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In this paper we describe in detail the computation of the scattering amplitudes of massive spin-2
Kaluza-Klein excitations in a gravitational theory with a single compact extra dimension, whether flat or
warped. These scattering amplitudes are characterized by intricate cancellations between different
contributions: although individual contributions may grow as fast as Oðs5Þ, the full results grow only
as OðsÞ. We demonstrate that the cancellations persist for all incoming and outgoing particle helicities and
examine how truncating the computation to only include a finite number of intermediate states impacts the
accuracy of the results. We also carefully assess the range of validity of the low-energy effective Kaluza-
Klein theory. In particular, for the warped case we demonstrate directly how an emergent low-energy scale
controls the size of the scattering amplitude, as conjectured by the AdS/CFT correspondence.
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I. INTRODUCTION

Theories of gravity with compact extra dimensions
were initially introduced to unify gravity and electromag-
netism via the Kaluza-Klein (KK) [1,2] construction.
Constructions involving gravity with “large” [3–5] and
“warped” [6,7] extra dimensions gained renewed interest
in the last two decades as potential solutions to the
Standard Model hierarchy problem, and also within the
broader context of string theory. A key feature of all extra-
dimensional gravitational theories is the emergence of an
infinite tower of massive spin-2 KK resonances in four
dimensions. These extra-dimensional models are being
probed by the LHC [8], where we can search for TeV-
scale KK excitations as a signature of physics beyond the
Standard Model. Extra-dimensional theories that addition-
ally incorporate neutral stable matter motivate certain
dark matter models, where particulate dark matter interacts
with the Standard Model through a massive spin-2 mediator
(see, for example, [9–15]).1
The extra-dimensional gravitational action in these

models gives rise to interactions between the massive

spin-2 KK resonances. Since the underlying gravitational
interactions arise through operators of dimension greater
than four, all tree-level scattering amplitudes of the KK
modes grow with center-of-mass energy. The compactified
theory must therefore be understood as a low-energy
effective field theory (EFT), and the energy scale at which
these scattering amplitudes would violate partial wave
unitarity provides an upper bound on the “cutoff scale,”
the energy scale beyond which the EFT fails.
In this paper we describe in greater detail and further

build upon the work initially reported in [19,20]. In that
work we reported that the scattering amplitudes of the
helicity-zero modes of the massive spin-2 KK resonances
grow no faster than OðsÞ due to subtle cancellations
between different contributions to these amplitudes. Here
we provide a complete description of the computation of
the tree-level scattering amplitudes of massive spin-2 states
in compactified theories of five-dimensional gravity,
consider the scattering of different combinations of incom-
ing and outgoing particle helicities, address the impact
on accuracy when truncating the computation to only
include a finite number of intermediate states, and carefully
assess the range of validity of the low-energy EFT
which arises.
In the remainder of this introductory section, we review

the physics of a theory with a single massive spin-2 particle,
summarize our previously reported results for extra-
dimensional theories of gravity as well as their connection
to the prior literature, and briefly describe the extended
results presented here. We then provide an outline of the
explicit computations reported in this paper.
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1For reviews of extra-dimensional theories (especially in
connection to the LHC and phenomenological consequences)
and the holographic principle, refer to, for example, [16–18].
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A. Scattering of single massive spin-2 particle

Before2 considering the complexities of a compactified
five-dimensional theory and its tower of massive spin-2 KK
modes, we set the stage by reviewing the high-energy
scattering behavior in a theory of a single self-interacting
massive spin-2 particle in four dimensions.
Physicists have investigated massive spin-2 particles

on a four-dimensional spacetime since the initial work
of Fierz and Pauli (FP) [22].3 The FP theory is constructed
by adding a Lorentz-invariant mass term4 to the Einstein-
Hilbert action:

SG ¼
Z

d4x

�
M2

Pl

2

ffiffiffiffiffiffi
−g

p
Rþm2

2
½h2 − ðhμνÞ2�

�
; ð1Þ

where R is the Ricci scalar computed from the metric gμν,
g ≡ detðgÞ, MPl ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p
≃ 2.435 × 1015 TeV is the

(reduced) Planck mass, andm is the mass of the spin-2 field
hμν. We expand the metric around a flat Minkowski
background according to gμν ¼ ημν þ 2hμν=MPl, use (here
and throughout this paper) a mostly minus flat Lorentz
metric ημν, and h ≡ ημνhμν. The mass term breaks diffeo-
morphism invariance, causing hμν to propagate additional
longitudinal polarization modes relative to a massless
graviton.5

The growth of scattering amplitudes with respect to
energy in this theory can be studied using the Stükelberg
formalism [21,28–30].6 Schematically, the Stükelberg for-
malism introduces spurious fields through which one for-
mally restores diffeomorphism invariance. The Stükelberg
fields Aμ and ϕ are introduced via the replacement

hμν → hμν þ
1

m
½∂ðμAνÞ� þ

2

m2
½∂μ∂νϕ� þ � � � ; ð2Þ

where Aμ is a vector gauge field with two transverse
degrees of freedom, ϕ is a real scalar with one degree of

freedom, and the ellipses denote additional nonlinear terms
which are listed explicitly in [21].
Crucially, the nonlinear terms [21,28] in Eq. (2) are

chosen to restore the diffeomorphism invariance of the FP
Lagrangian of Eq. (1) with respect to the full metric
gμν ¼ ημν þ 2hμν=MPl, when one simultaneously does a
gauge transformation on Aμ and a related transformation
on ϕ. Restoring diffeomorphism invariance in this way
[21,28], one finds that the field Aμ always appears with one
derivative in the combination ð∂A=mÞ, ϕ with two deriv-
atives ð∂2ϕ=m2Þ, and that higher-order terms in Eq. (2) are
suppressed by factors ofMPl. The genuine diffeomorphism
invariance of the Einstein-Hilbert term in the Lagrangian
implies that all interactions for the A and ϕ fields come
from the mass term in Eq. (1).7 The FP Lagrangian can be
recovered by going to the “unitary” gauge where the
spurious Aμ and ϕ fields are set to zero.
Following [21,28], in gauges other than unitary gauge

the hμν, Aμ, and ϕ can be used to track the helicity-two,
helicity-one, and helicity-zero polarization modes, respec-
tively, of the massive spin-2 field, and their interactions
provide an understanding of the “power counting” (depend-
ence on energy) of helicity-dependent scattering ampli-
tudes. Expanding the FP mass term [while ensuring the
necessary nonlinear terms from Eq. (2) are correctly
included] results in an infinite series of multipoint inter-
actions among hμν and the Stükelberg fields. The proto-
typical interaction term derived in this way is of the
(schematic) form [28]

m2

2

�
2

MPl

�
−2
�

2

MPl
h

�
nh
�

2

MPl

∂A
m

�
nA
�

2

MPl

∂2ϕ

m2

�
nϕ
; ð3Þ

where nh, nA, and nϕ count how many instances of h, A,
and ϕ are present in this interaction term, respectively.
Neglecting powers of 2, the various factors of graviton

mass m and reduced Planck mass MPl multiplying the
interaction term may be collected together into an inter-
action scale Λλ [28], like so:

ðΛλÞ4−nh−2nA−3nϕhnhð∂AÞnAð∂2ϕÞnϕ ; ð4Þ

where

Λλ ≡ ðmλ−1MPlÞ1=λ ð5Þ

and λ≡ð4−nh−2nA−3nϕÞ=ð2−nh−nA−nϕÞ. Assuming
m ≪ MPl, a larger λ implies the corresponding interaction
is suppressed by a lower energy scale Λλ.

2Our discussion here follows closely the review in
Sec. 8 of [21].

3Note that the mass of the graviton is stringently
constrained by gravitational wave experiments to be m <
1.22 × 10−22 eV=c2 [23].

4The relative coefficients between the two terms in the mass
term are chosen to avoid propagating ghost degrees of freedom.
For more details, consult footnote 7.

5The helicity-zero mode couples to the trace of the stress
energy tensor, and does not decouple in the m → 0 limit, acting
instead as a Brans-Dicke scalar [24]. This feature—known as the
vDVZ discontinuity [25,26]—seemingly implies light should
bend around massive bodies differently than is observed exper-
imentally and, thus, eliminates massive gravity as a description of
reality; however, further investigations [27] revealed the pertur-
bative calculation could not be trusted at those experimental
distance scales. By incorporating nonlinear effects, the predic-
tions of general relativity are restored.

6Alternatively, one canuse the deconstruction formalism [28,31].

7The Stükelberg field redefinition also provides an assurance
that the FP mass term in Eq. (1) does not generate terms with
more than two time derivatives on ϕ, and thus the theory avoids
the Ostrogradsky ghost instabilities which generally plague
higher-derivative theories [32,33].
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To study the growth of scattering amplitudes at high
energy [28], we focus on the least-suppressed interaction
vertex in the expansion: the one with the largest value of λ.
For interaction terms, we have ðnh þ nA þ nϕÞ ≥ 3; the
largest λ arises from nϕ ¼ 3 and nh ¼ nA ¼ 0. This corre-
sponds to the cubic-scalar interaction term ð∂2ϕÞ3=Λ5

5,
whereΛ5 ¼ ðm4MPlÞ1=5. We can “build” a 2-to-2 scattering
amplitude ϕϕ → ϕϕ by “gluing” two instances of this cubic
interaction together, such that the corresponding diagram
naively grows like s5=Λ10

5 at large incoming center-of-mass
energy-squared s. In FP gravity, this expectation has been
confirmed by direct computation [34,35].

Because the preceding discussion did not depend on the
specific details of FP gravity, this power-counting argument
[21,28,31] suggests that the scattering amplitude of helicity-
zero modes in any massive spin-2 theory should typically
growwith energy likeOðs5Þ—i.e., that a theorywith a single
massive spin-2 particle will be a Λ5 theory. By introducing
additional polynomial hμν interaction terms to the FP
Lagrangian of Eq. (1), cancellations between diagrams
can occur such that the overall scattering amplitude for
ϕϕ → ϕϕ can be reduced toOðs3Þ, resulting in a Λ3 theory
which is valid to higher energies [25,28,31,35–38].
However it is not possible to raise the scale any further in
a theory with a single massive spin-2 particle, even after
adding arbitrarily many vector or scalar particles [39–41].8

B. Scattering of massive spin-2 particles
in compactified 5D theories

In a compactified extra-dimensional theory of gravity, the
UV behavior of the four-dimensional KK mode scattering
amplitudesmust be governed by the high-energy behavior of
the underlying theory. For a 5D theory in particular, dimen-
sional analysis implies that the five-dimensional graviton
scattering amplitudes must grow like s3=2=M3

Pl;5D, where
MPl;5D is the 5D Planck scale.9 However, this implies that,
after compactification and decomposing the 5D graviton
field into KK modes, the scattering amplitudes of the
massive spin-2 modes must grow slower thanOðs3Þ, which
was the slowest growth achievable in theories of a single
massive spin-2 particle. Moreover, this must be true even
though the compactified theory includes terms like
ð∂2ϕÞ3=Λ5

5 for each massive spin-2 field in its Stükelberg
analysis.
The motivation of our present work is to reconcile

the apparent contradiction between the behavior of the
underlying extra-dimensional gravitational theory and the

argument in Sec. I A above which would suggest that
massive spin-2 modes have scattering amplitudes which
grow like Oðs5Þ [or at best Oðs3Þ]. Recently, [19] dem-
onstrated that the (elastic) scattering amplitudes for massive
spin-2 KK modes in a compactified 5D theory in fact grow
only like OðsÞ.10 This paper amplifies and extends those
results.
More specifically, a tree-level ðn1; n2Þ → ðn3; n4Þ KK

spin-2 scattering process may proceed via any of several
diagrams, which we may organize into the following sets:

ð6Þ

where subscript “c” denotes the contact diagram, “r”
denotes the sum of diagrams mediated by the radion (a
scalar mode arising from the 5D metric), and “j” denotes
the contribution arising from exchange of a spin-2 KK
mode j. The external ni label the KK numbers of different
massive KK mode excitations. The total tree-level matrix
element is thus

M ≡ Mc þMr þ
Xþ∞

j¼0

Mj: ð7Þ

The arguments given in Sec. I A imply that for helicity-
zero-polarized external states we expect that

Mc and Mj ∼Oðs5Þ; ð8Þ

Mr ∼Oðs3Þ: ð9Þ

The calculations reported in [19] demonstrate that,
although the individual contributions to the helicity-zero
spin-2 KK mode scattering amplitudes do indeed grow as
fast as Oðs5Þ, there are intricate cancellations between
different contributions. These cancellations invalidate the
naive power-counting analysis given in Sec. I A, which

8For further details on massive gravity (including bigravity
theories, which include a massless graviton alongside a massive
spin-2 particle) refer to, for example, [21,42]. All of the theories
described, however, are Λ3 theories—or worse.

