect (si = 0) and it is assumed that unanimous cooperation137

is always preferred to mutual defection; i.e.138

Ui(1, 1) > Ui(0, 0), ∀ i ∈ N . (2)

Although often aligning with semantics, cooperate and defect are139

only labels and may correspond to any strategic action yielding140

the corresponding dynamics. In general, the diagonal collective141

strategies s = ⟨0, 0⟩ and s = ⟨1, 1⟩ can be described, respectively,142

as the status quo and the desired outcome.143

Any normal-form game in which Eq. (2) holds can be charac-144

terized as a social dilemma by normalizing payoffs Ui(si, sj ) via145

the positive affine transformation146

ui(si, sj ) =
Ui(si, sj ) − Ui(0, 0)
Ui(1, 1) − Ui(0, 0)

, (3)

which yields ui(0, 0) = 0 and u j (1, 1) = 1. The off-diagonal nor-147

malized payoffs obtained with Eq. (3),148

S = ui(1, 0) and T = ui(0, 1). (4)

are referred to as the sucker’s (S) and temptation (T) payoffs in149

symmetric social dilemma games, respectively.150

A normal-form game with normalized payoffs is shown in151

Fig. 1(b). The payoffs in Eq. (4) owe their nickname to the Pris-152

oner’s Dilemma game where S represents a discouragement to co-153

operate due to fear and T is an incentive to defect due to greed154

[29]. More generally, strategy-induced fear is related to a player’s155

expected loss of choosing to cooperate when some or all of the156

other players defect. Greed is induced by the expected gain of157

unilaterally deviating from a cooperative collective strategy.158

A measure of relative fear (F) and greed (G) can be obtained by
dividing the total loss or gain of deviating from a diagonal strategy
by the difference between maximum and minimum payoffs [32].
For a symmetric two-player game,

F ≡ Ui(0, 0) − Ui(1, 0)
max Ui − min Ui

≡ −S
max ui − min ui

, (5)
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Fig. 3 Strategy dynamics, representative normal-form social dilemma games and their normalized payoffs [30, 31]: (a) harmony:
Concord game, (b) coexistence: Chicken game, (c) bistability: Stag Hunt, and (d) defection: Prisoner’s Dilemma

G ≡ Ui(0, 1) − Ui(1, 1)
max Ui − min Ui

≡ T − 1
max ui − min ui

. (6)

The levels of structural fear and greed and their associated val-159

ues of S and T in the normal-form game in Fig. 1(b) describe160

four different strategy dynamics in Fig. 2 [30]. Each domain ex-161

hibits different payoff dominance conditions with respect to the162

normative (or “rational”) Nash equilibrium solution concept for a163

single-shot, non-cooperative game:164

• Harmony. Also known as cooperation dynamics, the socially-165

efficient strategy is also a pure-strategy Nash equilibrium,166

i.e. unilaterally deviating from such collective strategy is167

detrimental (and thus irrational) for either player. For in-168

stance, in the Concord game in Fig. 3(a) (positioned within169

the si = 1 region of Fig. 2(a)), player i is always better off170

by choosing si = 1 regardless of the value of sj . All players171

naturally concur on the same collective strategy, which also172

happens to yield the highest available payoff.173

• Coexistence. In mixed motives games with coexistence dy-174

namics, players drift between two strict equilibrium points175

by coordinating between conflicting interests described by176

si , sj . Also known as anti-coordination games, they in-177

clude Battle of the Sexes, Leader and, most notably, the game178

of Chicken (Fig. 3(b)). A popular example of a Chicken179

game features two drivers that compete to demonstrate brav-180

ery by racing cars toward each other on a single-lane road181

(si = 0) hoping for their opponent to “chicken out” and veer182

off (sj = 1) to avoid collision. The corresponding point in183

Fig. 2(b) shows a mix of normative strategies corresponding184

to si , sj with an implicit power struggle for the upper hand.185

• Bistability. In two-player bistable or bipolar games, such186

as Stag Hunt (Fig. 3(c)), the diagonal collective strategies187

are pure-strategy Nash equilibria. Both players are better off188

coinciding on si = sj , but they might perceive differently189

which strategy is more favorable. In the absence of complete190

information about their counterpart’s preferences, a player’s191

choice of strategy becomes a matter of balancing intuition,192

deliberation, and trust [35, 36]. Strategy selection in bipolar193

games requires further assessment of risk dominance [37]194

which segments the normative strategy between si = 1 and195

si = 0 regions illustrated in Fig. 2(c).196

• Defection. In defection games, the intersection of the play-197

ers’ equilibrium strategies is a socially-inefficient outcome.198

For example, the Prisoner’s Dilemma game in Fig. 3(d) (po-199

sitioned within the si = 0 region of Fig. 2(d)) demonstrates200

defection dynamics: two perpetrators of a crime are sepa-201

rately promised a lighter jail sentence if they confess (si = 0)202

instead of remaining silent (si = 1). For either player, con-203

fessing the crime and blaming it on their partner is the utility-204

maximizing course of action, even though refusing to talk205

is mutually beneficial. Games with defection dynamics are206

common templates for the study of the evolution of coopera-207

tive behaviors in conflict situations [38].208

2.2 Strategy Dynamics in Engineering Design. Every209

decision-making process that involves two or more actors can be210

described in terms of one or more strategy dynamics regardless211

of its underlying organizational and incentive structures, mul-212

tidisciplinarity, or geographic distribution of actors. Likewise,213

the strategy dynamics introduced in the previous section can be214

traced to cases in existing engineering design and systems engi-215

neering literature; however, no existing work synthesizes design216

activities across dynamical domains, a necessary step to enable217

interventions to mitigate or even augment the natural strategy218

dynamics. This section discusses several such collective settings,219

one per strategy dynamic, and presents them as normal-form220

games (Fig. 4).221

2.2.1 Harmony. Sustainable consensus between decision-222

makers is a desired property in any distributed design process and223

is a natural, although optimistic, dynamic for engineering design.224

The harmony dynamic is often characterized by a purely coopera-225

tive design problem where all actors have aligned objectives and226

will naturally achieve a collectively efficient outcome. In general,227

any design problem in which the combination of individual228

strategies preferred by each actor also yields the highest utility to229

all of them can be described as a game with harmony dynamics.230

An example of these dynamics in engineering design is ob-231

served in a behavioral study in Ref. [33] that assessed performance232

in team-based conceptual design tasks using three team configura-233

tions: 1) all designers work together to generate a design concept;234

2) one designer assumes a manager role and assists the design235

process; and 3) all designers work alone on the task (viz. nominal236

team) and the best design concept is chosen as the team’s solution.237

This problem can be reduced to two strategies: “work together”238

to pursue a joint effort (or manage) or “work alone” to pursue an239

independent effort (or serve as managed worker).240

Symmetric payoffs assume all team members receive the same241

reward proportional to the quality of the team’s solution. Results242

in Ref. [33] suggest that unmanaged teams provide worse design243

quality than managed teams in conceptual design tasks, while the244

latter were slightly outperformed by nominal teams. Translating245

results into a hypothetical normal-form game in Fig. 4(a) by multi-246

plying quality rating by frequency shows “work alone” is both the247

payoff-dominant and the only strict equilibrium. In other words,248

there is no individual or collective incentive in this type of problem249

to choose other than the “work alone” strategy. Note the “cooper-250

ative” strategy is not a semantically correct label in this case: the251

strategic action to work alone is both preferred by and mutually252

beneficial for both actors, regardless of the other’s decision.253

2.2.2 Coexistence. Achieving disciplinary autonomy is yet an-254

other goal in the design of complex systems that carries practical255

difficulties. Although collaborative approaches boost agile sub-256

system development, system-level evaluation of consistency con-257

straints mitigates their benefits [39]. Integrating some constraints258

at the discipline level and allowing for a hierarchy of subsystem259

analyses helps engineers preserve some of the advantages of dis-260

tributed design without sacrificing robustness.261

Choosing between a collaborative, an independent, or a sequen-262

tial multi-actor decision-making approach can be modeled as a263

game with coexistence dynamics where the strategy set refers to264

different levels of autonomy. Consider the design of a passenger265

aircraft in Ref. [6, 7] with two disciplinary teams (Weights and266
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Fig. 4 Strategy dynamics: examples from engineering design and systems engineering literature: (a) harmony: cumulative
quality ratings of concepts generated by members of a design team [33]; (b) coexistence: Weights team performance in various
aircraft design approaches [6, 7]; (c) bistability: DoD’s payoffs from a risk dominance analysis of distributed satellite systems
[34]; and (d) defection: design engineer’s payoffs in team-based product development model [5].

