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Abstract (101 words)

The human face conveys a wealth of information, including traits, states, and intentions. Just as 

fundamentally, the face also signals the humanity of a person. In the current research we report 

two experiments providing evidence that disruptions of configural face encoding affect the 

temporal dynamics of categorization during attempts to distinguish human from non-human 

faces. Specifically, the present experiments utilize mouse-tracking and find that face inversion 

elicits confusion amongst human and non-human categories early in the processing of human 

faces. This work affords the first examination of how facial inversion affects the dynamic 

processes underlying categorization of human and non-human faces.
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The Temporal Dynamics of the Link between Configural Face Processing and Humanness

The human face broadcasts a wealth of socially important information, including static 

properties like race, sex, and personality characteristics (e.g., Carre, McCormick, & Mondloch 

2009; Cloutier, Mason, & Macrae, 2005), as well as situational information like behavioral 

intentions and emotional states (e.g., Parkinson, 2005; Wilson & Hugenberg, 2013). Successfully 

extracting this information relies largely on configural face processing, a feature integration 

process that entails encoding the spatial relations between face parts, rather than the face parts in 

isolation (e.g., Maurer, LeGrande, & Mondloch, 2002). Evidence for this comes from 

manipulations that interfere with configural encoding. The best known of these is face inversion 

(Valentine, 1988; Yin, 1969), a technique which disrupts the canonical eyes-above-nose-above-

mouth configuration while leaving the face parts themselves intact. Inverting faces impairs 

identity recognition (Rhodes, Brake, Taylor, & Tan, 1989), emotion decoding (McKelvey, 1995; 

Young & Hugenberg, 2010), and trait inferences (Wilson, Young, Rule, & Hugenberg, 2018). 

Notably, this feature integration process is typically reserved for faces; non-face stimuli 

are instead processed in a more piecemeal, feature-based manner (McKone & Robbins, 2011; 

Morton & Johnson, 1991). As a result, inversion effects are much more pronounced for faces 

than other classes of stimuli (e.g., Yin, 1969). This domain specificity raises the interesting 

possibility that encoding the configuration of face parts conveys information beyond identity and 

emotional states. Indeed, the experience of processing a face configurally may be a bottom-up 

signal that we are interacting with another person who possesses fundamental capacities to think, 

feel, and act in human ways (see Deska & Hugenberg, 2017; Fincher, Tetlock, & Morris, 2017 

for recent reviews). If true, interfering with configural face encoding should lead to diminished 
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capacity to recognize that faces belong to fellow humans, rather than objects or non-human 

animals. 

Recent research supports this possibility. In an initial demonstration of this configural-to-

humanness link, Hugenberg and colleagues (2016) showed that face inversion disrupts the 

processing of others’ humanness early in the perceptual stream.  For example, in their first study, 

inverted faces failed to spontaneously activate human-related concepts (e.g., soul), but had no 

effect on concepts relevant to machines (e.g., computer). Similarly (and important for the present 

research), disrupting configural face processing also delayed perceivers’ ability to categorize 

human faces as human, but face inversion had no influence on perceivers’ speed at categorizing 

chimpanzee faces as animals (presumably because configural information is not used to make 

animal categorizations).  

Interestingly, initial evidence suggests that the configural-to-humanness link occurs for 

both racial outgroup and racial ingroup faces (Cassidy et al., 2017; Wilson, et al., 2018). 

However, this preliminary research did not employ a diverse sample of participants. Indeed, the 

question of how well past inversion-dehumanization effects generalize across perceiver and 

target race is important, especially considering evidence that configural processing occurs more 

strongly for same-race (Michel et al., 2006; Rhodes et al., 1989) and ingroup targets (Hugenberg 

& Corneille, 2009). 

Just as disrupting configural processing appears to disrupt a bottom-up signal of 

humanness, believing a target to be inhuman may influence perceivers’ use of face-typical 

configural processing.  For example, Fincher and Tetlock (2016) had participants learn about a 

series of individual faces, some of whom committed egregious, non-normative acts (e.g., rape), 

and others that behaved demonstrated laudablablye behavior (e.g., charitable donations).  Fincher 
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and Tetlock then employed measures of configural processing to demonstrate that the faces of 

inhumane actors are perceptually processed less like faces and more like objects. Importantly, 

this object-typical processing also has implications for punishing wrongdoers -- perceivers find it 

easier to punish perpetrators who they do not process configurally.

Whereas past research has reliably linked configural face processing with judgments of 

others’ humanness, no research has yet investigated the temporal dynamics of this configural-to-

humanness link.  Across two experiments using mouse-tracking as a measure of dehumanization, 

we pursue just this question. Integrating Freeman and Ambady’s (2011) Dynamic Interactive 

Theory of person construal with recent evidence suggesting that configural processing affects 

categorization, we investigated the extent to which face inversion fails to activate “humanness” 

when perceiving human faces, leading to difficulty in making early categorizations of human 

faces as human (as compared to categorizing the humanness of robot or chimpanzee faces). 