9The Feynman amplitude for 2 → 2 scattering in 5D has units
of ðmassÞ−1 and, compared to 4D, an additional factor of energy
arises in the 5D partial wave expansion [43,44].

10While each individual KK mode scattering amplitude grows
only like OðsÞ, as in the case of compactified Yang-Mills theory
[45] there are coupled channels of the first N KK modes whose
scattering amplitudes grow like Ns=M2

Pl. Identifying the mass of
the highest mode to be of order the maximum energy scale of the
EFT, one reproduces the expected s3=2=M3

Pl;5D behavior of the
continuum theory.
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therefore does not apply to a compactified KK theory with
multiple massive gravitons. Indeed, Ref. [19] has demon-
strated the cancellations both in the case of a toroidal (flat)
compactification and in the more phenomenologically
interesting case of the Randall-Sundrum (RS1) [6,7] model
with a warped extra dimension. The cancellations are
enforced by a set of sum rules [20] which interrelate the
masses and couplings of the various modes.11,12

In this paper we provide a detailed account of the
calculations reported in [19,20], specifying all conventions
and information needed for building upon our work in the
future. We also report substantial new results including a
study of the behavior of the scattering amplitudes for
arbitrary external polarization, the “truncation” error
which results from the (numerically necessary) limitation
of summing over a finite number of KK modes in the
intermediate states j above, and a study of the emergence of
a dynamical low-energy scale [6,7] from the behavior of the
scattering amplitudes in RS1.

C. Guide to the paper

Here is an outline of the material presented in the main
text and appendixes of the paper.
In Sec. II we describe the 5D RS1 model, specify our

conventions for the metric, describe the field content, and
outline the procedure used for the (5D) weak field expan-
sion. We provide the details of the weak field expansion
itself, including specifying the form of the interactions
among up to four 5D fields, within Appendix A.
In Sec. III we carry out the KK mode expansion, thereby

obtaining the 4D particle content of the model, and discuss
the form of the interactions among the 4D fields. A general
analysis of the properties of the extra-dimensional wave
functions is given in Appendix B, and the more detailed
description of the 4D interactions is given in Appendix C.
In Sec. IV we begin our analysis of the scattering amp-

litudes of the massive spin-2 KK modes. Section IVA gives
details of our kinematic and helicity conventions. As
described above, the full tree-level scattering amplitudes
will (in general) require summing over the exchange of all
intermediate states, and we will find that the cancellations
needed to reduce the growth of scattering amplitudes from
Oðs5Þ toOðsÞwill only completely occur once all states are

included. In this section we therefore introduce two
“partial” forms of the scattering amplitudes which will
facilitate our discussion of the cancellations: (a) truncated
matrix elements, which include only exchange of KK
modes below some mode number, and (b) the expansion
of the matrix elements in powers of energy. In Sec. IV B we
analyze the case of KKmode scattering in the case in which
the curvature of the internal manifold vanishes: the 5D
orbifolded torus model.
Section V describes in detail the computation of the

elastic scattering amplitudes of massive spin-2 KK modes
in the RS1 model, for arbitrary values of the curvature of
the internal space. For all nonzero curvatures, every KK
mode in the infinite tower contributes to each scattering
process. We discuss, elaborate upon, and apply the sum
rules introduced in [20]. A new analytic proof for a relation
arising from the s3 and s2 sum rules is discussed in
Appendix D, and the relationships of our couplings and
sum rules to those conjectured in [47] are given in
Appendix E. Finally, Sec. VG analyzes the (milder)
high-energy behavior of the scattering of nonlongitudinal
helicity modes (helicities other than zero) of the massive
spin-2 KK modes.
Section VI presents a detailed numerical analysis of the

scattering in the RS1 model. In Sec. VI A we demonstrate
that the cancellations demonstrated for elastic scattering
occur for inelastic scattering channels as well, with the
cancellations becoming exact as the number of included
intermediate KKmodes increases. In Sec. VI B we examine
the truncation error arising from keeping only a finite
number of intermediate KK mode states. We then return in
Sec. VI C to the question of the validity of the KK mode
EFT. In particular, using the results derived in Appendix F
for large values of the AdS curvature, we demonstrate
directly from the scattering amplitudes that the cutoff scale
is proportional to the RS1 emergent scale [48,49]

Λπ ¼ MPle−kπrc ; ð10Þ

which is related to the location of the IR (TeV) brane [6,7].
Finally, Sec. VII contains our conclusions.

II. THE 5D RANDALL-SUNDRUM MODEL
AND ITS WEAK FIELD EXPANSION

In this section, we describe the 5D RS1 model, specify
our conventions for the metric, describe the field content,
and outline the procedure used for the (5D) weak field
expansion. Appendix A provides the details of the weak
field expansion itself, including specifying the form of the
interactions among up to four 5D fields.

A. General considerations and notation

Our investigation concerns the RS1 model without matter
[6,7], in which gravity permeates a five-dimensional (5D)

11Spin-2 KK mode scattering was previously considered
by [46], which used deconstruction to prove that the KK mode
scattering amplitudes grew no faster than Oðs3Þ for a flat extra
dimension.

12Following the appearance of [19], and as [20] was being
completed, the authors of [47] independently proved that the
scattering amplitudes of helicity-zero modes of massive spin-2
KK modes in extra-dimensional theories grow only like OðsÞ for
compactifications on arbitrary Ricci-flat manifolds. Their proof
does not encompass the case of RS1, which is the focus of our
work. See Appendix E for a discussion of the relationship
between our results and those conjectured by [47] in more
general situations.
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bulk that is bounded by two four-dimensional (4D) branes
at y ¼ 0 and y ¼ πrc. The length rc is known as the
compactification radius of the extra dimension. This 5D
spacetime is parameterized by coordinates xM ≡ ðxμ; yÞ,
where the xμ act like our usual 4D spacetime coordinates
and y is an extra-dimensional spatial coordinate. By using
an orbifold symmetry that associates every 5D point ðx; yÞ
with a point ðx;−yÞ and restricting the field content to
include only fields even under orbifold parity, the coor-
dinate y can be extended to cover the interval ½−πrc;þπrc�
and thereby parameterizes a circle of radius rc. In this
orbifolded setup, the branes are located at the orbifold fixed
points of the extended spacetime. Oftentimes we will use
factors of rc to replace the dimensionful variables with
dimensionless equivalents, such as replacing y with φ ≡
y=rc ∈ ½−π; π� when it is convenient to do so.
In general, we will denote a 4D Lorentz index with a

lowercase Greek letter such as μ ¼ 0, 1, 2, 3, whereas
a 5D index will be denoted by an uppercase Latin letter
such as M ¼ 0, 1, 2, 3, 5. The 4D flat metric ημν ¼
Diagðþ1;−1;−1;−1Þ is used to raise or lower 4D indices,
e.g., xμ ≡ ημνxν.

The 5D RS1 metric is of the following form:

GMN ¼
�
wðx; yÞgμν 0

0 −vðx; yÞ2
�
: ð11Þ

This is expressed in coordinates xM ≡ ðxμ; yÞ such that the
corresponding invariant interval ds2 equals

ds2 ¼ ðGMNÞdxMdxN ¼ ðwgμνÞdxμdxν − ðv2Þdy2; ð12Þ

allowing for warping of the transverse four-dimensional
space. Meanwhile, the inverse metric equals

G̃MN ¼
�
g̃μν=wðx; yÞ 0

0 −1=vðx; yÞ2
�
; ð13Þ

where we denote the inverse with a tilde (e.g., G̃ ≡ G−1 and
g̃ ≡ g−1). Several quantities related to the spacetime
geometry are directly calculable from GMN . For instance,
the Christoffel symbols, Ricci curvature, and scalar curva-
ture equal

ΓP
MN ¼ 1

2
G̃PQð∂MGNQ þ ∂NGMQ − ∂QGMNÞ;

RMN ¼ ∂NΓP
MP − ∂PΓP

MN þ ΓP
NQΓ

Q
MP − ΓP

PQΓ
Q
MN;

R5D ¼ G̃MNRMN; ð14Þ

respectively. When going from the metric to the scalar
curvature, exactly two derivatives are applied in every term,
a fact that proves important when we organize the eventual
4D effective theory.

Integrals over the 5D spacetime are weighted by the
invariant volume element

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
d4xdy, which factors into

a 4D piece and an extra-dimensional piece:

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
d4xdy ¼ ½w2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
d4x� · ðvdyÞ: ð15Þ

The quantity in square brackets is the 4D projection of the
5D invariant volume element and thereby acts as an
effective 4D volume element on a 4D sheet at constant y.
The pure gravity RS1 Lagrangian consists of two pieces.

The first piece is the Einstein-Hilbert Lagrangian LEH,
which is defined as

LEH ≡ 2

κ2
ffiffiffiffiffiffiffiffiffiffiffi
detG

p
R5D ¼ 2

κ2
w2v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
R5D; ð16Þ

where κ has units of ðEnergyÞ−3=2. This implies that the 5D
Planck massMPl;5D and 5D quantity κ are related according
to κ2M3

Pl;5D ¼ 4. The second piece is the cosmological
constant Lagrangian LCC, which can be written as

LCC ≡ 12

κ2
krc

n
2

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
ð∂φjφjÞ2 − w2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
ð∂2

φjφjÞ
o
:

ð17Þ

LCC generates two types of terms: terms proportional to
ð∂φjφjÞ2 provide a 5D cosmological constant in the bulk
whereas terms proportional to ð∂2

φjφjÞ generate tension on
the branes (a prime indicates differentiation with respect to
y, e.g., f0 ¼ ∂yf). The coefficients of these terms are
chosen so as to guarantee a solution of Einstein’s equations
that is 4D Poincaré invariant; namely, the vacuum solution
they imply equals

ηðRSÞMN ≡
�
e−2kjyjημν 0

0 −1
�

ð18Þ

as expressed in coordinates xM ¼ ðxμ; yÞ, where k is the non-
negative warping parameter and has units of ðEnergyÞþ1.
Combining LEH and LCC yields L5D, the Lagrangian of

the matter-free 5D theory:

L5D ¼ LEH þ LCC: ð19Þ

The 4D effective theory is then defined from the action

S ¼
Z

d4x½dyL5D� ≡
Z

d4xLðeffÞ
4D ; ð20Þ

i.e., the Lagrangian LðeffÞ
4D is obtained by integrating L5D

across the extra dimension. The form of LCC specifically
prevents a nonzero 4D cosmological constant in the

effective theory described by LðeffÞ
4D .
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This gravitational Lagrangian will be expanded in the
weak field approximation as a perturbation series in fields
in order to obtain particle interactions and calculate matrix
elements. Upon expanding Eq. (19), each term will contain
either two spatial derivatives ∂μ or two extra-dimensional
derivatives ∂y. However, certain terms in the expansion of
Eq. (19) will contain instances of ∂2

y which obscure the
coupling structure of the 4D theory. We can ensure no two
extra-dimensional derivatives ever act on the same field in
the expansion by adding a total derivative to Eq. (19).
Specifically, we can eliminate all instances of ∂2

y in the
expanded Lagrangian without changing the physics by
adding the total derivative13

ΔL ¼ 2

κ2
∂y

�
w2ffiffiffi
v

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p �
⟦g̃g0⟧þ ð∂ywÞ

w

��
; ð21Þ

where a prime indicates differentiation with respect to y and
twice-squared bracket notation indicates a cyclic contrac-
tion of Lorentz indices, e.g., ⟦ĥ0ĥ0⟧ ≡ ð∂yhμνÞð∂yhνμÞ.
Therefore, in practice we use

L5D ¼ LEH þ LCC þ ΔL: ð22Þ

Of course, in order to weak field expand this Lagrangian,
we must first establish the relevant fields.

B. The weak field expansion

Now that we have a generic path from the 5D metricG to

the 4D effective Lagrangian LðeffÞ
4D , we may discuss the field

content of the RS1 theory. The gravitational particle content
is obtained by perturbing the vacuum with field-dependent
functions. To ensure correct units and assist theLagrangian’s
eventual weak field expansion, we will introduce the fields
alongside an explicit factor of κ. We choose to utilize the
Einstein frame parameterization [16,50–52], which elimi-
nates mixing between the scalar and tensor modes—and
ultimately yields a canonically normalized 4D effective
Lagrangian. In this parameterization, w and v in Eq. (11)
may be written, respectively, as

wðx; yÞ ¼ e−2ðkjyjþûÞ; vðx; yÞ ¼ 1þ 2û; ð23Þ

where ûðx; yÞ, as wewill soon see, is related to the 5D radion
field. Furthermore, we identify gμν asweakly perturbed from
the flat value ημν, e.g.,

ημν ↦ gμν ≡ ημν þ κĥμν; ð24Þ

where the symmetric tensor field ĥμνðx; yÞ contains the
spin-2 modes. The metric is then

GðRSÞ
MN ¼

�
e−2ðkjyjþûÞðημν þ κĥμνÞ 0

0 −ð1þ 2ûÞ2
�
: ð25Þ

The 5D radion r̂ðx; yÞ is related to ûðx; yÞ via

ûðx; yÞ ≡ κr̂ðx; yÞ
2

ffiffiffi
6

p eþkð2jyj−πrcÞ: ð26Þ

Unlike ĥμν, the 5D radion field can bemade y independent via
a gauge transformation [53], and sowe choose r̂ðx;yÞ¼ r̂ðxÞ.

