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Abstract

This paper presents an analysis of noninterference speci-
fications used in a range of formally verified systems. The
main findings are that these systems use distinct specifi-
cations and that they often employ small variations, both
complicating their security implications. We categorize
these specifications and discuss their trade-offs for rea-
soning about information flows in systems.

1 Introduction

Noninterference is a family of security properties that
constrain information flows in a system [16]. It was orig-
inally proposed by Goguen and Meseguer [10]; many
extensions [8, 37] have since been introduced. The basic
idea is to ensure that the execution of users with low se-
curity levels is independent of the execution of users with
high security levels; this restriction prevents, for example,
an adversary from inferring secrets from legitimate users
or influencing their decisions.

Noninterference provides a general approach for pre-
venting subtle bugs that can violate information-flow poli-
cies. Itis used to formally specify and verify confidential-
ity and integrity properties of a wide variety of systems,
from OS kernels and storage systems to applications. This
paper examines noninterference specifications used in
such verified systems (Figure 1). We focus on system im-
plementations that satisfy noninterference. Readers may
refer to studies by van der Meyden and Zhang [37] and by
Sabelfeld and Myers [29] for noninterference in abstract
models and programming languages, respectively.

A verified system is guaranteed, through formal proof,
to adhere to its noninterference specification. The proof
that the implementation satisfies the specification is me-
chanically checked by a theorem prover (such as Is-
abelle/HOL [24], Coq [34], Dafny [17], or Z3 [6]). The
implementation may be written in C and assembly, or
extracted from a higher-level language that is designed
for verification. The verification process rules out flaws
in the design and implementation that would cause the
system to violate the specification. Understanding the
guarantees these systems provide thus boils down to un-
derstanding their specifications.

This paper makes two main contributions. First, we
observe that verified systems often introduce their own
notion of noninterference, complicating understanding

of their guarantees [23: §6.5]. We identify four distinct
categories of specifications under the umbrella name
of “noninterference.” These specifications differ in
their origins, verification conditions, and the types of
bugs they prevent. We hope our catalog can serve as
a common vocabulary for distilling and contrasting
noninterference specifications.

Second, using this catalog, we conduct a systematic
analysis of specifications of the systems listed in Fig-
ure 1. For instance, our analysis shows that the specifi-
cations of the Komodo monitor [9] and the SFSCQ file
system [14] deviate from the original noninterference
definition (rendered in monospace in this paper to avoid
ambiguity) and are closer to a variant called nonleakage
used in the seL.4 kernel [20].

We also find that verified systems often employ small
variations of noninterference, creating more flavors of
specifications. We hope that this paper helps researchers
and practitioners determine which specifications are suit-
able for their systems, and motivates more research on
verification practice using noninterference.

2 Motivation

This section illustrates common types of security poli-
cies that can be expressed using noninterference. As a
representative example, consider a system consisting of a
set of mutually distrustful processes. We will show how
noninterference restricts the ways in which information
can flow in the system. All the systems analyzed in this
paper are single-threaded. Extending noninterference to
verify concurrent systems is challenging [21, 32, 35], and
it is a promising direction for future work.

Strict isolation. A strict form of isolation simply forbids
information flows across security domains. For exam-
ple, the system may statically partition resources (e.g.,
memory) among processes and disallow any inter-process
communication. The system behaves as if each process
were running on a physically isolated machine.

Using noninterference, one may specify that the exe-
cution of a process is independent of that of any other
process. This specification precludes a process from ac-
cidentally leaking the content of its memory to another
process. It also rules out, for instance, a system call us-
ing a shared memory allocator among processes; such a
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Block Access Controller [11] Isabelle/HOL Isabelle/HOL C noninterference O O -

PROSPER kernel [5, 30] Isabelle/HOL assembly - noninterference O O -

Reflex browser kernel [25,33]  Coq Coq OCaml noninterference O O -

NiStar kernel [31] 73 & Coq C & assembly - noninterference e o -

seL4 kernel [15, 20] Isabelle/HOL C & assembly - nonleakage [ ] [ ] [ ]

