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In this paper we describe in detail the computation of the scattering amplitudes of massive spin-2
Kaluza-Klein excitations in a gravitational theory with a single compact extra dimension, whether flat or
warped. These scattering amplitudes are characterized by intricate cancellations between different
contributions: although individual contributions may grow as fast as O(s>), the full results grow only
as O(s). We demonstrate that the cancellations persist for all incoming and outgoing particle helicities and
examine how truncating the computation to only include a finite number of intermediate states impacts the
accuracy of the results. We also carefully assess the range of validity of the low-energy effective Kaluza-
Klein theory. In particular, for the warped case we demonstrate directly how an emergent low-energy scale
controls the size of the scattering amplitude, as conjectured by the AdS/CFT correspondence.
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I. INTRODUCTION

Theories of gravity with compact extra dimensions
were initially introduced to unify gravity and electromag-
netism via the Kaluza-Klein (KK) [1,2] construction.
Constructions involving gravity with “large” [3-5] and
“warped” [6,7] extra dimensions gained renewed interest
in the last two decades as potential solutions to the
Standard Model hierarchy problem, and also within the
broader context of string theory. A key feature of all extra-
dimensional gravitational theories is the emergence of an
infinite tower of massive spin-2 KK resonances in four
dimensions. These extra-dimensional models are being
probed by the LHC [8], where we can search for TeV-
scale KK excitations as a signature of physics beyond the
Standard Model. Extra-dimensional theories that addition-
ally incorporate neutral stable matter motivate certain
dark matter models, where particulate dark matter interacts
with the Standard Model through a massive spin-2 mediator
(see, for example, [9—15]).1

The extra-dimensional gravitational action in these
models gives rise to interactions between the massive

'For reviews of extra-dimensional theories (especially in
connection to the LHC and phenomenological consequences)
and the holographic principle, refer to, for example, [16—-18].
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spin-2 KK resonances. Since the underlying gravitational
interactions arise through operators of dimension greater
than four, all tree-level scattering amplitudes of the KK
modes grow with center-of-mass energy. The compactified
theory must therefore be understood as a low-energy
effective field theory (EFT), and the energy scale at which
these scattering amplitudes would violate partial wave
unitarity provides an upper bound on the “cutoff scale,”
the energy scale beyond which the EFT fails.

In this paper we describe in greater detail and further
build upon the work initially reported in [19,20]. In that
work we reported that the scattering amplitudes of the
helicity-zero modes of the massive spin-2 KK resonances
grow no faster than O(s) due to subtle cancellations
between different contributions to these amplitudes. Here
we provide a complete description of the computation of
the tree-level scattering amplitudes of massive spin-2 states
in compactified theories of five-dimensional gravity,
consider the scattering of different combinations of incom-
ing and outgoing particle helicities, address the impact
on accuracy when truncating the computation to only
include a finite number of intermediate states, and carefully
assess the range of validity of the low-energy EFT
which arises.

In the remainder of this introductory section, we review
the physics of a theory with a single massive spin-2 particle,
summarize our previously reported results for extra-
dimensional theories of gravity as well as their connection
to the prior literature, and briefly describe the extended
results presented here. We then provide an outline of the
explicit computations reported in this paper.

Published by the American Physical Society
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A. Scattering of single massive spin-2 particle

Before? considering the complexities of a compactified
five-dimensional theory and its tower of massive spin-2 KK
modes, we set the stage by reviewing the high-energy
scattering behavior in a theory of a single self-interacting
massive spin-2 particle in four dimensions.

Physicists have investigated massive spin-2 particles
on a four-dimensional spacetime since the initial work
of Fierz and Pauli (FP) [22].” The FP theory is constructed
by adding a Lorentz-invariant mass term* to the Einstein-
Hilbert action:

o= [[ats{ M mgR+ 202 - 1) (1)

where R is the Ricci scalar computed from the metric g,
g =det(g), Mp =1//872Gy ~2.435 x 10" TeV is the
(reduced) Planck mass, and m is the mass of the spin-2 field
h,,. We expand the metric around a flat Minkowski
background according to g, = 1,, + 2h,,/Mp, use (here
and throughout this paper) a mostly minus flat Lorentz
metric 1,,, and h = n**h,,. The mass term breaks diffeo-
morphism invariance, causing &, to propagate additional
longitudinal polarization modes relative to a massless
graviton.

The growth of scattering amplitudes with respect to
energy in this theory can be studied using the Stiikelberg
formalism [21,28-30].° Schematically, the Stiikelberg for-
malism introduces spurious fields through which one for-
mally restores diffeomorphism invariance. The Stiikelberg
fields A, and ¢ are introduced via the replacement

1 2
h/w - h;w + Z [a(uAu)] —+ W [aﬂau¢] e (2)

where A, is a vector gauge field with two transverse
degrees of freedom, ¢ is a real scalar with one degree of

?Our discussion here follows the review in
Sec. 8 of [21].

*Note that the mass of the graviton is stringently
constrained by gravitational wave experiments to be m <
1.22 x 10722 eV/c? [23].

The relative coefficients between the two terms in the mass
term are chosen to avoid propagating ghost degrees of freedom.
For more details, consult footnote 7.

The helicity-zero mode couples to the trace of the stress
energy tensor, and does not decouple in the m — 0 limit, acting
instead as a Brans-Dicke scalar [24]. This feature—known as the
vDVZ discontinuity [25,26]—seemingly implies light should
bend around massive bodies differently than is observed exper-
imentally and, thus, eliminates massive gravity as a description of
reality; however, further investigations [27] revealed the pertur-
bative calculation could not be trusted at those experimental
distance scales. By incorporating nonlinear effects, the predic-
tions of general relativity are restored.

6Alternatively, one can use the deconstruction formalism [28,31].

closely

freedom, and the ellipses denote additional nonlinear terms
which are listed explicitly in [21].

Crucially, the nonlinear terms [21,28] in Eq. (2) are
chosen to restore the diffeomorphism invariance of the FP
Lagrangian of Eq. (1) with respect to the full metric
9w = M + 2h,,/Mp, when one simultaneously does a
gauge transformation on A, and a related transformation
on ¢. Restoring diffeomorphism invariance in this way
[21,28], one finds that the field A, always appears with one
derivative in the combination (0A/m), ¢ with two deriv-
atives (0%¢/m?), and that higher-order terms in Eq. (2) are
suppressed by factors of Mp,. The genuine diffeomorphism
invariance of the Einstein-Hilbert term in the Lagrangian
implies that all interactions for the A and ¢ fields come
from the mass term in Eq. (1 ).” The FP Lagrangian can be
recovered by going to the “unitary” gauge where the
spurious A, and ¢ fields are set to zero.

Following [21,28], in gauges other than unitary gauge
the h,,, A,, and ¢ can be used to track the helicity-two,
helicity-one, and helicity-zero polarization modes, respec-
tively, of the massive spin-2 field, and their interactions
provide an understanding of the “power counting” (depend-
ence on energy) of helicity-dependent scattering ampli-
tudes. Expanding the FP mass term [while ensuring the
necessary nonlinear terms from Eq. (2) are correctly
included] results in an infinite series of multipoint inter-
actions among h,, and the Stiikelberg fields. The proto-
typical interaction term derived in this way is of the
(schematic) form [28]

m? (2 \72[2 W[ 2 241 2 Pl
2 (MPI) [Mpl ] l:MPl m] {Mm m2] B
where ny,, ny, and ny count how many instances of h, A,
and ¢ are present in this interaction term, respectively.
Neglecting powers of 2, the various factors of graviton
mass m and reduced Planck mass Mp; multiplying the

interaction term may be collected together into an inter-
action scale A; [28], like so:

(Aﬂ)4_n”_2"/‘_3n‘/’h”” (8A)nA (82¢)n¢,’ (4)
where
Ay = (m Mp) '/ (5)

and A= (4-n,—2n,—-3n,)/(2—n,—n,—n,). Assuming
m <K Mp,, a larger A implies the corresponding interaction
is suppressed by a lower energy scale A;.

"The Stiikelberg field redefinition also provides an assurance
that the FP mass term in Eq. (1) does not generate terms with
more than two time derivatives on ¢, and thus the theory avoids
the Ostrogradsky ghost instabilities which generally plague
higher-derivative theories [32,33].
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To study the growth of scattering amplitudes at high
energy [28], we focus on the least-suppressed interaction
vertex in the expansion: the one with the largest value of A.
For interaction terms, we have (nj, +n, + ny,) > 3; the
largest 4 arises from n, = 3 and nj, = n, = 0. This corre-
sponds to the cubic-scalar interaction term (9%¢)3/A2,
where As = (m*Mp)'/>. We can “build” a 2-to-2 scattering
amplitude ¢p¢p — ¢¢p by “gluing” two instances of this cubic
interaction together, such that the corresponding diagram
naively grows like s° /AL? at large incoming center-of-mass
energy-squared s. In FP gravity, this expectation has been
confirmed by direct computation [34,35].

Because the preceding discussion did not depend on the
specific details of FP gravity, this power-counting argument
[21,28,31] suggests that the scattering amplitude of helicity-
zero modes in any massive spin-2 theory should typically
grow with energy like O(s° )—i.e., that a theory with a single
massive spin-2 particle will be a A5 theory. By introducing
additional polynomial h,, interaction terms to the FP
Lagrangian of Eq. (1), cancellations between diagrams
can occur such that the overall scattering amplitude for
¢ — ¢¢ can be reduced to O(s*), resulting in a A3 theory
which is valid to higher energies [25,28,31,35-38].
However it is not possible to raise the scale any further in
a theory with a single massive spin-2 particle, even after
adding arbitrarily many vector or scalar particles [39-41].%

B. Scattering of massive spin-2 particles
in compactified 5D theories

In a compactified extra-dimensional theory of gravity, the
UV behavior of the four-dimensional KK mode scattering
amplitudes must be governed by the high-energy behavior of
the underlying theory. For a 5D theory in particular, dimen-
sional analysis implies that the five-dimensional graviton
scattering amplitudes must grow like s*/?/M3, 5, where
Mp, sp is the 5D Planck scale.” However, this implies that,
after compactification and decomposing the 5D graviton
field into KK modes, the scattering amplitudes of the
massive spin-2 modes must grow slower than O(s*), which
was the slowest growth achievable in theories of a single
massive spin-2 particle. Moreover, this must be true even
though the compactified theory includes terms like
(0*¢)?/ A3 for each massive spin-2 field in its Stiikelberg
analysis.

The motivation of our present work is to reconcile
the apparent contradiction between the behavior of the
underlying extra-dimensional gravitational theory and the

¥For further details on massive gravity (including bigravity
theories, which include a massless graviton alongside a massive
spin-2 particle) refer to, for example, [21,42]. All of the theories
described, however, are A3 theories—or worse.

The Feynman amplitude for 2 — 2 scattering in 5D has units
of (mass)~! and, compared to 4D, an additional factor of energy
arises in the 5D partial wave expansion [43,44].

argument in Sec. I A above which would suggest that
massive spin-2 modes have scattering amplitudes which
grow like O(s”) [or at best O(s*)]. Recently, [19] dem-
onstrated that the (elastic) scattering amplitudes for massive
spin-2 KK modes in a compactified 5D theory in fact grow
only like O(s).lo This paper amplifies and extends those
results.

More specifically, a tree-level (n;,n,) — (n3,n4) KK
spin-2 scattering process may proceed via any of several
diagrams, which we may organize into the following sets:

ni
M. =

ns

[T 1)

where subscript “c” denotes the contact diagram, “r
denotes the sum of diagrams mediated by the radion (a
scalar mode arising from the 5D metric), and “;” denotes
the contribution arising from exchange of a spin-2 KK
mode j. The external n; label the KK numbers of different
massive KK mode excitations. The total tree-level matrix
element is thus

+00
M= M.+ M+ M, (7)
j=0

J

The arguments given in Sec. [ A imply that for helicity-
zero-polarized external states we expect that

M, and M;~O(s), (8)
M, ~O(s3). )

The calculations reported in [19] demonstrate that,
although the individual contributions to the helicity-zero
spin-2 KK mode scattering amplitudes do indeed grow as
fast as O(s’), there are intricate cancellations between
different contributions. These cancellations invalidate the
naive power-counting analysis given in Sec. [ A, which

"While each individual KK mode scattering amplitude grows
only like O(s), as in the case of compactified Yang-Mills theory
[45] there are coupled channels of the first N KK modes whose
scattering amplitudes grow like Ns/M3,. Identifying the mass of
the highest mode to be of order the maximum energy scale of the
EFT, one reproduces the expected s*/2/M3, 51, behavior of the
continuum theory.
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therefore does not apply to a compactified KK theory with
multiple massive gravitons. Indeed, Ref. [19] has demon-
strated the cancellations both in the case of a toroidal (flat)
compactification and in the more phenomenologically
interesting case of the Randall-Sundrum (RS1) [6,7] model
with a warped extra dimension. The cancellations are
enforced by a set of sum rules [20] which interrelate the
masses and couplings of the various modes.'""?

In this paper we provide a detailed account of the
calculations reported in [19,20], specifying all conventions
and information needed for building upon our work in the
future. We also report substantial new results including a
study of the behavior of the scattering amplitudes for
arbitrary external polarization, the “truncation” error
which results from the (numerically necessary) limitation
of summing over a finite number of KK modes in the
intermediate states j above, and a study of the emergence of
a dynamical low-energy scale [6,7] from the behavior of the
scattering amplitudes in RS1.

C. Guide to the paper

Here is an outline of the material presented in the main
text and appendixes of the paper.

In Sec. II we describe the SD RS1 model, specify our
conventions for the metric, describe the field content, and
outline the procedure used for the (5D) weak field expan-
sion. We provide the details of the weak field expansion
itself, including specifying the form of the interactions
among up to four 5D fields, within Appendix A.