In some 5D models, the off-diagonal elements GðRSÞ
5μ and

GðRSÞ
μ5 give rise to an orbifold-odd graviphoton excitation

which can also be made y independent via gauge sym-
metries [53]; however, the RS1 scenario possesses an
orbifold symmetry which removes this degree of freedom

and ensures GðRSÞ
μ5 ¼ GðRSÞ

5μ ¼ 0. Meanwhile, the graviton
and radion fields must be even functions of y to ensure the

interval ds2 described by GðRSÞ
MN is invariant under the

orbifold transformation. Both of these 5D fields have units
of ðEnergyÞþ3=2.
As outlined in the previous subsection, the metric GðRSÞ

MN

determines a Lagrangian LðRSÞ
5D ≡ LðRSÞ

EH þ LðRSÞ
CC þ ΔLðRSÞ.

We calculate LðRSÞ
5D as a perturbation series in κ and thereby

obtain its weak field expansion (WFE). In particular,
because we are ultimately concerned with 2-to-2 tree-level
scattering of massive spin-2 states, we require several of the
three- and four-particle interactions present in the Oðκ2Þ
WFE LðRSÞ

5D . The details of this procedure and its results are
summarized in Appendix A.

III. THE 4D EFFECTIVE THEORY

In this section, we carry out the KK mode expansion,
thereby obtaining the 4D particle content of the model, and
discuss the form of the interactions among the 4D fields. A
general analysis of the properties of the extra-dimensional
wave functions is given in Appendix B, and the more
detailed description of the 4D interactions is given in
Appendix C.

A. 4D particle content

The 4D particle content is determined by employing the
KK decomposition ansatz [1,2,54]:

ĥμνðx; yÞ ¼
1ffiffiffiffiffiffiffi
πrc

p
Xþ∞

n¼0

ĥðnÞμν ðxÞψnðφÞ;

r̂ðxÞ ¼ 1ffiffiffiffiffiffiffi
πrc

p r̂ð0ÞðxÞψ0; ð27Þ

13The orbifold boundary conditions we employ will require all
normal derivatives of the metric to vanish on the branes, and
hence this term is purely for convenience and does not change the
physics.
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where we recall that φ ¼ y=rc. The operators ĥ
ðnÞ
μν and r̂ð0Þ

are 4D spin-2 and spin-0 fields, respectively, while each ψn
is a wave function which solves the following Sturm-
Liouville equation:

∂φ½ε−4ð∂φψnÞ� ¼ −μ2nε−2ψn ð28Þ

subject to the boundary condition ð∂φψnÞ ¼ 0 at φ ¼ 0 and
π, where ε ≡ ekjyj ¼ ekrcjφj [54]. Up to normalization,
there exists a unique solution ψn per eigenvalue μn, each
of which we index with a discrete KK number n ∈
f0; 1; 2;…g such that μ0 ¼ 0 < μ1 < μ2 < � � �. Given a
KK number n, the quantity μn and wave function ψnðφÞ are
entirely determined by the value of the unitless non-
negative combination krc. Additional details about this
ansatz (including explicit expressions for the wave func-
tions and their derivation in a slightly more general
circumstance) comprise Appendix B. For now, we note
that with proper normalization the ψn satisfy two conven-
ient orthonormality conditions:

1

π

Z þπ

−π
dφε−2ψmψn ¼ δm;n; ð29Þ

1

π

Z þπ

−π
dφε−4ð∂φψmÞð∂φψnÞ ¼ μ2nδm;n: ð30Þ

Furthermore, the fψng form a complete set, such that the
following completeness relation holds:

δðφ2 − φ1Þ ¼
Xþ∞

j¼0

1

π
ε−2ψ jðφ1Þψ jðφ2Þ: ð31Þ

The KK number n ¼ 0 corresponds to μn ¼ 0, for which
Eq. (28) admits a flat wave function solution ψ0 corre-
sponding to the massless 4D graviton. Upon normalization
via Eq. (29), this wave function is

ψ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πkrc
1 − e−2πkrc

r
ð32Þ

up to a phase that we set to þ1 by convention. This is the
wave function that Eq. (27) associates with the fields ĥð0Þ

and r̂ð0Þ. The lack of higher modes in the KK decom-
position of r̂ reflects its y independence. In this sense,
choosing to associate ψ0 with r̂ð0Þ in Eq. (27) is merely
done for convenience.
Before employing KK decomposition to compute the

interactions of the 4D states, we apply the ansatz to the
simpler quadratic terms. In particular, the 5D quadratic
graviton Lagrangian equals (from Appendix A)

LðRSÞ
hh ¼ ε−2L̄A∶hh þ ε−4L̄B∶hh; ð33Þ

where

L̄A∶hh ¼ −ĥμνð∂μ∂νĥÞ þ ĥμνð∂μ∂ρĥ
ρνÞ

−
1

2
ĥμνð□ĥμνÞ þ 1

2
ĥð□ĥÞ; ð34Þ

L̄B∶hh ¼ −
1

2
⟦ĥ0ĥ0⟧þ 1

2
⟦ĥ0⟧2; ð35Þ

where we recall that a prime indicates differentiation with
respect to y and a twice-squared bracket indicates a cyclic
contraction of Lorentz indices.
Similarly, the quadratic 5D radion Lagrangian equals

LðRSÞ
rr ¼ e−2πkrcεþ2L̄A∶rr; ð36Þ

where

L̄A∶rr ¼
1

2
ð∂μr̂Þð∂μr̂Þ: ð37Þ

To obtain the 4D effective equivalents of the above 5D
expressions, we must integrate over the extra dimension
and employ the KK decomposition ansatz.
First, the graviton: the first term in (33) becomes

LðeffÞ
A∶hh ≡

Z þπrc

−πrc
dyε−2L̄A∶hh

¼
Z þπrc

−πrc
dyε−2

�
−ĥμνð∂μ∂νĥÞ þ ĥμνð∂μ∂ρĥ

ρνÞ − 1

2
ĥμνð□ĥμνÞ þ 1

2
ĥð□ĥÞ

�

¼
Xþ∞

m;n¼0

�
−ĥðmÞ

μν ð∂μ∂νĥðnÞÞ þ ĥðmÞ
μν ð∂μ∂ρĥ

ðnÞρνÞ − 1

2
ĥðmÞ
μν ð□ĥðnÞμνÞ þ 1

2
ĥðmÞð□ĥðnÞÞ

�
1

π

Z þπ

−π
dφε−2ψmψn; ð38Þ
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whereas its second term becomes

LðeffÞ
B∶hh ≡

Z þπrc

−πrc
dyε−4L̄B∶hh

¼
Z þπrc

−πrc
dyε−4

�
−
1

2
⟦ĥ0ĥ0⟧þ 1

2
⟦ĥ0⟧2

�

¼
Xþ∞

m;n¼0

�
−
1

2
⟦ĥðmÞĥðnÞ⟧þ 1

2
⟦ĥðmÞ⟧⟦ĥðnÞ⟧

�

×
1

πr2c

Z þπ

−π
dφε−4ð∂φψmÞð∂φψnÞ: ð39Þ

These are simplified via the orthonormality relations
Eqs. (29) and (30), such that the 4D effective Lagrangian

resulting from LðRSÞ
hh equals

LðRS;effÞ
hh ¼ LðeffÞ

A∶hh þ LðeffÞ
B∶hh

¼ LðS¼2Þ
Kin ðĥð0ÞÞ þ

Xþ∞

n¼1

LFPðmn; ĥ
ðnÞÞ; ð40Þ

wherein mn ≡ μn=rc. Therefore, KK decomposition of the
5D field ĥμν results in the following 4D particle content: a

single massless spin-2 mode ĥð0Þ, and countably many
massive spin-2 modes ĥðnÞ with n ∈ f1; 2;…g (each
having a corresponding Fierz-Pauli mass term). The zero
mode ĥð0Þ is consistent with the usual 4D graviton and will
be identified as such. The 4D graviton has dimensionful
coupling constant κ4D ¼ 2=MPl ¼ ψ0κ=

ffiffiffiffiffiffiffi
πrc

p
, where MPl

is the reduced 4D Planck mass. In terms of the reduced 4D
Planck mass, the full 4D Planck mass equals

ffiffiffiffiffiffi
8π

p
MPl.

Meanwhile, the 4D effective equivalent of LðRSÞ
rr from

Eq. (36) equals

LðRS;effÞ
rr ¼

Z þπrc

−πrc
dyLðRSÞ

rr

¼
Z þπrc

−πrc
dye−2πkrcεþ2

�
1

2
ð∂μr̂Þð∂μr̂Þ

�

¼ 1

2
ð∂μr̂ð0ÞÞð∂μr̂ð0ÞÞ · ψ0

2

πrc

Z þπrc

−πrc
dyeþ2kðjyj−πrcÞ

¼ LS¼0
Kin ðr̂ð0ÞÞ: ð41Þ

Therefore, KK decomposing the 5D radion yields only a
single massless spin-0 mode r̂ð0Þ. Like its 5D progenitor,
this 4D state is called the radion. Note the exponential
factor in Eq. (36) is inconsistent with the orthonormality
equation (29), so we had to calculate the integral explicitly.
Thankfully, the y-independent radion must possess a flat
extra-dimensional wave function and so the exponential
factor can at most affect its normalization. This would not

be the case if the radion’s y dependence could not be
gauged away.
The RS1 model has three independent parameters

according to the above construction: the extra-dimensional
radius rc, the warping parameter k, and the 5D coupling
strength κ. However, we use a more convenient set of
independent parameters in practice: the unitless extra-
dimensional combination krc, the mass m1 of the first
massive KK mode ĥð1Þ, and the reduced 4D Planck mass
MPl. These sets are related according to the following
relations:

m1 ≡ 1

rc
μ1ðkrcÞ via Eq:ð28Þ; ð42Þ

MPl ≡ 2

κ
ffiffiffi
k

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2krcπ

p
: ð43Þ

In our analysis, we will consider MPl and m1 fixed and
vary krc. When explicit values are used, we will choose
krc ∈ ½0; 10�, m1 ¼ 1 TeV, and MPl ¼ 2.435 × 1015 TeV.

B. Beyond quadratic order

Deriving the quadratic terms proceeded so cleanly in
part because all wave functions with a nonzero KK
number occur in pairs and are thus subject to orthonor-
mality relations. Such simplifications are seldom possible
when dealing with a product of three or more 5D graviton
fields, and instead the integrals must be dealt with
explicitly. Consequently, the RS1 model possesses
many nonzero triple couplings and calculating a matrix
element for 2-to-2 scattering of massive KK modes
typically requires a sum over infinitely many diagrams,
each of which is mediated by a different massive KK
mode and contains various products of these overlap
integrals.
Keeping this in mind, consider all terms in the weak field

expanded Lagrangian LðRSÞ
5D that have exactly H spin-2

fields and no radion fields. After KK decomposition, terms
with two 4D derivatives (designated as A-type) are propor-
tional to overlap integrals

a  n ≡ 1

π

Z þπ

−π
dφε−2

YH
i¼1

ψni ; ð44Þ

and those containing two extra-dimensional derivatives
(designated as B-type) are proportional to integrals

b  n ≡ 1

π

Z þπ

−π
dφε−4ð∂φψn1Þð∂φψn2Þ

YH
i¼3

ψni ; ð45Þ
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where  n ¼ ðn1…nHÞ are the KK numbers of the relevant
spin-2 fields.14 These integrals are unitless and entirely
determined by the value of krc. Note that a  n is fully
symmetric in all KK numbers, whereas b  n is symmetric in
the first pair and remaining KK numbers separately.
Pictorially, we indicate the vertices associated with these
couplings as small filled circles attached to the appropriate
number of particle lines:

ð46Þ

ð47Þ

where overlapping straight and wavy lines indicate a spin-2
particle and P indicates that all permutations of its argu-
ments should be considered. If we set n3 ¼ 0 in the triple
spin-2 coupling, the corresponding wave function ψ0 is flat;
either ψ0 is differentiated (in which case the integral
vanishes) or it can be factored out of the y integral thereby
allowing us to invoke the wave function orthogonality
relations on the remaining wave function pair. In this way,
the triple spin-2 couplings imply that the massless 4D
graviton couples diagonally to the other spin-2 states, as
required by 4D general covariance:

an1n20 ¼ ψ0δn1;n2 ; bn1n20 ¼ μ2n1ψ0δn1;n2 ; b0n1n2 ¼ 0:

ð48Þ

The Sturm-Liouville problem that defines the wave func-
tions fψng also relates various A-type and B-type cou-
plings to each other; we will explore this further in Sec. V.
When calculating matrix elements of massive KK mode

scattering, we must also consider radion-mediated dia-
grams. These involve coupling a radion to a pair of spin-2
states, which requires the integral

bn1n2r ≡
ψ0

π
e−krcπ

Z þπ

−π
dφε−2ð∂φψn1Þð∂φψn2Þ: ð49Þ

This is defined analogously to the pure spin-2 couplings
in the sense that we indicate the role of the radion
wave function within the coupling (e.g., differentiated vs

undifferentiated) through the placement of a pseudo-KK
index “r.” The RS1 model lacks an analogous A-type radion
coupling and the brn1n2 coupling vanishes for the same
reason that the b0n1n2 coupling vanished. Note that the
exponential factor in the integrand of bn1n2r prevents use
of the orthonormality relations; therefore, the radion
typically couples nondiagonally to massive spin-2 modes.
Pictorially,

ð50Þ

where unadorned straight lines indicate a radion.
Appendix C describes how the detailed vertices between

4D particles are derived from the 5D theory and summa-
rizes the relevant interactions. These interactions form the
building blocks of our matrix elements, which we turn
to next.