Ironclad Apps [13] Dafny & SymDiff — Dafny assembly nonleakage O O O

CertiKOS kernel [3, 4] Coq C & assembly - OC+SC O O O

SFSCQ file system [14] Coq Coq Haskell OC+SC O O O

Komodo monitor [9] Dafny Vale assembly OC+SC O O (]

CertiKOS?® kernel [23] 73 C & assembly - OC+WSC+LR [ ) [ ) [ )

Komodo® monitor [23] 73 C & assembly - OC+WSC+LR [ ) [ ) [ )

Figure 1: Characterization of systems surveyed and their specifications: @ provides property; O does not provide property; — not applicable.

system call would enable a process to infer the memory
usage of other processes [16], violating the specification.

High-low policy. Strict isolation can be too strong be-
cause it prohibits sharing. To enable sharing in specific
ways, one may introduce a hierarchy among security do-
mains [7]. For example, the system may consider some
processes high as they are owned by a root user, and some
low as they are owned by ordinary users. The system per-
mits high processes to receive data from low processes,
but forbids flows in the opposite direction. Using nonin-
terference, one can specify that the execution of a low pro-
cess is independent from that of any high process, which
precludes high processes leaking information to low ones.

Downgrading. Many practical systems require informa-
tion flows in both directions: not only from low to high,
but also from high to low in a controlled manner. For ex-
ample, a sudo process, which is considered high and has
access to user passwords, needs to disclose to a low pro-
cess the result of running the command. Another example
is that a root user may invoke chown to change the owner-
ship of a file in order to share it with an ordinary user.
This type of controlled declassification is an example
of downgrading [18]. Using noninterference, one can
specify that the execution of a low process is independent
of that of any high process except through designated
downgrading operations (e.g., declassifiers).

Fine-grained sharing. A system may wish to impose
fine-grained policies. For example, the system may for-
bid processes from directly accessing the content of each
other’s memory, but consider associated metadata (e.g.,
how much memory each process consumes) public. An-
other example is SGX-like enclave systems [2], where
an untrusted OS performs memory management for en-
claves but cannot access their contents. For such systems,
one can use noninterference to specify that the execution
of a process is independent of a specific subset of other

(a) strict isolation (b) high-low (c) assured pipeline

Figure 2: Examples of policies. Nodes and arrows denote domains and
permitted flows, respectively.

processes’ state such as memory contents, while still al-
lowing for influence by their metadata.

3 Specifications of noninterference

This section describes common approaches to specifying
noninterference. We first review two trace-based speci-
fications, noninterference and nonleakage, followed by
unwinding specifications that examine individual actions,
and a summary of variations of these specifications.

Systems. We model a system as a state machine, which
transitions from state to state in response to an action (e.g.,
a system call or external input). Formally, a system is rep-
resented as a tuple (A, S, sp, step), consisting of a set of
actions A, a set of states S, an initial state sy, and a func-
tion step : Sx A — S that maps a state and an action to the
next state. A sequence of actions is called a trace. To rep-
resent the state produced by executing the trace tr starting
from the state s, we inductively define run: S x A* - S
by run(s, €) := sand run(s, aotr) = run(step(s, a), tr),
where € denotes the empty trace and aotr denotes the con-
catenation of the action a and trace tr. For simplicity, we
assume a deterministic system; readers may refer to Eg-
gert [8: §7.2] for extensions to nondeterministic systems.

Policies. A noninterference specification defines allowed
information flows using a policy. To reason about infor-
mation flows, we assume a set of domains D and a func-
tion dom : A — D that specifies the domain of each action.
A domain is an abstract notion representing the authority
of an action (e.g., a calling user). An information-flow
policy ~ € D x D describes how information is permitted



to flow among these domains; (u,v) € ~ and (u,v) ¢ ~
are denoted by u ~ v and u + v, respectively.