The Temporal Dynamics of Categorization

Categorizing people into discrete social groups has long been considered an effortless, 

efficient, and even obligatory process (see Kawakami, Amodio, & Hugenberg, 2017). Formative 

work in the social cognitive and social neuroscience literatures provides evidence that category 

cues are extracted from faces quickly, allowing for rapid categorization along visually salient 

dimensions like sex and race (e.g., Clouthier, et al., 2005; Ito & Urland, 2003). Recently, 

Dynamic Interactive Theory (DIT; Freeman & Ambady, 2011) has emphasized the ongoing 

integration of bottom-up perceptual information with top-down factors that ultimately produce 

categorical construals of people. 

This theory stipulates that the earliest stages of processing rely on relatively coarse, 

imprecise information that may lead to multiple possible categorizations, before settling over 
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time into a stable, often unitary categorization. Consider the case of determining whether a novel 

face is female or male, a rapidly generated categorical distinction that often dominates person 

construal (Quinn & Macrae, 2005). Upon first encountering the face, various bottom-up cues 

(e.g., hair length, width-to-height ratio) interact with top down cues (e.g., perceiver stereotypes) 

and may activate both the female and male category. As processing proceeds over time, these 

competing categories are resolved as more finely grained cues provide additional information 

(e.g., hair length, jaw prominence). Collectively, the continuous and interactive integration of 

this information allows a final category decision to be made (see Freeman & Ambady, 2014).  

Notably, the categorization process can be measured in real-time, using a methodological 

development that accompanied the growth of DIT -- mouse-tracking (Freeman, Dale, & Farmer, 

2011; Freeman & Ambady, 2010). This processing-tracing methodology tasks participants with 

using a computer mouse to categorize stimuli into discrete categories and measures behavior in a 

continuous manner as the mouse is moved across the computer screen toward one or another 

categorization decision (see Freeman, 2018 for an overview). One particularly valuable insight 

offered via mouse-tracking is examining category competition as the categorization decision 

unfolds (Hehman, Stolier, & Freeman, 2015). For example, mouse trajectories while categorizing 

a masculine female face as female (i.e., correct) or male (i.e., incorrect) show an early “pull” 

toward the male category option that is subsequently corrected, reflecting the confusion or co-

activation of the “female” and “male” categories in early stages of categorization, before the 

percept fully resolves as female (e.g., Freeman, Ambady, Rule, & Johnson, 2008). Using this 

method allows researchers to examine decision dynamics during the categorization process, 

providing novel insight beyond reaction time data. 

The Current Experiments
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The current research adopted mouse-tracking techniques in an attempt to elucidate the 

temporal dynamics of the face inversion-dehumanization process. More specifically, in the 

present work we investigate how upright versus inverted human faces, as compared to upright 

and inverted animal and robot faces, differentially elicit activation of humanness over time in 

categorization tasks.  Whereas extensive past research has focused on categorization under 

conditions of early category uncertainty (i.e., race or sex ambiguous targets), the present research 

attempts to extend DIT to cases of dehumanization.  Of specific interest in the present work is 

how these dynamic processes unfold when discriminating human from non-human stimuli, 

including animals and machines, in order to test for evidence of both animalistic and mechanistic 

dehumanization (see Haslam, 2006; Haslam & Loughnan, 2014). To elaborate, withholding 

humanity can manifest as mechanistic dehumanization (i.e., attributed robotic characteristics, but 

seen as lacking in human warmth; e.g., Bain, Park, Kwok, & Haslam, 2009), or animalistic 

dehumanizationed (i.e., attributed animalistic characteristics, but seen as lacking in human 

sophistication; e.g., Goff, Eberhardt, Williams, & Jackson, 2008). Thus, in the current work we 

employ robot and chimpanzee faces as comparison stimuli to demonstrate early perceptual 

dehumanization along both dimensions. 

By employing mouse-tracking we can understand how the activation of dehumanizing 

concepts (i.e., likening people to machines or animals) occurs early in the category activation 

stream. Specifically, we hypothesize that configural face processing of upright faces will provide 

a strong bottom-up cue of humanness, even for these commonly dehumanized groups, allowing 

perceivers to easily distinguish between human and non-human stimuli.  Put simply, upright 

faces will be easily distinguished from robots and animals, despite the perceptual similarities of 

these stimuli (i.e., shared configural properties).  However, because inversion disrupts the 
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bottom-up signal of humanness, this should lead to category confusion between human and robot 

categories or human and animal categories, depending on the relevant comparison stimuli 

employed in a given experiment. Put simplyOverall, when perceivers lack the signal of 

humanness conveyed by configural processing of human faces, the category “human” should 

become more difficult to resolve early in the processing stream.

