
Automatically Translating Quantum Programs

from a Subset of Common Gates to an Adiabatic

Representation ⋆

Malcolm Regan1, Brody Eastwood1, Mahita Nagabhiru1, and Frank
Mueller1[0000−0002−0258−0294]

Department of Computer Science, North Carolina State University, USA
mueller@cs.ncsu.edu

Abstract. Adiabatic computing with two degrees of freedom of 2-local
Hamiltonians has been theoretically shown to be equivalent to the gate
model of universal quantum computing. But today’s quantum annealers,
namely D-Wave’s 2000Q platform, only provide a 2-local Ising Hamilto-
nian abstraction with a single degree of freedom. This raises the ques-
tion what subset of gate programs can be expressed as quadratic uncon-
strained binary problems (QUBOs) on the D-Wave. The problem is of
interest because gate-based quantum platforms are currently limited to
20 qubits while D-Wave provides 2,000 qubits. However, when transform-
ing entire gate circuits into QUBOs, additional qubits will be required.
The objective of this work is to determine a subset of quantum gates
suitable for transformation into single-degree 2-local Ising Hamiltonians
under a common qubit base representation such that they comprise a
compound circuit suitable for pure quantum computation, i.e., without
having to switch between classical and quantum computing for differ-
ent bases. To this end, this work contributes, for the first time, a fully
automated method to translate quantum gate circuits comprised of a
subset of common gates expressed as an IBM Qiskit program to single-
degree 2-local Ising Hamiltonians, which are subsequently embedded in
the D-Wave 2000Q chimera graph. These gate elements are placed in the
chimera graph and augmented by constraints that enforce inter-gate log-
ical relationships, resulting in an annealer embedding that completely
characterizes the overall gate circuit. Annealer embeddings for several
example quantum gate circuits are then evaluated on D-Wave 2000Q
hardware.

Keywords: Quantum Computation · Quantum Annealing · Quantum
Gate Circuits · Adiabatic Computation

1 Introduction

Recent advances in quantum hardware have resulted in the first systems becom-
ing publicly available. On one hand, gate-based quantum computers have been

⋆ This work was funded in part by NSF grants 1525609 and 1813004.

2 M. Regan et al.

designed, such as the IBM Q, Rigetti’s Aspen, or IonQ’s systems using using
superconducting transmons or ion tubes [2, 11]. On the other hand, quantum
annealing has been promoted by D-Wave’s RF-Squids [6]. Both types of systems
are available in the cloud and can be programmed using Python, e.g., via IBM’s
Qiskit in the IBM Q Experience [1], Rigetti’s Forest DSK in their Quantum
Cloud Services [2], and D-wave’s Ocean Software [9] accessible via the cloud
through D-Wave Leap [8].

It was shown that adiabatic quantum computing can solve the same prob-
lems as gate-based (universal) quantum computing given at least two degrees
of freedom for 2-local Hamiltonian [3, 5, 10]. D-Wave supports a 2-local Ising
Hamiltonian with a single degree of freedom in their 2000Q system, which is
why it is believed to only solve a subset of the problems that can be expressed
by gate-based (universal) quantum machines. In fact, D-Wave’s programming
abstraction is specifically catering to optimization problems while gate-based
abstractions map to quantum gates, e.g., by expressing programs as circuits of
gates in OpenQASM [7].

In 2014, Warren outlined how a set of universal quantum gates could be
realized in adiabatic form using D-Wave’s annealing abstraction [12]. This is
demonstrated, among others, for C-NOT, Toffoli (CC-NOT), Swap and C-Swap
(Fredkin) gates in a {0, 1} base of qubit states, and for the Hadamard gate in a
two-vector {|0〉 , |1〉} base.

In this paper, we contribute a framework to automatically translate gate-
based circuits into adiabatic single-degree 2-local Hamiltonians expressed as
quadratic unconstrained binary optimization problems (QUBOs). We constrain
ourselves to a subset of quantum gates in the common {0, 1} base so that an
entire circuit can be expressed as a single QUBO. This allows us, given a Qiskit
program suitable for IBM Q execution, to generate an equivalent Ocean program
that can execute on a D-Wave machine. Such a translation is significant since
today’s gate computers are constrained to 20 qubits for IBM Q (or 19 qubits
for Rigetti’s available platform), while D-Wave supports around 2,000 qubits
on their latest publicly available platform, which enables experimentation at a
different scale.