Aerodynamics) poised to either lead the design process or cooper-267

ate with the other. There are three possible scenarios:268

i. Both teams pursue leadership of the design process and the269

lack of cooperation results in low-performing subsystems270

with respect to system-level integrability.271

ii. Both teams are willing to collaborate to improve integra-272

bility but unwilling to lead. Such concurrency of design273

decisions is limited by complexity and practicality issues.274

iii. One team leads the design process and initiates the search275

for feasible solutions within their domain. The other team276

carries on the search at the discipline level constrained by277

the leading team’s outcomes.278

In the first scenario, actors make decisions in isolation, either in-279

tentionally or involuntarily, while making assumptions about the280

preferences of their counterparts. This scenario is modeled as an281

isolated decision support problem. The second scenario encom-282

passes the main principles of concurrent engineering. In practice,283

this paradigm can be modeled as approximate cooperation [7]. Fi-284

nally, the third scenario describes a Stackelberg/leader–follower285

protocol [40].286

The normal-form game in Fig. 4(b) shows the performance of287

the Weights team in each scenario measured as 1 minus a deviation288

function—or the difference between what the design team wants289

and what they achieve [6, 7]—for each strategic scenario. (The290

payoff matrix for the Aerodynamics team, not shown, is estimated291

in a similar fashion and has the same payoff ordering). The indi-292

vidual performance of either team is maximized when they lead293

the process and the other team follows.294

This scenario resembles a variant of the Chicken game called295

Hawk–Dove where two actors compete for access to limited296

common-pool resources and are better off letting the other take297

the advantage and avoid confrontations. As an example, for the298

completion of a large project within an engineering organization,299

disciplinary teams competing for limited resources such as person-300

nel, facilities, and equipment, need to agree on the assignment of301

roles—which teams are hawks (leaders) and which ones are doves302

(followers)—that generates the most positive externalities for the303

organization [41].304

2.2.3 Bistability. Strategic sharing of information and re-305

sources by and between actors in a design process is governed306

by autonomy and pursuit of individual gains. This is especially307

relevant in the design of federated systems and systems-of-systems308

where there is a lack of centralized control and adherence to a309

common strategy is voluntary [2]. This scenario can me modeled310

as a Stag Hunt game where players weigh the upside potential311

of cooperative joint action and the downside risk of coordination312

failure [8]. The alternative—and safer—strategy chooses indepen-313

dent action, analogous to chasing hares instead of collaborating on314

hunting a stag, the Pareto-dominant equilibrium [42].315

Figure 4(c) shows the payoff matrix for United States govern-316

ment agencies directed to coordinate efforts to develop a dis-317

tributed satellite system [34]. The directive, known as Na-318

tional Polar-orbiting Operational Environmental Satellite System319

(NPOESS), was a joint endeavor between the U.S. Department of320

Defense (DoD) and the National Oceanic and Atmospheric Ad-321

ministration (NOAA) to replace and unify existing independent322

missions, combine capabilities, and save resources [43]. NPOESS323

consolidation presents some upside benefits to the DoD (e.g. 0.719324

for a joint system vs. 0.680 for an independent system); however,325

joint operations carry additional risk of coordination failures if326

other partners drop out (e.g. falling to 0.434). Similar strategic dy-327

namics exist for NOAA, but with greater upside potential. Lack of328

alignment between strategic sources of risk may have contributed329

to disagreements along the program and its eventual dissolution330

[34].331

2.2.4 Defection. From mathematics and the social sciences332

to biology and systems theory, the Prisoner’s Dilemma game333

is widely used to represent a bargaining problem between self-334

interested agents that might pass on pursuing a mutual benefit.335

Similar applications in engineering design also use it as a model336

to study collaboration [14]. One example is provided by Takai337

[5] and presented in Fig. 4(d). This model represents a dilemma338

between two disciplinary engineers in a team-based product devel-339

opment process that choose between committing time to teamwork340

or focusing exclusively on individual projects.341

The payoffs for the design and materials engineers combine342

the value obtained from individual project performances and con-343

tributions to the team project performance. Allocating time to344

the team project negatively affects one’s individual project perfor-345

mance. Meanwhile, allocating time to an individual project pro-346

duces benefits from both individual and team outcomes [44]. In347

cases with a free-rider, the team project success depends on how348

effective one role is for the other. In cases with low effectiveness349

in Fig. 4(d), free-riding is a payoff-dominant strategy for both en-350

gineers, i.e. Nash equilibrium. Although the collective efficient351

solution commits to the team project, the underlying dynamics in352

this problem promote free-riding as a dominant strategy.353

2.3 Research Objectives. Literature in engineering design354

shows two main limitations with adopting game-theoretic concepts355

to explain strategy dynamics in multi-actor design problems. First,356

some existing work equates strategies with design decisions follow-357

ing an optimization perspective [16, 22, 23], yielding a large num-358

ber of alternative strategies and limited ability to characterize the359

strategy dynamics. Second, existing work that implicitly or explic-360

itly adopts a more abstract strategic decision [5–7, 33, 34] focuses361

on one dynamical domain at a time, rather than understanding362

how the underlying problem structure contributes to the resulting363

actor dynamics. As a result, there is limited knowledge about how364

strategy dynamics influence engineering design decision-making.365

This study works towards a theory of collective systems design366

by establishing a body of evidence based on analytical and behav-367

ioral experiments to address the research question:368

How do the strategic components characteristic of the
structure of a design problem affect collective action?369
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Fig. 5 Two-actor bi-level model of collective systems design
with lower-level design exploration and upper-level strategy se-
lection under interactive effects