In Sec. III we carry out the KK mode expansion, thereby
obtaining the 4D particle content of the model, and discuss
the form of the interactions among the 4D fields. A general
analysis of the properties of the extra-dimensional wave
functions is given in Appendix B, and the more detailed
description of the 4D interactions is given in Appendix C.

In Sec. IV we begin our analysis of the scattering amp-
litudes of the massive spin-2 KK modes. Section IV A gives
details of our kinematic and helicity conventions. As
described above, the full tree-level scattering amplitudes
will (in general) require summing over the exchange of all
intermediate states, and we will find that the cancellations
needed to reduce the growth of scattering amplitudes from
O(s%) to O(s) will only completely occur once all states are

"Spin-2 KK mode scattering was previously considered
by [46], which used deconstruction to prove that the KK mode
scattering amplitudes grew no faster than O(s®) for a flat extra
dimension.

nFollowing the appearance of [19], and as [20] was being
completed, the authors of [47] independently proved that the
scattering amplitudes of helicity-zero modes of massive spin-2
KK modes in extra-dimensional theories grow only like O(s) for
compactifications on arbitrary Ricci-flat manifolds. Their proof
does not encompass the case of RS1, which is the focus of our
work. See Appendix E for a discussion of the relationship
between our results and those conjectured by [47] in more
general situations.

included. In this section we therefore introduce two
“partial” forms of the scattering amplitudes which will
facilitate our discussion of the cancellations: (a) truncated
matrix elements, which include only exchange of KK
modes below some mode number, and (b) the expansion
of the matrix elements in powers of energy. In Sec. IV B we
analyze the case of KK mode scattering in the case in which
the curvature of the internal manifold vanishes: the 5D
orbifolded torus model.

Section V describes in detail the computation of the
elastic scattering amplitudes of massive spin-2 KK modes
in the RS1 model, for arbitrary values of the curvature of
the internal space. For all nonzero curvatures, every KK
mode in the infinite tower contributes to each scattering
process. We discuss, elaborate upon, and apply the sum
rules introduced in [20]. A new analytic proof for a relation
arising from the s° and s> sum rules is discussed in
Appendix D, and the relationships of our couplings and
sum rules to those conjectured in [47] are given in
Appendix E. Finally, Sec. VG analyzes the (milder)
high-energy behavior of the scattering of nonlongitudinal
helicity modes (helicities other than zero) of the massive
spin-2 KK modes.

Section VI presents a detailed numerical analysis of the
scattering in the RS1 model. In Sec. VI A we demonstrate
that the cancellations demonstrated for elastic scattering
occur for inelastic scattering channels as well, with the
cancellations becoming exact as the number of included
intermediate KK modes increases. In Sec. VI B we examine
the truncation error arising from keeping only a finite
number of intermediate KK mode states. We then return in
Sec. VIC to the question of the validity of the KK mode
EFT. In particular, using the results derived in Appendix F
for large values of the AdS curvature, we demonstrate
directly from the scattering amplitudes that the cutoff scale
is proportional to the RS1 emergent scale [48,49]

Aﬂ = Mple_k”r", (10)

which is related to the location of the IR (TeV) brane [6,7].
Finally, Sec. VII contains our conclusions.

II. THE 5D RANDALL-SUNDRUM MODEL
AND ITS WEAK FIELD EXPANSION

In this section, we describe the SD RS1 model, specify
our conventions for the metric, describe the field content,
and outline the procedure used for the (5D) weak field
expansion. Appendix A provides the details of the weak
field expansion itself, including specifying the form of the
interactions among up to four 5D fields.

A. General considerations and notation

Our investigation concerns the RS1 model without matter
[6,7], in which gravity permeates a five-dimensional (5D)

075013-4



MASSIVE SPIN-2 SCATTERING AMPLITUDES IN ...

PHYS. REV. D 101, 075013 (2020)

bulk that is bounded by two four-dimensional (4D) branes
at y =0 and y = nr.. The length r. is known as the
compactification radius of the extra dimension. This 5D
spacetime is parameterized by coordinates xM = (x#,y),
where the x* act like our usual 4D spacetime coordinates
and y is an extra-dimensional spatial coordinate. By using
an orbifold symmetry that associates every 5D point (x, y)
with a point (x,—y) and restricting the field content to
include only fields even under orbifold parity, the coor-
dinate y can be extended to cover the interval [—-zr.., +-7r.]
and thereby parameterizes a circle of radius r.. In this
orbifolded setup, the branes are located at the orbifold fixed
points of the extended spacetime. Oftentimes we will use
factors of r. to replace the dimensionful variables with
dimensionless equivalents, such as replacing y with ¢ =
y/r. € [-x, ] when it is convenient to do so.

In general, we will denote a 4D Lorentz index with a
lowercase Greek letter such as u =0, 1, 2, 3, whereas
a 5D index will be denoted by an uppercase Latin letter
such as M =0, 1, 2, 3, 5. The 4D flat metric N =
Diag(+1,—1,—1,—1) is used to raise or lower 4D indices,
.8y Xy = My X",

The 5D RS1 metric is of the following form:

G — <W(x,y)g,w 0 )

11
0 ~v(x,y)? "

This is expressed in coordinates x* = (x#,y) such that the

corresponding invariant interval ds” equals

ds? = (Gyy)dxMdxN = (wg,,)dx*dx’ — (v*)dy*,  (12)

allowing for warping of the transverse four-dimensional

space. Meanwhile, the inverse metric equals

GMN:<§””/vg(x,y) —1/v(()x,y)2>’ (13)

where we denote the inverse with a tilde (e.g., G = G~' and
g=g!). Several quantities related to the spacetime
geometry are directly calculable from G,y. For instance,
the Christoffel symbols, Ricci curvature, and scalar curva-
ture equal

1.
iy = EGPQ(aMGNQ + OnGyg — 9oGun).

Ryy = OnThyp = 0plyy + Ff/QFJ%P - F;QFZ?/IN’

Rsp = GMVRyy, (14)
respectively. When going from the metric to the scalar
curvature, exactly two derivatives are applied in every term,
a fact that proves important when we organize the eventual
4D effective theory.

Integrals over the 5D spacetime are weighted by the
invariant volume element v/det Gd*xdy, which factors into
a 4D piece and an extra-dimensional piece:

VdetGd*xdy = [w?\/—detgd*x] - (vdy).  (15)

The quantity in square brackets is the 4D projection of the
5D invariant volume element and thereby acts as an
effective 4D volume element on a 4D sheet at constant y.
The pure gravity RS1 Lagrangian consists of two pieces.

The first piece is the Einstein-Hilbert Lagrangian Lgy,
which is defined as

2 2
EEH =5V det GRSD = —2W2U vV — dethSD? (16)
K K

where « has units of (Energy) /2. This implies that the 5D
Planck mass Mp, sp and 5D quantity « are related according
to KQME,LSD = 4. The second piece is the cosmological
constant Lagrangian Lcc, which can be written as

12
Loc = Fkrc{zx/detG(aq,hoDZ - wzx/—detg(ailw\)}-
(17)

Lcc generates two types of terms: terms proportional to
(9,]@])* provide a 5D cosmological constant in the bulk
whereas terms proportional to (92|¢|) generate tension on
the branes (a prime indicates differentiation with respect to
y, eg., f'=0,f). The coefficients of these terms are
chosen so as to guarantee a solution of Einstein’s equations
that is 4D Poincaré invariant; namely, the vacuum solution
they imply equals

(RS) __ (e_zkylnﬂv 0 )
Mun = 0 1

(18)
as expressed in coordinates x¥ = (x*, y), where k is the non-
negative warping parameter and has units of (Energy)*!.

Combining Lgy and Lcc yields Lsp, the Lagrangian of
the matter-free 5D theory:

Lsp = Lgy + Lec. (19)

The 4D effective theory is then defined from the action

S = / d*x[dyLsp] = / d4x£gf)? (20)

i.e., the Lagrangian Effgf) is obtained by integrating Lsp
across the extra dimension. The form of Lcc specifically

prevents a nonzero 4D cosmological constant in the

effective theory described by L’gf).
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This gravitational Lagrangian will be expanded in the
weak field approximation as a perturbation series in fields
in order to obtain particle interactions and calculate matrix
elements. Upon expanding Eq. (19), each term will contain
either two spatial derivatives 9, or two extra-dimensional
derivatives 8),. However, certain terms in the expansion of
Eq. (19) will contain instances of 8§ which obscure the
coupling structure of the 4D theory. We can ensure no two
extra-dimensional derivatives ever act on the same field in
the expansion by adding a total derivative to Eq. (19).
Specifically, we can eliminate all instances of 8§ in the
expanded Lagrangian without changing the physics by
adding the total derivative

2 [w? (Oyw)
AL =—=0,|—=+/—det 9d] +—2—=11. 21
2 y[ﬁ\/ eg([[gg]] " (21)
where a prime indicates differentiation with respect to y and
twice-squared bracket notation indicates a cyclic contrac-
tion of Lorentz indices, e.g., [A'A] = (0,h*)(0,h,,).
Therefore, in practice we use

Lsp = Lgy + Lec + AL (22)

Of course, in order to weak field expand this Lagrangian,
we must first establish the relevant fields.

B. The weak field expansion
Now that we have a generic path from the 5D metric G to

the 4D effective Lagrangian ng), we may discuss the field
content of the RS1 theory. The gravitational particle content
is obtained by perturbing the vacuum with field-dependent
functions. To ensure correct units and assist the Lagrangian’s
eventual weak field expansion, we will introduce the fields
alongside an explicit factor of k. We choose to utilize the
Einstein frame parameterization [16,50-52], which elimi-
nates mixing between the scalar and tensor modes—and
ultimately yields a canonically normalized 4D effective
Lagrangian. In this parameterization, w and v in Eq. (11)
may be written, respectively, as

W(X, y) = e_z(kM""f‘)’

v(x,y)=14+2a, (23)
where i1(x, y), as we will soon see, is related to the 5D radion
field. Furthermore, we identify g, as weakly perturbed from
the flat value 7,,, €.g.,

Nw Y= G = Ny + Kilyw (24)

YThe orbifold boundary conditions we employ will require all
normal derivatives of the metric to vanish on the branes, and
hence this term is purely for convenience and does not change the
physics.

where the symmetric tensor field 7,,(x,y) contains the
spin-2 modes. The metric is then

GRS _ (e—Z(klerﬁ)(nW + Kflﬂ,,) 0 > (25)
MN o )
0 —(1+42a)

The 5D radion 7(x,y) is related to @i(x,y) via

i(x,y) = MEHC(ZM—’"J

26 '

Unlike & ,v» the SD radion field can be made y independent via
a gauge transformation [53], and so we choose 7(x,y) = 7(x).

In some 5D models, the off-diagonal elements GSI;S) and
G%Y
which can also be made y independent via gauge sym-
metries [53]; however, the RS1 scenario possesses an
orbifold symmetry which removes this degree of freedom

and ensures G}(gs) = Ggl;S>

(26)

give rise to an orbifold-odd graviphoton excitation

= 0. Meanwhile, the graviton

and radion fields must be even functions of y to ensure the
interval ds*> described by GI(‘,,R;) is invariant under the
orbifold transformation. Both of these 5D fields have units
of (Energy)*3/2.
As outlined in the previous subsection, the metric GSWR,§,>
determines a Lagrangian £ = L&) 4 RS L ALRS),
5D EH cC

We calculate LZ?ES) as a perturbation series in x and thereby
obtain its weak field expansion (WFE). In particular,
because we are ultimately concerned with 2-to-2 tree-level
scattering of massive spin-2 states, we require several of the
three- and four-particle interactions present in the O(x?)

WFE EQES). The details of this procedure and its results are
summarized in Appendix A.

III. THE 4D EFFECTIVE THEORY

In this section, we carry out the KK mode expansion,
thereby obtaining the 4D particle content of the model, and
discuss the form of the interactions among the 4D fields. A
general analysis of the properties of the extra-dimensional
wave functions is given in Appendix B, and the more
detailed description of the 4D interactions is given in
Appendix C.

A. 4D particle content

The 4D particle content is determined by employing the
KK decomposition ansatz [1,2,54]:

- 1 &,
h(xy) = = ) (o).
¢ n=0
N [
x) = = (. (27)
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where we recall that ¢ = y/r,. The operators fz,(f,ﬁ) and 7
are 4D spin-2 and spin-0 fields, respectively, while each y,,
is a wave function which solves the following Sturm-
Liouville equation:

0y le™ (0]

subject to the boundary condition (J,,,) = 0 at ¢ = 0 and
z, where & = ekl = ¢*7<lvl [54]. Up to normalization,
there exists a unique solution v, per eigenvalue u,, each
of which we index with a discrete KK number n €
{0,1,2,...} such that gy =0 < p; <p, <---. Given a
KK number 7, the quantity u,, and wave function y,,(¢) are
entirely determined by the value of the unitless non-
negative combination kr.. Additional details about this
ansatz (including explicit expressions for the wave func-
tions and their derivation in a slightly more general
circumstance) comprise Appendix B. For now, we note
that with proper normalization the vy, satisfy two conven-
ient orthonormality conditions:

2,2

= —Hn€ "YWy (28)

1

+
T J-xn

doe™ W, W, = S (29)

1 +r
.

Furthermore, the {y,} form a complete set, such that the
following completeness relation holds:

dpe™ (0, W) (O, W) = b n- (30)

+o0

82— 1) = Z

=0

1

;8_2Wj(€01)1//j((ﬂ2)~ (31)

The KK number n = 0 corresponds to y,, = 0, for which
Eq. (28) admits a flat wave function solution v, corre-
sponding to the massless 4D graviton. Upon normalization
via Eq. (29), this wave function is

nkr,
Yo = 1= e—ZLner (32)
|
£f +rr. e
Eﬁf:h)h E/ dye™Ly.p,
—7r,.

¢

/+7rrC
—xr.