The objectives of this work are (1) to identify a subset of gates suitable for
translation, (2) to demonstrate the feasibility of auto-translating entire circuits
of these quantum gates to adiabatic programs, (3) to assess the cost of an-
cilla qubits required to express gates in QUBOs, (4) to find an embedding into
D-Wave’s Chimera graph for a circuit and assess its cost in extra qubits and
circuit lines / wires, and (5) to compare hardware experimentation results with
the expected ground state to determine the annealer’s ability identify coherent
solutions for circuit embedding. We contribute an automated method for en-
coding quantum gate circuits comprising X, C-NOT, Toffoli, Swap and C-Swap
(Fredkin) gates as single-degree 2-local Ising Hamiltonians (QUBOs) and embed
the resulting representation in the D-Wave 2000Q chimera graph. We provide
the single-degree 2-local Ising QUBOs with K4,4 connectivity, a compete bipar-
tite graph with 8 vertices corresponding to D-Wave’s unit cell, for which ground

Title Suppressed Due to Excessive Length 3

state configurations logically characterize quantum X, C-NOT, Toffoli, and Swap
gates. Notice that we do not provide a translation for the Hadamard gate, H,
as it requires a different base of qubit states than the above, i.e., one cannot
directly embed H in the same circuit. Instead, one would have to transition
between quantum and classical programs, which collapses the quantum state
and thus defeats the purpose of quantum computing in first place. These gates
supported by our translation constitute building blocks that are placed in the
chimera graph and augmented by constraints that enforce inter-gate logical rela-
tionships. The resulting annealer embedding is equivalent to the corresponding
gate circuit in terms of its computational functionality. In experimental results,
we evaluate annealer embeddings for several sample quantum gate circuits on
D-Wave hardware.

2 Design and Implementation

In adiabatic computing, the comprehensive state of qubits is annealed via a com-
bination of tunneling and entanglement toward a ground (energy) state. There
may be more than one such state, and tunneling aids in not getting stuck in local
minima but rather find other ground states, subject to practical considerations
of adiabatic computing, such as experienced by near absolute zero Kelvin op-
eration and hardware-induced errors in any practical quantum devices. To this
end, D-Wave supports a single-degree 2-local Ising Hamiltonian

H(t) = −
∑N−2

i=0

∑N−1
j=0 Ji,jσiσj −

∑N−1
i=0 Siσi − Γ (t)

∑N−1
i=0 σi

with N qubits σi ∈ {−1, 1} as vertices, coupler strengths Jij ∈ {−2, 2} that
connect σi, σj and biases (weights) Si per qubit such that the amplitude, Γ (t),
of the third term, the traverse field is gradually decreased to drive the aggregate
of the first and second term into a ground state, H0.

A 2-local Hamiltonian is expressed as quadratic unconstrained binary opti-
mization problem (QUBO) that describes a ground state and is subsequently
mapped onto D-Wave’s 2000Q embedding of qubits respecting the connectivity
of qubit pairs. Specifically, D-Wave’s inner cell is a K4,4 bipartite graph to which
we map quantum gates. This embedding of a gate is described in Section 2.1.

The K4,4 unit cells are arranged in a 2-dimensional 16×16 grid in a Chimera
graph with sparse horizontal and vertical couplings between equivalent qubits of
neighboring unit cells. The Chimera graph provides the means to connect unit
cells representing a quantum gate with each other to create the desired quantum
circuit of a given gate-based quantum program, which is described in Section 2.2.

We then develop an automatic transition from Qiskit programs representing
circuits of quantum gates to an equivalent adiabatic representation in a system-
atic manner in Section 2.3. This translator leverages the class and file structure
of IBM’s open-source Qiskit API for definitions of quantum gate circuits due
to its familiarity and ease-of-use. Specifically, a Qiskit translator was created so
that any Qiskit script defining a quantum gate circuit could be used to generate
and run a corresponding annealer embedding.