Owing to the broadness of this goal, this paper focuses on the370

modeling of strategic components in collective parameter design371

tasks for the four social dilemma strategy dynamics previously372

introduced. Research questions specific to this work are:373

RQ1. How can strategy dynamics be characterized as a phe-374

nomenon related to, but distinct from, design optimiza-375

tion in an engineering design problem?376

RQ2. How can collective parameter design problems be gener-377

ated to exhibit specified strategy dynamics?378

RQ3. How do strategy dynamics affect strategy selection, col-379

lective efficiency, and equality in parameter design tasks?380

To answer these questions, we formulate a multi-actor system381

value modeling framework that maps lower-level design decisions382

to a measure of preference over upper-level strategy profiles (Sec-383

tion 3). This bi-level model serves as the basis to generate syn-384

thetic two-actor parameter design tasks with specified that exhibit385

steady harmony, coexistence, bistability, or defection dynamics386

(Section 4). Finally, a human-subject experiment administers pair387

design tasks to assess the effect of strategy dynamics on collective388

design performance (Section 5).389

3 Bi-level Model of Collective Systems Design390

In response to RQ1 about how strategy dynamics relate to tradi-391

tional design decision-making activities and processes, this section392

presents a bi-level model of collective decision-making in engi-393

neering design as the mathematical foundation of this work. It394

assumes two types of decisions: lower-level design decisions in a395

large design space and upper-level strategy decisions in a limited396

strategy space. Strategy dynamics are attributed to the upper-level397

decision problem, framed here as a single-shot game, which is in-398

fluenced by outcomes of lower-level design decisions. Examples399

in Section 2.2 reinforce the distinction between strategy decisions400

(e.g. lead or collaborate across disciplines) and design decisions401

(e.g. select aircraft parameters) present in this model.402

This section extends prior research formulating bi-level models403

for problems with bistability strategy dynamics and risk domi-404

nance [45, 46] to other types of strategy dynamics present in a405

design problem. As illustrated in Fig. 5, the lower-level frames406

design decisions d = ⟨di⟩ as an optimization problem within a407

fixed strategic context while the upper-level frames strategy deci-408

sions s = ⟨si⟩ as a normal-form game. Initially presented as a409

sequential process from lower- to upper-level, subsequent discus-410

sion reveals an iterative nature of the model.411

3.1 Lower-level: Design Exploration. The lower-level deci-412

sion problem models engineering design as an optimization prob-413

lem, reflecting dominant perspectives in decision-based design lit-414

erature [13]. The process of engineering design defines and eval-415

uates design solutions from the set of alternatives d ∈ D. In416

multi-actor scenarios, the design solution can be decomposed into417

a vector of elements d = ⟨d1, . . . , dn⟩ controlled by each of n418

actors with corresponding design spaces di ∈ Di . Following ax-419

iomatic design theory [47], each design element can be further420

composed of individual design parameters di = ⟨1xi, 2xi, . . .⟩ such421

that the resulting design space Di is a Cartesian product of con-422

tinuous (R) and discrete (Z) scalar spaces.423

Various functions (models) evaluate design solutions by map-424

ping the design space D to other spaces. Most relevant to decision-425

based design, a lower-level value function Vi(d) maps a design to a426

scalar measure of actor i’s preference for it (viz. a utility function).427

Diverging from most existing design literature, assume valua-428

tion takes place within a limiting context as a function of a strategic429

state in a set of alternatives s ∈ S. The strategic state implicitly430

defines a set of assumptions, large in both scope and correspond-431

ing commitment [24], that constrain how a design delivers value.432

Strategic states may arise from other actors’ decisions (e.g. partici-433

pation in joint operations; build-up or reduction in arms; pursuit of434

a new market) or external actions (e.g. environmental conditions;435

technology maturity; public sentiment). The effect of strategic436

state on value is captured by a second parameter, superscript s in437

sVi(d), and an equivalent function signature sVi(d) = sVi(di, d−i)438

highlights design decisions controlled by actor i and those con-439

trolled by other actors (−i).440

The resulting lower-level design process in Eq. (7) resembles an441

optimization problem where δi : S ↦→ Di finds the context-specific442

design that maximizes value.443

δi(s) = arg max
di ∈Di

sVi(di, δ̂−i) (7)

A necessary component of multi-actor design, anticipation of oth-444

ers’ design solutions δ̂−i is based on a transient belief state. Repre-445

sented here as a fixed point, more detailed design processes assign446

a probabilistic belief state to maximize expected value.447

3.2 Upper-level: Strategy Selection. The upper-level deci-448

sion problem models engineering design as a strategic game by449

considering interactive effects among actors driven by strategy450

dynamics. While the lower-level problem focuses on design de-451

cisions, treating the strategy as context, the upper-level problem452

inverts it to focus on strategy selection, treating design solutions453

as context. For clarity in presentation, consider a slight notation454

shift to quantify actor i’s payoffs as dUi(s) ≡ sVi(d).455

The resulting upper-level design process in Eq. (8) resembles456

a strategic game where σi : D ↦→ S finds the design-specific457

strategy that maximizes payoff.458

σi(d) = arg max
si ∈Si

dUi (si, σ̂−i) (8)

Similar to the lower-level problem, anticipation of others’ strategy459

selections σ̂−i is based on a transient belief state, perhaps with460

profound uncertainty due to the strategic nature of the information.461

While notionally expressed as a function maximization, selecting462

the payoff-maximizing strategy σi(d) may result to equilibrium463

analysis or other decision rules to resolve interactive effects.464

The above formulation hints at the iterative nature of the bi-level465

model which is limited by large design spaces (i.e. it is impracti-466

cal to solve the upper-level problem for each design alternative).467

Assuming a sequential design process from lower- to upper-level468

problems suggests designers first optimize the design δi(s) in each469

strategic context s and, second, select a payoff-maximizing strategy470

σi . However, the reverse process implies designers first select a471

strategic state σi(d) based on generalizable strategy dynamics and,472

second, optimize the design δi for it. In practice, both processes473

likely influence decisions in an iterative scheme.474
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3.3 Model Assumptions and Limitations. This model has a475

number of assumptions and limitations that should be discussed.476

First, it uses utility (value) functions to quantify scalar actor pref-477

erence for alternatives. While a critical element of decision theory,478

valid utility functions are difficult to formulate and elicit for pre-479

scriptive purposes. In this theoretical application, utility functions480

represent internal decision-making activities. The model does not481

exchange utility functions between actors; they are only used (by482

each actor) to guide internal decision processes and (by an ob-483

server) to characterize the strategy dynamics.484

Second, this model assumes the lower- and upper-level design485

activities represent distinct decisions. The lower-level problem486

explores a large design space with well-characterized interactions487

between actors to facilitate evaluation and optimization of context-488

specific value functions sVi . The upper-level problem deals with a489

smaller strategy space where stronger interaction effects between490

actors and barriers to strategic information exchange complicate491

the maximization of the design-specific utility functions dUi .492

Finally, although simply expressed as a maximization problem,493

lower- and upper-level solution processes are, in practice, complex494

activities. For simplicity of presentation, this paper presents lower-495

level evaluation functions as deterministic functions, a common496

but unrealistic practice [48]. Including uncertainty for lower-level497

design exploration transforms Eq. (7) into an expected value max-498

imization problem but nonetheless is compatible with the general499

framework. Additionally, both lower-level and upper-level deci-500

sion processes depend on a belief state about others’ actions (δ̂−i501

and σ̂−i) influenced by prior relationships and information accu-502

mulated in iterative design processes. Use of normal-form games503

further suggests a single-shot, simultaneous upper-level strategy504

selection process. However, in practice, strategy selection is more505

of a sequential, multi-stage, or even iterative activity that revisits506

lower-level design decisions. These dynamic effects are not repre-507

sented in the static bi-level model formulation presented here but508

could be incorporated in a future extension.509

4 Bi-level Parameter Design Tasks510

In response to RQ2 about how design problems can be generated511

to exhibit specified strategy dynamics, this section formulates a512

class of symmetric two-actor parameter design problems conform-513

ing to the bi-level model of collective systems design described in514

Section 3. The parameter design tasks represent an abstraction of515

a design problem based on the following principles:516

(1) Tasks exhibit static strategy dynamics characterized by pa-517

rameters S and T in Section 2.1. Although unrealistic, fixing518

strategy dynamics is essential to this research question.519

(2) Tasks exhibit symmetry between two designer roles with520

identical input decision spaces and output value spaces.521

Symmetry improves experimental control and sensitivity.522

(3) The upper-level strategy space Si × Sj considers only two523

alternatives Si = {0, 1} canonically labeled defection (si =524

0) and cooperation (si = 1) in social dilemma games.525

(4) The lower-level design space Di × Dj composes two sub-526

spaces Xi ×Xj (one per diagonal collective strategy) where527

Di = Xi × Xi . Sub-spaces have small cardinality |Xi | = 9528

to accommodate limited resources in behavioral experimen-529

tation.530

(5) Lower-level value functions sVi for each strategy exhibit531

locally-smooth surfaces with one local-maximizing point on532

the plane of symmetry and one global-maximizing point off533

the plane of symmetry. This presents a conflict where the534

individually-preferred solution is not mutually preferred.535

The resulting tasks are representative of engineering design only536

at an abstract level. Multiple local maxima and conflicting global537

maxima are common design features; however, others such as538

smooth value surfaces, finite and small design spaces, symme-539

try, and context independence are atypical. Therefore, results from540

Table 1 Parameter design tasks: strategy dynamics, normal-
ized payoffs, fear and greed levels, and value space ranges

Task
type

Strategy
dynamic

Normalized payoffs
[
sVmin, sVmax

]
S T F G s =00 s =11

HA Harmony 1/3 2/3 −1/3 −1/3
[

1, 49
] [

56, 100
]

CX Coexistence∗ 1/2 3/2 −1/3 1/3
[

1, 33
] [

35, 67
]

BI Bistability∗ −1/2 1/2 1/3 −1/3
[
34, 66

] [
68, 100

]
DE Defection −1 2 1/3 1/3

[
34, 50

] [
51, 67

]
∗ Risk dominance between strict equilibria is set neutral (i.e. R = 0). See Refs. [8, 35, 37].

these tasks may only be valid at an abstract level and care must be541

taken before applying conclusions to more specific settings.542

Each task type and its main characteristics are presented in Ta-543

ble 1 and implementation is discussed in the following sections.544

The notation introduced in this section builds upon prior work in545

Ref. [49] and is listed in the Nomenclature section.546

4.1 Lower-level Design Spaces. Each actor controls a design547

vector with two integer parameters di = ⟨ 00xi, 11xi⟩ where 00xi ∈548

Xi = Z9 = {0, . . . , 8} targets a context with inferior collective549

outcome (s = ⟨0, 0⟩, labeled as binary digit 00) and 11xi ∈ Xi550

targets a context with superior outcomes (s = ⟨1, 1⟩, labeled as bit551

11). In other words, design variable di composes two individual552

design solutions for status quo (s = 00) and mutually-beneficial553

(s = 11) settings. The resulting design space has |Di | = |Xi×Xi | =554

81 alternatives per actor and |Di × Dj | = 6,561 joint alternatives555

in total.556

A context-specific value function sVi(di, dj ) ∈ [sVmin, sVmax]557

maps points in the joint design space to a joint value space by ex-558

tracting the relevant design parameters for each context in Eq. (9).559

sVi(di, dj ) =
{00fi(00xi, 00xj ) if s = 00
11fi(11xi, 11xj ) if s = 11

(9)