Figure 2 depicts three example policies: (a) a strict
isolation policy that forbids flows across domains; (b) a
high-low policy that permits flows from a low domain
L to a low domain H but not from H to L; and (c) an
assured pipeline policy that permits flows from H to L
only indirectly through a declassifier DC [1]. We say
that the first two policies are transitive, meaning u ~ v
and v ~ w together imply u ~ w; and that the last policy
is intransitive, as it permits H ~ D and D ~ L, but not
H ~ L. Intransitive policies are more general and can be
used to specify systems that support downgrading [28].

To describe the externally visible behavior of a sys-
tem, we assume a set of observations O and a function
observe : § x D — O that specifies the values a domain
can observe in a given state.! For example, given a system
consisting of multiple processes, O may be defined as the
subset of the system state each process can observe, such
as its own memory and return values from system calls.

3.1 Trace-based specifications

Goguen and Meseguer [10] proposed the original for-
mulation of noninterference, which was later gener-
alized by Haigh and Young [12] and by Rushby [28].
Informally, noninterference says that if two traces are
indistinguishable from the perspective of a domain u
(because they differ only in actions that u is forbidden
from seeing), then executing those traces should pro-
duce final states that are also indistinguishable to u, i.e.,
observe(s,u) = observe(t,u). We call this formula-
tion trace-based because it is expressed in terms of the
allowed behavior of traces in the system.

Following Rushby [28], we formalize noninterference
in terms of two auxiliary functions, sources : A* x D —
P(D) and purge : A* x D - A*. The function
sources(tr, u) computes the set of domains that are per-
mitted to transfer information to a domain u while ex-
ecuting a trace fr, either directly (i.e., dom(a)~ u) or
indirectly (i.e., #r contains actions aj...a, such that
dom(a) ~ dom(ay) ~ ...~ dom(ay) ~ w):

sources(€,u) = {u}

sources(tr, u) U {dom(a) }

sources(aotr,u) : if v € sources(tr,u). dom(a) ~ v

sources(tr, u) otherwise.

The function purge(tr, u) filters the trace tr to keep
only those actions that are permitted to transfer informa-
tion to the domain u:

1Equivalently, one may use the function output : S x A — O [37].

purge(€,u) =€

a o purge(tr, u)

purge(aotr,u): if dom(a) € sources(a o tr,u)

purge(tr, u) otherwise.

To satisfy noninterference, for any trace tr and domain
u, executing purge(tr, u) and executing 7r should produce
states indistinguishable to the domain u.

Definition 1 (noninterference). A system with an ini-
tial state sy satisfies noninterference for a policy ~
iff the following holds for any domain u and trace tr:

observe(run(sg, purge(tr,u)), u) = observe(run(sy,tr), u).

Another trace-based specification is nonleakage [38],
originating from language-based security [29]. Unlike
noninterference, which uses two traces over the same
(initial) state, nonleakage uses the same trace over two
states. Informally, nonleakage says that if two states are
equivalent with respect to a trace and a domain, execut-
ing the same trace from the two states should result in
indistinguishable states with respect to that domain. The
definition of nonleakage therefore requires an additional
view-partitioning relation ~ € D x § x S that describes
which system states appear equivalent to a given domain.

. u . C
We write s ~ f to mean (u,s,t) € ~; we write s ~ t for
u .
C c D tomean s ~ t for every domain u € C.

Definition 2 (nonleakage). A system satisfies nonleakage
for a policy ~ and a view-partitioning relation ~ iff the
following holds for any trace tr, domain u, and states s, ¢:

sources(1r,u)
~

observe(run(s,r),u) = observe(run(t,tr),u).

At a high level, noninterference restricts how a do-
main can infer actions in other domains, while nonleakage
restricts which parts of system state a domain is allowed to
infer. Which specification to use depends on the intended
property for a given system. Recall the examples in §2. If
the system intends to prevent an adversary from being able
to infer what actions other processes have performed (e.g.,
whether they have allocated memory), noninterference
is a better fit. If the system aims to protect the data
of a process but not the metadata (e.g., the content of
its memory, but not the occurrence of memory alloca-
tion), nonleakage is more natural as one can specify fine-
grained sharing through the view-partitioning relation.