—+o0

= 3 |- i) + ) 0, -
m,n=>0

N N N N 14 N
dye™ {—hw(a’*a”h) + hy, (040,1™) — zhm,(Dh"”) +

up to a phase that we set to +1 by convention. This is the
wave function that Eq. (27) associates with the fields R
and #%. The lack of higher modes in the KK decom-
position of 7 reflects its y independence. In this sense,
choosing to associate y, with #? in Eq. (27) is merely
done for convenience.

Before employing KK decomposition to compute the
interactions of the 4D states, we apply the ansatz to the
simpler quadratic terms. In particular, the 5D quadratic
graviton Lagrangian equals (from Appendix A)

ﬁﬁ,'Zs’ = e 2Ly + € L (33)
where
Lyopn = —hy, (0"0"h) + h,, (0"9,h™)
-%ﬁw(mizﬂy) +%E(Diz), (34)
Epown = =5 0] + 3 W], (35)

where we recall that a prime indicates differentiation with
respect to y and a twice-squared bracket indicates a cyclic
contraction of Lorentz indices.

Similarly, the quadratic 5D radion Lagrangian equals

,C<RS)

rr = e_ZHkr('éﬂLzZA:rr? (36)

where

1

‘ZA:rr = E(au?) (aﬂ?) (37)

To obtain the 4D effective equivalents of the above 5D
expressions, we must integrate over the extra dimension
and employ the KK decomposition ansatz.

First, the graviton: the first term in (33) becomes

i,(m/a)}

1

T

dpew,y,. (38)

/ +
-
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whereas its second term becomes

off +rr. 4=
‘C’l(.?:h>h E/_ dye™ Ly,

nr,

+xr, 1 .~ A 1 .
- dye=| == [W'I] + = [W]2
[ e |- S i

nr,

1 .
_ — — hm
m;O|: 2[[

A +% 12" [[fz(”)]]}

1 +
X — / dee™ (D ym) (OyWn)- (39)

re

These are simplified via the orthonormality relations
Egs. (29) and (30), such that the 4D effective Lagrangian

resulting from EE}ZS) equals
(RS.eff) _ n(eff) (eff)
Ly © L:Ae nh T ﬁBe hh

= L& (h +Zch(mn,h "), (40)

wherein m,, = u,/r.. Therefore, KK decomposition of the
5D field fz,w results in the following 4D particle content: a
single massless spin-2 mode A, and countably many
massive spin-2 modes h" with ne€ {1,2,...} (each
having a corresponding Fierz-Pauli mass term). The zero

mode 7 is consistent with the usual 4D graviton and will
be identified as such. The 4D graviton has dimensionful
coupling constant kyp = 2/Mp; = yk//ar., where Mp
is the reduced 4D Planck mass. In terms of the reduced 4D
Planck mass, the full 4D Planck mass equals \/QMPI

Meanwhile, the 4D effective equivalent of £,§S> from
Eq. (36) equals

£ — [yl

e

+rr,
= /_ dye2mkregh2 B (0, 7) (0" ?)}

r

2 r.
:%(aﬂﬂm)(w(o».‘/’o / T gy 2k
”r(,' =TT,

c

= LHAGO). (1)

Therefore, KK decomposing the 5D radion yields only a
single massless spin-0 mode #©). Like its 5D progenitor,
this 4D state is called the radion. Note the exponential
factor in Eq. (36) is inconsistent with the orthonormality
equation (29), so we had to calculate the integral explicitly.
Thankfully, the y-independent radion must possess a flat
extra-dimensional wave function and so the exponential
factor can at most affect its normalization. This would not

be the case if the radion’s y dependence could not be
gauged away.

The RS1 model has three independent parameters
according to the above construction: the extra-dimensional
radius r., the warping parameter k, and the 5D coupling
strength k. However, we use a more convenient set of
independent parameters in practice: the unitless extra-
dimensional combination kr., the mass m; of the first

massive KK mode iz(]), and the reduced 4D Planck mass
Mp;. These sets are related according to the following
relations:

m = riy,(krc)viaEq.(ZS), 42)

c

2
Mp = —=V1— e 2krem, (43)
kvVk

In our analysis, we will consider Mp, and m; fixed and
vary kr.. When explicit values are used, we will choose
kr. €[0,10], m; = 1 TeV, and Mp, = 2.435 x 10" TeV.

B. Beyond quadratic order

Deriving the quadratic terms proceeded so cleanly in
part because all wave functions with a nonzero KK
number occur in pairs and are thus subject to orthonor-
mality relations. Such simplifications are seldom possible
when dealing with a product of three or more 5D graviton
fields, and instead the integrals must be dealt with
explicitly. Consequently, the RS1 model possesses
many nonzero triple couplings and calculating a matrix
element for 2-to-2 scattering of massive KK modes
typically requires a sum over infinitely many diagrams,
each of which is mediated by a different massive KK
mode and contains various products of these overlap
integrals.

Keeping this in mind, consider all terms in the weak field
expanded Lagrangian ESDS) that have exactly H spin-2
fields and no radion fields. After KK decomposition, terms
with two 4D derivatives (designated as A-type) are propor-
tional to overlap integrals

—r dope™? , 44
aj ”/_ﬂ pe Hu/n (44)

and those containing two extra-dimensional derivatives
(designated as B-type) are proportional to integrals

1 H

+r
b= [ "ot O On) [[we 49

T =3
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where 7i = (n;...ny) are the KK numbers of the relevant
spin-2 fields."* These integrals are unitless and entirely
determined by the value of kr.. Note that a; is fully
symmetric in all KK numbers, whereas b;; is symmetric in
the first pair and remaining KK numbers separately.
Pictorially, we indicate the vertices associated with these
couplings as small filled circles attached to the appropriate
number of particle lines:

ny
} ns D) Aninons b’P[nl,nQ,ng]a
n2

(46)

Aningnang  OP [n1,m2,n3,m4]> (47)

ny ng
S
T2 Ty
where overlapping straight and wavy lines indicate a spin-2
particle and P indicates that all permutations of its argu-
ments should be considered. If we set n; = 0 in the triple
spin-2 coupling, the corresponding wave function y, is flat;
either y is differentiated (in which case the integral
vanishes) or it can be factored out of the y integral thereby
allowing us to invoke the wave function orthogonality
relations on the remaining wave function pair. In this way,
the triple spin-2 couplings imply that the massless 4D
graviton couples diagonally to the other spin-2 states, as
required by 4D general covariance:

bOnlnz =0.
(48)

— — 2
an]nzO - V/Oénl,nz’ bnanO - /’lnll//()én],nzv

The Sturm-Liouville problem that defines the wave func-
tions {,} also relates various A-type and B-type cou-
plings to each other; we will explore this further in Sec. V.

When calculating matrix elements of massive KK mode
scattering, we must also consider radion-mediated dia-
grams. These involve coupling a radion to a pair of spin-2
states, which requires the integral

_Wo _ga [T,
bnlnzr = 76 kre /_ d§0€ Z(a(pWil])(a(anz)' (49)

Y4

This is defined analogously to the pure spin-2 couplings
in the sense that we indicate the role of the radion
wave function within the coupling (e.g., differentiated vs

14Evelry term in Eg%s) contains exactly two derivatives.
Because even-spin fields carry an even number of Lorentz
indices and the Lagrangian is a Lorentz scalar, those two
derivatives must either both be 4D derivatives or both be
extra-dimensional derivatives, no matter how many spin-2 or
spin-0 fields are present. Therefore, A-type and B-type couplings
exhaust the possible wave function integrals encountered in the
RS1 model.

undifferentiated) through the placement of a pseudo-KK
index “r.” The RS1 model lacks an analogous A-type radion
coupling and the b,, ,, coupling vanishes for the same
reason that the by, ,, coupling vanished. Note that the
exponential factor in the integrand of b, ,,, prevents use
of the orthonormality relations; therefore, the radion
typically couples nondiagonally to massive spin-2 modes.

Pictorially,
ny
Z} T D) b7L1’IL2’f' 3
o

where unadorned straight lines indicate a radion.

Appendix C describes how the detailed vertices between
4D particles are derived from the 5D theory and summa-
rizes the relevant interactions. These interactions form the
building blocks of our matrix elements, which we turn
to next.

(50)

IV. ELASTIC SCATTERING IN THE
5D ORBIFOLDED TORUS MODEL

In this section, we begin our analysis of the scattering
amplitudes of the massive spin-2 KK modes. Section [VA
gives details of our kinematic and helicity conventions. As
described above, the full tree-level scattering amplitudes
will (in general) require summing over the exchange of all
intermediate states, and we will find that the cancellations
needed to reduce the growth of scattering amplitudes from
O(s) to O(s) will only completely occur once all states are
included. In this section we therefore introduce two
“partial” forms of the scattering amplitudes which will
facilitate our discussion of the cancellations: (a) truncated
matrix elements, which include only exchange of KK
modes below some mode number, and (b) the expansion
of the matrix elements in powers of energy. In Sec. [V B we
analyze the case of KK mode scattering in the case in which
the curvature of the internal manifold vanishes: the 5D
orbifolded torus model.

A. Preliminaries

The preceding sections (and related appendixes)
described how to determine the vertices relevant to tree-
level 2-to-2 scattering of massive spin-2 helicity eigenstates
in the center-of-momentum frame. This section calculates
and analyzes those matrix elements. For scattering of
nonzero KK modes (n;,n,) — (n3,ny) with helicities
(A1,42) = (43,44), we choose coordinates such that the
initial particle pair have 4-momenta satisfying

qu:(E17+|ﬁz|2)’ p%:mﬁlv (51)
ph=(Ey.~|pil2).  p3=my,, (52)

and the final particle pair have 4-momenta satisfying
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Py = (Es.+ps),  p3=m;, (53)

Py = (Es.—Pg).  pi=mi, (54)

where py = |py|(sin €@ cos ¢, sin @sin ¢, cos §). That is, the
initial pair approach along the z axis and the final pair
separate along the line described by the angles (6, ¢). The
helicity-4 spin-2 polarization tensor €;“(p) for a particle
with 4-momentum p is defined according to

6’32 = el €, (55)
v 1 v v

ey = 2 [€41€6 + €6ety]- (56)
5 1

e = Jglehien et + 2], (57)

where ¢f are the (particle-direction dependent) spin-1
polarization vectors

oid
e + 0, —cycpy £ isy, —cys icy,s9), (58
+1 \/i( 0Cq ¢ 0S¢ F 1Cy 0), (58)

E 2
=2 (1-1p). (59)

(cy,8¢) = (cosx,sinx), and p is a unit vector in the
direction of the momentum [55]. We use the Jacob-Wick
second particle convention, which adds a phase (—1)* to 4"
when the polarization tensor describes h(m) or h(ns) [56].
Due to rotational invariance, we may set the azimuthal
angle ¢ to 0 without loss of generality. Meanwhile, the
propagators for virtual spin-0 and spin-2 particles of mass
M and 4-momentum P are, respectively,

Z.
S (60)

1 B1V-Po
MU po’ = P2_M2’ (61)

where we use the spin-2 propagator convention [55]
| R N 1 N
BHre = 3 [B*’BY° + B*’ B — 3 (2 4 89.01)B* B,

B yy_g =1, By =17 —

(62)

and n** = Diag(+1,—1,—1,—1) is the flat 4D metric. The
massless spin-2 propagator is derived in the de Donder
gauge, via a gauge-fixing term —(0*h.) — 19, 1RO
The Mandelstam variable s = (p, + p,)* = (E; + E;)?

provides a convenient frame-invariant measure of collision
energy. The minimum value of s that is kinematically
allowed equals s, =max|(m, +m, ) (m,, +m,, ).
When dealing with explicit full matrix elements, we will
replace s € [syin, +00) with the unitless 8 € [0, +0),
which is defined according to s = s, (1 + 8).

As discussed in Sec. I B, any tree-level massive spin-2
scattering amplitude can be written as

+00
M= M+ M+ M, (63)
j=0

where we separate the contributions arising from contact
interactions, radion exchange, and a sum over the
exchanged intermediate KK states j (and where “0” labels
the massless graviton). In practice, this sum cannot be
completed in entirety and must instead be truncated.
Therefore, we also define the truncated matrix element

N
MN = M+ M+ M;, (64)

j=0

which includes the contact diagram, the radion-mediated
diagrams, and all KK mode-mediated diagrams with
intermediate KK number less than or equal to N.

We are concerned with the high-energy behavior of these
matrix elements and will therefore examine the high-energy
behavior of each of the contributions discussed. Because
the polarization tensors €%, introduce odd powers of
energy, /s is a more appropriate expansion parameter
for generic helicity combinations. Thus, we series expand
the diagrams and total matrix element in /s and label the
coefficients like so:

M(s5.0) = > M(0)- 57 (65)

1
0€5Z

and define M) = M© . 5. In what follows, we dem-
onstrate that M) vanishes for ¢ > 1 regardless of helicity
combination and we present the residual linear term in s for
helicity-zero elastic scattering. However, before we tackle
the generic RS1 theory, let us start by analyzing a simpler

case: Lgl]gs) in the limit of no warping.

B. The 5D orbifolded torus

Before investigating scattering amplitudes in the general
RS1 model, we consider a special case in which the internal
space is flat. Taking the limit of the RS1 metric (25) as kr.
vanishes, while simultaneously maintaining a nonzero
finite first mass m; (or, equivalently, a nonzero finite
r.), yields the 5D orbifolded torus (SDOT) model. The
5DOT metric lacks explicit dependence on vy,
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—kF

8%(7]”” + Kil;u/) 0 (
K 2 ’
0 - (1 + %)

and as kr. — 0 the massive wave functions go from
exponentially distorted Bessel functions to simple cosines:

5DOT
Gz(vnv =

1
Yo =15

e (67)
v, = —cos(n|g|), O<neZ

with masses given by p, = m,r. = n and 5D gravitational
coupling k = \/2xr k4 = \/87r./Mp. In the absence of
warp factors, the radion now couples diagonally and spin-2
interactions display discrete KK momentum conservation.
Explicitly, an H-point vertex A")...h"") in the 4D
effective SDOT model has vanishing coupling if there
exists no choice of ¢; € {—1,+1} such that ¢jny + -+ -+
cyny = 0. For example, the three-point couplings a,, ,,,,,
and b, ,,, are nonzero only when n; = |n, & ns|.
Therefore, unlike when kr, is nonzero, the SDOT matrix
element M©POT) for a process (n,n,) = (n3, ny) consists
of only finitely many nonzero diagrams.