Curated context-specific value functions s fi are generated using a560

similar procedure as in Ref. [49] (see the Appendix) to ensure no561

point simultaneously maximizes both actors’ objectives. To en-562

force symmetry, both actors are assigned the same value function,563

i.e. s fi ∼ s fj , which yields equal lower-level value for sxi = sxj .564

Strategies are labeled such that 11Vmin > 00Vmax as listed in565

Table 1 to enforce Eq. (2) and constrain Ui(s) ∈ [0, 100] during566

upper-level strategy selection. The resulting lower-level problems,567

shown in Table 2, appear as two Xi × Xj design spaces (labeled568

00 and 11), presented and explored concurrently.569

Additional information on the method used to generate the570

lower-level design spaces used in the parameter design tasks is571

provided in the Appendix.572

4.2 Upper-level Strategy Spaces. The actors’ decisions se-573

lected during the lower-level design exploration are mapped to a574

scalar utility space with constants S and T in Eq. (10). Constants575

for each task type in Table 1 were selected to produce two levels of576

F and G across the four strategy dynamics in Fig. 2. To preserve577

constant S and T , actor i’s payoff is artificially computed as578

dUi(s) =
⎧⎪⎪⎨⎪⎪⎩
sVi(d) if s = 00 or 11
(1 − T) · 00Vi(d) + T · 11Vi(d) if si = 0 , sj
(1 − S) · 00Vi(d) + S · 11Vi(d) if si = 1 , sj

(10)

where di are the lower-level designs for each actor. To exert tight579

control over strategy dynamics, payoffs for conflicting strategies580

are a function of both 00Vi and 11Vi . In other words, actors observe581

the direct lower-level valuation under mutual strategies (00 or 11)582
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Table 2 Sample design spaces and utility–utility tradespaces for each type of parameter design task

Task / Strategy Dynamic

HA / Harmony CX / Coexistence BI / Bistability DE / Defection

00fi
11fi

00fi
11fi

00fi
11fi

00fi
11fi

Lower-level
design space
sVi (di, d j )

0

10

20

30

40

50

60

70

80

90

100

⟨dUi (s), dUj (s)⟩
tradespace(
dUi · dUj

)1
2

40 80

40

8080

80808080
30.03 030 03 0

81.000
8

4440

400020.0
2022222222222

40 80

40

80

4040

80

808080

20.0
220.0
20.0

30.03 030 03 0

59.44
59.4
55

20.0
20

4444.44

40 80

40

80

404020.0
2020.0
20.0

30.03 030 033 0

87.0
877 0808

8000808 40 80

40

80

404020.0
2020.0
20.0

30.00

68.9
6

999

800000000000000000000000000008

80000000000000808
3333333333330.03 030 033 0

Table 3 Distribution of collective efficiency scores within each
task tradespace; p90: top 10th percentile.

HA CX BI DE
p90 = 0.72 p90 = 0.74 p90 = 0.83 p90 = 0.78

CD
F

.6 .8

.6

.8

.6 .8

.6

.8

.6 .8

.6

.8

.6 .8

.6

.8

Table 4 Distribution of equality scores within each task
tradespace; p60: top 40th percentile.

HA CX BI DE
p60 = 0.92 p60 = 0.91 p60 = 0.89 p60 = 0.96

CD
F

.6 .8

.6

.8

.6 .8

.6

.8

.6 .8

.6

.8

.6 .8

.6

.8

but cases with conflicting strategies mix the other two outcomes583

to produce desired strategy dynamics with fixed S and T .584

Tables 2 shows the joint utility tradespaces of all possible upper-585

level strategy outcomes (4 × 6,561 = 26,244). It includes 6,561586

outcomes (each) for upper-level solutions ⟨0, 1⟩ and ⟨1, 0⟩ and 81587

unique outcomes (each) for upper-level solutions 00 and 11 each588

replicated 81 times to enable descriptive statistics of outcomes via589

percentile ranks. Tradespace contour lines show the square root of590

the product δUi(s) · δUj (s), akin to the generalized Nash product591

[50] as reference for collective efficiency.592

4.3 Collective Design Metrics. Two dimensions assess ac-593

tors’ collective design performance in a task based on the final594

design δ and strategy σ decisions:595

i. Maximization of the product of their payoffs, i.e. converg-596

ing to a Pareto-efficient solution.597

ii. Similarity in their payoffs, comparable to an individual598

sense of equity and fairness.599

The first dimension measures collective efficiency calculated as the600

ratio of the product of observed payoffs δUi(σ) and δUj (σ) to the601

global maximum within the utility–utility tradespace:602

Efficiency =
δUi(σ) · δUj (σ)

maxd,s dUi(s) · dUj (s)
∈ [0, 1]. (11)

The second dimension measures equality, calculated in terms of603

the ratio of the absolute difference between the observed payoffs604

to the maximum possible disparity between task outcomes:605

Equality = 1 −
����� δUi(σ) − δUj (σ)
maxd,s dUi(s) − dUj (s)

����� ∈ [0, 1]. (12)

The aforementioned collective design metrics, as well as the pa-606

rameter tasks described in this work, are inherently symmetric with607

respect to the design actors’ identities and roles.608

Table 3 and 4 show plots collective efficiency and equality cu-609

mulative distribution functions (CDFs) for outcomes of three gen-610

erated design problems (red, blue, and gray lines) in each task611

tradespace. Although each metric is similarly distributed across612

task types and generated instances, assessment of the effect of613

a strategy dynamic on collective performance uses the percentile614

rank (PR) within their tradespace to allow a more direct compari-615

son of outcomes.616

Finally, it is worth mentioning that Eq. (11) is not intended to617

represent a measure of “social efficiency” even though it mimics618

Nash’s solution to bargaining games [51]. Similarly, minimizing619

Eq. (12) does not translate into higher social welfare because equal620

payoffs could be equally poor. Nevertheless, both metrics provide621

a good starting point to assess collective design performance.622

5 Design Experiment Methodology623

In support of RQ3 to assess the effect of strategy dynamics624

(Section 2) on outcomes of collective design tasks, we conducted625

a human-subject experiment using the bi-level parameter design626

tasks defined in Section 4. Observations measure the effect of four627

fixed strategy dynamics with two dimensions (fear and greed) on628

collective efficiency, equality, and individual strategy selection.629

5.1 Experimental Design. The experiment follows a hybrid630

within- and between-subjects design with replication at task and631

design pair units. A design session is structured as a round-robin,632

all-play-all tournament for each of the four task types. Four par-633

ticipants per session provide three possible design team pairings.634
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Assigning each pair to complete one task per strategy dynamic re-635