IV. ELASTIC SCATTERING IN THE
5D ORBIFOLDED TORUS MODEL

In this section, we begin our analysis of the scattering
amplitudes of the massive spin-2 KK modes. Section IVA
gives details of our kinematic and helicity conventions. As
described above, the full tree-level scattering amplitudes
will (in general) require summing over the exchange of all
intermediate states, and we will find that the cancellations
needed to reduce the growth of scattering amplitudes from
Oðs5Þ toOðsÞwill only completely occur once all states are
included. In this section we therefore introduce two
“partial” forms of the scattering amplitudes which will
facilitate our discussion of the cancellations: (a) truncated
matrix elements, which include only exchange of KK
modes below some mode number, and (b) the expansion
of the matrix elements in powers of energy. In Sec. IV B we
analyze the case of KKmode scattering in the case in which
the curvature of the internal manifold vanishes: the 5D
orbifolded torus model.

A. Preliminaries

The preceding sections (and related appendixes)
described how to determine the vertices relevant to tree-
level 2-to-2 scattering of massive spin-2 helicity eigenstates
in the center-of-momentum frame. This section calculates
and analyzes those matrix elements. For scattering of
nonzero KK modes ðn1; n2Þ → ðn3; n4Þ with helicities
ðλ1; λ2Þ → ðλ3; λ4Þ, we choose coordinates such that the
initial particle pair have 4-momenta satisfying

pμ
1 ¼ ðE1;þj  pijẑÞ; p2

1 ¼ m2
n1 ; ð51Þ

pμ
2 ¼ ðE2;−j  pijẑÞ; p2

2 ¼ m2
n2 ; ð52Þ

and the final particle pair have 4-momenta satisfying

14Every term in LðRSÞ
5D contains exactly two derivatives.

Because even-spin fields carry an even number of Lorentz
indices and the Lagrangian is a Lorentz scalar, those two
derivatives must either both be 4D derivatives or both be
extra-dimensional derivatives, no matter how many spin-2 or
spin-0 fields are present. Therefore, A-type and B-type couplings
exhaust the possible wave function integrals encountered in the
RS1 model.
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pμ
3 ¼ ðE3;þ  pfÞ; p2

3 ¼ m2
n3 ; ð53Þ

pμ
4 ¼ ðE4;−  pfÞ; p2

4 ¼ m2
n4 ; ð54Þ

where  pf ≡ j  pfjðsin θ cosϕ; sin θ sinϕ; cos θÞ. That is, the
initial pair approach along the z axis and the final pair
separate along the line described by the angles ðθ;ϕÞ. The
helicity-λ spin-2 polarization tensor ϵμνλ ðpÞ for a particle
with 4-momentum p is defined according to

ϵμν�2 ¼ ϵμ�1ϵ
ν
�1; ð55Þ

ϵμν�1 ¼
1ffiffiffi
2

p ½ϵμ�1ϵ
ν
0 þ ϵμ0ϵ

ν
�1�; ð56Þ

ϵμν0 ¼ 1ffiffiffi
6

p ½ϵμþ1ϵ
ν
−1 þ ϵμ−1ϵ

ν
þ1 þ 2ϵμ0ϵ

ν
0�; ð57Þ

where ϵμs are the (particle-direction dependent) spin-1
polarization vectors

ϵμ�1 ¼ � e�iϕffiffiffi
2

p ð0;−cθcϕ � isϕ;−cθsϕ ∓ icϕ; sθÞ; ð58Þ

ϵμ0 ¼
E
m

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2

E2

r
; p̂

�
; ð59Þ

ðcx; sxÞ ≡ ðcos x; sin xÞ, and p̂ is a unit vector in the
direction of the momentum [55]. We use the Jacob-Wick
second particle convention, which adds a phase ð−1Þλ to ϵμνλ
when the polarization tensor describes hðn2Þ or hðn4Þ [56].
Due to rotational invariance, we may set the azimuthal
angle ϕ to 0 without loss of generality. Meanwhile, the
propagators for virtual spin-0 and spin-2 particles of mass
M and 4-momentum P are, respectively,

ð60Þ

ð61Þ

where we use the spin-2 propagator convention [55]

Bμν;ρσ ≡ 1

2
½B̄μρB̄νσ þ B̄νρB̄μσ −

1

3
ð2þ δ0;MÞB̄μνB̄ρσ�;

B̄αβjM¼0 ¼ ηαβ; B̄αβjM≠0 ≡ ηαβ −
PαPβ

M2
; ð62Þ

and ημν ¼ Diagðþ1;−1;−1;−1Þ is the flat 4D metric. The
massless spin-2 propagator is derived in the de Donder

gauge, via a gauge-fixing term −ð∂μĥð0Þμν − 1
2
∂ν⟦ĥ

ð0Þ⟧Þ2.
The Mandelstam variable s ≡ ðp1 þ p2Þ2 ¼ ðE1 þ E2Þ2

provides a convenient frame-invariant measure of collision
energy. The minimum value of s that is kinematically
allowed equals smin≡max½ðmn1þmn2Þ2;ðmn3þmn4Þ2�.
When dealing with explicit full matrix elements, we will
replace s ∈ ½smin;þ∞Þ with the unitless s ∈ ½0;þ∞Þ,
which is defined according to s ≡ sminð1þ sÞ.
As discussed in Sec. I B, any tree-level massive spin-2

scattering amplitude can be written as

M ≡ Mc þMr þ
Xþ∞

j¼0

Mj; ð63Þ

where we separate the contributions arising from contact
interactions, radion exchange, and a sum over the
exchanged intermediate KK states j (and where “0” labels
the massless graviton). In practice, this sum cannot be
completed in entirety and must instead be truncated.
Therefore, we also define the truncated matrix element

M½N� ≡ Mc þMr þ
XN
j¼0

Mj; ð64Þ

which includes the contact diagram, the radion-mediated
diagrams, and all KK mode-mediated diagrams with
intermediate KK number less than or equal to N.
We are concerned with the high-energy behavior of these

matrix elements and will therefore examine the high-energy
behavior of each of the contributions discussed. Because
the polarization tensors ϵμν�1 introduce odd powers of
energy,

ffiffiffi
s

p
is a more appropriate expansion parameter

for generic helicity combinations. Thus, we series expand
the diagrams and total matrix element in

ffiffiffi
s

p
and label the

coefficients like so:

Mðs; θÞ ≡ X
σ∈1

2
Z

MðσÞðθÞ · sσ ð65Þ

and define MðσÞ ≡ MðσÞ · sσ . In what follows, we dem-
onstrate thatMðσÞ vanishes for σ > 1 regardless of helicity
combination and we present the residual linear term in s for
helicity-zero elastic scattering. However, before we tackle
the generic RS1 theory, let us start by analyzing a simpler

case: LðRSÞ
5D in the limit of no warping.

B. The 5D orbifolded torus

Before investigating scattering amplitudes in the general
RS1 model, we consider a special case in which the internal
space is flat. Taking the limit of the RS1 metric (25) as krc
vanishes, while simultaneously maintaining a nonzero
finite first mass m1 (or, equivalently, a nonzero finite
rc), yields the 5D orbifolded torus (5DOT) model. The
5DOT metric lacks explicit dependence on y,
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Gð5DOTÞ
MN ¼

0
B@ e

−κr̂ffiffi
6

p ðημν þ κĥμνÞ 0

0 −
	
1þ κr̂ffiffi

6
p


2

1
CA; ð66Þ

and as krc → 0 the massive wave functions go from
exponentially distorted Bessel functions to simple cosines:

ψn ¼
�
ψ0 ¼ 1ffiffi

2
p

ψn ¼ − cosðnjφjÞ; 0 < n ∈ Z
ð67Þ

with masses given by μn ¼ mnrc ¼ n and 5D gravitational
coupling κ ¼ ffiffiffiffiffiffiffiffiffi

2πrc
p

κ4D ¼ ffiffiffiffiffiffiffiffiffi
8πrc

p
=MPl. In the absence of

warp factors, the radion now couples diagonally and spin-2
interactions display discrete KK momentum conservation.
Explicitly, an H-point vertex ĥðn1Þ…ĥðnHÞ in the 4D
effective 5DOT model has vanishing coupling if there
exists no choice of ci ∈ f−1;þ1g such that c1n1 þ � � � þ
cHnH ¼ 0. For example, the three-point couplings an1n2n3
and bn1n2n3 are nonzero only when n1 ¼ jn2 � n3j.
Therefore, unlike when krc is nonzero, the 5DOT matrix
elementMð5DOTÞ for a process ðn1; n2Þ → ðn3; n4Þ consists
of only finitely many nonzero diagrams.
For ðn; nÞ → ðn; nÞ, the 5DOT matrix element arises

from four types of diagrams:

Mð5DOTÞ
ðn;nÞ→ðn;nÞ ¼ Mc þMr þM0 þM2n: ð68Þ

Using Eqs. (44) and (45) and the toroidal wave functions,
we find

n2annnn ¼ 3bnnnn ¼
3

4
n2;

n2ann0 ¼ bnn0 ¼ bnnr ¼
1ffiffiffi
2

p n2;

n2annð2nÞ ¼ −bnnð2nÞ ¼
1

2
bð2nÞnn ¼ − 1

2
n2; ð69Þ

where here again the subscript “0” refers to the massless 4D
graviton. We focus first on the scattering of helicity-zero
states, which have the most divergent high-energy behavior
(we return to consider other helicity combinations in

Sec. V G). Reference [19] lists MðσÞ
c , MðσÞ

r , MðσÞ
0 , and

MðσÞ
2n for σ ≥ 1 and demonstrates how cancellations occur

among them such that MðσÞ ¼ 0 for σ > 1 and the leading
contribution in incoming energy is

Mð1Þ ¼ 3κ2

256πrc
½7þ cosð2θÞ�2csc2θ: ð70Þ

We report here the results of the full calculation, including
subleading terms.
The complete (tree-level) matrix element for the elastic

helicity-zero 5DOT process equals

Mð5DOTÞ ¼ κ2n2½P0 þ P2c2θ þ P4c4θ þ P6c6θ�csc2θ
256πr3csðsþ 1Þðs2 þ 8sþ 8 − s2c2θÞ

;