Title Suppressed Due to Excessive Length 11

assigned a position in the gate cell aligned with the position of its connection.
Once gate qubits with dependencies are placed in the gate cell, qubits with no
dependencies are placed in remaining positions.

The last significant modification to Qiskit was to its execute function, which
was modified to make final adjustments to the circuit embedding, execute the
embedding on D-Wave hardware, and report the results. In our code, when
execute is called, the user is prompted, for each qubit in the gate circuit, to
answer whether the initial state of the qubit should be constrained to a value of
zero. If the user answers that it should be and it was not earlier identified as a
circuit output by the measure command, it is assumed this qubit is an ancilla
and as such is not reported in the results. If the user answers that it should be
constrained to zero and it has been identified as a circuit output by the measure

command, the output values are still reported, but the input values are not. The
initial state of a logical qubit is constrained to a value of zero by adding 5 to
the bias of the first physical qubit associated with it. Results are reported with
input variable values on the left and output variable values on the right.

3 Experimental Results

An upper bound on the resource requirements on both ends can be given as
follows. Given an n-gate quantum circuit (in our case specified as a Qiskit pro-
gram), a translation to an adiabatic form is provided in no more than 32n adi-
abatic qubits on the D-Wave 2000Q. The factor is comprised of 8 qubits for
the K4,4 representation of a gate, the remaining 24 qubits are used as wiring to
the left and below that gate-equivalent K4,4 graph (cf. the example below and
Figure 3.1). Notice that an increase by 32X still increases the capabilities by
mapping to D-Wave, if possible, since the IBM/D-Wave gap is 100X now, and
problems can often be mapped more efficiently.

3.1 Circuit for Comparison of 1-Qubit Numbers

Shown at the top of Figure 9 is a quantum circuit whose output is |1〉 if its
two input qubits, |a〉 and |b〉, are in the same logical state and |0〉 if they are
not. The temporary qubit is not necessary for a 1-qubit equivalence circuit such
as this but temporary registers are needed for similar circuits when comparing
multi-bit inputs. The temporary register is included here to make this example
more interesting. The main illustration in Figure 9 shows the embedding auto-
matically generated from a Qiskit program that defines the circuit depicted. This
embedding anneals as expected. If the initial states of the output and temporary
qubits are constrained to be zero there are 4 valid results. All 4 results are reli-
ably obtained within 100 samples. The embedding uses 32 physical qubits and
48 couplers, 12 of which are used for inter-gate connections. This embedding is
clearly not optimal. An optimal graph for a circuit of this size and functionality is
easily obtained using the process by which the gate embeddings were determined
(Section 2.1). An optimal graph for this circuit’s function (XNOR) is shown in
Figure 10. It uses 6 qubits and 8 couplers and is contained within a single K4,4

Title Suppressed Due to Excessive Length 13

The embedding generated for the 5-qubit equivalence circuit uses 156 physical
qubits and 240 couplers, 68 of which are used in chains between gates. These
values are also about 5 times larger than those of the 1-qubit equivalence circuit,
as expected. However, this embedding does not anneal as effectively as the 1-
qubit equivalence circuit. Only about 20 of the 1,024 valid results are obtained
within 10,000 samples.

3.3 Adder for 1-Qubit Numbers

The top of Figure 11 shows a quantum circuit implementing a full adder func-
tion. The main illustration in this figure shows the embedding generated from
a Qiskit script defining this circuit. This embedding is composed of 79 physical
qubits and 110 couplers, 47 of which are used for inter-gate connections. Several
improvements that could be made to this embedding are apparent. Most obvi-
ously, the chains connecting gates could be routed more efficiently. An optimal
full adder annealer embedding uses 8 qubits and 13 couplers and fits within a sin-
gle K4,4 cell [4]. So, in terms of bipartite cell embeddings used, the generated full
adder embedding is 6 times larger than the optimal case. Considering resources
used to connect gates, the generated embedding is about 11 times larger.