quires 12 parameter design tasks per session. Across 10 sessions,636

this experimental design generates 10 × 12 × 2 = 240 pair design637

task observations, 60 of each strategy dynamic.638

Table A.1 lists the rounds in each session (including training639

rounds T1–T4), the task type (HA, CX, BI, or DE), context-specific640

maxima for 00fi(00xi, 00xj ) and 11fi(11xi, 11xj ) in Eq. (9), and pair-641

ing of designers with indices 1–4. The algorithm generating lower-642

level value spaces (see Section 4.1 and the Appendix) is further643

constrained to require different local maxima between consecutive644

tasks to limit anchoring effects.645

5.2 Designer Interface. Human actors participate in a param-646

eter design task using a graphical user interface (GUI) illustrated647

in Figs. 6(a)–(b). Although embodying the bi-level parameter de-648

sign task, the GUI does not label strategies or strategy dynamics.649

It consists of three panels, left, right, and center of the display:650

• The left and right panels give actors control over lower-level651

design decisions within strategic contexts s = 00 → 0 and652

s = 11 → 1 . Each actor controls the horizontal axis of a653

design space and their partner controls the vertical axis.654

• The center panel shows the task number (round), a timer to655

complete lower-level design exploration, and a timer to com-656

plete a final upper-level strategy selection.657

Clicking on a panel sets actor i’s corresponding strategy si . For658

example, designer 1 in Fig. 6(a) clicks on panel 00 to set s1 = 0.659

The interior of each of the 00 and 11 panels contains a colored660

square grid plot of s fi (partially visible), a color bar, and one661

horizontal slider:662

• Actor i modifies di using the horizontal sliders below each663

grid to set design parameters (left: 00xi , right: 11xi). The664

other actor’s decision dj appears, in real time, along the ver-665

tical axis of the corresponding panel (left: 00xj , right: 11xj ).666

• To disguise the sameness between s fi(sxi, sxj ) and667

s fj (sxj, sxi), the sxj axes are reversed and the design668

alternatives are labelled with the first |Xi | = 9 letters from669

the English alphabet (e.g. sxi = 0 := A and sxj = 0 := I).670

• The design grid focal point expanded in Fig. 7 reveals pay-671

offs for the selected design in the current context dUi(si, si)672

(upper-left triangle), the selected design in an alternate con-673

text dUi(si, 1 − si) (lower-right triangle), and payoffs for the674

4-neighborhood around ⟨ sxi, sxj⟩. The numerical values cor-675

respond to payoffs in the normal form bimatrix in Fig. 8;676

however, it is not presented as such in the design task.677

• Grid plot payoff colors use the perceptually-uniform cividis678

colormap optimized for color vision deficiency [52]. The679

colorbar ranges from 0 (dark blue) to 100 (yellow).680

The lower-level design process within strategic context s pro-681

ceeds with designer i modifying parameter sxi left-and-right and682

designer j modifying parameter sxj up-and-down. Designer i ob-683

serves and uses nominal payoff dUi(s) to direct the search process684

while designer j likewise observes and uses payoff dUj (s). Both685

pursue maximum individual values; however, lack of vertical con-686

trol and competing objectives require satisficing solutions.687

Although clearly an artificial design problem, the resulting in-688

terface seeks to combine both perspectives of lower-level design689

exploration as an optimization problem and upper-level strategy690

selection as an interactive game. The visual representation of two691

static design spaces with real-time exchange of design parameters692

helps to elicit optimizing behaviors to maximize individual objec-693

tives. Meanwhile, the display of alternative payoffs under mis-694

aligned strategies and no equivalent sharing of strategy decisions695

facilitates strategic behavior common in social dilemma problems.696

5.3 Experimental Protocol. The experiment protocol was697

approved by Stevens Institute of Technology’s Institutional Review698

Board. Framed as a game-based engineering design experiment,699

each session gathers four participants for about 50 min as follows:700

+ 5 min: Informed consent and demographics survey701

+ 5 min: Multi-dimensional locus of control questionnaire [53]702

+ 10 min: Introduction and training (4 rounds)703

+ 30 min: Main design experiment (12 rounds).704

The introduction explains the task formulation and instructs partic-705

ipants to to maximize their individual aggregated scores (i.e. sum706

of final δUi(σ) payoffs across 12 rounds) with increasing finan-707

cial incentives (gift cards worth $8, $10, $12, and $15) tied to708

successive ranks. Training explains how to use the designer GUI709

including user interface controls, meaning of numerical displays710

with respect to payoffs (scores), and the timer function. Training711

consists of four parameter design tasks, one per strategy dynamic,712

that differ from the main 12 tasks in S, T , and scaling of local max-713

ima (Table A.1). Subjects are prompted to ask questions about the714

use of the GUI or task representation during training which can be715

paused to permit sufficient explanation.716

Paired subjects sit face-to-face and are allowed to talk but cannot717

see or share each other’s screen. Each round allots two minutes to718

find a collective solution for a bi-level parameter task as follows:719

+ 1 min 45 s: Lower-level design exploration / design time720

+ 15 s: Upper-level strategy selection / strategy time.721

Each task is initialized at sxi = sxj = 4 (non-local maximum) on722

left and right panels for s = 00 and s = 11. During design time,723

subjects iterate between lower-level design exploration and upper-724

level strategy selection with visibility of their partners’ actions. In725

this stage, subjects navigate to desirable regions of the design space726

to maximize value and improve their payoff structure, aware of727

strategic trade-off and uncertainty of their partners’ final strategy.728

When the design time runs out, input sliders are locked at the729

final design decision δ and subjects have 15 seconds extra (strategy730

time) to select final upper-level strategies σ by clicking anywhere731

on the 00 or 11 panels, viz. playing the normal-form game resulting732

from lower-level design exploration (Figs. 8(a)–(b)).733

While the interface exchanges real-time design selections dur-734

ing the lower-level design exploration activity, no updates are dis-735

played during the upper-level strategy selection activity to preserve736

strategic information. When the task ends, the GUI turns black and737

participants proceed to switch partners for the next task. Partici-738

pants cannot see final payoffs after each parameter design task to739

limit positive or negative reputation effects. Aggregated scores for740

the main 12 tasks are announced only at the end of the session.741

5.4 Participant Demographics. A total of 40 subjects were742

recruited in 10 study sessions. All participants previously com-743

pleted or were in their last year of science, technology, engineer-744

ing, or mathematics (STEM) undergraduate studies. Participants745

reported age, gender, years of education, professional experience,746

English proficiency level, and familiarity with each other:747

• The subjects ranged between 21–38 years of age with a me-748

dian of 26.5 and a mode of 23 (8 occurrences).749

• 14 subjects identified as female and 26 as male.750

• Post-secondary STEM education ranged between 4–13 years751

with a median of 7.0 and a mode of 5 (12 occurrences).752

• Professional experience ranged between 0–10 years with a753

median of 2.0 years and a mode of 1 year (12 occurrences).754

• Regarding English proficiency, 18 reported TOEFL scores755

above 95 (IELTS > 7.0), 9 between 85–94 (IELTS 6.5-7.0), 4756

below 84 (IELTS ≤ 6.0). Others are fluent/native speakers.757

Finally, participants generally had limited prior interaction with758

each other. At least one participant did not know any other partici-759

pant in 8 of 10 sessions. Most participants knew at least one other760

person and only nine participants across 5 of 10 sessions reported761

knowing at least two others.762
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Fig. 6 Snapshot of parameter design task CX.3 between designers i = 1 and j = 4 (round No. 5, pair 2, in Table A.1): (a) designer
1: d1 = ⟨ 00x1,

11x1⟩ = ⟨3, 7⟩; (b) designer 4: d4 = ⟨ 00x4,
11x4⟩ = ⟨3, 5⟩. Current selected collective strategy is s = ⟨0, 1⟩.
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Fig. 7 Visible value subspace for strategic context s ∈ {00, 11}
in the designer GUI. Values of dUi (s ) for si = sj and si , sj
calculated using Eq. (10).
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Fig. 8 Payoff matrices for snapshot of parameter design task
in Fig. 6 exhibiting coexistence dynamics: (a) designer 1’s pay-
off matrix; (b) designer 4’s payoff matrix