Past research has found that mechanistic dehumanization is most common for Asians, 

(e.g., Bain et al., 2009), whereas animalistic dehumanization is often directed toward African 

Americans (e.g., Goff et al., 2008). Based on this empirical precedent, we presently test for early 

categorization using the most relevant non-human comparisons. However, past evidence also 

shows that inversion impairs discriminating White human faces from chimpanzee faces 

(Hugenberg et al., 2016; Experiment 2), indicating that stereotype consistency is not necessary 

for inversion to disrupt signals of humanness. Notably, this was true even though the human and 

non-human faces varied in coloration (e.g., darkly colored chimpanzee faces and pale human 

faces).

Finally, we hypothesize that these inversion effects on categorization should be 

observable most strongly early in the perceptual stream. That is, the absence of the configural 

signal will not ultimately make it impossible for perceivers to distinguish a human’s face from a 

robot or from an animal. Instead, absence of the signal of humanness signal should be observable 

early in the perceptual stream as initial category confusion, and overcome later as additional 

information (e.g., knobs in place of eyes) informs the ultimate categorical decision. 

To investigate these hypotheses, in Experiment 1, we ask participants to categorize a 

series of upright and inverted Asian and robot faces. .  Experiment 2 offers a pre-registered 

conceptual replication investigating the confusion of “human” and “animal” categories using 
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Black targets. (e.g., Apel, 2009; Costello & Hodson, 2010; Goff, et al., 2008). Collectively, these 

experiments allow us to investigate how the lack of a humanness signal from inverted faces may 

affect categorizations between “human” and both animalistic and mechanistic categories. We 

report all measures, manipulations, and exclusions in these studies. 

Experiment 1

In Experiment 1, participants categorized a series of upright and inverted East Asian male 

and human-like robot faces as either “human” or “robot.” Employing a mouse-tracking 

methodology, of interest was whether inverted faces led to stronger category confusion inn 

human and non-human categories in early processing. Here, we predicted that inversion would 

lead to dehumanization of human faces, seen in mouse trajectories pulling toward the “robot” 

category more strongly than in upright stimuli. 

Method

Participants. 61 participants (Mage = 22.78; 35 Female) completed the experiment in 

exchange for partial course credit. The sample was diverse (27 Asian, 14 White, 10 Latina/o, 5 

Black, 5 “other”). We targeted 60 participants, which would provide 94.9% power to detect an 

effect size of d = .35 (between a small and medium effect) according to a power analysis 

conducted in PANGEA that specified a fully crossed 2 x 2 repeated-measures design, setting 

both participants and stimuli as random factors (Judd, Westfall, & Kenny, 2016). 

Procedure. After providing informed consent, participants were verbally instructed that 

they were completing a brief computerized experiment on “face and object processing.” 

Participants were instructed onscreen that they would be shown faces of humans and robots and 

be asked to categorize them as quickly and accurately as possible as either “human” or “robot” 

by clicking on the appropriate category label using the computer mouse.
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The robot images were found via a google image search and then standardized, 

grayscaled, and cropped so that all images were the same size and front-facing1. To select the 

ideal faces for the current research, the set of 59 robot images was pre-tested on Mechanical 

Turk. Specifically, 60 participants viewed each face in a random order and rated how “human-

like” and “face-like” each robot appeared using 1 (not at all) to 7 (extremely) Likert-type scale. 

These two ratings were highly correlated (r = .875) so a single composite score of humanness 

was created. We then selected the 15 most human robot faces for use (M = 4.84, SD = .56) and 

created inverted version of each. To match the number of unique robot stimuli, we selected 15 

young adult Asian male targets (Minear & Park, 2004). Upright and inverted versions of each 

face were created and shown in grayscale. All faces were sized to 200 × 300 pixels.

Following standard mouse-tracking procedure, each trial began by using the mouse to 

press a “start” button located on the bottom-center of the screen. Clicking start cued the 

presentation of a randomly selected face which replaced the start button in the bottom-center of 

the screen. Category labels “Human” and “Robot” were presented in the top right and left 

corners of the screen, respectively, and were visible during the entire task. Participants moved 

the mouse from the bottom-center location to the appropriate label in the top corners of the 

monitor as quickly as possible. After each categorization was made the start button reappeared 

and participants returned the cursor to the starting position before initiating the next trial. In total, 

participants completed 60 trials (30 human, 30 robot, with 15 upright and 15 inverted faces in 

each category). To familiarize participants with the mouse-tracking procedure, eight practice 

trials were presented prior to the face categorization task. On these trials participants categorized 

fruits and vegetables. 