3.2 Unwinding-based specifications

The specifications of noninterference and nonleakage
reason about traces. Unwinding is a common proof strat-
egy for reducing such specifications to a set of conditions
that must hold for individual actions, obviating the need



OC (output consistency): equivalent states are indistinguishable.
s %t = observe(s,u) = observe(r, u).?
SC (step consistency): executing an action on two states preserves
equivalence for all domains.
s %t = step(s,a) ~ step(t,a).
WSC (weak step consistency): executing an action on two states
preserves equivalence for all domains if those states are equivalent

from the perspective of the action’s domain

RPN . step(s,a) ~ step(t, a).

SR (step respect): executing an action on two states preserves
equivalence for all domains that the domain of the action is not
permitted to flow to.

dom(a@) 4 As *~ t = step(s,a) ~ step(t,a).
LR (local respect): the states before and after the execution of an
action are equivalent to all domains that the domain of the action
is not permitted to flow to.

dom(a) »u = s ~ step(s, a).

Figure 3: Unwinding conditions. Each formulais universally quantified
over its free variables, such as domain u, action a, and states s and ¢.

to reason about entire traces. Unwinding conditions can
also be used as specifications in their own right. Figure 3
shows a list of unwinding conditions, which we briefly
describe below.

OC (output consistency) specifies that a domain has
the same observations given two equivalent states. This
prevents, for example, an adversarial process from being
able to infer secrets based on the return values of system
calls from an OS kernel, which it can observe.

SC (step consistency) specifies that an action preserves
state equivalence for a domain; for example, a domain’s
action does not leak information to part of the state ac-
cessible by the adversary. SC is usually too strong for
systems with downgrading [28: §3]; relaxed forms, such
as WSC (weak step consistency) and SR (step respect),
are weaker than SC and suitable for such systems.

LR (local respect) specifies that an action does not
affect a distrustful domain. For example, an action by the
adversary has no influence on the state of other domains.

One may combine these conditions to yield unwinding
specifications, as summarized in Figure 4. OC+SC and
OC+WSC+LR are often used as the specifications for sys-
tems with transitive and intransitive policies, respectively,
as §4 will show. OC+SC+LR and OC+WSC+SR, which
imply noninterference [28: §4] and nonleakage [38: §5],
respectively, are used as proof strategies rather than spec-
ifications in the analyzed systems.

Which unwinding specification to use boils down to
(1) choosing between SC and WSC, which depends on
whether the system’s policy is transitive or intransitive;
and (2) whether the system guarantees LR; for instance,
whether an adversary can infer the executions of actions
performed by other domains (or can influence other do-
mains through the execution of its actions). The lat-

m(a)

S d
2Another form is: s '~ t = output(s, a) = output(f, @) [37].

’ OC+SC+LR }=>[ OC+WSC+LR }=>[ noninterferencel

¥
= oc+wsc+sR =

Figure 4: Logical implications among noninterference specifications.

’ OC+SC nonleakage l

ter is similar to the discussion about choosing between
noninterference and nonleakage (§3.1).

In general, unwinding specifications are simpler and
easier to understand compared to trace-based specifica-
tions, as one can think about individual actions rather
than traces of actions. But there are some trade-offs.
First, unwinding specifications, like nonleakage, require
a view-partitioning relation ~, which can be non-trivial
to write and audit; noninterference does not require a
view-partitioning relation. Second, both CertiKOS and
Komodo use unwinding specifications with “big-step”
actions, where each action can contain an unbounded
number of system calls [23: §6]; such specifications blur
the line between traces and individual actions.

3.3 Variations

We note a few variations of the noninterference specifi-
cations used by the systems in Figure 1.

Transitivity. For systems without downgrading, a transi-
tive policy suffices. For systems that support downgrad-
ing, one may use a general, intransitive policy [28], which
specifies that information may flow from high to low only
indirectly through a downgrader.

State-dependent dom. OS kernels usually need to reason
about the security of the scheduler, for instance, to ensure
that scheduling decisions do not leak information [19].
In such cases, the domain of an action depends on which
process is currently running, but that information is part
of the system state rather than a static relationship. One
variation of the specifications is to augment the dom func-
tion to take a state as an additional parameter, Ax S — D,
and change the auxiliary functions sources and purge
accordingly [20, 31].