ð71Þ

where

P0 ¼ 510s5 þ 3962s4 þ 8256s3 þ 7344s2

þ 3216sþ 704; ð72Þ

P2 ¼ −429s5 þ 393s4 þ 3936s3 þ 5584s2

þ 3272sþ 768; ð73Þ

P4 ¼ −78s5 − 234s4 þ 192s3 þ 1552s2

þ 1776sþ 576; ð74Þ

P6 ¼ −3s5 − 25s4 − 96s3 − 144s2 − 72s; ð75Þ

and s is defined such that s ≡ sminð1þ sÞ, where in this
case smin ¼ 4m2

n ¼ 4n2=r2c.
For a generic helicity-zero 5DOT process ðn1; n2Þ →

ðn3; n4Þ, the leading high-energy contribution to the matrix
element equals

Mð1Þ ¼ κ2

256πrc
xn1n2n3n4 ½7þ cosð2θÞ�2csc2 θ; ð76Þ

where x is fully symmetric in its indices, and satisfies

xaaaa ¼ 3; xaabb ¼ 2; otherwise xabcd ¼ 1;

when discrete KK momentum is conserved (and, of
course, vanishes when the process does not conserve
KK momentum).
The multiplicative csc2 θ factor in Eq. (71) is indicative

of t- and u-channel divergences from the exchange of the
massless graviton and radion, which introduces divergen-
ces at θ ¼ 0, π. Such IR divergences prevent us from
directly using a partial wave analysis to determine the
strong-coupling scale of this theory. In order to characterize
the strong-coupling scale of this theory, we must instead
investigate a nonelastic scattering channel for which KK
momentum conservation implies that no massless states can
contribute, M0 ¼ Mr ¼ 0. [In this case, the csc2 θ factor
present in Eq. (76) is an artifact of the high-energy
expansion and is absent from the full matrix element.]
Consider for example the helicity-zero 5DOT process

ð1; 4Þ → ð2; 3Þ. The total matrix element is computed from
four diagrams

ð77Þ
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which together yield, after explicit computation,

M ¼ κ2s
12800πr3cðsþ 1Þ2QþQ−

X4
i¼0

Qiciθ; ð78Þ

where

Q� ¼ 25ðsþ 1Þ � ½3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð25sþ 16Þð25sþ 24Þ

p
cos θ�;

ð79Þ

Q0 ¼ 15ð2578125s4 þ 9437500s3 þ 12990000s2

þ7971000sþ 1840564Þ; ð80Þ

Q1 ¼ 72
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð25sþ 16Þð25sþ 24Þ

p
ð50sþ 43Þð50sþ 47Þ;

ð81Þ

Q2 ¼ 4ð2734375s4 þ 11562500s3 þ 18047500s2

þ12340500sþ 3121692Þ; ð82Þ

Q3 ¼ 24
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð25sþ 16Þð25sþ 24Þ

p
ð50sþ 51Þð50sþ 59Þ;

ð83Þ

Q4 ¼ 390625s4 þ 2187500s3 þ 4360000s2 þ 3729000s

þ 1165956; ð84Þ

and smin ¼ 25=r2c. As expected, unlike the elastic 5DOT
matrix element (71), the ð1; 4Þ → ð2; 3Þ 5DOT matrix
element is finite at θ ¼ 0; π.
Given a 2-to-2 scattering process with helicities

ðλ1; λ2Þ → ðλ3; λ4Þ, the corresponding partial wave ampli-
tudes aJ are defined as [56]

aJ ¼ 1

32π2

Z
dΩDJ

λiλf
ðθ;ϕÞMðs; θ;ϕÞ; ð85Þ

where λi ¼ λ1 − λ2 and λf ¼ λ3 − λ4, dΩ ¼ dðcos θÞdϕ,
and the Wigner D functions DJ

λaλb
are normalized

according toZ
dΩDJ

λaλb
ðθ;ϕÞ ·DJ0�

λ0aλb
ðθ;ϕÞ¼ 4π

2Jþ1
·δJJ0 ·δλaλ0a : ð86Þ

Each partial wave amplitude is constrained by unitarity to
satisfy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

smin

s

r
Re½aJ� ≤ 1

2
; ð87Þ

where Re½aJ� denotes the real part of aJ. The leading partial
wave amplitude of the ð1; 4Þ → ð2; 3Þ helicity-zero 5DOT
matrix element corresponds to J ¼ 0 and has leading term

a0 ≃
s

8πM2
Pl

ln

�
s

smin

�
: ð88Þ

Hence, this matrix element violates unitarity when
Rea0 ≃ 1=2, or equivalently when the value of E ≡ ffiffiffi

s
p

is near or greater than Λð5DOTÞ
strong ≡ ffiffiffiffiffiffi

4π
p

MPl. Because MPl

labels the reduced Planck mass, Λð5DOTÞ
strong is roughly the

conventional Planck mass. We will use this inelastic
calculation as a benchmark for estimating the strong-
coupling scale associated with other processes.
We now consider the behavior of scattering amplitudes

in the RS1 model.

V. ELASTIC SCATTERING IN THE
RANDALL-SUNDRUM MODEL

This section discusses the computation of the elastic
scattering amplitudes of massive spin-2 KK modes in the
RS1 model, for arbitrary values of the curvature of
the internal space. For any nonzero curvature, every
KK mode in the infinite tower contributes to each
scattering process and the cancellation from Oðs5Þ to
OðsÞ energy growth only occurs when all of these states
are included. We first review and elaborate on the
derivation of the sum rules introduced in [20]. A new
analytic proof for a relation arising from the s3 and s2 sum
rules is discussed in Appendix D, and the relationships
of our couplings and sum rules to those conjectured
in [47] are given in Appendix E. In the subsequent
subsections, we apply the sum rules to determine the
leading high-energy behavior of the amplitudes for two-
body scattering of helicity-zero modes. Finally, Sec. V G
analyses the (milder) high-energy behavior of the scatter-
ing of nonlongitudinal helicity modes of the massive spin-
2 KK states.

A. Coupling identities

Let us now consider the elastic helicity-zero RS1 process
ðn; nÞ → ðn; nÞ. We will approach it by identifying sum
rules that enforce cancellations among different contribu-
tions to the scattering amplitude at a given order in s. This
subsection rederives and elaborates on several results from
Ref. [20]; we apply the coupling relations in the subsequent
subsections.
The wave functions ψn solve the Sturm-Liouville prob-

lem defined by Eq. (28) when subject to the boundary
condition ð∂φψnÞ ¼ 0 at φ ¼ 0, π and satisfy the ortho-
normality relations Eqs. (29) and (30). In particular,
ψ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πkrc=ð1 − e−2πkrcÞ

p
. By integrating by parts and

utilizing the Sturm-Liouville equation, we derive the
following generic relation:

R. SEKHAR CHIVUKULA et al. PHYS. REV. D 101, 075013 (2020)

075013-12



μ2i

Z
dφε−2ðψN

i ·XÞ ¼ −
Z

dφ½−μ2i ε−2ψ i� · ψN−1
i X

¼ −
Z

dφ∂φ½ε−4ð∂φψ iÞ� · ψN−1
i X

¼
Z

dφε−4ð∂φψ iÞ · ∂φ½ψN−1
i X�

¼ ðN − 1Þ
Z

dφε−4ð∂φψ iÞ2 · ψN−2
i X

þ
Z

dφε−4ð∂φψ iÞð∂φXÞψN−1
i ;

ð89Þ

where X is a generic function of φ. Through appropriate
choices of the function X, the number N of instances of ψ i,
and the KK index i, we obtain the following relations:

ðX; N; iÞ ¼ ðψ j; 2; nÞ ⇒ μ2nannj ¼ bnnj þ bjnn; ð90Þ

ðX; N; iÞ ¼ ðψ2
n; 1; jÞ ⇒ μ2jannj ¼ 2bjnn; ð91Þ

ðX; N; iÞ ¼ ð1; 4; nÞ ⇒ μ2nannnn ¼ 3bnnnn; ð92Þ

which allow us to rewrite all B-type couplings of the form
b  n in terms of A-type couplings:

bnnj ¼
�
μ2n −

1

2
μ2j

�
annj; ð93Þ

bjnn ¼
1

2
μ2jannj; ð94Þ

bnnnn ¼
1

3
μ2nannnn: ð95Þ

Furthermore, the completeness relation Eq. (31) implies
the generic relation

X
j

�
1

π

Z
dφ1ψ j ·X

�
·

�
1

π

Z
dφ2ψ j · Y

�

¼ 1

π

Z
dφεþ2X · Y ; ð96Þ

where X and Y are generic functions of φ, from which one
may derive, for instance,

X
j

a2nnj ¼ annnn; ð97Þ

X
j

bnnjannj ¼ bnnnn ¼
1

3
μ2nannnn; ð98Þ

and

X
j

μ2ja
2
nnj ¼

X
j

½2bjnn�annj

¼ 2
X
j

½μ2nannj − bnnj�annj

¼ 4

3
μ2nannnn: ð99Þ

We can continue adding instances of μ2j to the sum and
repeat this procedure with

P
j μ

4
ja

2
nnj and

P
j μ

6
ja

2
nnj. The

details of these manipulations are summarized in
Appendix D; the principal result is

Xþ∞

j¼0

½μ2j − 5μ2n�μ4ja2nnj ¼ −
16

3
μ6nannnn: ð100Þ

Note that the equations in this section relate couplings
and spectra, which are determined entirely by the Sturm-
Liouville problem and therefore depend only on the value
of krc (i.e., not onm1 orMPl). Because of their origin, these
equations relating 4D masses and couplings must ulti-
mately be expressions of the original 5D diffeomorphism
invariance.

B. Cancellations at O(s5) in RS1

We will now go through the contributions to the elastic
helicity-zero ðn; nÞ → ðn; nÞ scattering process in the RS1
model order by order in powers of s and apply the sum rules
derived in the previous section.
As described in Sec. I B, the contact diagram and spin-

2-mediated diagrams individually diverge likeOðs5Þ. After
converting all b  n couplings into a  n couplings, their con-
tributions to the elastic helicity-zero RS1 matrix element
equal

Mð5Þ
c ¼ −

κ2annnn
2304πrcm8

n
½7þ cosð2θÞ� sin2 θ; ð101Þ

Mð5Þ
j ¼ κ2a2nnj

2304πrcm8
n
½7þ cosð2θÞ� sin2 θ; ð102Þ

such that they sum to

Mð5Þ ¼ κ2½7þ cosð2θÞ�sin2θ
2304πrcm8

n

�Xþ∞

j¼0

a2nnj − annnn

�
: ð103Þ

This vanishes via Eq. (97), which we will, henceforth, refer
to as the Oðs5Þ sum rule.

C. Cancellations at O(s4) in RS1

The Oðs4Þ contributions to the elastic helicity-zero RS1
matrix element equal

MASSIVE SPIN-2 SCATTERING AMPLITUDES IN … PHYS. REV. D 101, 075013 (2020)

075013-13



Mð4Þ
c ¼ κ2annnn

6912πrcm6
n
½63−196cosð2θÞþ5cosð4θÞ�; ð104Þ

Mð4Þ
j ¼ −

κ2a2nnj
9216πrcm6

n

�
½7þ cosð2θÞ�2 m

2
j

m2
n

þ 2½9 − 140 cosð2θÞ þ 3 cosð4θÞ�
�
: ð105Þ

Using the Oðs5Þ sum rule, Mð4Þ equals

Mð4Þ ¼ κ2½7þ cosð2θÞ�2
9216πrcm6

n

�
4

3
annnn −

X
j

m2
j

m2
n
a2nnj

�
: ð106Þ

This vanishes via Eq. (99), which we shall refer to as the
Oðs4Þ sum rule.