The generated full adder embedding anneals as expected. There are 8 valid
results if the initial states of sum and carry-out qubits are constrained to be
zero. All 8 results are reliably obtained within 400 samples.

Fig. 11: Embedding of adder for 1-qubit numbers. Colors indicate logical qubits.

Title Suppressed Due to Excessive Length 15

4 Conclusion

We contributed an automatic translation scheme from a set of quantum gates,
expressed as a Qiskit circuit suitable for execution on the IBM Q platform, to an
adiabatic circuit with an equivalent single-degree 2-local Ising Hamiltonian that
is embedded on a chimera graph and expressed as an Ocean program suitable
for D-Wave 2000Q execution. Experiments indicated that the generated target
circuits were using six times more qubits and three times more couplers than
the source circuits. In future work, we plan to develop optimization techniques
to reduce the number of resources required by exploiting inter-gate embeddings
within unused couplers of a cell representing a gate and by reducing qubits by
fusing gates together. We also intend to further extend the set of gates suitable
for adiabatic transformation in circuits.

References

1. Ibm qiskit (2018), https://github.com/Qiskit/qiskit-terra

2. Rigetti forest (2018), https://www.rigetti.com/forest

3. Aharonov, D., van Dam, W., Kempe, J., Landau, Z., Lloyd, S.,
Regev, O.: Adiabatic quantum computation is equivalent to stan-
dard quantum computation. SIAM J. Comput. 37(1), 166–194 (Apr
2007). https://doi.org/10.1137/S0097539705447323, http://dx.doi.org/

10.1137/S0097539705447323

4. Andriyash, E., Bian, Z., Chudak, F., Drew-Brook, M., King, A.D., Macready,
W.G., Roy, A.: Boosting integer factoring performance via quantum anneal-
ing offsets. Tech. rep. (2016)

5. Bacon, D., Flammia, S.T., Crosswhite, G.M.: Adiabatic quantum transistors
(2012). https://doi.org/10.1103/PhysRevX.3.021015

6. Boixo, S., Albash, T., Spedalieri, F.M., Chancellor, N., Lidar, D.A.: Ex-
perimental signature of programmable quantum annealing. arXiv:1212.1739
(2012), http://arxiv.org/abs/1212.1739

7. Cross, A.W., Bishop, L.S., Smolin, J.A., Gambetta, J.M.: Open quantum as-
sembly language. arXiv:1707.03429 (2017), http://arxiv.org/abs/1707.

03429

8. D-Wave: D-wave leap. https://www.dwavesys.com/take-leap

9. D-Wave: D-wave’s ocean software. https://ocean.dwavesys.com/

10. Dorit Aharonov, Wim van Dam, J.K.Z.L.S.L.O.R.: Adiabatic quantum com-
putation is equivalent to standard quantum computation. ArXiv e-prints
(May 2004), https://arxiv.org/abs/quant-ph/0405098

11. IBM: IBM Q Experience. https://quantumexperience.ng.bluemix.net/

qx

12. Warren, R.H.: Gates for adiabatic quantum computing. ArXiv e-prints (Aug
2014), https://arxiv.org/abs/1405.2354

16 M. Regan et al.

5 Appendix: Sample Qiskit Program

The sample Qiskit program below defines the 1-qubit adder circuit described
in Section 3.1. Note that the imports have been modified to indicate the use
of the gate-circuit-to-annealer embedding translator (i.e., ’converter.qiskit’

replaces ’qiskit’). This is the only modification that is required to run a Qiskit
program with our translator code.

from converter.qiskit import QuantumRegister, ClassicalRegister

from converter.qiskit import QuantumCircuit, execute

Input Registers: a = qi[0]; b = qi[1]; ci = qi[2]

qi = QuantumRegister(3)

ci = ClassicalRegister(3)

Output Registers: s = qo[0]; co = qo[1]

qo = QuantumRegister(2)

co = ClassicalRegister(2)

circuit = QuantumCircuit(qi,qo,ci,co)

Define adder circuit

for idx in range(3):

circuit.ccx(qi[idx], qi[(idx+1)%3], qo[1])

for idx in range(3):

circuit.cx(qi[idx], qo[0])

circuit.measure(qo, co)

Run

execute(circuit)

In this program, the QuantumRegister and ClassicalRegister classes are
identical to those used by a regular Qiskit program. The initialization of the
QuantumCircuit object following the register initializations is identical to that
of a regular Qiskit program except that an instance of the AnnealerGraph class
is initialized within it as an attribute.