6 Results and Analysis763

The outcomes of the design experiment, i.e. the final decisions764

selected by each actor and the resulting payoffs realized for each765

task, were aggregated by task type. Cumulative link model (CLM)766

regression analyzes the effect of the strategy dynamics, in terms of767

fear and greed factors, on collective design outcomes.768

6.1 Experimental Results. Table 5 summarizes final joint769

strategies (σ) for 60 design pairs and individual strategies (σi)770

for 120 designers across each task type. In brief:771

• Harmony dynamics show frequent selection of the payoff-772

dominant collective strategy individually (104/120 choose773

σi = 1) and in pairs (49/60 choose σi = σj = 1), align-774

ing with normative strategies in Fig. 2(a).775

• Coexistence dynamics show mixed strategy selection individ-776

ually (55/120 choose σi = 0, 65/120 choose σi = 1) and777

anti-coordination strategies as a pair (37/60 choose σi , σj ),778

aligning with normative strategies in Fig. 2(b).779

• Bistability dynamics show frequent selection of the payoff-780

dominant collective strategy individually (101/120 choose781

σi = 1) and in pairs (47/60 choose σi = σj = 1), in contrast782

to the normative strategy in Fig. 2(c) that makes no distinction783

between the two strategies.784

• Defection dynamics show mixed strategy selection individu-785

ally (66/120 choose σi = 0, 54/120 choose σi = 1) and in786

pairs (21/60 choose σi = σj = 0), in partial alignment with787

normative strategies of collective inefficiency in Fig. 2(d).788

In addition to strategy selection, collective design performance789

also depends on value-driven outcomes of the lower-level design790

exploration phase. Figure 9 shows a box plot of percentile rank791

(PR) collective efficiency and equality observed during upper-level792

strategy selection, contrasting outcomes of the most collectively-793

efficient strategy s = arg maxs δUi(s) · δUj (s) and the final selected794

strategy σ. For collective efficiency:795

• Lower-level design activities are generally productive across796

all tasks, generating collectively-efficient upper-level alterna-797

tives with a median percentile rank above 97%.798

• The median percentile rank of collective efficiency for final799

strategy selections scored above 97% for harmony and bista-800

bility dynamics, slightly declined to 87% for coexistence dy-801

namics, and greatly declined to 60% for defection dynamics.802

For equality:803

• The median percentile rank of equality for the most804

collectively-efficient upper-level alternative was 100% for har-805

mony and bistability dynamics compared to 65% for coexis-806

tence, and 69% for defection, suggesting design search was807

more equitable under harmony and bistability dynamics.808

• The final percentile rank of equality remained at 100% for809

harmony and bistability dynamics but further dropped to810

37% and 55% for coexistence and defection dynamics, re-811

spectively, indicating the final strategy selection amplified in-812

equality in those settings.813

The aforementioned results suggest that strategy-induced greed, a814

differentiating factor of coexistence and defection dynamics com-815

pared to harmony and bistability dynamics, has a stronger impact816

on collective action than fear which differentiates harmony from817

bistability and coexitence from defection. The following section818

performs statistical analysis to further investigate this insight.819

Journal of Mechanical Design PREPRINT FOR REVIEW / 9



Table 5 Observed upper-level strategy selection in collective
parameter design tasks for each strategy dynamic

Strategy dynamic
Joint σ Harmony Coexistence Bistability Defection

σi = σj = 0 8.3̄3% 15.00% 10.00% 35.00%
σi , σj 10.00% 61.6̄7% 11.6̄7% 40.00%

σi = σj = 1 81.6̄7% 23.3̄3% 78.3̄3% 25.00%

.2 .4 .6 .8

PR (Efficiency)

DE

BI

CX

HA

Ta
sk

.2 .4 .6 .8

PR (Equality)

DE

BI

CX

HA

argmaxB X
*8 · X* 9 f Mean Median

Fig. 9 Observed percentile ranks of collective efficiency and
equality outcome metrics compared to those possible under
strategy arg maxs δUi · δUj , the most-collectively efficient so-
lution available after completing lower-level design exploration

6.2 Effect of Strategy Dynamics. Initial analysis suggests820

qualitative differences among the four strategy dynamics. Addi-821

tional statistical analysis evaluates the effect of fear (F) and greed822

(G) factors on collective design with respect to dependent variables823

PR(Efficiency) and PR(Equality). They are, by definition, ordinal824

variables, requiring non-parametric statistical methods. CLM re-825

gression is appropriate to evaluate interaction and random effects.826

The proposed model827

logit(Pr(Yk ≤ l)) = θl − βk (F) − βk (G) − βk (F:G) (13)

computes the cumulative probability of the k-th score falling in the828

l-th category or below, where k indexes the 240 observations (Yk ),829

l indexes response categories, and θl is the threshold for the l-th830

logit [54]. For the sake of simplicity, we assume such thresholds831

are equally-spaced by ∆θ. Finally, β̂k coefficients estimate effects832

of F, G, and the interaction F:G.833

In fitting Eq. (13), we tested the appropriateness of including a834

normally-distributed blocking variable in the CLM regression anal-835

ysis to account for repeated measures for subjects. Results from836

an analysis of deviance test on the differences between candidate837

models with and without the aforementioned random effect are838

presented in Table 6. At a statistical significance level of α = 5%,839

there is insufficient evidence to conclude that blocking by partici-840

pants has an impact on the goodness-of-fit of the candidate models841

for collective efficiency and equality. We continue our analysis on842

the effect of structural fear and greed on collective performance as-843

suming independence between repeated measures on participants.844

Table 7 lists goodness-of-fit statistics for two fixed-effects can-845

didate logistic regression models per dependent variable including846

the baseline “null model” logit(Pr(Yk ≤ l)) = 1 for verification.847

Model selection considers three methods: Akaike Information Cri-848

terion (AIC) score, Bayesian Information Criterion (BIC) score,849

and analysis of deviance to assess differences between candidate850

models. The AIC scores favor the interaction effects model for851

analysis of collective efficiency (albeit with relatively small differ-852

ences between candidate models). The BIC method recommends853

Table 6 Analysis of deviance test∗ on random effects of par-
ticipants in the design experiment

No interaction With interaction

Dimension LR ∼ χ2 p-value LR ∼ χ2 p-value
Efficiency 3.5183 0.0607 3.1842 0.0744
Equality 3.3112 0.0688 3.2023 0.0735
∗ The models with and without random effects are not significantly different at α = 5%.

Table 7 Information criteria estimates† and likelihood ratio
test comparison between fixed-effect CLMs used to assess the
effect of fear and greed on collective efficiency and equality

Statistic Null model No interaction With interaction

Effi
ci

en
cy

LL −1146.3665* −1105.3090∗ −1104.1171∗
AIC 2296.7331* 2218.6181∗ 2218.2341∗
BIC 2303.6943* 2232.5406∗ 2235.6373∗

LR ∼ χ2 0.0000* 82.1150∗ 84.4989∗
p-value - -* < 0.0001∗ < 0.0001∗
Deviance - -* - -∗ 0.1226∗

Eq
ua

lit
y

LL −778.2249* −770.1624∗ −770.0206∗
AIC 1560.4499* 1548.3248∗ 1550.0411∗
BIC 1567.4112* 1562.2474∗ 1567.4443∗

LR ∼ χ2 0.0000* 16.1250∗ 16.4086∗
p-value - -* 0.0003∗ 0.0009∗
Deviance - -* - -∗ 0.5943∗

† Select the model that minimizes the loss of information (lower AIC and BIC scores).
∗ The alternative models are significantly different from the null model at α = 5%.

Table 8 CLM regression† estimates of collective efficiency
and equality versus fear and greed (no interaction effects)

Statistic θ̂1 ∆θ̂ β̂k (F) β̂k (G)

Effi
ci

en
cy

Estimate −4.0901* 0.0483* −0.3740∗ −1.5533∗
SE 0.2636* 0.0028* 0.1610∗ 0.1833∗
p-value - -* - -* 0.0201∗ < 0.0001∗

PO (nominal) - -* - -* 0.1306∗ 0.2490∗
PO (scale) - -* - -* 0.3811∗ 0.3369∗

Eq
ua

lit
y

Estimate −2.7582* 0.0369* 0.2461∗ −0.6291∗
SE 0.2095* 0.0027* 0.1691∗ 0.1720∗
p-value - -* - -* 0.1457∗ 0.0003∗

PO (nominal) - -* - -* 0.0443∗ 0.0643∗
PO (scale) - -* - -* 0.0610∗ 0.0559∗

∗ Statistically-significant results at α = 5%. Insufficient evidence to accept PO at α = 5%.

a no-interaction model for both estimations. Finally, analysis of854

deviance between candidate models for both collective efficiency855

and equality results in lack of evidence to suggest difference at856

α = 5%. We select the no-interaction model for both collective857

efficiency and equality based on the latter two criteria.858

Table 8 shows coefficient maximum likelihood estimates, stan-859

dard errors (SE), and p-values from the fixed-effect CLMs with no860

interaction effects. Results on the proportional odds assumption861

(PO) test validity of the CLM regression. The hypothesis in these862

tests is that the goodness-of-fit of the model will not improve by863

relaxing the proportional odds assumption [54]. At α = 5%, the864

PO nominal and scale tests for fear and greed cannot be rejected865

for collective efficiency, thus confirming CLM regression is appro-866

priate. However, the PO test for nominal effects is rejected for the867

fear estimate in the equality model, indicating this variable is not868

a good ordinal predictor of equality outcomes.869

CLM regression results indicate both fear and greed have signif-870

icant negative effects on collective efficiency with greed showing871

a stronger impact than fear. Additionally, greed has a significant872

negative effect on equality; however, this result needs further in-873

spection as the proportional odds assumption was violated for fear.874
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6.3 Discussion. Results show collective efficiency during875