1 Stimuli are available upon request from the corresponding author
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Results 

Of interest was whether inverting human faces led to stronger category confusion for 

human and robot categories.  To investigate this, we first calculated Area under the Curve (AUC 

scores), measuring how much mouse trajectories deviated from an “ideal” straight line during 

each categorization decision. Prior to analyses, data were filtered to remove errors (0.22% of 

trials), trials with initialization times above 500ms (1.75% of remaining trials), and trials that 

were more than 3 SD from a participant’s average response (2.93% of remaining trials). Positive 

AUC scores indicate attraction to a competing category during processing (i.e., the mouse 

trajectory pulls toward the incorrect category before corrected midstream).  All analyses were 

conducted using R software (Version 3.4.0; R Development Core Team, 2017) and models were 

built using the lme4 package (Bates, Maechler, Bolker, & Walker, 2015). Model p- values were 

calculated using R’s lmerTest package (Kuznetsova, Brockhoff, & Christensen, 2017) which ran 

the models through the Satterthwaite approximation tests for the degrees of freedom estimations 

while the base R package confint was used to compute 95% profile confidence intervals for the 

fixed and random effects. 

Participants’ AUC values were submitted to a series of linear mixed effects that regressed 

AUC values on Face Type (human = .5, robot = -.5) and Orientation (upright = .5, inverted = -

.5). Random effects were specified in a series of models in a step-wise fashion to determine the 

best fit, with the ultimate aim of fitting a model that specified random factors for both 

participants and stimuli (see Judd, Westfall, & Kenny, 2012). Thus, this analysis first fitted a 

model with random intercepts for participants only, a model with random intercepts for both 

participants and stimuli, a model with random intercepts for participants and stimuli with a 

random slope for Orientation, and a model with random intercepts for participants and stimuli 
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with a random slope for Face Type. Of these models, the final was determined to provide the 

best fit for the data, χ²(3) = 211.33, p < .001, thus this was the model used for our main analyses. 

In this model, the random effects structure demonstrated that the random intercept for 

participants was significant (SD = .24, 95% CI [.20, .29]), as was the random slope for Face 

Type (SD = .33, 95% CI [.27, .40]). The random intercept for stimuli did not demonstrate 

significance (SD = .02, 95% CI [0, .05]), but because this did not result in an overfitted model 

this term was allowed to remain. This model revealed a nonsignificant effect of Face Type, b = -

.06, SE = .05, t(59.81) = -1.34, p =.19, 95% CI [-.07, .004], and a nonsignificant effect of 

Orientation, b = -.03, SE = .02, t(56.49) = -1.70, p = .10, 95% CI [-.15, .03]. There was a 

significant interaction between Face Type and Orientation, b = -.18, SE = .04, t(56.49) = -4.76, p 

< .001, 95% CI [-.25, -.11] (see Figure 1). As predicted, inverted human faces (M = .69, SD = 

1.03) had significantly higher AUC values than upright human faces, (M = .57, SD = .92), t(60) = 

4.18, p < .0001, d = .54, 95% CI [.17, .90], indicative of stronger category confusion between the 

categories human and robot for inverted (relative to upright) human faces. No significant 

differences were found for upright (M = .64, SD = .97) versus inverted robot faces (M = .69, SD 

= 1.02), t(60) = 1.67, p = .10, d = .21, 95% CI [-.57, .15], indicating no evidence of confusion in 

early category activation for non-human faces. 

Notably, erroneous responses  were uncommonoccurred on 0.2% of trials, indicating that 

category confusion effects emerge early in processing stages but are corrected in late-stage 

categorization decisions. 

Discussion

Experiment 1 finds evidence that disrupting configural processing of human faces can 

create human/non-human category confusion in early person construal. This supports earlier 
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research arguing that configural face processing triggers a bottom-up cue of humanness, which 

otherwise assists perceivers in making category distinctions earlier in the processing stream.  

However, even for robots selected to be especially face-like, configural processing in the absence 

of featural cues of humanness does not appear to influence animacy-related judgments (see also 

Deska, Almaraz, & Hugenberg, 2016).  Thus, it is not that any inverted face is difficult to 

discriminate between human and non-human, but rather that the absence of the humanness signal 

for inverted human faces disrupts early human/non-human distinctions for human faces.

Experiment 2

Whereas Experiment 1 investigated the dynamic time course of inversion-to-

dehumanization link for Asian faces, Experiment 2 is designed to extend these findings to Black 

faces. Although past research has replicated the tendency for inversion to affect overt 

dehumanizing judgments of Black targets (e.g., Cassidy et al., 2017), no research has yet 

investigated how this effect unfolds over time in early category activation. Additionally, 

Experiment 2 included animal faces as control stimuli. This provides an opportunity to test 

whether inversion leads to early stage category confusion of not only machine-like categories, 

but also animal-like categories.  Given that dehumanization can occur along orthogonal 

mechanistic and animalistic dimensions (e.g., Haslam & Loughan, 2014), it is theoretically 

important to test whether inversion-dehumanization effects generalize across both. Together, 

these modifications allow us to simultaneously examine the generalizability of the temporal 

dynamics of the configural-to-human link both in a new target group and with a quite distinct 

type of dehumanizing judgment. 

Thus, in Experiment 2, participants completed a mouse-tracking categorization task for 

upright and inverted Black and chimpanzee faces.  We expected to find that once again inverted 
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human faces would be dehumanized, as demonstrated by an early tendency for category 

confusions, indexed by AUC values recorded via mouse-tracking.  