For (n,n) — (n,n), the 5DOT matrix element arises
from four types of diagrams:

MO = Mo+ M+ Mo+ My, (68)

Using Egs. (44) and (45) and the toroidal wave functions,
we find

NG = 3Dppnn §n27
1 2
n"Auno = by = by, ﬁn ’
2 1 1 2
n=duyn2n) = _bnn(Zn) = Eb(2n)nn = _En ’ (69)

where here again the subscript “0” refers to the massless 4D
graviton. We focus first on the scattering of helicity-zero
states, which have the most divergent high-energy behavior
(we return to consider other helicity combinations in
Sec. V G). Reference [19] lists /\/L(;”), Mﬁ”), M(()G), and
Mé‘j} for 6 > 1 and demonstrates how cancellations occur

among them such that AM(?) = 0 for 6 > 1 and the leading
contribution in incoming energy is

TA( 1) _ 3K2
256zxr,

[7 + cos(20)]%csc?0. (70)

We report here the results of the full calculation, including
subleading terms.

The complete (tree-level) matrix element for the elastic
helicity-zero 5SDOT process equals

(5DOT) _ K202 [Py + Pycyg + Pycag + Poceplcsc?d

M - b
2567r38(8 + 1)(8% + 88 + 8 — 8%¢yy)
(71)
where
Py = 5108 + 396238* + 825683 + 73448
+ 32168 + 704, (72)
P, = —4298° + 3938* 4 39368° + 558482
+ 32728 + 768, (73)
Py = —788% —2348% + 19283 + 155282
+ 17768 + 576, (74)
Pg = —38° —253% — 9683 — 14482 — 723, (75)

and 8 is defined such that s = s.,;,(1 + 8), where in this
case Sy, = 4m2 = 4n?/r2.

For a generic helicity-zero SDOT process (n,n,) —
(n3, ny), the leading high-energy contribution to the matrix
element equals

<

= 256ar, (76)

nynonyns |1+ €0s(260)]%csc? 6,

where x is fully symmetric in its indices, and satisfies

otherwise Xaped = 1,

Xaaaa = 3, Xaabb = 2,
when discrete KK momentum is conserved (and, of
course, vanishes when the process does not conserve
KK momentum).

The multiplicative csc? @ factor in Eq. (71) is indicative
of t- and u-channel divergences from the exchange of the
massless graviton and radion, which introduces divergen-
ces at @ =0, z. Such IR divergences prevent us from
directly using a partial wave analysis to determine the
strong-coupling scale of this theory. In order to characterize
the strong-coupling scale of this theory, we must instead
investigate a nonelastic scattering channel for which KK
momentum conservation implies that no massless states can
contribute, M, = M, = 0. [In this case, the csc> @ factor
present in Eq. (76) is an artifact of the high-energy
expansion and is absent from the full matrix element.]

Consider for example the helicity-zero SDOT process
(1,4) - (2,3). The total matrix element is computed from
four diagrams

1y 42 1lyg,2 1 2 1ag,3

A K

47 N3 4 3 4 3 42702
(77)
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which together yield, after explicit computation,

M= 128007rr( 120,0 Z:Q o (78)

where

[3 4+ /(258 + 16)(258 + 24) cos 6],
(79)

Q. =25(8+1)+

Qo = 15(25781258* 4 943750083 + 1299000082
+79710008 + 1840564), (80)

Q) = 721/(258 + 16)(258 + 24)(508 + 43)(508 + 47),
(81)

0, = 4(27343758* + 115625008 + 180475008
+123405008 + 3121692). (82)

Q5 = 24+/(258 + 16)(258 4 24)(508 + 51)(508 + 59),
(83)

Q. = 3906258* + 21875008% + 436000082 + 37290003
+ 1165956, (84)

and s,;, = 25/r2. As expected, unlike the elastic SDOT
matrix element (71), the (1,4) - (2,3) 5DOT matrix
element is finite at 6 = 0, .

Given a 2-to-2 scattering process with helicities
(A1,42) = (43,44), the corresponding partial wave ampli-
tudes a’ are defined as [56]

1
3277

a]

[ ey, 00000 69
where 4; = 1) =4, and Ay = A3 — Ay, dQ = d(cos0)d¢,
and the Wigner D functions D/{a ,, are normalized
according to

dx

by (86)

[ aans,, (0.0)-01;, 0.0~

Each partial wave amplitude is constrained by unitarity to
satisfy

l_sminR[ ]S
N

(87)

l\)l>—‘

where Re[a’] denotes the real part of a’. The leading partial
wave amplitude of the (1,4) — (2,3) helicity-zero SDOT
matrix element corresponds to J = 0 and has leading term

005 gp( 2 88
. 8”M[2>1n<smin>' ( )

Hence, this matrix element violates unitarity when

Rea’ ~ 1/2, or equivalently when the value of E = /s

is near or greater than Agfrﬁ?g“ = V4rnMp,. Because Mp,

labels the reduced Planck mass, Agmmg) is roughly the
conventional Planck mass. We will use this inelastic
calculation as a benchmark for estimating the strong-
coupling scale associated with other processes.

We now consider the behavior of scattering amplitudes

in the RS1 model.

V. ELASTIC SCATTERING IN THE
RANDALL-SUNDRUM MODEL

This section discusses the computation of the elastic
scattering amplitudes of massive spin-2 KK modes in the
RS1 model, for arbitrary values of the curvature of
the internal space. For any nonzero curvature, every
KK mode in the infinite tower contributes to each
scattering process and the cancellation from O(s’) to
O(s) energy growth only occurs when all of these states
are included. We first review and elaborate on the
derivation of the sum rules introduced in [20]. A new
analytic proof for a relation arising from the s* and s sum
rules is discussed in Appendix D, and the relationships
of our couplings and sum rules to those conjectured
in [47] are given in Appendix E. In the subsequent
subsections, we apply the sum rules to determine the
leading high-energy behavior of the amplitudes for two-
body scattering of helicity-zero modes. Finally, Sec. VG
analyses the (milder) high-energy behavior of the scatter-
ing of nonlongitudinal helicity modes of the massive spin-
2 KK states.

A. Coupling identities

Let us now consider the elastic helicity-zero RS1 process
(n,n) - (n,n). We will approach it by identifying sum
rules that enforce cancellations among different contribu-
tions to the scattering amplitude at a given order in s. This
subsection rederives and elaborates on several results from
Ref. [20]; we apply the coupling relations in the subsequent
subsections.

The wave functions y,, solve the Sturm-Liouville prob-
lem defined by Eq. (28) when subject to the boundary
condition (9,y,) =0 at ¢ =0, = and satisfy the ortho-
normality relations Egs. (29) and (30). In particular,

= \/mkr./(1 — e7>™7c). By integrating by parts and
utilizing the Sturm-Liouville equation, we derive the
following generic relation:
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ui / doe™*(y - X) =

- / doe=4@,w1) - 0, [yV1X]

- / dol—p2ey;] - yV1X

_/d(paqi[€_4(al/)l//i)] : w;\/—lx

=(N-1) / dpe™ (D,pi)* - wi X
+ [ e, @,00
(89)
where X is a generic function of ¢. Through appropriate

choices of the function X, the number N of instances of y;,
and the KK index i, we obtain the following relations:

(X, N, l) = (l//j, 2, I’l) = M%annj = bnnj + bjnnv (90)
(X’N7 l) = (W%l’ 17]) = ”jz‘annj = ijnn’ (91)
(X’ N, l) = (1’4’ n) = ﬂ%lannrin = 3bnnnn? (92)

which allow us to rewrite all B-type couplings of the form
b; in terms of A-type couplings:

1
bnnj = (ﬂ% - 5/"3) Anpjs (93)
1 2
bjnn = Eﬂjannj’ (94)
1 2
bnnnn = gﬂnannnn' (95)

Furthermore, the completeness relation Eq. (31) implies
the generic relation

sl forw ] oo
:% / dpe™X - Y, (96)

where X and Y are generic functions of ¢, from which one
may derive, for instance,

E 2
annj -
J

Appnn> (97)

1
annjannj = Dpppn = g/’l%annnn’ (98)
J

and

2 4t = 2_L2bimlnn,
_22[)‘42 nnj nnj nnj

4

= g/‘%annnn' (99)

We can continue adding instances of /42 to the sum and
repeat this procedure with Y ujay, and 37 ubaz, .. The

details of these manipulations are
Appendix D; the principal result is

summarized in

16
z Luz 5/'471 ,uj nn/ ?/"gannnn- (100)

Note that the equations in this section relate couplings
and spectra, which are determined entirely by the Sturm-
Liouville problem and therefore depend only on the value
of kr. (i.e., not on m; or Mp,). Because of their origin, these
equations relating 4D masses and couplings must ulti-
mately be expressions of the original 5D diffeomorphism
invariance.

B. Cancellations at O(s*) in RS1

We will now go through the contributions to the elastic
helicity-zero (n,n) — (n,n) scattering process in the RS1
model order by order in powers of s and apply the sum rules
derived in the previous section.

As described in Sec. I B, the contact diagram and spin-
2-mediated diagrams individually diverge like O(s”). After
converting all b; couplings into a; couplings, their con-
tributions to the elastic helicity-zero RS1 matrix element
equal

2
M = 23’2)4%[7 +cos(20)]sin? 0, (101)
Yy .m
—5) Kzaﬁn]
M =[7 + cos(20)] sin* 6, (102)

I 23047r.md

such that they sum to

MO —

K*[7 + cos(20)]sin6 [ <X
23047r,m? { - oy = a} (103)
c n j=

This vanishes via Eq. (97), which we will, henceforth, refer
to as the O(s>) sum rule.

C. Cancellations at O(s*) in RS1

The O(s*) contributions to the elastic helicity-zero RS1
matrix element equal
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>
MY = M[&—196cos(29)+5cos(49)] (104)
6912zr.m
22 2
v K )M
V=7 20)|"—
M, 9216ﬂrcm2{[ +cos20)f m?
+ 2[9 — 140 cos(20) + 3 cos(40)] } (105)

Using the O(s%) sum rule, M®

2 2 2
— .y K*[7T4cos(20)]* (4 m
M TR gannm—zméaﬁw (106)

92167r.mS 5

equals

This vanishes via Eq. (99), which we shall refer to as the
O(s*) sum rule.

D. Cancellations at O(s*) in RS1

Once the O(s®) and O(s*) contributions are canceled,
the radion-mediated diagrams, which diverge like O(s?),
become relevant to the leading behavior of the elastic
helicity-zero RS1 matrix element. Furthermore, because of
differences between the massless and massive spin-2
propagators, M, and ﬂpo differ from one another at
this order (and lower). The full set of relevant contributions
is therefore

2
503 K'luunn
¢ = m [—185 + 692 COS<29) + 5 COS(40)],
(107)
2 2
“403) K bnnr )
®) _ _ 0, 108
M= S hmnn)“} o 1o
A3 Kzagmo
MO = m [15 - 270 COS(26> - COS(46)], (109)
MY, = L 5[1 — cos(26)] "
>0 2304 .m? my
m2
+ [69 + 60 cos(26) — cos(460)] —%
ml‘l
+ 2[13 — 268 cos(26) — cos(40)] } (110)
After applying the O(s%) and O(s*) sum rules, M) equals
— 5k%sin’0 mj 16
M(3) = Tizm__. 4 a2 —— nnnn
11527r.m? z]: mt i T 15 ¢
47 9b? ,
—— - . 111
5 Lo} .

These contributions cancel if the following O(s®) sum rule
holds true:

4
Z”] Apnj = n Appnn + g [9b3mr - ﬂiafmo]. (l 12)

We do not yet have an analytic proof of this sum
rule; however we have verified that the right-hand
side numerically approaches the left-hand side as the
maximum intermediate KK number N, is increased
to 100 for a wide range of values of kr., including
kr. € {1073,1072,1071,1,2, ..., 10}."”

E. Cancellations at O(s?) in RS1

The contributions to the elastic helicity-zero matrix
element at O(s?) equal

2

_(2) — K™ Appnn 5447 20 13
‘ 547rr m? [ + 47 cos(20)], (113)
2 2
A2 K bnnr
ro= 7 26)], 114
M pTp—— {(mnrc)4}[ + cos(20)] (114)
) Kd?
My = 0 [175 + 624 cos(20) + cos(46)], (115)
576xr.m?
242 27 4
A2 K annj mj mj
M2y = 69127r.m2 {4[7 + cos(20)] {5 2m—,21 -
m2
—[1291 + 1132 cos(20) + 9 cos(40)] m—é

+ 4[553 + 1876 cos(20) + 3cos(46’)]}. (116)

By applying the O(s>) and O(s*) sum rules [but not the
O(s*) sum rule], the total O(s?) contribution equals

2 4
_ K'2 [7 + COS(ZH)] Z ﬁ _é ﬁaQ '
8647xr.m? ; m2 2| mit "

8 9b2
° ) nnr 2 ’
+ 3 Apnnn |:(mn rc)4 annO:| }

which vanishes if the following O(s?) sum rule holds:

e

(117)

+00

, 5 8
Z ,“j 2:“n :uj nnj 3ﬂn nnnn

j=0
+ Zﬂ%[gb%nr - /’liaz ]

nn0

(118)

SThe cancellatlons implied by this sum rule can be seen in the
vanishing of RIMG3) (Fig. 2) as N increases.
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Again, we do not yet have a proof for this sum rule, despite
strong numerical evidence that it is correct (see Sec. VI).
However, combining the O(s*) and O(s?) sum rules
[Egs. (112) and (118)] yields an equivalent set:

correspondence of our results with theirs is given in
Appendix E.