Merged observe. Recall that the observe function de-
scribes what a domain can observe in a state and
the view-partitioning relation ~ describes the sub-
set of two states that appear equivalent to a do-
main.  Sometimes it leads to a simpler specifica-
tion by letting observe return the “equivalent” subset
of the states, such that observe(s,u) = observe(f,u)
is simplified to s ~ t for any states s,¢ and do-
main u. In doing so, one can remove observe
from an unwinding specification, as OC trivially holds;
or from nonleakage, which reduces to the following:

tr,u
source;( 7, ) t = run(s’tr) Z I"Un(trtr)'



4 Analysis

This section presents an analysis of noninterference spec-
ifications used by the systems listed in Figure 1. Based on
the catalog from §3, we manually inspect and categorize
their specifications. For systems that introduce their own
notions of noninterference, we also attempt to interpret
the specifications using the catalog.

Category 1: noninterference. Asshown in Definition 1,
a noninterference specification is parameterized by a
policy. We briefly review examples below, from less to
more general policies.

The PROSPER kernel [5, 30] supports multiplexing
of two partitions on a single machine. The main theo-
rem is that the behavior of the system is equivalent to
that of an ideal system running two partitions on separate
machines [27]. As a sanity check on the main theorem,
given two partitions that do not communicate, it proves
noninterference with strict isolation. This rules out in-
formation flows through memory or scheduling.

The Reflex browser kernel [25, 33] mediates access to
system resources and messages among tabs and cookie
processes; the rest of the browser is built on top of (un-
trusted) WebKit. It proves noninterference for a high-
low policy. This policy rules out, for instance, commu-
nication between either two tabs or a tab and a cookie
process of different website domains.

Similarly, the Block Access Controller [11] is a file-
server component that mediates between user requests
and disks. Both user requests and disk data are as-
signed different levels of labels. The system proves
noninterference with a policy that permits flows from
low to high labels only; this precludes a low-level user
request from accessing high-level data.

Systems with rich, controlled sharing may use gen-
eral, intransitive policies to support downgrading. One
example is the NiStar kernel [31], which enforces decen-
tralized information flow control [22] through a small set
of object types, such as threads and pages. NiStar asso-
ciates each object in the system with a triple of (secrecy,
integrity, ownership) labels, where each label is a set
of tags (opaque integers), and exposes a set of system
calls to check and manipulate such labels. The policy for
two such triples L; = (S;,11,01) to Ly = (Sy,1,0;) is
an extension of a classical lattice-based one [7]: infor-
mation can flow from an object with L; to another with
L iff (§1-01S8U0:) A (-0, <1 UOy). NiStar
proves noninterference for this policy, by showing that
the OC+WSC+LR unwinding conditions hold.

Category 2: nonleakage. As shown in Definition 2,
a nonleakage specification is parameterized by both a
policy and a view-partitioning relation. One example is
the seL.4 kernel [15]. The system consists of a number

of partitions P;, as well as a static scheduler PSched
that follows a pre-configured static schedule among
partitions. Each partition contains a set of objects, such
as threads and pages.
The security goal of selL4 is to enforce a general, in-
transitive policy among partitions and the scheduler:
1. P; ~ P; according to a configuration of the system
about any two partitions P; and P;;
2. PSched ~r P;: the scheduler needs to be able to sched-
ule (and thus influence) each partition P;; and
3. P; % PSched: no flow is permitted from any partition
P; to the scheduler, which would otherwise allow
the scheduler to leak information between partitions
when combined with (2).
Specifically, seL4 proves nonleakage for this policy. The
proof strategy is by showing that an unwinding condition
called “confidentiality-u” [20] holds:

dom(a)

(dom(a) ~u=s '~ t)As~t=step(s,a)~ step(t,a).

This unwinding condition is a variant of OC+WSC+SR.
One may obtain it by combining WSC and SR; OC triv-
ially holds, as seL4’s specification merges the observe
function with the view-partitioning relation (§3.3).