lower-level design exploration is not significantly influenced by876

differences in strategy dynamics. This supports viewing the lower-877

level decisions as design optimization unimpeded by strategic in-878

formation barriers associated with unfavorable dynamics. Never-879

theless, a design alternative that ranks high in collective efficiency880

using Eq. (11) does not guarantee a fair distribution of payoffs,881

particularly in tasks that exhibit coexistence and defection dynam-882

ics. The low equality scores, as measured using Eq. (12), resulting883

from lower-level design exploration in such tasks point at how the884

absence of upper-level incentives for cooperation affects overall885

system performance under high levels of structural greed.886

At the upper-level, strategy selection follows the normative Nash887

equilibrium criteria for dynamics with low levels of structural fear,888

namely harmony and coexistence. Although the underlying dy-889

namics for both the coexistence and bistability parameter design890

tasks anticipate a similar frequencies for σi = 0 and σi = 1, most891

subjects pursue the payoff-dominant equilibrium for bistability dy-892

namics. This result could be attributed to increased trust between893

participants in the face-to-face experimental setting. Similarly,894

the normative predictions of non-cooperative behavior were not895

accurate for the majority of tasks with defection dynamics, with896

a considerable amount of final individual strategies selecting the897

socially-efficient alternative.898

While experimental results concerning collective behavior in899

symmetric and asymmetric games with harmony dynamics are900

scarce in the literature, the empirical evidence gathered in this901

study is comparable to previous findings in the field of behav-902

ioral economics for coexistence, bistability, and defection dynam-903

ics. For coexistence games, while results in this work show a904

selection frequency of the Nash equilibria σi , σj around 62%,905

work by Cabrales et al. [55] reports rates around 51–74% after906

adding up frequencies for both σ = ⟨0, 1⟩ and σ = ⟨1, 0⟩. In the907

case of bistability dynamics, Schmidt et al. [35] reports a selection908

frequency of the mutually-beneficial Nash equilibrium (σi = 1)909

between 40–60% versus 84% in this work. It is worth noting,910

however, than two of four normal-form games in Schmidt et al.’s911

work exhibit risk dominance conditions that favor selection of the912

inefficient equilibrium (σi = 0), i.e. R > 0, while in the other913

two games, as well as in this work, risk dominance is neutral,914

i.e. R = 0. Finally, for defection dynamics, Ahn et al. [56] report915

cooperation rates up to 35% in symmetric and 43% in asymmetric916

games versus 25% in this work, while a review paper by Rand &917

Nowak [57] shows first-round cooperation rates between 10–90%918

in repeated Prisoner’s Dilemma games. More careful assessment919

of the differences in experimental results between works must ac-920

count for not only actual levels of structural fear and greed but921

also factors such as type of game (e.g. simultaneous, sequential),922

players’ backgrounds and history of play, and asymmetry between923

normalized individual payoffs, among others.924

Results comparing bistability and defection dynamics suggest925

the structural fear factor may be sensitive to how subjects interact.926

While participants did not generally have prior working experience927

with each other, they all attend the same university and can com-928

municate with each other face-to-face during the task. Rich verbal929

and non-verbal communication may mitigate concerns about pos-930

sible defection. Similar mitigating actions may be beneficial as931

interventions in broader design problems identified to have a sub-932

stantial structural fear component.933

Further analysis identifies strategy-induced greed as the factor934

with stronger negative influence on both collective performance935

and equality in the parameter design tasks. Results from CLM re-936

gression for collective efficiency show that the coefficient estimate937

for structural greed is larger in magnitude than fear. Although the938

latter has a significant effect on collective efficiency, we do not939

have enough evidence to suggest that strategy-induced fear has a940

significant effect on equality. These results are consistent with pre-941

vious findings by Ahn et al. [32] that suggest only structural greed,942

not fear, has a significant effect on cooperative behavior.943

Results also show that low-greed harmony and bistability strat-944

egy dynamics are desirable to improve efficiency and fairness in945

collective systems design processes. Eliciting these dynamics in946

multi-actor design problems may be possible by changes in in-947

centives or management action. For example, a technological race948

modeled as a Prisoner’s Dilemma can turn into a Deadlock (a game949

with harmony dynamics) by including the potential for scientific950

breakthroughs resulting from strategic competition [58]. From this951

perspective, the collectively-inefficient course of action to “stay on952

the race” can turn into a Pareto-efficient strategy. Similarly, ad-953

justments to resource allocation and substitutability of engineers in954

a multidisciplinary design project can bring about multiple strict955

equilibria that lead to mutually-beneficial outcomes [5].956

Finally, analysis provided in this section primarily compares ex-957

perimental results to single-shot games as a simple strategic setting958

with two main shortcomings. First, while the experiment did not959

enforce negotiated agreements (in alignment with non-cooperative960

game theory), participants were allowed to communicate before961

final strategy selection. Connecting results to research on strategic962

information exchange [59] would help understand strategic impli-963

cations of the design exploration period. Second, despite exper-964

imental controls to hide strategy selection outcomes, the design965

tasks carry partial information about actors based on facial expres-966

sions, cultural background, etc. Applications of Bayesian games967

with incomplete information [60] would help understand how fac-968

tors such as trust and reputation shape strategy selection.969

7 Conclusion970

This paper describes and demonstrates strategy dynamics as971

the fundamental interactive relationship between multiple, inde-972

pendent design actors. A bi-level model of collective design uses973

concepts from game theory to propose distinct lower- and upper-974

level processes based on design optimization and strategy selec-975

tion. Constructed parameter design tasks exhibit fixed harmony,976

coexistence, bistability, and defection dynamics. Finally, a de-977

signer experiment collects observations of design behavior across978

a set of design tasks. Results contrast observations with results of979

single-shot game theory, showing that the greed factor associated980

with defection and coexistence dynamics has a stronger negative981

effect than the fear factor associated with bistability dynamics.982

Contributions from this paper provide new constructs to support983

the study of strategy dynamics in engineering design problems.984

While highly simplified in the parameter design tasks employed985

in this paper, future research must distill the strategy dynamics986

present in a larger class of design problems, including classifying987

regions of a lower-level design space that exhibit similar strategy988

dynamics. Increased knowledge of strategy dynamics in the design989

of engineering systems will enable new methods and processes to990

mitigate potentially unfavorable effects of an underlying dynamic991

or even induce strategic trade-offs that favor cooperative behav-992

iors through the application of mechanism design. This type of993

research will ultimately cross the domains of engineering systems994

design, behavioral economics, and cognitive psychology, requiring995

a significant theoretical foundation on which to build future studies996

and motivating new design efforts to develop incentives or other997

coordination mechanisms to align objectives of design actors.998

Acknowledgment999

This material is based upon work supported by the National1000

Science Foundation under Grant No. 1742971.1001

Nomenclature1002

00 = bit representing strategic context s = ⟨0, 0⟩1003

11 = bit representing strategic context s = ⟨1, 1⟩1004

D = D1 × · · · ×Dn, set of all n-actor design decisions1005

d = ⟨d1, . . . , dn⟩, a multi-actor design decision1006

di = ⟨00xi, 11xi⟩, actor i’s design decision vector1007

F = structural/strategy-induced fear1008
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fi(x) = raw value function1009

G = a normal-form game1010

G = structural/strategy-induced greed1011

i = a design actor1012

j = a design actor different from i1013

N = {1, . . . , n} is the set of design actors1014

R = Risk dominance measure (bipolar games) [37]1015

s = ⟨s1, . . . , sn⟩, strategic context (strategy vector)1016

S = S1 × · · · × Sn, set of all pure-strategy profile vectors1017

S = sucker’s payoff1018

T = temptation payoff1019

Ui = utility (payoff) function for actor i1020

dUi(s) = design-specific utility function for actor i1021

ui = normalized payoff for actor i1022

Vi = transformed value function for design actor i1023

sVi(d) = context-specific value function for actor i1024

sVmax = maximum individual value in strategic context s1025

sVmin = minimum individual value in strategic context s1026

Xi = set of design alternatives1027

x = ⟨x1, . . . , xn⟩, a vector of design alternatives1028

sxi = a context-specific design alternative for actor i1029

Yk = k-th observation/datum in the experiment1030

Greeks1031

α = Statistical significance level1032

β = Fixed effect ordinal regression parameter1033

δ = ⟨δ1, . . . , δn⟩ is a selected n-actor design decision1034

θl = Structured threshold (intercept) for the l-th logit1035

σ = ⟨σ1, . . . , σn⟩ is a selected n-actor strategy vector1036

χ2 = Chi-squared distribution value1037

Acronyms1038

AIC = Akaike information criterion1039

BIC = Bayesian information criterion1040

CDF = Cumulative distribution function1041

GUI = Graphical user interface1042

LL = Log-likelihood1043

LR = likelihood-ratio test statistic1044

PO = Proportional odds assumption test results (as p-values)1045

PR = percentile rank function1046

SE = Standard error1047

Appendix A: Value Space Generation1048

Lower-level design valuation uses a normalized multimodal1049

function s fi defined for design parameters sx = ⟨sxi, sxj⟩ (indices i1050

and j are interchangeable) in strategic context s, ranging between1051

limits sVmin and sVmax and rounded to the nearest integer (≈):1052

sfi(sx) ≈ sVmin +
(sVmax − sVmin

) [
fasym(sx) + fsym(sx)