F. The residual O(s) amplitude in RS1

After applying all the sum rules above'® [including

16
Z [;42 Suzlpta i J 3 T — (119)  Eq. (120), which lacks an analytic proof], the leading
contribution to the elastic helicity-zero matrix element is
found to be O(s). The relevant contributions, sorted by
diagram type, equal
4 Zﬂ] Anj — /’ln nnnn — 9b%nr _ﬂﬁain()' (120) . P .
2
MU = K mmnn 11505 13108 c0s(26) — 5cos(40)], (121)
Equation (119) is precisely Eq. (100), for which we give an 17287r,
analytic proof in Appendix D. Therefore, if the O(s*) sum 5 5
rule holds true, then the O(s*) must also hold true, and ~ Aq() — __X [ Duny ][9 + 7 cos(26)]. (122)
vice versa. 24nr, |(myr.)*
Finally, we note that the sum rules we have derived in 5 5 5
RS1 iq Eqgs. (97), (99), (112), and (118) are consistent with Mf) _ K dhn0Cse 0 [748 + 427 cos(26)
those inferred by the authors of [47], who assumed that 2304zr,
capcellations in.the spin-0 scgttering amplitude of massiye +1132 cos(46) — 3 cos(60)), (123)
spin-2 modes in KK theories must occur to result in
amplitudes which grow like O(s). A description of the
|
7 (O i 2 m;
Mj>0 = 69172710 3[7 + cos(20)] m_ﬁ —4[241 + 148 cos(20) — 5cos(40)] m_2
m* m?
+ 4[787 + 604 cos(20) — 47 cos(40)] m—i — [3854 + 5267 cos(20) + 98 cos(40) — 3 cos(66)] m—é
+ [2156 + 1313 cos(20) + 3452 cos(46) — 9cos(69)]}. (124)

Combining them, according to Eq. (63), yields

nnj

M — K2[7 + cos(260)]*csc?0 {Zm_

8
J 2
230477, — m}

L 28 481 9%,
—da - —a .
15 nnnn 3 (mn rc)4 nn0

This is generically nonzero and thus represents the true
leading high-energy behavior of the elastic helicity-zero
RS1 matrix element.

(125)

G. Nonlongitudinal scattering

The sum rules of the previous subsections were derived by
considering what cancellations were necessary to ensure the
elastic helicity-zero RS1 matrix element grew no faster than
O(s), a constraint which in turn comes from considering the

'“The elastic 5D orbifolded torus couplings (69) directly
satisfy all of these sum rules.

|
extra-dimensional physics. This bound on high-energy
growth must hold for scattering of all helicities.

Indeed, upon studying the nonlongitudinal scattering
amplitudes, we find that the sum rules derived in the
helicity-zero case are sufficient to ensure all elastic RS1
matrix elements grow at most like O(s).

Figure 1 lists the leading high-energy behavior of the
elastic RST matrix element for each helicity combination
after the sum rules have been applied. These results are
expressed in terms of the leading exponent of incoming
energy E = ./s. For example, the elastic helicity-zero
matrix element diverges like O(s) = O(E?) and so its
growth is recorded as “2” in the table. As expected, no
elastic RS1 matrix element grows faster than O(E?).

Some matrix elements grow more slowly with energy in
the SDOT model than they do in the more general RS1
model; they are indicated by the gray boxes in Fig. 1. For
these instances, the leading M(®) contribution in RS1 is
always proportional to the same combination of couplings

- 27b3mr’

[3a2,0 + 164, 10 (126)
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Elastic 2-to-2 KK Mode Scattering Matrix Elements in RS1
Fastest Energy Growth per Helicity Combination: (A,A,) > (A,,A,)

o~

N[

Legend
=[x] = O(E) growth

Holno

=~ SRR N

o[1H1]0
1 1]0]-1
P 1/0]-1-2

FIG. 1.

[N 2 R EloKE 2 K

Lo

_ O(E*) RS1 growth
O(E*2) 5DOT growth

This table gives the leading order (in energy) growth of elastic (n,n) — (n,n) scattering for different incoming (4, ,) and

outgoing (45 4) helicity combinations in RS1. In the cases listed in gray, the leading order behavior is softer in the orbifolded torus limit

(by two powers of center-of-mass energy).

which vanishes exactly when kr. vanishes. Regardless of
the specific helicity combination considered, no full matrix
element vanishes.

VI. NUMERICAL STUDY OF
SCATTERING AMPLITUDES IN THE
RANDALL-SUNDRUM MODEL

This section presents a detailed numerical analysis of the
scattering in the RS1 model. In Sec. VI A we demonstrate
that the cancellations demonstrated for elastic scattering
occur for inelastic scattering channels as well, with the
cancellations becoming exact as the number of included
intermediate KK modes increases. In Sec. VI B we examine
the truncation error arising from keeping only a finite
number of intermediate KK mode states. We then return in
Sec. VIC to the question of the validity of the KK mode
EFT. In particular, we demonstrate directly from the
scattering amplitudes that the cutoff scale is proportional
to the RS1 emergent scale [48,49]

A,r = Mple_kﬂrc, (127)
which is related to the location of the IR (TeV)
brane [6,7].

A. Numerical analysis of cancellations in inelastic
scattering amplitudes

We have demonstrated that the elastic scattering ampli-
tudes in the Randall-Sundrum model grow only as O(s) at
high energies and have analytically derived the sum rules
which enforce these cancellations. Physically, we expect
similar cancellations and sum rules apply for arbitrary
inelastic scattering amplitudes as well. However, we have
found no analytic derivation of this property.17

Instead, we demonstrate here numerical checks with
which we observe behavior consistent with the expected
cancellations. To do so, we must first rewrite our expres-
sions so we may vary kr. while keeping Mp; and m, fixed.
We do so by noting that we may rewrite the common matrix
element prefactor as

2K 1 4
5D e T (128)
wr. Wy~ wkr, M5,

and that r, = g, /m, such that M) can be factorized for
any process (and any helicity combination) into three

"This is to be contrasted with the situation for KK compacti-
fications on Ricci-flat manifolds, where an analytic demonstra-
tion of the needed cancellations has been found [47].
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unitless pieces, each of which depends on a different
independent parameter:

K (kr,.0)] - {ML%J - [H‘:—ﬂ U )

This defines the dimensionless quantity K(°) characterizing
the residual growth of order (y/s)?° in any scattering
amplitude. We can apply this decomposition to the trun-
cated matrix element contribution M) as defined in
Eq. (64) as well. By comparing MM to M) and
increasing N when ¢ > 1, we can measure how cancella-
tions are improved by including more KK states in the
calculation and do so in a way that depends only on kr,
and 0. Therefore, we define

M) =

M)  cINI(e)
RN (kr,,0) = AT = T (130)
which vanishes as N — +co if and only if MN(®) vanishes
as N — +oo. Because R (@) depends continuously on 6,
we expect that so long as we choose a 6 value such that
KCINI@) £ 0, its exact value is unimportant to confirming
cancellations. Figure 2 plots 10°C-2RNul(@) for the
helicity-zero processes (1,1) — (1,1) and (1,4) — (2,3)

as functions of N, — 100 for kr. € {107, 1,10} and
0 = 4x/5. The factor of 10°°~?) only serves to vertically
separate the curves for the reader’s visual convenience;
without this factor, the curves would all begin at R0/ = 1
and thus would substantially overlap.

We find that, both for the case of elastic scattering
(1,1) - (1, 1) where we have an analytic demonstration of
the cancellations and for the inelastic case (1,4) — (2,3)
where we do not, MIV(®) 0 as N - co. Furthermore, we
find that the rate of convergence is similar in the two cases.
In addition, and perhaps more surprisingly, the rate of
convergence is relatively independent of the value of kr,. for
values between 1/10 and 10.

B. Truncation error

In the RS1 model, the exact tree-level matrix element for
any scattering amplitude requires summing over the entire
tower of KK states. In practice, of course, any specific
calculation will only include a finite number of intermedi-
ate states N. In this subsection we investigate the size of the
“truncation error’” of such a calculation. For simplicity, in
this section we will focus on the helicity-zero elastic
scattering amplitude (1,1) — (1,1) and investigate the
size of the truncation error for different values of kr,
and center-of-mass scattering energy.

10% G- RIN (%} ys,N - kr,e{0.1,1,10} , 8=47m/5

10*20 -

10*1°

10° (5—UD|R[NJ (U}I

-

o
-
o

(1,1)-(1,1)

102

0 20 40 60 80

10+20 -

10-20 5
(14) - (2,3)
0 20 40 60 80 100
N
k=1 — k=10 |

FIG.2. These plots show the size of the residual truncation error for the helicity-zero scattering of KK modes (1, 1) — (1, 1) (left) and
(1,4) - (2.3) (right) as a function of the number of KK intermediate states included (N) relative to not including any massive KK
states, R[N](”)(krc, 0) from Eq. (130). The curves are shown for kr. = 0.1, 1, 10 for & = 4z/5. In all cases, the truncation error falls
rapidly with addition of more intermediate states. To visually separate the different curves, the value of the ratio at N = 0 has been
artificially normalized to (1, 10%,10'2,10'8) for ¢ = 5, 4, 3, 2, respectively.
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For o > 1, consider the ratio

MW@ (kr,, s,0)
FWNGO) (kr., s) = e
(kre. s) ;Q[f}?f,] M(kr.,s,0)

(131)

which measures the size of each truncated matrix element
contribution relative to the full amplitude.'® For sufficiently
large N and ¢ > 1 we have confirmed numerically that the
ratio | MN@) / MIV| reaches a global maximum at 6 = 7/2
for ¢ > 1. Therefore

MW@ (kr,, 5,0)
M(kr.,s,0)

FN@) (kr,, s) = (132)

O=r/2

Unlike M@ for ¢ > 1, M) diverges at 6 € {0, 7}
because of a csc? @ factor, as indicated in Eq. (125), which
arises from the 7- and u-channel exchange of light states."”
The total elastic RS1 amplitude M, on the other hand,
only has such IR divergences due to the exchange of the
massless graviton and radion. For this reason, and as
confirmed by the numerical evaluation of MMM/ AMN],
the divergences at 6 € {0,z} of MMM are actually
slightly more severe than the corresponding divergences
of MM, and so the ratio MM/ MIN grows large in the
vicinity of @ € {0, z}. However, this unphysical divergence
is confined to nearly forward or backward scattering;
otherwise the ratio is approximately flat. Thus for ¢ = 1
we study the analogous quantity

[N](o)
FNO (k. 5) = 'MM(k(krsc,;,)H)
rcv )

(133)

O0=rn/2

We also define the overall accuracy of the partial sum
over intermediate states using a version of this quantity for
which no expansion in powers of energy has been made:

(V] z
FM(kr,, 5) = ‘/\;\l/l((krc,s,z)

134
kr.,s.5) (134)

Because FM(@) (FIN) measures the discrepancy
between any given contribution MN©@) (MM and the
full matrix element M, we study these quantities to
understand the truncation error. In the upper two panes
of Fig. 3 we plot the plot these quantities as a function of
maximal KK number N for kr. = 1/10 and kr. = 10 at
the representative energy s = (10m;)% for m; = 1 TeV.
The lower two panes of Fig. 3 plot similar information but

"®In practice, we approximate the “full” amplitude by
MIN=100(kr 5. 0), which we have checked provides ample
sufficient numerical accuracy for the quantities reported here.

Formally, the sum over intermediate KK modes in Eq. (125)
extends over all masses, but the couplings a, vanish as n grows
and suppress the contributions from heavy states.

at the energy s = (100m,)% The kr. = 10 panes contain
the more phenomenologically relevant information. In all
cases, we find that including sufficiently many modes in the
KK tower yields an accurate result for angles away from the
forward or backward scattering regime. When including
only a small number of modes N, the contribution from
MIWIG) [the residual contribution arising from the non-
cancellation of the O(s>) contributions] dominates and the
truncation yields an inaccurate result. As one increases the
number of included modes, this unphysical O(s) contri-
bution to the amplitude falls in size until the full amplitude
is dominated by MV which is itself a good approxi-
mation to the complete tree-level amplitude. For
kr. = 1/10, the number of states N required to reach this
“crossover,” however, increases from 3 to 15 as /s
increases from 10m; to 100m;. Consistent with our
analysis in the previous subsection, however, the truncation
error is less dependent on kr; the number of states required
to reach crossover increases by less than a factor of 2 when
moving from kr, = 1/10 to kr. = 10 at fixed +/s.

Finally, we note that the vanishing of FIV3) as N increases
is a numerical test of the O(s*) sum rule in Eq. (112).

C. The strong-coupling scale at large kr,

In Sec. IV B we analyzed the tree-level scattering ampli-
tude (1,4) — (2,3) and discovered that the 5D gravity
compactified on a (flat) orbifolded torus becomes strongly

coupled at roughly the Planck scale, ASJ;%T) = V4zMp,. In
the large-kr, limit of the RS1 model, however, we expect
that all low-energy mass scales are determined by the
emergent scale [48,49]

A” = Mple_ﬂkr”, (135)
which is related to the location ¢ = 7 of the IR brane [6,7].
In this section we describe how this emergent scale arises
from an analysis of the elastic KK scattering amplitude in the
large-kr, limit.