Next, consider the Ironclad system [13] with end-to-
end security guarantees. An Ironclad application reads
input from the network, performs computation using the
input and secret keys, and writes output to the network.
The main security goal is to ensure that the application’s
output depends only on its input, while still being able
to declassify values derived from the secret keys in a
controlled way. For example, a declassifier may produce
a signature that is allowed to be written to output even
though its value depends on the secret key.

Ironclad breaks this security goal into “input noninter-
ference” and “output noninterference” for each applica-
tion. The former specifies that the input to a declassifier
depends only on (low) input from the network; and the
latter specifies that the output to the network depends only
on (low) input from the network and output of a declassi-
fier. The noninterference specifications do not cover the
declassifier, for which Ironclad proves a separate func-
tional correctness specification.

One can interpret both noninterference specifications
using nonleakage with a high-low policy, L~ H but
H + L, where L represents public inputs and outputs,
and H represents the entire system state (including secret
keys). With this policy, nonleakage reduces to:

skt= observe(run(s,r), L) = observe(run(t,tr), L).

That is, low output depends only on low data, independent
of (high) secret keys.

Category 3: OC+SC. Consider the CertiKOS kernel that
proves noninterference [3, 4]. The system statically par-



titions memory and process identifiers among processes,
with no inter-process communication. A process may
print to the local output, spawn a child using its own
memory quota, or yield to another process.

At the core of the noninterference specification of Cer-
tiKOS is the notion of “state indistinguishability” in a
per-process view: a process behaves as if it were the only
process in the system. Particularly, for a given process, it
considers an action to be either a system call that does not
change the current process, or a yield from the current
process, followed by a number of system calls performed
by other processes, and eventually a yield back to the orig-
inal process. “State indistinguishability” specifies that the
execution of such an action preserves state equivalence
for a given process. One can interpret this specification
using OC+SC with strict isolation: SC corresponds to
“state indistinguishability”’; OC can be viewed as “state
indistinguishability” applied to the print call, where the
observe function returns the local output.

The noninterference specification of CertiKOS applies
to processes that already exist in the system; it does not
cover information flows from a process to a newly created
child during spawn, which does not satisfy strict isola-
tion. An alternative OC+WSC+LR specification restricts
parent-to-child flows during spawn [23: §6.2].

The SFSCQ file system [14] serves files owned by
mutually distrustful users. The key specification is “data
noninterference,” which precludes an adversary from
inferring the contents of files owned by other users via
file-system operations. It does not, however, aim to
preclude the adversary from inferring metadata (e.g., the
existence of files or their lengths) or overwriting files
owned by other users; these cases are covered separately
by a functional correctness specification.

To achieve this goal, SFSCQ proves “return-value non-
interference” and “state noninterference” for file-system
operations. Upon the invocations of an operation on two
states equivalent to a given user, the former specifies that
both invocations produce the same return value and the
latter specifies that the resulting states remain equiva-
lent to the user. One can interpret the specification of
SFSCQ using OC+SC with strict isolation: OC and SC
correspond to “return-value noninterference” and “state
noninterference,” respectively.

One tricky case is chown, which changes the ownership
of a file. It does not satisfy “state noninterference” (or
SC). To see why, consider two states that differ only in
the contents of one file owned by Alice. Suppose Alice
changes the ownership of the file to Bob. Before chown,
the two states appear equivalent to Bob, since he has no
access to the file; however, after chown, the resulting two
states no longer appear equivalent to Bob as he gains ac-
cess to the file. To work around the issue, SFSCQ relaxes
“state noninterference” for chown by adding an extra pre-

condition: either the contents of the file are the same in
the two states before chown, or chown is invoked to transfer
the file ownership to a user other than Bob; in doing so,
the resulting states remain equivalent to Bob [14: §7.2].

Another example is the Komodo monitor [9], which
implements SGX-like enclaves using ARM TrustZone.
Komodo exposes monitor calls for the OS to create, ex-
ecute, and destroy enclaves, and for enclaves to request
services and communicate with the OS. The security
goal is to provide isolation for enclaves in the face of an
adversary consisting of the OS and a colluding enclave,
to preclude the adversary from inferring or influencing
the execution of enclaves.