Method

Participants. As in Experiment 1, we targeted at least 60 participants.  In actuality, 87 

participants (Mage = 23.8; 48 Female) completed the experiment in exchange for partial course 

credit. The sample was diverse (36 Asian, 19 White, 18 Black, 1 Latina/o, 2 “other”). No 

analyses were conducted until data collection was completed. 

Procedure. The procedure was identical to Experiment 1, except for the following 

modifications. First, the human faces used here were 20 Black males used in past research (e.g., 

Young, Bernstein, & Hugenberg, 2010). Second, the non-human stimuli were 20 chimpanzee 

faces were taken from Taubert, Qureshi, & Parr (2012; see also Young, Goldberg, Rydell, & 

Hugenberg, 2019).  All stimuli were presented in grayscale, and sized to 200 × 300 pixels. 

This experiment was preregistered on AsPredicted.org (#10194). All stimuli, procedures, 

exclusions, and data analyses are consistent with the pre-registration plan2

Results 

AUC values were calculated as in Experiment 1and were again regressed on Face 

Orientation (upright = .5, inverted = -.5), Face Type (human = .5, chimp = -.5), and their 

interaction in a linear mixed effects model. Prior to analyses, data were filtered to remove errors 

(0.32% of trials), trials with initialization times above 500ms (2.4% of remaining trials), and 

2 The pre-registration described analyzing the data using repeated-measures ANOVA rather than 
the linear mixed effects model reported here. We elected to report the mixed model results in the 
main text as a more rigorous analysis. The results are virtually identical with the ANOVA, 
including the Face Type × Orientation interaction, F (1,86)=10.02, p=.002. Pairwise comparisons 
reveal greater AUC values for inverted than upright human faces, t (86)=3.53, p=.001, but no 
such difference for chimp faces, t (86)=1.19, p=.266. 
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trials that were more than 3 SD from a participant’s average response (3.2% of remaining trials). 

As with Experiment 1, the random effects structure was determined in a step-wise fashion, which 

indicated that a model specifying random intercepts for both participants and stimuli with a 

random slope for Face Type provided the best fit, χ²(3) = 97.67, p < .001. This model revealed a 

nonsignificant effects for Orientation, b = -.02, SE = .02, t(73.94) = -.92, p = .36, and Face Type, 

b = -.04, SE = .03, t(78.41) = -1.26, p = .21, and the predicted significant Face Type × 

Orientation interaction, b = -.12, SE = .07, t(73.93) = -3.21, p = .002 (see Figure 2). Consistent 

with predictions, participants had higher AUC values when classifying inverted (M = .68, SD = 

1.08) versus upright (M = .56, SD = .91) human faces, t(86) = 3.53, p < .0001, d = .38, 95% CI 

[.07, .68]. No such differences were found for inverted (M = .66, SD = 1.03) versus upright 

chimpanzee faces (M = .69, SD = 1.04), t(86) = 1.12, p = .26, d = .12, 95% CI [ -.18, .49]. Errors 

occurred  rarelyon only 0.3% of trials, again indicating that the effects are due to early-stage 

category confusions that is resolved later in the categorization process. 

Discussion

Experiment 2 once again offers evidence for dehumanization in the early stages of 

processing when configural encoding of human faces is disrupted via inversion. Specifically, 

using Black faces, we found that categorization trajectories are relatively linear for upright faces 

but show attraction to the non-human category when inverted.  This suggests that inversion 

disrupts the signal of humanness typically afforded by configural processing.  However, as in 

Experiment 1, inversion effects were asymmetrical; they did not lead to the confusion of human 

and animal concepts for inverted animal faces.  Thus, it was not merely that inverted faces are 

difficult to discriminate, but that human faces specifically lacked sufficient signals of humanness 

to make easy early-stage categorization decisions.
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General Discussion

Human faces broadcast a wealth of information, including traits and states that facilitate 

interpersonal functioning (Wilson & Hugenberg, 2013). The capacity to extract this information 

relies largely on configural encoding, a feature integration process typically reserved for faces 

(Valentine, 1988; Yin, 1969). The current work adds to a growing body of research 

demonstrating that configural encoding is a fundamental perceptual signal of humanity, cueing 

perceivers that they are interacting with another person with the range of cognitive and 

experiential capacities typical of humans (Deska & Hugenberg, 2018; Fincher & Tetlock, 2016; 

Hugenberg et al., 2016). Consistent with these recent findings, we find that disrupting configural 

encoding of human (but not of non-human) faces elicits human/non-human category confusions 

early in person construal. 

Not only are these findings conceptually consistent with past research investigating the 

effects of configural processing on humanness judgments, but mouse-tracking affords novel 

advances over past research. Specifically, we see the tendency for initial categorization of 

inverted human faces to be systematically pulled toward a non-human categorization alternative 

(i.e., animals and robots, respectively). This movement toward the non-human category is clear 

evidence for dehumanization – inverted human faces lack sufficient signal of humanness to make 

early-stage categorizations. 