Consider the helicity-zero polarized (n,n) — (n,n)
scattering amplitude. As plotted explicitly for n =1 in
the previous subsection, at energies s > m? the scattering
amplitude is dominated by the leading term M) (kr., s, 6)
given in Eq. (125). The analogous expression in the 5D
orbifold torus is given by Eq. (70). We note that the angular
dependence of these two expressions is precisely the same,
and therefore we can compare their amplitudes by taking
their ratio. This gives the purely kr.-dependent result*

2OFormally, as in the case of toroidal compactification, this
amplitude has an IR divergence due to the exchange of the
massless graviton and radion modes. By taking the ratio of the
amplitudes in RS1 to that in the 5D orbifolded torus, the IR
divergences cancel and we can relate the strong-coupling scale in
RS to that in the case of toroidal compactification.
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FIM(©) ys N
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FIG. 3. These plots show an upper bound on the size of the residual truncation error relative to the size of the full matrix element for the
process (1,1) — (1, 1) as a function of the number of included KK modes N, for E = 10m; (upper pair) and E = 100m, (lower pair),
and kr. = 0.1 (left pair) and kr, = 10 (right pair). N (kr,, s) from Eq. (132) is shown in color, for ¢ = 1-5, and F™ (kr,, s) from
Eq. (134) is shown in black. We see that the size of the truncation error falls rapidly as the number of included intermediate states N
increases. We also see that, for £ > m, with a sufficient number of intermediate states M) is a good approximation of the full

matrix element. Note that if an insufficient number of intermediate KK modes is included, and the truncation error is large, M N(®)
dominates.

MWD (k 1 — e 27k _ From this ratio, we can estimate the strong-coupling scale
( rC) = - ' }Cnnnn(krc)’ (136) t kr .: s e
2rkr, at nonzero kr,:

/\/l“)(O)
where (RS1) (RS MW(0)
Astrong (krc) = Astrong(o) W

_ 1 md
Ko = 305 {15 D % al + 28 Ao [ 27kr, 138

405 j my - \/’C—_ 1 — g~2mkr.’ ( )

9b2 nnnn
—144[¢—afm ]} (137)
(myre)* 0 where we can use our earlier Agfg&,ﬂ = VA4xMp; result.
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FIG. 4. The strong-coupling scale Agﬁggg(krc), Eq. (139), as a
function of kr, for the processes (1,1)— (1,1) and

(1,4) = (2,3). We see that this scale is comparable to v/4zA,,.

Now let us consider the kr. dependence of this expres-
sion in the large kr. limit. To begin with, at large kr.,
Eq. (138) becomes

(RSl ( ) 277,'/(}"

strong

VarnMp

(139)

nnnn

Furthermore, in Appendix F we show that at large kr,
Eq. (137) becomes

IC anr
nn}’”’l ~ 5 Scz 28 8 C
27rkr 8107x8 { Zx nnj T 20X Crnnn

_ 1296x;:c3m,}. (140)

In this expression, the x;, are the jth and nth zeros of the
Bessel function Jy, respectively; the constants C,,,,;, Cyppns
and C,,, (defined explicitly in Appendix F) are integrals
depending only on the Bessel functions themselves. Therefore,
focusing on the overall kr,. dependence, we find that

A & VaaMpe ™ = Az, (141)
at large kr,, as anticipated. The precise value of the propor-
tionality constant depends weakly on the process considered,
and in the large-kr. limit for the processes (n,n) — (n,n)
we find

n 1 2 3 4 5
ssgnlg/ /AzA, 2.701 2793 2812 2819 2822

Since these results for the elastic scattering amplitudes
follow from the form of the wave functions in Eq. (F1),
similar results will follow for the inelastic amplitudes as
well—and they will also be controlled by A,.

We have also examined the dependence for lower values
of kr, via the formula (138). We display the dependence of

Aiﬁg&é as a function of kr.. for the processes (1,1) — (1,1)
and (1,4) — (2,3) in Fig. 4. In all cases, we find that the
strong-coupling scale is roughly A,.

Therefore, in the RS1 model, as conjectured under the
AdS/CFT correspondence, all low-energy mass scales are

controlled by the single emergent scale A.

VII. CONCLUSION

We have studied the scattering amplitudes of massive
spin-2 Kaluza-Klein excitations in a gravitational theory
with a single compact extra dimension, whether flat or
warped. Our results have leveraged and expanded upon the
work initially reported in [19,20]. This paper includes a
complete description of the computation of the tree-level
two-body scattering amplitudes of the massive spin-2 states
in compactified theories of five-dimensional gravity
(Secs. II-V), for all helicities of the incoming and outgoing
states.

These scattering amplitudes are characterized by intri-
cate cancellations between different contributions: although
individual contributions may grow as fast as O(s”), the full
results grow only as O(s) or slower. We have derived sum
rules enforcing the cancellations and related them to results
obtained by other groups. We have demonstrated that the
cancellations persist for all incoming and outgoing particle
helicities and have documented how truncating the com-
putation to only include a finite number of intermediate
states impacts the accuracy of the results.

We have also carefully assessed the range of validity
of the low-energy Kaluza-Klein effective field theory
(Sec. VI). In particular, for the warped case we have
demonstrated directly how an emergent low-energy scale
controls the size of the scattering amplitude, as conjectured
by the AdS/CFT correspondence.

A number of interesting theoretical and phenomenologi-
cal questions can now be addressed, including understand-
ing the properties of scattering amplitudes in the presence
of brane and/or bulk matter, the effects of radion stabiliza-
tion, and the application of these results to the phenom-
enology of these models at colliders and in the early
Universe.
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APPENDIX A: WEAK FIELD EXPANDED
RS1 LAGRANGIAN

This appendix provides details of the weak field expan-
sion in both the RSI and 5DOT models, including
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specifying the form of the interactions among up to four
5D fields.
Specifically, we summarize the interaction terms arising

in the matter-free RS1 model Lagrangian Eg%s) from (22)
according to the expansions given in Eqgs. (23)—(25)
through quartic interactions, as organized by 5D particle
content:
£ = ® LR

+ Err + Ehhh

+ Ehhh/’l + e + Errrr + (Al)
We write h = le’j for the trace of a single undifferentiated
graviton field. Primes indicate derivatives with respect
to y. The trace of a product of graviton fields is indicated
(AR =
(0,

via twice-squared bracket notation, e.g.,
B, (0,1) (0, 1t%). Similarly, [/'] = (0,h) =

V/—detg —Hexp[ "nh"]]} (A4)

The first few terms of the determinant equal

- Ka K2 s . n
\/—detg:1+§h+§(h —2[[hh]])
3
+:—8(;}3—6;}nmu+8niziziz]])+0(,<4).
(AS)

Finally, separating the (B-type) interactions that
involve y derivatives from the (A-type) interactions that
do not, we define £, and L according to the following
decomposition:

LR _

LR H+R— 2[ —rkr, 8+2]

e L g yx A € L ],

The equivalent weak field expansion of the 5DOT (A6)
model Lagrangian E;})DOT is derived from these results
by taking the limit kr. — O while maintaining finite  where & = eIl
nonzero r...
The 4D metric g exactly satisfies 1. Quadratic-level results
Gap = Nap + Kila/}' (AZ) _ N N N N
Lp:pp = =y, (0"0"h) 4 hy,, (0#0,h™)
From this, the 4D inverse metric § may be solved for order 14 s L
by order by imposing its defining condition, gaﬂgﬁy = nh, ih (OR*) + Eh(Dh)’ (A7)
which implies | |
Ly = ) [A'7'] + 2 (7%, (A8)
77 =n" + Z ) [ (A3)
- 1
‘CA:rr = 5 (8;4?) (8”;.) (A9)
Meanwhile, the 4D determinant equals
|
2. Cubic-level results
r 1 7 7 c 1 1 1_/A 7 7 7 v 7 AI./ GA
La-wnn = Eh" (MO R7) — Ehhﬂy(aﬂa h) = 2h,,(0"h)(0,h") — h,, B (O*O°h,,)
7 7 Ty [Py T v 34 T uv 7 1~ Ty 7
+ Ny (01, ) (O°R7) — Zhhm(Dh’ )+ Zh,w(@ph" )(0°h) + Eh"”h ?(Oh)
1 7 7 Tuv ] 7 7 I/A 7 7 v ] 7 7
= 5 1 (O o) (O7H) + 5 (D, ) (O H?) = h(Dhy, ) (9, H) + ghz(mh), (A10)
- Ay A A PO | R J EPRN
Lo = =W TTRRT + [AR R = 3 R IH R + Zhﬂh']]z, (Al1)
ZA:hhr =0, (A12)
7 3 N 7m2
Lp:pnr = g[r( ('R = [7']°)], (A13)
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Lp-per = —% 272(0# 0" hy,,) — 127(0" 0¥ #)h,, + #2(0h) + 67(0#)h), (A14)
Ly =0, (A15)
Ly rrr :L#(Df), (A16)

2V6
Lp. = 0. (A17)

3. Quartic-level results

/\

}A)

ZA:hhhh = (aﬂabhpa) h h/mhm(aﬂayh[)) f]. 129 /m(a hpa)(ay )+h h/mhm(aﬂaﬂhy)

;u/ /)0'

e
—
=
=
=

By (040,0) = hy, pa(ﬁf‘h’”)(a”h”)—|—hﬂ,,hpa(8”h”)(8/’h”)+ Lok (040, )

DPR) = By () D) + (0,57 717) +1%<aﬂﬁ”ﬂ><aﬂﬁ>

b)
b)

0| — A=

Lan o A
5hh (010, h)
By (@57 (0RY) = By B (90, 57)
1,

[hh]h, (Dh””)—zhmjz (OTRM) (D, 1°)

PN ~ 1 ~ ~ 1 ~ ~ ~ ~
o (00 H) (D) = 5y o (ORT) = = Ty I (0h) (0°1)

N‘)

=
<

Rogh"? (89 0°h) + by (0#0.507) = By hye(0#BP7) (0,0°7) +

=
=S
=

R (010°h,,,) + = hhy, (0 h,,) (0P

1
2
B (0 hyr) (0,1°7) + hh,, i (OhY) +

|HNIHMIH
=
SR
S‘)
ml,— N~—

1
Or*™) 4 -
w(OH) + 5

~ o 1 4 A 1.4 ~ A 1A ax ~
D) (ORy) + L I (OOh) + by () (070 + L Rl (070 )

>
=

=
—
=
=
=
—
Ll
=
N—

(A18)

R = N =

hR) [AR] - = [[hh’hh]] + 1}3[{% il]] + W MhR R - [hh R

lniziz]][[ﬁ]]Z hz[]hh]]+ }32[1;}’]]2, (A19)
L = 0, (A20)
Ensr = |l T = W)+ a5V ) = D) (a2

Lacwirr = 39 272hy,, (0"0¥ h) + 2721 (Oh,) + 872(0"hy,) (0,h") + 3270y, (0,1*")
+24(0"7) (9, 7) hy 1 + 67(0F) [A A + 2820 (0#0"h,,) + 8#(0"#)h(0"hy,,)
— hOh + 12#(0#0*#)hh,, — 3+(OF)* + #(0*h)(0,h) — 4i%(0,h,,) (0" 7)), (A22)

Esenner = =5 [PH) - 1112)) (A23)

_ 1 . La ~ R R n
'CA:hrrr = 36\/6 [r3(2(aﬂa hllv) + Dh) - 9}’2(2(6”8 r)h/w - (Dr)h)L (A24)
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ZB:hrrr =0, (AZS)

L = iA3(DA) (A26)
Alrrrr T 24 r r),

ZB:rrrr =0. <A27)

APPENDIX B: MASSIVE BULK FIELDS
AND WAVE FUNCTIONS

This appendix provides a general analysis of the proper-
ties of the extra-dimensional wave functions.

Consider a massive 5D field ®;(x,y) defined over the
5D bulk by a Lagrangian

'CSD = ng&vﬁe—zﬂy\ (aﬂq)&> (avq)ﬁ)
+ O (e 1(0,5) (0,07) + mpe 0l 3051,
(B1)

where the index a is a list of Lorentz indices, k is for now a
real-valued parameter and myg, is the 5D mass of the field.

The tensors Q) @5 and Q”ﬂ will have forms (defined below)
chosen to yield 4D canonical kinetic terms for the KK
modes of different spins. This is a generalization of the
quadratic terms in the 5D graviton Lagrangian from the
RS1 scenario and will allow us to consider spin-2 and
spin-0 fields simultaneously. By integrating by parts and
discarding the surface terms (which vanish when the
orbifold symmetry is imposed),

Lsp = Qe 01(9,@;)(0,@;)
+ O {—@; - 0, 01D, @5)] + m3, e~ 01Dz},
(B2)

Performing a mode expansion (KK decomposition) accord-
ing to the ansatz

®;(x.y) = o (X, (). (B3)
re n=0
we obtain
N> i (M (5 )
= Hav m N o=2k[y]y,, (1), (1)
‘CSD ﬂrcmzn;oQA (aﬂq)(l )(avq)ﬁ )e Yy
+ QP DDy )~ [ (D,

+md e“”“”wn}- (B4)

Integrating over the extra dimension then yields the
following effective 4D Lagrangian:

ett Z Qzau[} 6/4@ m )(61,@%")) ) N;m,n)

m,n=0

+ ool ol Ny, (BS)
where
mn 1 +ar,
Ny = / dye Py, (B6)
"Te J-zr,
man 1 +ar, e
Ny = — / dyy, {=0,[e™*P(,y,)]
+ ma e~ Dly, 1. (B7)

We desire that this process yield a particle spectrum
described by canonical 4D Lagrangians for particles of
differing spins and masses. Specifically, a given mode field
¢(x) in the KK spectrum must have canonical kinetic and
mass terms in the Lagrangian

/ml/ﬁ(a ¢a)(a ¢ﬂ) + m2 ﬁ¢ﬁ¢ﬁv (Bg)
where m is the mass of the KK mode. For a full KK tower,
the corresponding canonical quadratic Lagrangian equals
(indexing KK number by n)

£ = 3 0,0 0,0+ P 8. (B)
n=0

Comparing to Eq. (B5), one recovers this form for
the choices Q = ¢ (i.e., if the 5D quadratic tensor structures
mimic the 4D canonical quadratic tensor structures), ® = ¢,

NX"’") = 8,0 and N%mﬂ) = m35,, .- Consider the condi-

tion on NU"™")

1 +ar,
/ dyw!
ﬂr(f —Tre

in more detail:

m) { _ay [e—4k\y| (ayWn )]

+ m%()e_élk‘y‘l//n} = m%lémfn' (BIO)
Using the condition on NX”’"), this implies
+rr. —akly|
|7 oyl 0y
+ ( 2 —2k\v\ _ —4k\v\)w } 0. (Bll)

Anticipating that the {y,, } can be made to form a complete
set, Eq. (B11) would imply that the y,, are solutions of the
following differential equation:
(m2e~ 2kl —

B, le= 01 (9,p,)] + (m 2y, =0, (B12)

or, when expressed in unitless combinations,
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0= a(p [6_4]”[‘(#' (8¢‘//n)]

+ ((myr.)?e ol — (mgr.Pe= ey, (B13)
In addition, orbifold symmetry requires that the wave
functions vanish at the orbifold fixed points—providing
boundary conditions. Finding the solution set {y,} (and
corresponding values of {m,r.}) of the above equation is
precisely a Sturm-Liouville (SL) problem, for which there
is guaranteed a discrete (complete) basis of real wave
functions satisfying

1 +r mn
_/ d(pe_2kr0|(p|l//ml»l/n - N,(4 ) = 5m,n’

. (B14)

as required. Hence, by finding wave functions y,, that solve
Egs. (B13) and (B14), we can KK decompose the fields in
Eq. (B1) according to the ansatz and (so long as Q = q)
obtain a tower of canonical quadratic Lagrangians (BS).
Examining Eq. (B13), we see that if mgq = O there is a
massless flat solution, i.e., with 9y, = 0. Hence a mass-
less 5D graviton will give rise to 4D massless graviton and
radion modes in this framework.”’ Normalization fixes Yo

to equal
kr.m
Yo = 1— e—Zkr(ﬂ'

By construction, the SL equation combined with (B14)
implies an additional quadratic integral condition:

(B15)

1 [+=
_/ d(pe—4kr(.\t/}| [(aq)l//m)(a(pl//n)

)z

+ (m¢r6>2l//ml//n] = (mnrc)zam,n' (B16)

When mg = 0, this becomes an orthonormality condition
on the set {0,y, }.