D. Cancellations at O(s3) in RS1

Once the Oðs5Þ and Oðs4Þ contributions are canceled,
the radion-mediated diagrams, which diverge like Oðs3Þ,
become relevant to the leading behavior of the elastic
helicity-zero RS1 matrix element. Furthermore, because of
differences between the massless and massive spin-2
propagators, M0 and Mj>0 differ from one another at
this order (and lower). The full set of relevant contributions
is therefore

Mð3Þ
c ¼ κ2annnn

3456πrcm4
n
½−185þ 692 cosð2θÞ þ 5 cosð4θÞ�;

ð107Þ

Mð3Þ
r ¼ −

κ2

32πrcm4
n

�
b2nnr

ðmnrcÞ4
�
sin2θ; ð108Þ

Mð3Þ
0 ¼ κ2a2nn0

1152πrcm4
n
½15 − 270 cosð2θÞ − cosð4θÞ�; ð109Þ

Mð3Þ
j>0 ¼

κ2a2nnj
2304πrcm4

n

�
5½1 − cosð2θÞ�m

4
j

m4
n

þ ½69þ 60 cosð2θÞ − cosð4θÞ�m
2
j

m2
n

þ 2½13 − 268 cosð2θÞ − cosð4θÞ�
�
; ð110Þ

After applying theOðs5Þ andOðs4Þ sum rules,Mð3Þ equals

Mð3Þ ¼ 5κ2sin2θ
1152πrcm4

n

�X
j

m4
j

m4
n
a2nnj −

16

15
annnn

−
4

5

�
9b2nnr

ðmnrcÞ4
− a2nn0

��
: ð111Þ

These contributions cancel if the following Oðs3Þ sum rule
holds true:

Xþ∞

j¼0

μ4ja
2
nnj ¼

16

15
μ4nannnn þ

4

5
½9b2nnr − μ4na2nn0�: ð112Þ

We do not yet have an analytic proof of this sum
rule; however we have verified that the right-hand
side numerically approaches the left-hand side as the
maximum intermediate KK number Nmax is increased
to 100 for a wide range of values of krc, including
krc ∈ f10−3; 10−2; 10−1; 1; 2;…; 10g.15

E. Cancellations at O(s2) in RS1

The contributions to the elastic helicity-zero matrix
element at Oðs2Þ equal

Mð2Þ
c ¼ −

κ2annnn
54πrcm2

n
½5þ 47 cosð2θÞ�; ð113Þ

Mð2Þ
r ¼ κ2

48πrcm2
n

�
b2nnr

ðmnrcÞ4
�
½7þ cosð2θÞ�; ð114Þ

Mð2Þ
0 ¼ κ2a2nn0

576πrcm2
n
½175þ 624 cosð2θÞ þ cosð4θÞ�; ð115Þ

Mð2Þ
j>0 ¼

κ2a2nnj
6912πrcm2

n

�
4½7þ cosð2θÞ�

�
5 − 2

m2
j

m2
n

�
m4

j

m4
n

− ½1291þ 1132 cosð2θÞ þ 9 cosð4θÞ�m
2
j

m2
n

þ 4½553þ 1876 cosð2θÞ þ 3 cosð4θÞ�
�
: ð116Þ

By applying the Oðs5Þ and Oðs4Þ sum rules [but not the
Oðs3Þ sum rule], the total Oðs2Þ contribution equals

Mð2Þ ¼ κ2½7þ cosð2θÞ�
864πrcm2

n

�X
j

�
m2

j

m2
n
−
5

2

�
m4

j

m4
n
a2nnj

þ 8

3
annnn − 2

�
9b2nnr

ðmnrcÞ4
− a2nn0

��
; ð117Þ

which vanishes if the following Oðs2Þ sum rule holds:

Xþ∞

j¼0

�
μ2j −

5

2
μ2n

�
μ4ja

2
nnj ¼ −

8

3
μ6nannnn

þ 2μ2n½9b2nnr − μ4na2nn0�: ð118Þ

15The cancellations implied by this sum rule can be seen in the
vanishing of R½N�ð3Þ (Fig. 2) as N increases.
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Again, we do not yet have a proof for this sum rule, despite
strong numerical evidence that it is correct (see Sec. VI).
However, combining the Oðs3Þ and Oðs2Þ sum rules
[Eqs. (112) and (118)] yields an equivalent set:

Xþ∞

j¼0

½μ2j − 5μ2n�μ4ja2nnj ¼ −
16

3
μ6nannnn; ð119Þ

5

4

Xþ∞

j¼0

μ4ja
2
nnj −

4

3
μ4nannnn ¼ 9b2nnr − μ4na2nn0: ð120Þ

Equation (119) is precisely Eq. (100), for which we give an
analytic proof in Appendix D. Therefore, if the Oðs3Þ sum
rule holds true, then the Oðs2Þ must also hold true, and
vice versa.
Finally, we note that the sum rules we have derived in

RS1 in Eqs. (97), (99), (112), and (118) are consistent with
those inferred by the authors of [47], who assumed that
cancellations in the spin-0 scattering amplitude of massive
spin-2 modes in KK theories must occur to result in
amplitudes which grow like OðsÞ. A description of the

correspondence of our results with theirs is given in
Appendix E.

F. The residual O(s) amplitude in RS1

After applying all the sum rules above16 [including
Eq. (120), which lacks an analytic proof], the leading
contribution to the elastic helicity-zero matrix element is
found to be OðsÞ. The relevant contributions, sorted by
diagram type, equal

Mð1Þ
c ¼ κ2annnn

1728πrc
½1505þ3108cosð2θÞ−5cosð4θÞ�; ð121Þ

Mð1Þ
r ¼ −

κ2

24πrc

�
b2nnr

ðmnrcÞ4
�
½9þ 7 cosð2θÞ�; ð122Þ

Mð1Þ
0 ¼ κ2a2nn0csc

2θ

2304πrc
½748þ 427 cosð2θÞ

þ1132 cosð4θÞ − 3 cosð6θÞ�; ð123Þ

Mð1Þ
j>0 ¼

κ2a2nnjcsc
2θ

6912πrc

�
3½7þ cosð2θÞ�2 m

8
j

m8
n
− 4½241þ 148 cosð2θÞ − 5 cosð4θÞ�m

6
j

m6
n

þ 4½787þ 604 cosð2θÞ − 47 cosð4θÞ�m
4
j

m4
n
− ½3854þ 5267 cosð2θÞ þ 98 cosð4θÞ − 3 cosð6θÞ�m

2
j

m2
n

þ ½2156þ 1313 cosð2θÞ þ 3452 cosð4θÞ − 9 cosð6θÞ�
�
: ð124Þ

Combining them, according to Eq. (63), yields

Mð1Þ ¼ κ2½7þ cosð2θÞ�2csc2θ
2304πrc

�X
j

m8
j

m8
n
a2nnj

þ 28

15
annnn −

48

5

�
9b2nnr

ðmnrcÞ4
− a2nn0

��
: ð125Þ

This is generically nonzero and thus represents the true
leading high-energy behavior of the elastic helicity-zero
RS1 matrix element.

G. Nonlongitudinal scattering

The sum rules of the previous subsectionswere derived by
considering what cancellations were necessary to ensure the
elastic helicity-zero RS1 matrix element grew no faster than
OðsÞ, a constraint which in turn comes from considering the

extra-dimensional physics. This bound on high-energy
growth must hold for scattering of all helicities.
Indeed, upon studying the nonlongitudinal scattering

amplitudes, we find that the sum rules derived in the
helicity-zero case are sufficient to ensure all elastic RS1
matrix elements grow at most like OðsÞ.
Figure 1 lists the leading high-energy behavior of the

elastic RS1 matrix element for each helicity combination
after the sum rules have been applied. These results are
expressed in terms of the leading exponent of incoming
energy E ≡ ffiffiffi

s
p

. For example, the elastic helicity-zero
matrix element diverges like OðsÞ ¼ OðE2Þ and so its
growth is recorded as “2” in the table. As expected, no
elastic RS1 matrix element grows faster than OðE2Þ.
Some matrix elements grow more slowly with energy in

the 5DOT model than they do in the more general RS1
model; they are indicated by the gray boxes in Fig. 1. For
these instances, the leading MðσÞ contribution in RS1 is
always proportional to the same combination of couplings

½3a2nn0 þ 16annnn�μ4n − 27b2nnr; ð126Þ
16The elastic 5D orbifolded torus couplings (69) directly

satisfy all of these sum rules.
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which vanishes exactly when krc vanishes. Regardless of
the specific helicity combination considered, no full matrix
element vanishes.

VI. NUMERICAL STUDY OF
SCATTERING AMPLITUDES IN THE

RANDALL-SUNDRUM MODEL

This section presents a detailed numerical analysis of the
scattering in the RS1 model. In Sec. VI A we demonstrate
that the cancellations demonstrated for elastic scattering
occur for inelastic scattering channels as well, with the
cancellations becoming exact as the number of included
intermediate KKmodes increases. In Sec. VI B we examine
the truncation error arising from keeping only a finite
number of intermediate KK mode states. We then return in
Sec. VI C to the question of the validity of the KK mode
EFT. In particular, we demonstrate directly from the
scattering amplitudes that the cutoff scale is proportional
to the RS1 emergent scale [48,49]

Λπ ¼ MPle−kπrc ; ð127Þ

which is related to the location of the IR (TeV)
brane [6,7].

A. Numerical analysis of cancellations in inelastic
scattering amplitudes

We have demonstrated that the elastic scattering ampli-
tudes in the Randall-Sundrum model grow only as OðsÞ at
high energies and have analytically derived the sum rules
which enforce these cancellations. Physically, we expect
similar cancellations and sum rules apply for arbitrary
inelastic scattering amplitudes as well. However, we have
found no analytic derivation of this property.17

Instead, we demonstrate here numerical checks with
which we observe behavior consistent with the expected
cancellations. To do so, we must first rewrite our expres-
sions so we may vary krc while keepingMPl and m1 fixed.
We do so by noting that we may rewrite the common matrix
element prefactor as

κ2

πrc
¼ κ24D

ψ0
2
¼ 1

πkrc
½1 − e−2krcπ� 4

M2
Pl

ð128Þ

and that rc ¼ μ1=m1, such that MðσÞ can be factorized for
any process (and any helicity combination) into three

FIG. 1. This table gives the leading order (in energy) growth of elastic ðn; nÞ → ðn; nÞ scattering for different incoming (λ1;2) and
outgoing (λ3;4) helicity combinations in RS1. In the cases listed in gray, the leading order behavior is softer in the orbifolded torus limit
(by two powers of center-of-mass energy).

17This is to be contrasted with the situation for KK compacti-
fications on Ricci-flat manifolds, where an analytic demonstra-
tion of the needed cancellations has been found [47].
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unitless pieces, each of which depends on a different
independent parameter:

MðσÞ ≡ ½KðσÞðkrc; θÞ� ·
�

s
M2

Pl

�
·

� ffiffiffi
s

p
m1

�
2ðσ−1Þ

: ð129Þ

This defines the dimensionless quantityKðσÞ characterizing
the residual growth of order ð ffiffiffi

s
p Þ2σ in any scattering

amplitude. We can apply this decomposition to the trun-
cated matrix element contribution M½N�ðσÞ, as defined in
Eq. (64) as well. By comparing M½N�ðσÞ to M½0�ðσÞ and
increasing N when σ > 1, we can measure how cancella-
tions are improved by including more KK states in the
calculation and do so in a way that depends only on krc
and θ. Therefore, we define

R½N�ðσÞðkrc; θÞ ≡ M½N�ðσÞ

M½0�ðσÞ ¼
K½N�ðσÞ

K½0�ðσÞ ; ð130Þ

which vanishes as N → þ∞ if and only ifM½N�ðσÞ vanishes
as N → þ∞. Because R½N�ðσÞ depends continuously on θ,
we expect that so long as we choose a θ value such that
K½N�ðσÞ ≠ 0, its exact value is unimportant to confirming
cancellations. Figure 2 plots 106ð5−σÞR½Nmax�ðσÞ for the
helicity-zero processes ð1; 1Þ → ð1; 1Þ and ð1; 4Þ → ð2; 3Þ

as functions of Nmax → 100 for krc ∈ f10−1; 1; 10g and
θ ¼ 4π=5. The factor of 106ð5−σÞ only serves to vertically
separate the curves for the reader’s visual convenience;
without this factor, the curves would all begin atR½0�ðσÞ ¼ 1
and thus would substantially overlap.
We find that, both for the case of elastic scattering

ð1; 1Þ → ð1; 1Þ where we have an analytic demonstration of
the cancellations and for the inelastic case ð1; 4Þ → ð2; 3Þ
where we do not,M½N�ðσÞ → 0 as N → ∞. Furthermore, we
find that the rate of convergence is similar in the two cases.
In addition, and perhaps more surprisingly, the rate of
convergence is relatively independent of the value of krc for
values between 1=10 and 10.

B. Truncation error

In the RS1 model, the exact tree-level matrix element for
any scattering amplitude requires summing over the entire
tower of KK states. In practice, of course, any specific
calculation will only include a finite number of intermedi-
ate states N. In this subsection we investigate the size of the
“truncation error” of such a calculation. For simplicity, in
this section we will focus on the helicity-zero elastic
scattering amplitude ð1; 1Þ → ð1; 1Þ and investigate the
size of the truncation error for different values of krc
and center-of-mass scattering energy.