The Toffoli and C-NOT gate methods (ccx and cx, respectively) build the
qubitbiases and couplerstrengths dictionaries that define the embedding and
are used as arguments to the D-Wave Ocean compilation method called in the
execute method. Truncated versions of the qubitbiases and couplerstrengths

dictionaries constructed by the Qiskit program above are shown below. The keys
of these dictionaries indicate a given qubit or coupler between qubits, and the
entries indicate the bias of the qubit or strength of the coupler.

qubitbiases = {397: 5, couplerstrengths = {(393, 397): -10,

393: 10, (394, 398): -10,

Title Suppressed Due to Excessive Length 17

398: 5, (392, 399): -13,

394: 10, (395, 396): -9,

396: 9, (395, 397): -4,

399: 8, (395, 398): -5,

392: 13, (395, 399): 9,

395: 9, (392, 396): -7,

... ...

293: 10, (168, 172): -14,

301: 10, (168, 175): -4,

299: 10, (169, 172): -4,

171: 11, (168, 173): 4,

175: 6, (171, 175): -11,

173: 1, (171, 173): -2,

168: 9, (169, 175): 2,

172: 9} (169, 173): -2}

The measure method is used as an indication that a given qubit register is
considered a circuit output, which aids in organizing the results. The execute

method makes final modifications to the embedding definition given by the
qubitbiases and couplerstrengths dictionaries, runs the embedding on D-
Wave 2000Q hardware and reports the result. When the execute method is
called, the user is prompted to answer whether or not initial values of qubits
should be constrained to zero. Qubits are identified using Qiskit’s naming scheme
in the program and by the order with which they appeared in the initialization
of the QuantumCircuit. In the case of the 1-qubit adder above, the user would
like for the initial state of the sum and carry-out qubits be constrained to zero,
and so responds to the prompts from execute as follows:

Constrain input of measured qubit q1_0 to be 0 (y/n)? y

Constrain input of measured qubit q1_1 to be 0 (y/n)? y

Constrain input of unmeasured qubit q0_0 to be 0 (y/n)? n

Constrain input of unmeasured qubit q0_1 to be 0 (y/n)? n

Constrain input of unmeasured qubit q0_2 to be 0 (y/n)? n

The initial state of a qubit is constrained to zero by adding a positive offset
to the bias of the first physical annealer qubit associated with it.

Next, the user is prompted to specify the number of anneals that they would
like to run. For the 1-qubit adder, 400 has been shown to sufficient. After this,
the embedding is constructed using the D-Wave BinaryQuadraticModel method
and annealed via the sample method

bqm = dimod.BinaryQuadraticModel(qb, cs, 0, dimod.BINARY)

response = sampler.sample(bqm, **kwargs)

where qb and cs are copies of the qubitbiases and couplerstrengths dictio-
naries, respectively, and kwargs contains annealing parameters.

18 M. Regan et al.

The results of annealing the embedding generated by the Qiskit program
are then reported. The results of the embedding generated by the 1-qubit adder
program above are shown below:

[0, 0, 0, 0, 0]

[0, 0, 1, 1, 0]

[0, 1, 0, 1, 0]

[0, 1, 1, 0, 1]

[1, 0, 0, 1, 0]

[1, 0, 1, 0, 1]

[1, 1, 0, 0, 1]

[1, 1, 1, 1, 1]

Results are presented with inputs on the left and outputs on the right, in the
order that they were listed when QuantumCircuit was initialized. The columns
of the results then, from left to right, correspond to qubits a, b, ci, s, and co.
Note that if the initial state of an output is not constrained to zero by the user,
its initial state is reported as an input.