The existence of a discrete solution set of wave functions
is guaranteed by the SL problem. We now summarize how
to find explicit equations for the nonflat wave functions in
that solution set by following the notation and arguments
from [54]. Note that

Iylo| = sgn(e). (B17)

ol = 2[6(p) — 5(¢p — )],

such that (9,]p|)* =1 and 9}|p| =0 when ¢ #0, 7.
Thus, away from the orbifold fixed points, Eq. (B13)
may be rewritten by defining quantities z,, = (m,,/k)e !
and f, = (m2/k*)w, /72, such that

(B18)

*!Conversely, to prevent the 4D radion from contributing to
long-range gravitational forces we must include interactions
which make the physical 4D spin-0 field become massive, as
occurs during radion stabilization [54].

d2 ., d i 2
OZZ% dez + 2, d]ZC + |:Z%_ (4+%>i|fn (B19)

When mgq = 0, this differential equation is solved by f,
equal to Bessel functions J,(z,) or Y,(z,). When mq, # 0,
it is instead solved by Bessel functions J,(z,) and Y,(z,),
where 1? = 4 + m3 /k*>. Taking a superposition of the
appropriate Bessel functions yields a generic solution f,,
which may then be converted back to y,. By demanding
that the SL boundary condition d,y, =0 is satisfied
simultaneously at both orbifold fixed points, the wave
functions are found to equal

£ € €
=— i bY, |- B20
ll/i’l Nn |:Jl/ (k}’c> + nv-v (k}"c> :| ’ ( )

where ¢ = e™*\?l and p, = m,,r., the normalization N, is
determined by Eq. (B14) [up to a sign that we fix by setting
N, > 0 and which yields y,,(0) < 0 for nonzero n], and the
relative weight b,,, equals

b o—_ 2Ju|;4h/krc + ]l:Tn( (8‘11/)|/4,,/krC (BZI)
" 2Yl/|;4,,/kr(. + ]I:_:C (ayv)|ﬂn/krc ’

where 0J, = dJ,(z)/0z and 9Y, = 0Y,(z)/0z. These
wave functions satisfy Eq. (B16), where each y, solves

0— {2@#%(8@)}

re

Hn€
per |:2Yl/+krc (aYI/):|

»=0

- [ZYD+” ”g(ayv)] (B22)

kr.

[2JD+”L€(81D)]
p=n k

Ve

¢=0

Although these wave functions were derived by solving
Eq. (B13) away from the orbifold fixed points, they solve
the equation across the full extra dimension. In particular,
they ensure 02y, = [(mer.)* — e udly, at ¢ =0, .

Finally, note that given a 5D Lagrangian consistent with
Eq. (B1), the wave functions vy, and spectrum {u,} are
entirely determined by the unitless quantities kr. and mgr,.
In the RS1 model, the 5D graviton field lacks a bulk mass
(me = 0 such that v = 2), so its KK decomposition is
dictated by kr, alone.

APPENDIX C: 4D EFFECTIVE RS1 MODEL

This appendix gives a more detailed description of the
4D interactions.

1. General procedure

The WFE RS1 Lagrangian equals a sum of terms,
wherein each term contains some number of 5D fields
and exactly two derivatives. Each derivative in the pair is
either a 4D spatial derivative d, or an extra-dimension

A

derivative 8),, and each field is either a radion 7 or a
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graviton h,,. Because the Lagrangian requires an even
number of Lorentz indices in order to form a Lorentz scalar,
each derivative pair must consist of two copies of the same

kind of derivative; i.e., each term in Eg%s) can be classified
into one of two categories:
(i) A type.—The term has two spatial derivatives
0, +0,; or
(i) B type.—The term has two extra-dimensional deriv-
atives 0, - 0.
In addition to fields and derivatives, every term in EgRDS) has
an exponential prefactor. That exponential’s specific form
is entirely determined by its type (whether A or B type) and
the number of 5D radion fields in the term. Each A-type
term is associated with a factor £ 2 = e=2Kcl?l whereas
each B-type term is associated with a factor e+ = ¢~#7cl#l,
and every instance of a radion field provides an additional
e ke g2 factor. These assignments correctly reproduce the
prefactors of Appendix A.
Consider a generic A-type term with H spin-2 fields and
R radion fields. Schematically, it will be of the form

X, = x(H+R=2) [8_2] [e_”kr"8+2]R(6ﬁ, }AZH’ ’A,R)

— K‘<H+R_2)€_R”kr"€2(R_l)XA, (Cl)
where the combination X, = (82, h*, #¥) refers to a fully
contracted product of two 4D derivatives, H gravitons, and
R radions. The u label on 8,% above is only schematic and

not literal. Similarly, an equivalent B-type term would be of
the form

X = K(H+R—2) [8—4] [e—ﬂkrcngZ]R(a%’ }AlH, ;,R)

— k(H+R=2) p=Rakr 2R-2) %

(2)
where the combination X = (92, h*, #*) refers to a fully
contracted product of two extra-dimensional derivatives, H
gravitons, and R radions. By construction, each B-type
term we consider never has both of its J, derivatives acting
on the same field (i.e., any instances of (ﬁfz in our 5D
Lagrangian have been removed via integration by parts),
and so we assume Xy also satisfies this property.

We form a 4D effective Lagrangian by first KK decom-
posing our 5D fields into states of definite mass [Eq. (27)]
and then integrating over the extra dimension [Eq. (20)].
For the schematic A-type term, this procedure yields

r

(eff) _ c (H+R-2)
29 (ﬂ.rc)(HJrR)/Z K
+00 R .
% Z (3% h(nl)”.h("ﬁ)’ [?<0)]R)

+x
x e—Rrkr, / d(p€2(R_l)Wn] Wy, [l//()]R- (C3)

T

Define a unitless combination « that contains the extra-
dimensional overlap integral:

A(Rli) = A(R|ny...ny)

a
1 o
n e~ Rrkre / dpe® Dy, o, [wol®,

T

(C4)

so that now we may write

Xfff):[ X :|H+R—2

LT

X Z a(R|nlmnH)(8§,fz("l)...fz(””),[?(O)]R). (CS)

To simplify this expression further, we define a KK
decomposition operator X'z [+]. The KK decomposition
operator maps a product of 5D graviton and radion fields to
an analogous product of 4D spin-2 fields labeled by KK
numbers 7i = (ny, ..., ny) and 4D radion fields 7). More
specifically, X maps all 7 in its argument to #%) and applies

the specified KK labels to the graviton fields (lew — fl,(fﬁ’))
per term according to the following prescription: the labels
are applied left to right in the order that they occur in 7 and
are applied to graviton fields of the form (8),13) before being
applied to all other graviton fields. (This prescription
ensures we correctly keep track of KK number relative
to the soon-to-be-defined quantity b.) After KK number
assignment, any 4D derivatives 0, in the argument of X are
kept as is, while each extra-dimensional derivative 0, is
replaced by 1/r..
Using X, we rewrite the A-type expression:

o _ [ HYR=2
A \/Jt_rc
“+o00

X Z ARlny...ng) " X(nyoongy [ Xal- (C6)

This completes the schematic A-type procedure. B-type
terms admit a similar reorganization. First, we KK decom-
pose and integrate Xp to obtain

(eff) __ e (H+R-2)
Xp _(ﬂ.rc)(H+R)/2K
+oo . X
% Z (l’h(”l)“‘h(”H)’[A(O)]R)
Niyeeoig=
x e~ Rekr / dpe® ®=2 (0,0, ) (O W, Wiy - Wy, W) .

(€7)

We summarize the extra-dimensional overlap integral as a
unitless quantity b:
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biria) = b(Rjmmins...ny)
_1 o—Rakr, / o dgeX k=)
T -
X (8(pl//n|)(a(/)l//nz)l//n3-~-l//)1;, [WO]R7 (CS)
such that
—+o0
(eff) x HTR-2
XB |: :| bRnlnz niy...nyg
o R (Rl )
1 7 (n 7 (n ~
X (LR, 08, ()
and, via the KK decomposition operator &,
H+R-2
X}(geff) _ |k
T,
+o0 _
X Z b(R\n]nz\n}..nH) : X(nl.A.nH)[XBL (ClO)
ny,...,Ny=
where we recall that X maps 0, to 1/r. after KK

number assignment. This completes the schematic B-type
procedure.

We now connect these procedures to the 4D effective
RS1 Lagrangian c iD 5<ff) , following the arrangement of the
5D Lagrangian described in Sec. A. Suppose we collect all

terms from the WFE RS1 Lagrangian [:gl;s) that contain H

graviton fields and R radion fields. Label this collection

LZEIIESZ In general, we can subdivide those terms into two

sets based on their derivative content, i.e., whether they are
A type or B type:
(RS) _ ~(RS
Eh R—E hHR‘l’E hHR (Cll)
We may go a step further by using our existing knowledge

to preemptively extract powers of the expansion parameter
k and any exponential coefficients:

RS ) -
‘ngHrz‘ — x(H+R 2)[ Rrkr, g2(R-1) ﬁA iR

+ e—RJrkr 2(R-2) ﬁB W R] (ClZ)
Finally, we can apply the schematic procedures described
above to obtain a succinct expression for the effective
Lagrangian with H graviton fields and R radion fields:

(H+R-2) F<9 =
L(RS,eff) _ |: K :| X(;i)['CA:hHrR]

o — {awp -
ﬂ'rC ﬁ=6
X [Lgpmpnl}-

Computationally, a key feature of this Lagrangian is
how the dependence on the physical variables arrange

+ b(R‘;{) . (C13)

themselves. Consider the set { Mpy, kr., m; }. The parameter
kr. determines the wave functions {w,} and spectrum
{,un} = {m,,rc}, and thus {a(Rm), b(mﬁ)} as  well.
Additionally fixing the value of m; determines r. =
ui/my and k = (kr.)m, /p,. Finally, fixing Mp, determines
K/\/AT. = Kap/Wo = 2/ (Mppy). Therefore, referring
back to the specific form of Eq. (C13), once kr, is fixed,
changing m, only affects the relative importance of A-type
vs B-type terms via factors of r, introduced by &X'z [+, and
changing Mp, only affects the interaction’s overall strength
via [k/\/ar:|#+R-2). Alternatively, by fixing x and r,
instead, the couplings {agji). b(gjs) } encapsulate the effect
of varying k.

For the specific case of massive spin-2 scattering, we
reduce the generality of the preceding notation somewhat
by defining
ai = ajiy, b = by, bpinyr = b(1jnyny) (C14)
and noting an analogous A-type radion coupling does not
occur in the RS1 model.

2. Summary of results

Appendix A summarized all terms in the WFE RS1
Lagrangian CgDS that contain four or fewer fields. In
particular, it has listed explicit expressions for all relevant
L, and Lg. Application of (C13) to all of these combi-
nations yields a WFE 4D effective Lagrangian of the
following form:

ﬁé(llli)S‘eff) ﬁhe;ff + [friff + ﬁhehff, o Ererfrf
+ L 28 1 od). (C15)
Explicitly, we find
. +o0 R R R R
il =3 [—hf,’,i) (DR + hyy) (09,
n=0
Lot imi oy 4 L300 3
—— Iy (TR +5h (OOR™)
1 .
+ m? [—5 (A" AM] + = nh 1A ]]] (C16)
o) 1,4 . R
L5 =2 (0,10)(@70), (C17)
(eff) +00 _
Ly = Z {a(O\lmn)'X(lmn)['CA:hhh] (C18)
¢ I,m,n=0
+ b(O\lmn) : X(lmn) [‘ZB:hhh]}’ (C19)

075013-26



MASSIVE SPIN-2 SCATTERING AMPLITUDES IN ...