The use of both animal and robot comparisons extends past research as well. In broad 

strokes, prominent theories of dehumanization and mind perception suggest that orthogonal 

dimensions of cognitive sophistication and experiential depth distinguish humans from animals 

and machines (Haslam & Loughnan, 2014; see also Gray, Gray, & Wegner, 2007). As a 

consequence, dehumanization often unfolds along either mechanistic or animalistic lines. 
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Whereas past research has shown that inversion can influence categorization in human versus 

animal tasks where the human group (White males) are not stereotypically likened to animals, 

presently we find that inversion can implicate both mechanistic and animalistic dimensions of 

dehumanization, and that this occurs for targets from non-White social groups.  

Configural Encoding and Race

An additional noteworthy contribution of the present work is the inclusion of non-White 

targets, and a diverse sample of participants.  Whereas some past research has investigated target 

race as a potential factor in the configural-to-humanness link (Cassidy et al., 2017), no research 

has yet done so using a diverse sample of participants.  Collectively, the pattern of results for 

human faces are indistinguishable when Asian and Black faces are used. Although we do not 

directly test for participant race effects (we did not have adequate power to do so), we 

nevertheless detect robust effects of inversion on human categorizations despite participant-level 

variance in race. Notably, although interactions between stimulus and participant race have been 

observed for some inversion effects (Rhodes, et al., 1989), this does not appear to be the case for 

configural-to-humanness links.  For example, Wilson and colleagues (2018) show that inversion 

affects the extraction and ascription of facial trustworthiness in White and Black faces alike 

(with a primarily White sample). Interestingly, inversion has even been found to have a larger 

impact on other-race than same-race faces when judged on trustworthiness and perceived 

homogeneity (Cassidy et al., 2017), perhaps reflecting the tendency for already dehumanized 

groups (e.g., Asians, Blacks) to co-activate human and non-human categories in the absence of 

the otherwise humanizing signal provided by configural processing. 

The apparent generalizability of the configural-to-humanness link across target and 

participants race suggests that it is robust and not dependent on stereotype-consistency or 
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accessibility. However, beyond exhibiting the breadth of inversion effects on dehumanization, 

this cross-race generalizability has interesting implications for the larger configural encoding 

literature. For example, although some have documented links between configural processing 

and race or group membership (e.g., Rhodes et al., 1989), contrary evidence suggests that 

perceivers are capable of configurally processing upright other-race faces even in the absence of 

frequent contact or perceptual training (Cassidy, Boutsen, Humphreys, & Quinn, 2014; Civile, 

Colvin, Siddiqui, & Sukhvinder, in press; Weiss, Stahl, & Schweinberger, 2009; Zhao, Hayward, 

& Bulthoff, 2014). In a conceptually similar way, aspects of the current experimental context 

may have encouraged configural encoding across target races by manipulating the human versus 

non-human stimuli, rather than manipulating race within task (see Young, Hugenberg, Bernstein, 

& Sacco, 2009).  Holding race constant within each of the current experiments may have allowed 

for more face-specific, configural processing. Although the present work was not designed to 

specifically test whether the presence or absence of intergroup contexts influences 

dehumanization, future research may well benefit from doing so. 

Future Directions

Several other future direction remain as well. First, perhaps inducing situations that lead 

to dehumanization (e.g., intergroup competition, e.g., Fiske, 2013) will make intergroup 

distinctions, like race, more relevant. Under these circumstances, we may see that even upright 

outgroup faces are subject to dehumanization. Second, whereas past research has focused on how 

inversion disrupts the ascription of humanness to White targets (e.g., Fincher & Tetlock, 2016; 

Hugenberg et al., 2016), the present research focused on the  non-human categories for 

commonly dehumanized Asian and Black targets.  However, the current experiments do not 

compare the effects of inversion for majority group (White) and minority group (Asian, Black) 
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targets.  This was intentional, to ensure that the experimental context did not strongly trigger an 

intergroup context (see Young et al., 2009) and the comparison stimuli (robots and animals, 

respectively) were selected for their theoretical relevance for mechanistic and animalistic 

dehumanization. However, we do not believe the present findings are specific to these 

experimental conditions. Theoretically, inversion should mute the “humanness” signal normally 

conveyed by configural face processing, leading to dehumanization in broad and generalizable 

ways, such that a White face and chimp (or robot) categorization task would replicate the current 

results (e.g., Hugenberg et al., 2016 Experiment 2). 

Finally, a pressing question is how early-stage perceptual dehumanization relates to 

downstream outcomes. Although past work has linked disruptions of configural encoding to 

negative treatment (Fincher & Tetlock, 2016), it would nevertheless be interesting to know how 

early-stage processes captured via mouse-tracking relate to consequential social outcomes. 