FIG. 2. These plots show the size of the residual truncation error for the helicity-zero scattering of KK modes ð1; 1Þ → ð1; 1Þ (left) and
ð1; 4Þ → ð2; 3Þ (right) as a function of the number of KK intermediate states included (N) relative to not including any massive KK
states, R½N�ðσÞðkrc; θÞ from Eq. (130). The curves are shown for krc ¼ 0.1, 1, 10 for θ ¼ 4π=5. In all cases, the truncation error falls
rapidly with addition of more intermediate states. To visually separate the different curves, the value of the ratio at N ¼ 0 has been
artificially normalized to ð1; 106; 1012; 1018Þ for σ ¼ 5, 4, 3, 2, respectively.
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For σ > 1, consider the ratio

F ½N�ðσÞðkrc; sÞ ≡ max
θ∈½0;π�

����M½N�ðσÞðkrc; s; θÞ
Mðkrc; s; θÞ

����; ð131Þ

which measures the size of each truncated matrix element
contribution relative to the full amplitude.18 For sufficiently
large N and σ > 1 we have confirmed numerically that the
ratio jM½N�ðσÞ=M½N j reaches a global maximum at θ ¼ π=2
for σ > 1. Therefore

F ½N�ðσÞðkrc; sÞ ¼
����M½N�ðσÞðkrc; s; θÞ

Mðkrc; s; θÞ
����
θ¼π=2

: ð132Þ

Unlike MðσÞ for σ > 1, Mð1Þ diverges at θ ∈ f0; πg
because of a csc2 θ factor, as indicated in Eq. (125), which
arises from the t- and u-channel exchange of light states.19

The total elastic RS1 amplitude M, on the other hand,
only has such IR divergences due to the exchange of the
massless graviton and radion. For this reason, and as
confirmed by the numerical evaluation of M½N�ð1Þ=M½N�,
the divergences at θ ∈ f0; πg of M½N�ð1Þ are actually
slightly more severe than the corresponding divergences
of M½N�, and so the ratio M½N�ð1Þ=M½N� grows large in the
vicinity of θ ∈ f0; πg. However, this unphysical divergence
is confined to nearly forward or backward scattering;
otherwise the ratio is approximately flat. Thus for σ ¼ 1
we study the analogous quantity

F ½N�ð1Þðkrc; sÞ ¼
����M½N�ðσÞðkrc; s; θÞ

Mðkrc; s; θÞ
����
θ¼π=2

: ð133Þ

We also define the overall accuracy of the partial sum
over intermediate states using a version of this quantity for
which no expansion in powers of energy has been made:

F ½N�ðkrc; sÞ ≡
����M½N�ðkrc; s; π2Þ
Mðkrc; s; π2Þ

����: ð134Þ

Because F ½N�ðσÞ (F ½N�) measures the discrepancy
between any given contribution M½N�ðσÞ (M½N�) and the
full matrix element M, we study these quantities to
understand the truncation error. In the upper two panes
of Fig. 3 we plot the plot these quantities as a function of
maximal KK number N for krc ¼ 1=10 and krc ¼ 10 at
the representative energy s ¼ ð10m1Þ2, for m1 ¼ 1 TeV.
The lower two panes of Fig. 3 plot similar information but

at the energy s ¼ ð100m1Þ2. The krc ¼ 10 panes contain
the more phenomenologically relevant information. In all
cases, we find that including sufficiently many modes in the
KK tower yields an accurate result for angles away from the
forward or backward scattering regime. When including
only a small number of modes N, the contribution from
M½N�ð5Þ [the residual contribution arising from the non-
cancellation of the Oðs5Þ contributions] dominates and the
truncation yields an inaccurate result. As one increases the
number of included modes, this unphysical Oðs5Þ contri-
bution to the amplitude falls in size until the full amplitude
is dominated by M½N�ð1Þ, which is itself a good approxi-
mation to the complete tree-level amplitude. For
krc ¼ 1=10, the number of states N required to reach this
“crossover,” however, increases from 3 to 15 as

ffiffiffi
s

p
increases from 10m1 to 100m1. Consistent with our
analysis in the previous subsection, however, the truncation
error is less dependent on krc; the number of states required
to reach crossover increases by less than a factor of 2 when
moving from krc ¼ 1=10 to krc ¼ 10 at fixed

ffiffiffi
s

p
.

Finally,wenote that thevanishingofF ½N�ð3Þ asN increases
is a numerical test of the Oðs3Þ sum rule in Eq. (112).

C. The strong-coupling scale at large krc
In Sec. IV B we analyzed the tree-level scattering ampli-

tude ð1; 4Þ → ð2; 3Þ and discovered that the 5D gravity
compactified on a (flat) orbifolded torus becomes strongly

coupled at roughly the Planck scale,Λð5DOTÞ
strong ≡ ffiffiffiffiffiffi

4π
p

MPl. In
the large-krc limit of the RS1 model, however, we expect
that all low-energy mass scales are determined by the
emergent scale [48,49]

Λπ ¼ MPle−πkrc ; ð135Þ

which is related to the location φ ¼ π of the IR brane [6,7].
In this section we describe how this emergent scale arises
froman analysis of the elasticKK scattering amplitude in the
large-krc limit.
Consider the helicity-zero polarized ðn; nÞ → ðn; nÞ

scattering amplitude. As plotted explicitly for n ¼ 1 in
the previous subsection, at energies s ≫ m2

n the scattering
amplitude is dominated by the leading termMð1Þðkrc; s; θÞ
given in Eq. (125). The analogous expression in the 5D
orbifold torus is given by Eq. (70). We note that the angular
dependence of these two expressions is precisely the same,
and therefore we can compare their amplitudes by taking
their ratio. This gives the purely krc-dependent result

20

18In practice, we approximate the “full” amplitude by
M½N¼100�ðkrc; s; θÞ, which we have checked provides ample
sufficient numerical accuracy for the quantities reported here.

19Formally, the sum over intermediate KK modes in Eq. (125)
extends over all masses, but the couplings a11n vanish as n grows
and suppress the contributions from heavy states.

20Formally, as in the case of toroidal compactification, this
amplitude has an IR divergence due to the exchange of the
massless graviton and radion modes. By taking the ratio of the
amplitudes in RS1 to that in the 5D orbifolded torus, the IR
divergences cancel and we can relate the strong-coupling scale in
RS to that in the case of toroidal compactification.
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Mð1ÞðkrcÞ
Mð1Þð0Þ ¼

�
1 − e−2πkrc

2πkrc

�
· K̄nnnnðkrcÞ; ð136Þ

where

K̄nnnn ¼
1

405

�
15
X
j

m8
j

m8
n
a2nnj þ 28annnn

− 144

�
9b2nnr

ðmnrcÞ4
− a2nn0

��
: ð137Þ

From this ratio, we can estimate the strong-coupling scale
at nonzero krc:

ΛðRS1Þ
strongðkrcÞ ≡ ΛðRS1Þ

strongð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mð1Þð0Þ
Mð1ÞðkrcÞ

s

¼ Λð5DOTÞ
strongffiffiffiffiffiffiffiffiffiffiffiffi
K̄nnnn

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πkrc

1 − e−2πkrc

r
; ð138Þ

where we can use our earlier Λð5DOTÞ
strong ¼ ffiffiffiffiffiffi

4π
p

MPl result.

FIG. 3. These plots show an upper bound on the size of the residual truncation error relative to the size of the full matrix element for the
process ð1; 1Þ → ð1; 1Þ as a function of the number of included KK modes N, for E ¼ 10m1 (upper pair) and E ¼ 100m1 (lower pair),
and krc ¼ 0.1 (left pair) and krc ¼ 10 (right pair). F ½N�ðσÞðkrc; sÞ from Eq. (132) is shown in color, for σ ¼ 1–5, and F ½N�ðkrc; sÞ from
Eq. (134) is shown in black. We see that the size of the truncation error falls rapidly as the number of included intermediate states N
increases. We also see that, for E ≫ m1, with a sufficient number of intermediate states M½N�ð1Þ is a good approximation of the full
matrix element. Note that if an insufficient number of intermediate KK modes is included, and the truncation error is large, M½N�ð5Þ
dominates.
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Now let us consider the krc dependence of this expres-
sion in the large krc limit. To begin with, at large krc,
Eq. (138) becomes

ΛðRS1Þ
strongðkrcÞ ≈

ffiffiffiffiffiffi
4π

p
MPl

ffiffiffiffiffiffiffiffiffiffiffiffi
2πkrc
K̄nnnn

s
: ð139Þ

Furthermore, in Appendix F we show that at large krc
Eq. (137) becomes

K̄nnnn

2πkrc
≈

e2πkrc

810πx8n

�
15

Xþ∞

j¼1

x8jC
2
nnj þ 28x8nCnnnn

− 1296x4nC2
nnr

�
: ð140Þ

In this expression, the xj;n are the jth and nth zeros of the
Bessel function J1, respectively; the constants Cnnj, Cnnnn,
and Cnnr (defined explicitly in Appendix F) are integrals
dependingonlyon theBessel functions themselves.Therefore,
focusing on the overall krc dependence, we find that

ΛðRS1Þ
strong ∝

ffiffiffiffiffiffi
4π

p
MPle−πkrc ¼

ffiffiffiffiffiffi
4π

p
Λπ ð141Þ

at large krc, as anticipated. The precise value of the propor-
tionality constant depends weakly on the process considered,
and in the large-krc limit for the processes ðn; nÞ → ðn; nÞ
we find

n 1 2 3 4 5

ΛðRS1Þ
strong=

ffiffiffiffiffi
4π

p
Λπ

2.701 2.793 2.812 2.819 2.822

Since these results for the elastic scattering amplitudes
follow from the form of the wave functions in Eq. (F1),
similar results will follow for the inelastic amplitudes as
well—and they will also be controlled by Λπ.

We have also examined the dependence for lower values
of krc via the formula (138). We display the dependence of

ΛðRS1Þ
strong as a function of krc for the processes ð1; 1Þ → ð1; 1Þ

and ð1; 4Þ → ð2; 3Þ in Fig. 4. In all cases, we find that the
strong-coupling scale is roughly Λπ.

Therefore, in the RS1 model, as conjectured under the
AdS/CFT correspondence, all low-energy mass scales are
controlled by the single emergent scale Λπ .

VII. CONCLUSION

We have studied the scattering amplitudes of massive
spin-2 Kaluza-Klein excitations in a gravitational theory
with a single compact extra dimension, whether flat or
warped. Our results have leveraged and expanded upon the
work initially reported in [19,20]. This paper includes a
complete description of the computation of the tree-level
two-body scattering amplitudes of the massive spin-2 states
in compactified theories of five-dimensional gravity
(Secs. II–V), for all helicities of the incoming and outgoing
states.
These scattering amplitudes are characterized by intri-

cate cancellations between different contributions: although
individual contributions may grow as fast asOðs5Þ, the full
results grow only as OðsÞ or slower. We have derived sum
rules enforcing the cancellations and related them to results
obtained by other groups. We have demonstrated that the
cancellations persist for all incoming and outgoing particle
helicities and have documented how truncating the com-
putation to only include a finite number of intermediate
states impacts the accuracy of the results.
We have also carefully assessed the range of validity

of the low-energy Kaluza-Klein effective field theory
(Sec. VI). In particular, for the warped case we have
demonstrated directly how an emergent low-energy scale
controls the size of the scattering amplitude, as conjectured
by the AdS/CFT correspondence.
A number of interesting theoretical and phenomenologi-

cal questions can now be addressed, including understand-
ing the properties of scattering amplitudes in the presence
of brane and/or bulk matter, the effects of radion stabiliza-
tion, and the application of these results to the phenom-
enology of these models at colliders and in the early
Universe.
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APPENDIX A: WEAK FIELD EXPANDED
RS1 LAGRANGIAN

This appendix provides details of the weak field expan-
sion in both the RS1 and 5DOT models, including

FIG. 4. The strong-coupling scale ΛðRS1Þ
strongðkrcÞ, Eq. (139), as a

function of krc for the processes ð1; 1Þ → ð1; 1Þ and
ð1; 4Þ → ð2; 3Þ. We see that this scale is comparable to

ffiffiffiffiffi
4π

p
Λπ .
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specifying the form of the interactions among up to four
5D fields.
Specifically, we summarize the interaction terms arising

in the matter-free RS1 model Lagrangian LðRSÞ
5D from (22)

according to the expansions given in Eqs. (23)–(25)
through quartic interactions, as organized by 5D particle
content:

LðRSÞ
5D ¼ LðRSÞ

hh þ LðRSÞ
rr þ LðRSÞ

hhh þ � � � þ LðRSÞ
rrr

þ LðRSÞ
hhhh þ � � � þ LðRSÞ

rrrr þ � � � : ðA1Þ

We write ĥ ≡ ĥμμ for the trace of a single undifferentiated
graviton field. Primes indicate derivatives with respect
to y. The trace of a product of graviton fields is indicated
via twice-squared bracket notation, e.g., ⟦ĥĥ0ĥ0⟧ ¼
ĥμνð∂yĥ

νρÞð∂yĥ
μ
ρÞ. Similarly, ⟦ĥ0⟧ ≡ ð∂yĥÞ ¼ ð∂yĥ

μ
μÞ.