PHYS. REV. D 101, 075013 (2020)

(eff) =
hehr - 71' Z {b (1|mn) * mn)[‘cB:hhr]}’ (CQ’O)
C m,n=0
herfrf - ’CA hrr]} (CZI)
K -
L) = ——{ap) - XLairnl ). (C22)
ﬁgz%)h = [ ] Z {a kimn) * X (kimn) [‘ZA:hhhh]
C k,l,m,n=0
+ b (kimn) * X (kimn) (L]} (C23)

2 I
Y i Bt - X (i (L]} (C24
hhhr \/ﬁ [J;nzo{ (1|Imn) (Imn) [ B: hhhr] } ( )

2 F> _
‘Chehffr - |: :| Z {Cl (2|mn) mn) [LA:hhrr]
m,n=0
+ b(Z\mn) : X(mn) [ﬁB:hhrr}}v (CZS)
(eff) 2%
'Chrrr = Z{a (3ln) * n ’CA hrrr]} (C26)
20— | ha - XL C27
rrrr = Trc {a(4) Azrrrr } ( )

The quantity a gz is defined in Eq. (C4); b(g5) is shown in
Eq. (C8), and the KK decomposition operator X is
introduced below Eq. (C5).

APPENDIX D: ELASTIC SUM RULES

This appendix provides a new analytic proof for a relation
arising from the s* and s? sum rules. Specifically, we prove
Eq. (100) from the main text. Combining that equation with a
proof of either the O(s®) or O(s?) sum rule automatically
implies a proof of the other sum rule.

In the main text, we calculated Z a, ; and then
)Y, ,uj ,m] and thereby proved the O(s°) and O(s*) sum
rules, respectively. Consider the next sum in that sequence:
> ujaz, ;. Tworesults are possible depending on how many
factors of ,uJZ are absorbed into A-type couplings [via the
= 2(M%ann] - bnn/)]
If only one factor of sz is absorbed into an A-type coupling,
the sum equals

sequence of relations ,ufa,m i = 2Dy

nnj]annj

2 4y =23 il = b
J

8

= g:uiammn - zzﬂjzb"”/a”'” (Dl)
J

If instead both factors of uf. are absorbed, the sum equals
Zﬂj nnj - 42[]‘ nnj 2/,tn nn]ann] + brmj]
= 2 My + 4219,,",

Because these results must be equal, together these imply

E 2
/’tjbnnjannj
J

(D2)

ﬂnannnn zzbnnj (D3)

Continuing along in the sequence, the next sum to

consideris ) ; uSa;,, ;. If as many factors of 43 are absorbed

into A-type couplings as possible, we find
2
Z'“J Danj 42”1 nn;
— 16 6 8 4 2b2
- ?ﬂnannnn ﬂnZﬂ] nnj nn] + Z/’t] nnj

= 42[}42 + 4u2)b nnJ’

2/'lnbnnj nnj + bnn/}

(D4)

where Eq. (D3) was utilized.

To ultimately obtain our desired result, we require
additional details about the nature of the exponential e.
Namely, because

Oylep] = sgn(g). (D5)
0ol = 2[6(¢) = 8(p — 7). (D6)
the exponential € satisfies
(0 = (k.)€ (D7)
Oge = (kr.)’e +2(kr.)[6(¢) — (¢ — m)le.  (D8)
Furthermore, because (8(/,1//,,) =0 for ¢ € {0, n},
(02e)e(0pwa) = (D)D) = (kro )2 Dg). (DO)

This will allow us to simplify /,t]b,m ; in Eq. (D4) and
thereby derive Eq. (100).

Define the commonly occurring combination D =
8_48(/, for convenience. Because
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Dle**(Dy,)?] = 6(9,)e(Dy,)* = 245 (Dy, )y . (D10)

it is the case that
9,DIe™0(Dy,)?] = 12(kre)*e*(Dy,,)* = 12u3(9,8)e™ (Dy )y + 2pne >y = 2pine® (D)2, (D11)
where Eq. (D9) was used to eliminate factors of (92¢) and (,¢)?. Thus,
2 1 6 2,22
ﬂjbnnj = _; d(pé‘ (Dvln) [_ﬂjg l//]]
1
= _;/d(pgé(Dl’/n)z[a(pD(ij]
1
== / dow ;0,De™*(Dy,)?]
—12k2 doe*(Dy,)? 12,2 dg(0,e)e™ (D 2ult 2u2b D12
- _;( rc) (pé‘( l//n) l///+;:un ¢( {‘08)6' ( l//n)l//n_ Mnannj+ HnOnnjs ( )

such that
272 12 2 8 4 12 5 5
D Hibry = =—(kr? [ doe Dy, )+ i | dp(0,e)e*(Dy,)y wnmfuuzpm (D13)
J
The second term can be rewritten in terms of B-type couplings

6 1
- / dg(,¢)e°(Dy,,) v, = / do(0,£°)(Dy,,) w,

1
= _ﬂ/dqogéaw[(mn)SWn]
—mng%, (D14)
so that Eq. (D13) becomes
Z 22, = kr) / doe® (Dy,))* + 4l (D15)

The only noncoupling integral 7 that remains may also be rewritten in terms of B-type couplings by carefully
reorganizing terms and applying Eq. (D9):

= =20 [ ape Dy, == [ anl@e)eT + 70,676 Dy, )
:_/waa@]w%)—i/w@@WKmmﬂ
= —gﬂ%/d(ﬂ(a(pg)gs(pl//n)sl//n = _%ﬂrzz/dq)(a(p86)(DWn)3Wn

1
= ;ﬂ% / d§0866(p[(Dl//n)3Wn] = _BMflbnnnn +/"nzbnn] (D16)

Thus, Eq. (D15) becomes
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D M35 = Hibun + 1 ann . (D17)
J
which when applied to Eq. (D4) yields
Z/’t/ nnj 28ﬂn nnnn + 12ﬂ3lzbrmj (Dlg)

Finally, we can eliminate Z b2, ; from this expression in
favor of ), ula i 2 ; by ut111z1ng Eq (D2), such that

_ 16

. D19
3 ”H nnnn ( )

+00
Z [”3 = 5p3) ”J nn/
=0

This is the desired result.

APPENDIX E: CONNECTING
TO THE LITERATURE

As previously noted, following the appearance of [19],
and as [20] was being completed, the authors of [47]
independently proved that the scattering amplitudes of
massive spin-2 KK modes in extra-dimensional theories
grow only like O(s) for compactifications on arbitrary
Ricci-flat manifolds (note that RS1 is not Ricci-flat). In
addition, in Sec. III. Eof that work, the authors of [47]
consider the on-shell tree-level elastic scattering amplitude
of an arbitrary massive spin-2 state (in four dimensions)
which is coupled to one massless graviton, a tower of
massive spin-2 states, and possible additional scalar and
vector states. They consider interaction vertices involving
the most general two-derivative parity-even on-shell cubic
vertices, and quartic contact interactions which involve the
contractions of polarization tensors and momenta and
containing up to six derivatives. By assuming that the
elastic scattering amplitude of spin-0 modes of the massive
spin-2 state grows no faster than O(s), they derive a set of
consistency conditions (sum rules) that must be satisfied by
these couplings. In this appendix, we present the relation-
ships of our sum rules to those presented in [47], demon-
strating that our RS1 sum rules in Eqgs. (97), (99), (112),
and (118) obey the consistency conditions given there.

Our weak field expanded RS1 Lagrangian (as written
and prior to applying any coupling relations) matches their
parameterization (their Eqs. 3.78-82 as written) when

6
a; = =3auu, + _annna (El)
0, = 5 )
dry ==z = —a,,,,
2 B 3 nnn
- 1. -
by = Ebz = b3 = —a,, (E3)

1 /3
&y =— /by ¢, =0, E4
1 ﬂ% \/; nnr C ( )
- 1
€ = /7 [Z(ijnn + bnnj) - (2:“% +ﬂ?)annj]’ (ES)
I D O
€ = 563 = €4 = 565 = —dpyj, (E6)

where y, = m,r, and X = /a7 x/x. The minus signs here
reflect a difference of metric convention: we use the mostly
minus convention for 7,,, whereas Ref. [47] uses mostly
plus. To ensure gauge invariance (i.e., to not generate terms
that violate 4D diffeomorphism invariance), it must be the
case that

bnnO = /‘%zanno’ (E7)
and (Eq. 3.83 of [47])
4
2by =b E8
(=ba =g (ES)
which implies, via Eq. (E3) above,
K 2
o = —— = —Kyp. E9
T Apno Mo, K4p ( )

Diffeomorphism invariance therefore implies the relation-
ship between 4D and 5D Planck scales which is necessary
to ensure our graviton reproduces the 4D Einstein-Hilbert
Lagrangian at cubic order.

Next, we substitute these explicit RS1 parameters
into the sum rules of [47] (Egs. 3.85a—c). Let j denote
summation over all KK numbers and let ¢ denote summa-
tion over all KK numbers except 0 and n. Their first sum
rule, Eq. 3.85a, becomes

2
0= a} +4b3 42[4 3—}
2 2 mg 2
=y, +4al, o+ ZZ {4 -3 W] (2am4)

=55 -,

ﬂn]

3
[ it~ S ]

(E10)

which is equivalent to our O(s*) rule, Eq. (99). Next, their
Eq. 3.85b reduces as follows:
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mg | ma
0= a3 +4b? —24c} + 42[,;12 4}We§a

n

1 3 21 m2 m2
2 2 a a 2
ppn + 4ann0 —-24 <W \/;bnnr> + Z Z |:5 m—% - 4:| m_% (2anna)

2
Ma
= annn + 4ann0 b%nr + E |:5/7 - 4:| > %na
n

n

5 1
=T |: Sﬂi %nn - 5)“11 nnO bgmr Zﬂ na Zﬂ nna:|

:__|: (91?3”“, nnO Zﬂj nn]+ M%Zﬂ] nnJ:| (Ell)

Hn

The last term may be simplified using our O(s*) rule, such that

5 (|4
0= _ﬁ |:§ (9b%mr - :ui"la;%n() Zﬂj nn] :“n nnlm:|
= S b+ 3 OB~ -3 ha (E12)
- 15 Tz Mn8nnnn nnr rmO ﬂj nnj ’

which is equivalent to our O(s?) relation, Eq. (112). Lastly, consider their Eq. 3.85¢ (and recall that our only scalar is the
massless radion):

0= %2(2—%—4) <Z—Z— 1>ma 2ana)? Z(,, ) Q )/4, (2aun;)*

1
= _/7 [Z(_ﬂ] + Sﬂnﬂ] 4.umuj) nnj:| - _//F |:5/’l%l (Zﬂ;}a%nj) 4)“11 <Z/’l/ nn/> Z/’tl nn]:| (E13)
n J

n ]
Using the O(s*) relation again, this becomes

1 16
nLj

which implies Eq. (119) and is equivalent to our O(s?) sum rule Eq. (118) once our O(s*) sum rule is invoked.

APPENDIX F: KK MODE COUPLINGS AT LARGE kr,

In this appendix, we consider the behavior of the KK mode couplings in the large-kr, limit, to support the discussion in
Sec. VIC.

1. General considerations

At large values of kr,, for nonzero n, the behavior of the irregular Bessel functions Y, implies that the coefficients b,,, in
Eq. (B21) are small. The wave functions of Eq. (B20) can then be approximated

1
() % 2 b (9170, (F1)
where x,, is the nth root of J; and
enkr(
N,~——J , F2
n thl"c O(Xn) ( )
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corresponding to a state with mass

m, = x,ke "k, (F3)
In these expressions, we neglect terms suppressed by
higher powers of kr..

Adopting the expressions derived under the above
approximations allows us to consider the (n,n) — (n,n)
coupling integrals analytically. Specifically, we convert ¢
integrals

/ " dgetiol £(|g]) = 2 / " dgerirolf(p)  (F)
— 0

T

to u = x,e""<(?~7) integrals, noting dop = du/(kr.u):

‘/_—Hr d(pe_Akr(- ‘¢|f(|§0|)

zxzx —Akr.m ur: d
2] [ S o). 9)

for any n. Note the limits of integration become indepen-
dent of kr. in this limit:

uy = e *emx, — 0, U, = X,,. (Fo6)
Furthermore, in terms of u the n # 0 wave function
factorizes into separate u and kr.-dependent pieces:

YT 12, ()] R,

S 2ol (7)

(1)

More generally, for generic j # 0,

and
@,w;) (1) % {’/ﬁ]l (? u)} (kr,)3/2em™ . (F9)

For the zero mode we have

Wo ~ \/ Tkr,. (F10)
By combining all of the preceding elements, we
factor kr. dependence out of the coupling in the large-

kr, limit.

2. The integrals

Using these results, in the large-kr, limit we find

annnn ~ C}’H’lnn(krc)ezﬂkrc’ (Fl 1)
Appo = CnnO krm (F12)
bnnr ~ Cnnr(krc)S/ze_”krc’ (F13)
Apn; X Cppin/ kroe™e, (F14)

where the coefficients C are given by the kr.-independent
integrals

27 Xy
C = |——— duw’J 4, F15
nnnn _x?ljo(x")4A uu 2(”) :| ( )
[ 2\/7_1«' *n
C.o=|—— duul 2|, F16
nn0 _X%JO(X;l)ZA uu 2(”) :| ( )
AV X
Coir = |5 dunJ,(u)?*|, F17
_X%JO(xn)ZA uu l(u) :| ( )

S Y
" x| Jo(x;)|Jo(x,)?

x /) " duid 1y ()2, C—’ u)] . (F18)

3. Scattering amplitudes

The following combination of couplings occurs in the
helicity-zero (n,n) — (n,n) matrix element:

R = {155 2 g
nnnn ﬁ ; m_iannj + 28aupnn

9h2
— 144 nnr_ 2 ) F19
hmnrc)‘* H (F19)
Based on our previous argument,

m8 x8.
5 Oy % 5 Oy (k) e, (F20)
Appnn = Cnnrm (krc)eZIkrc , (FZI)

b2 1
g & G (k) e F22
(mnrc)4 X2 nnr( rC)e ( )
a%mO ~ Cnno(krc)' (FZS)

Therefore, at large kr,,
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Knnnn

e2nk e

as quoted in Sec. VIC.

+o0
- 153 xC
2akr,  8107x { ]:Zl i

+ 28x3Cppnn — 1296x‘,‘,Cfm,}, (F24)
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