Indeed, other research has reliably shown that early activation as indexed by mouse-tracking 

leads to impactful real-world behaviors (e.g., Hehman, Carpinella, Johnson, Leitner, & Freeman, 

2014). As such, downstream effects of dehumanization beyond those already known (Fincher & 

Tetlock, 2016) seem likely and await discovery. 

Conclusion

In two experiments, we extend the logic and findings of the Dynamic Interactive Theory 

(Freeman & Ambady, 2011) to the early perceptual cues that perceivers use in judging others’ 

humanity.  Specifically, the current research indicates that face inversion can undermine a 

critical cue to others’ humanity, causing human/non-human category confusion in early person 

construal.  These findings add to a growing literature on perceptual dehumanization and lend 

additional support to the view that configural face processing is a bottom-up visual signal of 
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humanness (e.g., Deska & Hugenberg, 2018; Fincher, et al., 2017). Further, we find this early 

human/non-human category confusion can occur in both mechanistic and animalistic ways (e.g., 

Haslam & Loughnan, 2014), extending past research as well. Finally, we also offer additional 

evidence that the inversion-dehumanization link generalizes across target and participant race 

(e.g. Cassidy et al., 2018; Wilson, et al., 2018). Collectively, the present work shows that 

dehumanization can have roots in perceptual and visual processing of faces, expanding the study 

of this pernicious effect and underscoring the social importance of understanding the how the 

early stages of the categorization process influence person construal. 
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Open Practices

Our preregistration plan can be accessed here: http://aspredicted.org/blind.php?x=kb4d6d.

Data accompanying these experiments are available via Mendeley. 

http://aspredicted.org/blind.php?x=kb4d6d
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Figure 1. Mean AUC values for inverted versus upright human and robot faces in Experiment 1. 

Error bars represent 95% CI for mean AUC values. *** indicated p < .001
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Figure 2. Mean AUC values for inverted versus upright human and chimp faces in Experiment 2. 

Error bars represent 95% CI for mean AUC values. *** indicated p < .001



Supplementary Material

Below are the results from supplementary analyses that examined common dependent 

variables produced by MouseTracker, including maximum deviation (MD), number of flips 

across the x-axis (x-flips), and log-transformed reaction times (RT). These analyses are based on 

the same final samples collected in the originally reported results and all exclusion criteria are 

identical to those reported in the main text.

Study 1

Maximum Deviation 

We first examined each participant’s MD value, defined as the most extreme point their 

mouse trajectory takes from the ideal straight-line trajectory. Participants’ MD scores were 

analyzed in a cross-classified linear mixed effects model specifying random factors for 

participants and stimuli and regressed Orientation (upright = .5, inverted = -.5) and Face Type 

(human = .5, robot = -.5) and their interaction on MD. Model fit was determined in a similar 

fashion as described in the main section, where a model specifying random intercepts for 

participants and stimuli with a random slope for Face Type provided the best fit to the data, χ²(3) 

= 282.31, p < .001. In this model, the random intercept for participants was significant (SD = .15, 

95% CI [.13, .19]), as was the random slope for Face Type (SD = .19, 95% CI [.16, .24]) and the 

random intercept for stimuli (SD = .02, 95% CI [.01, .04]). Results revealed a marginally 

significant main effect for Orientation, b = -.02, SE = .01, t(56.13) = -1.96, p = .055, 95% CI [-

.05, -.0001], and a nonsignificant main effect for Face Type (p = .36). There was a significant 

Orientation x Face Type interaction, b = -.09, SE = .02, t(56.13) = -3.79, p < .001, 95% CI [-.13, 

-.04] (see Figure S1). To examine this interaction, we split the data based on Orientation and 

then built additional linear mixed effects models regressing MD on Face Type. Model 

comparison analyses revealed that, compared to only a model with a random intercept with 



participants, a model specifying a random intercept for participants with a random slope for Face 

Type provided the best fit for the data, χ²(2) = 149.5, p < .001. Significance tests revealed that 

the random intercept for participants was significant, SD = .16, 95% CI [.13, .19], as was the 

random slope, SD = .22, 95% CI [.17, .27]. Results revealed that for upright targets, participants 

tended to have a significantly lower MD value for human versus robot faces, b = -.07, SE = .03, 

t(59.75) = -2.27, p = .03, 95% CI [-.13, -.009]. The model for inverted targets revealed no 

significant differences for human versus robot faces.

X-flips

X-flips, defined as the number of reversals participants have along the x-axis, is another 

common MouseTracker measure often used as a measure of preference reversal. We determined 

the appropriate random effects structure using the same procedure as described in the MD 

analyses. Of all models, the only model that was not overfit to the data was the model including a 

random intercept for participants. The random effects structure indicated that participants did 

account for a significant proportion of variance, SD = 1.15, 95% CI [.96, 1.39]. This model 

revealed nonsignificant main effects for Orientation and Face Type (ps < .41). There was a 

significant Orientation x Face Type interaction, b = -.28, SE = .13, t(7067.14) = -2.21, p = .03 , 

95% CI [-.53, -.03] (see Figure S2). Examining this interaction by Orientation revealed only a 

marginal effect of Face Type for upright targets, b = -.19, SE = .11, t(60.53) = -1.80, p = .08, 

95% CI [-.41, .02]. No effect was found for inverted targets.