]
, (A.1)

composing asymmetric ( fasym) and symmetric ( fsym) functions1053

fasym(xi, xj ) = e−a
[ (
xi−x⋆i

)2
+
(
x j−x⋆j

)2]
, (A.2)

fsym(xi, xj ) = c · e−b
[ (
xi−x⋆sym

)2
+
(
x j−x⋆sym

)2]
, (A.3)

with 0 < a, b, c < 1 (this work uses a = b = 0.31 and c = 0.60).1054

Here, symmetry refers to the set of design parameters with xi = xj .1055

Equations (A.2) and (A.3) are based on a similar multimodal test1056

optimization function in Ref. [61] (the original equation includes1057

stochastic components not considered here). Each value space is1058

generated through heuristic sampling of critical points x⋆
i

, x⋆
j
, and1059

sx⋆sym until the following consistency constraints are met:1060

x⋆i , x⋆j , (A.4)

x⋆sym = arg max
xi

s fi(xi, xj )

s.t. xi = xj, xi <
{

x⋆i , x
⋆
j

}
,

(A.5)

f⋆sym > max
xi

1
2
[

fi(xi, xj ) + fj (xj, xi)
]

s.t. xi = xj, xi , x⋆sym.

(A.6)

Two additional constraints specific to this work were added to1061

increase topology similarities between generated value spaces:1062 ���⟨x⋆i , x⋆j ⟩ − ⟨x⋆sym, x
⋆
sym⟩

��� = ⟨4, 2⟩, (A.7)

x⋆sym < [3, 5] (A.8)
Each of these consistency constraints is described below:1063

• Eq. (A.4): forces asymmetry between individual global max-1064

imizers x⋆
i

and x⋆
j

1065

• Eq. (A.5): finds a symmetric (local) maximizer x⋆sym that dif-1066

fers from either x⋆
i

and x⋆
j

1067

• Eq. (A.6): forces the symmetric maximizer x⋆sym to yield the1068

highest aggregated value1069

• Eq. (A.7): forces a fixed separation between the symmetric1070

and individual global maximizers1071

• Eq. (A.8): guarantees that the symmetric maximizer x⋆sym1072

does not fall on x = ⟨4, 4⟩ (the initial point) or its 8-1073

neighborhood to stimulate design exploration.1074

Table A.1 lists the symmetric and global maxima and maximiz-1075

ers of the value spaces generated for each of the parameter design1076

tasks in the design experiment.1077

Appendix B: Example of Calculation of Payoffs for a1078

Parameter Design Task1079

This end-to-end example shows how to calculate payoffs dUi(s)1080

and dUj (s) in a parameter design task, viz. CX.3 (round No. 5) in1081

Table A.1, given design decision d = ⟨di, dj⟩ visible in Fig. 6:1082

di = ⟨ 00xi , 11xi ⟩ = ⟨3, 7⟩,
dj = ⟨ 00xj , 11xj⟩ = ⟨3, 5⟩.

Step 0: Generate Lower-level Value Spaces. From Table 1,1083

for parameter design tasks exhibiting coexistence dynamics:1084

S = 1/2; T = 3/2;
00Vmin = 1; 00Vmax = 33; 11Vmin = 35; 11Vmax = 67.1085

From Table A.1, and in accordance with consistency constraints1086

Eqs. (A.4–A.8), we require:1087

00x⋆
i
= 4; 00x⋆

j
= 2; 00x⋆sym = 8;

11x⋆
i
= 5; 11x⋆

j
= 7; 11x⋆sym = 1;1088

After substituting into Eqs. (A.1–A.3), we obtain the value1089

model for task CX.3:1090

00fi(00x) ≈ 1 + 32.0 · e−0.31
[ (
xi−4

)2
+
(
x j−2

)2]
+ 19.2 · e−0.31

[ (
xi−8

)2
+
(
x j−8

)2] (B.1)

1091

11fi(11x) ≈ 35 + 32.0 · e−0.31
[ (
xi−5

)2
+
(
x j−7

)2]
+ 19.2 · e−0.31

[ (
xi−1

)2
+
(
x j−1

)2] (B.2)

Figures B.1(a) and B.1(b) show grid plots of the value functions1092

Eqs. (B.1) and (B.2), respectively.1093
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Table A.1 Experimental design round sequence: parameter design tasks, critical points, and pairing of participants 1 to 4

Round Local Maxima for 00fi Local Maxima for 11fi Des. Pair 1 Des. Pair 2

No. Dynamic Task ID* 00x⋆i
00x⋆j

00f⋆i
00x⋆sym

00f⋆sym
11x⋆i

11x⋆j
11f⋆i

11x⋆sym
11f⋆sym i j i j

T1 Harmony HA.0† 4 2 100 8 60 5 7 100 1 60 4 1 2 3
T2 Coexistence CX.0† 3 1 67 7 54 2 0 100 6 60 4 1 2 3
T3 Bistability BI.0† 2 0 100 6 60 5 7 67 1 54 4 2 1 3
T4 Defection DE.0† 3 1 67 7 54 4 2 67 8 54 1 2 3 4
1 Coexistence CX.1† 2 0 67 6 54 5 7 33 1 20 1 3 4 2
2 Harmony HA.2† 3 1 49 7 30 4 2 100 8 81 1 4 3 2
3 Bistability BI.1† 4 2 100 8 87 3 1 66 7 53 3 4 1 2
4 Defection DE.1† 5 7 67 1 61 2 0 50 6 44 2 4 1 3
5 Coexistence CX.3† 4 2 33 8 20 5 7 67 1 54 2 3 1 4
6 Harmony HA.1† 3 1 100 7 81 2 0 49 6 30 2 1 3 4
7 Defection DE.2† 5 7 50 1 44 2 0 67 6 61 4 1 3 2
8 Bistability BI.3† 4 2 66 8 53 3 1 100 7 87 4 2 3 1
9 Defection DE.3† 3 1 50 7 44 4 2 67 8 61 4 3 2 1
10 Bistability BI.2† 2 0 100 6 53 5 7 66 1 87 4 1 2 3
11 Harmony HA.3† 5 7 49 1 30 4 2 100 8 81 3 1 2 4
12 Coexistence CX.2† 2 0 67 6 54 3 1 33 7 20 2 1 3 4

† The visual ordering of lower-level design value spaces 00 and 11 are reversed on the GUI to mitigate visual anchoring effects but the task is otherwise unchanged.

Step 1: Get Lower-level Values. Using Eq. (9), for s = 00:1094

00Vi(di, dj ) = 00fi(00xi, 00xj ) = 00fi(3, 3) = 18;
00Vj (dj, di) = 00fj (00xj, 00xi) = 00fj (3, 3) = 18.

For s = 11:1095

11Vi(di, dj ) = 11fi(11xi, 11xj ) = 11fi(7, 5) = 38;
11Vj (dj, di) = 11fj (11xj, 11xi) = 11fj (5, 7) = 67.

Step 2: Obtain Payoff Structure. Using Eq. (10), for actor i:1096

dUi(s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
18 if s = 00

(1 − 3/2)(18) + (3/2)(38) if si = 0 , sj
(1 − 1/2)(18) + (1/2)(38) if si = 1 , sj
38 if s = 11

For actor j:1097

dUj (s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
18 if s = 00

(1 − 3/2)(18) + (3/2)(67) if sj = 0 , si
(1 − 1/2)(18) + (1/2)(67) if sj = 1 , si
67 if s = 11

The above payoff structures are shown as a normal-form game in1098

Fig. 6 with i = 1 and j = 4 (note inverted axes where labeled1099

to disguise symmetry). Note that a design actor’s payoff matrix1100

is affected instantaneously by changes in their counterpart lower-1101

level decisions. For instance, if actor j moves 00xj from 3 to 4,1102

00Vi drops from 18 to 8 while 00Vj rises from 18 to 24. This also1103

affects payoffs dUi(si, sj ) and dUj (sj, si) for si , sj , but it does1104

not affect payoffs dUi(1, 1) or dUj (1, 1) which only depend on both1105

11xi and 11xj .1106
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