Komodo considers an action to be either a monitor call
by the OS that does not involve context switching, or a
series of monitor calls that start the execution of an en-
clave by the OS and eventually exit from the enclave to the
OS; that is, each action both starts and ends with the OS.
Given an enclave, Komodo proves “enclave confidential-
ity,” that each action preserves state equivalence for the
adversary (i.e., adversary cannot infer the enclave’s se-
crets from the action); and “enclave integrity,” that each
action preserves state equivalence for the enclave. One
can interpret both using OC+SC with strict isolation: SC
specifies the preservation of state equivalence for the ad-
versary and for a given enclave (OC is merged with the
view-partitioning relation).

This interpretation helps explain a subtlety in the spec-
ification. “Enclave integrity,” which can be interpreted as
SC for a given enclave, precludes the OS from overwrit-
ing the enclave’s memory using data the enclave cannot
observe; however, it does not preclude the OS from do-
ing so using public data such as zeros—such an operation
would not violate SC, as the resulting states would remain
equivalent to the enclave. An alternative OC+WSC+LR
specification rules out such cases [23: §6.3].

Another subtlety is that enclaves need to declassify
data (e.g., exit values) to the OS to be useful. Similar to
chown in SFSCQ, such a downgrading operation does not
satisfy “enclave confidentiality” (or SC). To work around
this issue, Komodo relaxes the specification by adding
axioms on the states upon an enclave exit.

Category 4: OC+WSC+HLR. As a proof strategy for
noninterference [28], OC+WSC+LR can also be used
as a specification due to the fine-grained sharing afforded
by the view-partitioning relation. Two examples of such
use are Komodo® and CertiKOS® [23], ports of Komodo
and CertiKOS, respectively. Their specifications differ
from those of the original systems in two key aspects.
First, these specifications use “small-step” actions,
where each action is an individual system or monitor
call, enabling automated verification using Z3; those of
the original systems use “big-step” actions, where each



action can contain an unbounded number of operations.
Second, these specifications use intransitive policies for
downgrading operations; as described earlier, those of
the original systems use transitive policies (strict isola-
tion), and either sidestep specifying downgrading (e.g.,
for parent-to-child flows in spawn in CertiKOS) or intro-
duce axioms (e.g., for enclave exit in Komodo).

Discussion. Practical systems usually contain downgrad-
ing operations, which can manifest themselves as com-
munications among partitions or processes, change of file
ownership, or declassification of results of computation.
A key challenge in specifying noninterference is deciding
how to handle downgrading. Below we summarize the
approaches used by the systems analyzed in this section.

The first approach is to apply noninterference only to
the non-downgrading part of a system, such as in [ronclad
or CertiKOS, and prove a separate functional correctness
specification for the downgrading part (e.g., the declas-
sifier). Doing so keeps the noninterference specification
simple, but limits the scope of applying noninterference
and requires care to separate the downgrading part from
the non-downgrading one.

The second approach is to choose an unwinding spec-
ification with a transitive policy, such as OC+SC with
strict isolation, and relax the specification by adding pre-
conditions or axioms only for downgrading operations
(e.g., chown), which would otherwise violate the speci-
fication. Two examples are SFSCQ and Komodo. This
has the advantage of keeping the policy simple, but com-
plicates the implications of the specification—the extra
preconditions or axioms must be audited; and relaxing
certain operations but not others means that the unwind-
ing specification no longer implies a trace-based one.

The third approach is to use a specification with an
intransitive policy, such as in NiStar, seL.4, CertiKOS?,
or Komodo®, making downgrading explicit in the nonin-
terference specification. But it can be difficult to come up
with a desired policy, and the specification is less intuitive
compared to one with a transitive policy [26, 36].

5 Conclusion

Information-flow properties are key to the security of
systems. It is crucial to understand the implications and
trade-offs among the various forms of noninterference
specifications and the types of bugs that can be prevented.
We hope that this paper will help readers better under-
stand different flavors of noninterference and motivate
research for improving the practice of reasoning about
information flows in systems.
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