Reaction Time

Our next analyses considered participants’ log-transformed RT values as a metric of how 

quickly they arrived at their final categorization. Participants’ log-transformed RTs were 

examined using the same cross-classified linear mixed effects model, where model comparison 



tests revealed that a model specifying random intercepts for participants and stimuli and a 

random slope for Face Type provided the best fit compared to models with simpler random 

effects specifications, χ²(2) = 44.81, p < .001. The random intercept for participants was 

significant, SD = .17, 95% CI [.15, .21], as was the random slope for Face Type, SD = .04, 95% 

CI [.03, .06], and the random intercept for stimuli, SD = .02, 95% CI [.02, .03]. Here, we found 

only a marginal main effect of Orientation, b = -.01, SE = .01, t(56.25) = -1.90, p = .06, 95% CI 

[-.03, .0003]. 

Study 2

Maximum Deviation 

As with study 1, we first examined participants’ MD scores by regressing these values on 

Orientation (upright = .5, inverted = -.5) and Face Type (human = .5, chimp = -.5) and their 

interaction using a linear mixed effects model. Model comparison tests revealed that a model 

specifying random intercepts for participants and stimuli and a random slope for Face Type 

provided the best fit over models with simpler random effects structures, χ²(3) = 141.42, p < 

.001. Significance tests for the random effects structure revealed that the random intercept for 

participants was significant, SD = .15, 95% CI [.13, .18], as was the random slope for Face Type, 

SD = .16, 95% CI [.13, .20]. The random intercept for stimuli was not significant, SD = .01, 95% 

CI [.00, .03], though because the model including this was not overfit, it was left in. Results from 

the model revealed nonsignificant main effects for both Orientation and Face Type (p = .14, p = 

.62, respectively). The Orientation x Face Type interaction was significant, b = -.07, SE  = .02, 

t(73.30) = -3.40, p = .001, 95% CI [-.11, -.03] (see Figure S4). Breaking this interaction down by 

Orientation revealed that a model specifying a random intercept for participants with a random 

slope for Face Type provided the best fit, χ²(2) = 55.76, p < .001. Results revealed that for 

upright targets, human faces had significantly lower MD scores compared to chimp faces, b = -



.04, SE = .02, t(84.95) = -2.00, p = .049, 95% CI [-.09, -.001]. No effect was found for chimp 

faces.

X-flips

We next examined participants’ x-flips using the same model specified above. Model fit 

tests revealed that a model specifying random intercepts for participants and stimuli with a 

random slope for Face Type significantly improved fit over simpler models, χ²(0) = 3.28, p < 

.001. In this model, the random intercept for participants was significant, SD = 1.24, 95% CI 

[1.05, 1.45], as was the random slope for Face Type, SD = .32, 95% CI [.002, .53]. The random 

intercept for stimuli was not significant, SD = .19, 95% CI [.00, .28], but because the model was 

not overfit it was left in. Here we found only a marginally significant main effect of Face Type, b 

= -.16, SE = .09, t(59.48) = -1.83, p = .07, 95% CI [-.33, .01], indicating that participants had 

significantly fewer x-flips for human targets than for chimp targets (see Figure S5). The model 

revealed a nonsignificant main effect for Orientation and a nonsignificant interaction (p = .40, p 

= .13). 

Reaction Time

We constructed the same model used in the previous analyses on log-transformed RTs. 

Our analyses revealed that a model specifying random intercepts for participants and stimuli with 

a random slope for Face Type significantly improved fit over simpler models, χ²(3) = 57.84, p < 

.001. In this model, the random intercept for participants was significant, SD = .20, 95% CI [.17, 

.23], as was the random slope for Face Type, SD = .04, 95% CI [.03, .06], and the random 

intercept for stimuli: SD = .02, 95% CI [.01, .03]. Here, only the main effect of Orientation was 

significant, b = -.03, SE = .01, t(73.60) = -4.14, p < .001, 95% CI [-.04, -.02], such that 

participants were faster at categorizing upright versus inverted targets (see Figure S6). Neither 

the main effect of Face Type nor the interaction were significant (p = .65, p = .10, respectively).



Supplementary Appendix

Figure S1. Interaction plot for maximum deviation (MD) analysis for Study 1. 



Figure S2. Interaction plot for the x-flips analysis for Study 1.



Figure S3. Interaction plot for the log-transformed reaction time (RT) analysis for Study 1.



Figure S4. Interaction plot for maximum deviation (MD) analysis for Study 2. 



Figure S5. Interaction plot for x-flips analysis for Study 2.



Figure S6. Interaction plot for the log-transformed reaction time (RT) analysis for Study 2.