The equivalent weak field expansion of the 5DOT

model Lagrangian Lð5DOTÞ
5D is derived from these results

by taking the limit krc → 0 while maintaining finite
nonzero rc.
The 4D metric g exactly satisfies

gαβ ¼ ηαβ þ κĥαβ: ðA2Þ

From this, the 4D inverse metric g̃ may be solved for order
by order by imposing its defining condition, gαβg̃βγ ¼ ηγα,
which implies

g̃αβ ¼ ηαβ þ
Xþ∞

n¼1

ð−κÞn⟦ĥn⟧αβ: ðA3Þ

Meanwhile, the 4D determinant equals

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g̃

p
¼

Yþ∞

n¼1

exp
�ð−1Þn−1

2n
κn⟦ĥn⟧

�
: ðA4Þ

The first few terms of the determinant equal

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g̃

p
¼ 1þ κ

2
ĥþ κ2

8
ðĥ2 − 2⟦ĥ ĥ ⟧Þ

þ κ3

48
ðĥ3 − 6ĥ⟦ĥ ĥ ⟧þ 8⟦ĥ ĥ ĥ ⟧Þ þOðκ4Þ:

ðA5Þ
Finally, separating the (B-type) interactions that

involve y derivatives from the (A-type) interactions that
do not, we define L̄A and L̄B according to the following
decomposition:

LðRSÞ
hHrR ¼ κHþR−2½e−πkrcεþ2�R · ½ε−2L̄A∶hHrR þ ε−4L̄B∶hHrR �;

ðA6Þ

where ε ≡ e−krcjφj.

1. Quadratic-level results

L̄A∶hh ¼ −ĥμνð∂μ∂νĥÞ þ ĥμνð∂μ∂ρĥ
ρνÞ

−
1

2
ĥμνð□ĥμνÞ þ 1

2
ĥð□ĥÞ; ðA7Þ

L̄B∶hh ¼ −
1

2
⟦ĥ0ĥ0⟧þ 1

2
⟦ĥ0⟧2; ðA8Þ

L̄A∶rr ¼
1

2
ð∂μr̂Þð∂μr̂Þ: ðA9Þ

2. Cubic-level results

L̄A∶hhh ¼
1

2
ĥμνĥρσð∂μ∂νĥρσÞ − 1

2
ĥĥμνð∂μ∂νĥÞ − 2ĥμνð∂μĥÞð∂ρĥ

ρνÞ − ĥμνĥ
νρð∂μ∂σĥσρÞ

þ ĥμνð∂μĥρσÞð∂σĥνρÞ − 1

4
ĥĥμνð□ĥμνÞ þ 3

4
ĥμνð∂ρĥ

μνÞð∂ρĥÞ þ 1

2
ĥμνĥ

νρð□ĥμρÞ

−
1

2
ĥμνð∂ρĥρσÞð∂σĥμνÞ þ 1

2
ĥð∂μĥνρÞð∂νĥμρÞ − ĥð∂μĥμνÞð∂ρĥ

ρνÞ þ 1

8
ĥ2ð□ĥÞ; ðA10Þ

L̄B∶hhh ¼ −⟦ĥ0⟧⟦ĥĥ0⟧þ ⟦ĥĥ0ĥ0⟧ −
1

4
ĥ⟦ĥ0ĥ0⟧þ 1

4
ĥ⟦ĥ0⟧2; ðA11Þ

L̄A∶hhr ¼ 0; ðA12Þ

L̄B∶hhr ¼
ffiffiffi
3

8

r
½r̂ð⟦ĥ0ĥ0⟧ − ⟦ĥ0⟧2Þ�; ðA13Þ
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L̄A∶hrr ¼ −
1

24
½2r̂2ð∂μ∂νĥμνÞ − 12r̂ð∂μ∂νr̂Þĥμν þ r̂2ð□ĥÞ þ 6r̂ð□r̂Þĥ�; ðA14Þ

L̄B∶hrr ¼ 0; ðA15Þ

L̄A∶rrr ¼
1

2
ffiffiffi
6

p r̂2ð□r̂Þ; ðA16Þ

L̄B∶rrr ¼ 0: ðA17Þ

3. Quartic-level results

L̄A∶hhhh ¼
1

4
ĥĥμνĥρσð∂μ∂νĥρσÞ − ĥμνĥρσĥ

στð∂μ∂νĥρτÞ −
3

4
ĥμνĥρσð∂μĥρσÞð∂νĥÞ þ ĥμνĥρσĥ

στð∂μ∂ρĥντÞ

−
1

4
⟦ĥ ĥ ⟧ĥμνð∂μ∂ρĥ

ρνÞ − ĥμνĥρσð∂μĥρτÞð∂νĥστ Þ þ ĥμνĥρσð∂μĥντÞð∂ρĥστ Þ þ
1

8
ĥ2ĥμνð∂μ∂ρĥ

ρνÞ

−
1

8
ĥ2ĥμνð∂μ∂νĥÞ − 1

2
ĥμνĥρσð∂μĥντÞð∂τĥ

ρσÞ þ ĥμνĥρσð∂τĥ
τρÞð∂μĥνσÞ þ 1

4
ĥĥμνð∂μĥνρÞð∂ρĥÞ

− ĥμνĥρσĥ
μρð∂ν∂σĥÞ þ ĥμνĥρσĥ

μρð∂ν∂τĥ
τσÞ − ĥμνĥρσð∂μĥρτÞð∂τĥ

νσÞ þ 1

2
ĥĥμνĥ

νρð∂μ∂ρĥÞ

−
1

2
ĥĥμνĥ

νρð∂μ∂σĥσρÞ þ
1

2
ĥĥμνð∂μĥρσÞð∂ρĥνσÞ − ĥμνĥρσð∂μĥρτÞð∂σĥντÞ − ĥμνĥ

νρĥστð∂μ∂ρĥ
στÞ

−
1

2
ĥμνĥ

νρð∂μĥστÞð∂ρĥ
στÞ þ ĥĥμνĥ

νρð□ĥμρÞ þ
1

8
⟦ĥ ĥ ⟧ĥμνð□ĥμνÞ − 1

4
ĥμνĥρσð∂τĥμνÞð∂τĥ

ρσÞ

−
1

16
ĥ2ĥμνð□ĥμνÞ þ 1

8
ĥĥμνð∂σĥμνÞð∂σĥÞ −

1

2
ĥμνĥρσĥ

μρð□ĥνσÞ − 1

2
ĥμνĥ

νρð∂μĥρσÞð∂σĥÞ

þ 3

2
ĥĥμνð∂ρĥ

μσÞð∂ρĥνσÞ þ
1

48
ĥ3ð□ĥÞ þ 1

4
ĥĥμνð∂ρĥρσÞð∂σĥμνÞ þ 1

4
ĥ⟦ĥ ĥ ⟧ð∂μ∂νĥμνÞ

−
1

8
ĥ⟦ĥ ĥ ⟧ð□ĥÞ; ðA18Þ

L̄B∶hhhh ¼
1

2
⟦ĥĥ0⟧2 −

1

2
ĥ⟦ĥ0⟧⟦ĥĥ0⟧ −

1

2
⟦ĥĥ0ĥĥ0⟧þ 1

2
ĥ⟦ĥĥ0ĥ0⟧þ ⟦ĥ0⟧⟦ĥ ĥ ĥ0⟧ − ⟦ĥ ĥ ĥ0ĥ0⟧

þ 1

8
⟦ĥ ĥ ⟧⟦ĥ0ĥ0⟧ −

1

8
⟦ĥ ĥ ⟧⟦ĥ0⟧2 −

1

16
ĥ2⟦ĥ0ĥ0⟧þ 1

16
ĥ2⟦ĥ0⟧2; ðA19Þ

L̄A∶hhhr ¼ 0; ðA20Þ

L̄B∶hhhr ¼
ffiffiffiffiffi
3

32

r
½r̂ ĥ ð⟦ĥ0ĥ0⟧ − ⟦ĥ0⟧2Þ þ 4r̂ð⟦ĥ0⟧⟦ĥĥ0⟧ − ⟦ĥĥ0ĥ0⟧Þ�; ðA21Þ

L̄A∶hhrr ¼
1

48
½2r̂2ĥμνð∂μ∂νĥÞ þ 2r̂2ĥμνð□ĥμνÞ þ 8r̂2ð∂μĥμρÞð∂νĥ

νρÞ þ 32r̂ð∂μr̂Þĥμνð∂ρĥ
νρÞ

þ 24ð∂μr̂Þð∂νr̂Þĥμρĥρν þ 6r̂ð□r̂Þ⟦ĥ ĥ ⟧þ 2r̂2ĥð∂μ∂νĥμνÞ þ 8r̂ð∂μr̂Þĥð∂νĥμνÞ
− r̂2ĥ□ĥþ 12r̂ð∂μ∂νr̂Þĥĥμν − 3r̂ð□r̂Þĥ2 þ r̂2ð∂μĥÞð∂μĥÞ − 4r̂2ð∂νĥμρÞð∂μĥνρÞ�; ðA22Þ

L̄B∶hhrr ¼ −
5

12
½r̂2ð⟦ĥ0ĥ0⟧ − ⟦ĥ0⟧2Þ�; ðA23Þ

L̄A∶hrrr ¼
1

36
ffiffiffi
6

p ½r̂3ð2ð∂μ∂νĥμνÞ þ□ĥÞ − 9r̂2ð2ð∂μ∂νr̂Þĥμν − ð□r̂ÞĥÞ�; ðA24Þ
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L̄B∶hrrr ¼ 0; ðA25Þ

L̄A∶rrrr ¼ −
1

24
r̂3ð□r̂Þ; ðA26Þ

L̄B∶rrrr ¼ 0: ðA27Þ

APPENDIX B: MASSIVE BULK FIELDS
AND WAVE FUNCTIONS

This appendix provides a general analysis of the proper-
ties of the extra-dimensional wave functions.
Consider a massive 5D field Φ  αðx; yÞ defined over the

5D bulk by a Lagrangian

L5D ¼ Qμ  αν  β
A e−2kjyjð∂μΦ  αÞð∂νΦ  βÞ

þQ  α  β
B fe−4kjyjð∂yΦ  αÞð∂yΦ  βÞ þm2

Φe
−4kjyjΦ  αΦ  βg;

ðB1Þ

where the index  α is a list of Lorentz indices, k is for now a
real-valued parameter, and mΦ is the 5D mass of the field.

The tensorsQμ  αν  β
A andQ  α  β

B will have forms (defined below)
chosen to yield 4D canonical kinetic terms for the KK
modes of different spins. This is a generalization of the
quadratic terms in the 5D graviton Lagrangian from the
RS1 scenario and will allow us to consider spin-2 and
spin-0 fields simultaneously. By integrating by parts and
discarding the surface terms (which vanish when the
orbifold symmetry is imposed),

L5D ¼ Qμ  αν  β
A e−2kjyjð∂μΦ  αÞð∂νΦ  βÞ

þQ  α  β
B f−Φ  α · ∂y½e−4kjyjð∂yΦ  βÞ� þm2

Φe
−4kjyjΦ  αΦ  βg:

ðB2Þ

Performing a mode expansion (KK decomposition) accord-
ing to the ansatz

Φ  αðx; yÞ ¼
1ffiffiffiffiffiffiffi
πrc

p
Xþ∞

n¼0

ΦðnÞ
 α ðxÞψnðyÞ; ðB3Þ

we obtain

L5D ¼ 1

πrc

Xþ∞

m;n¼0

Qμ  αν  β
A ð∂μΦ

ðmÞ
 α Þð∂νΦ

ðnÞ
 β
Þe−2kjyjψ ðmÞψ ðnÞ

þQ  α  β
B ΦðmÞ

 α ΦðnÞ
 β
ψ ðmÞf−∂y½e−4kjyjð∂yψnÞ�

þm2
Φe

−4kjyjψng: ðB4Þ

Integrating over the extra dimension then yields the
following effective 4D Lagrangian:

LðeffÞ
4D ¼

Xþ∞

m;n¼0

Qμ  αν  β
A ð∂μΦ

ðmÞ
 α Þð∂νΦ

ðnÞ
 β
Þ · Nðm;nÞ

A

þQ  α  β
B ΦðmÞ

 α ΦðnÞ
 β

· Nðm;nÞ
B ; ðB5Þ

where

Nðm;nÞ
A ¼ 1

πrc

Z þπrc

−πrc
dye−2kjyjψmψn; ðB6Þ

Nðm;nÞ
B ¼ 1

πrc

Z þπrc

−πrc
dyψmf−∂y½e−4kjyjð∂yψnÞ�

þm2
Φe

−4kjyjψng: ðB7Þ

We desire that this process yield a particle spectrum
described by canonical 4D Lagrangians for particles of
differing spins and masses. Specifically, a given mode field
ϕðxÞ in the KK spectrum must have canonical kinetic and
mass terms in the Lagrangian

qμ  αν
 β

A ð∂μϕ  αÞð∂νϕ  βÞ þm2q  α  β
B ϕ  αϕ  β; ðB8Þ

where m is the mass of the KK mode. For a full KK tower,
the corresponding canonical quadratic Lagrangian equals
(indexing KK number by n)

LðeffÞ
4D ¼

Xþ∞

n¼0

qμ  αν
 β

A ð∂μϕ
ðnÞ
 α Þð∂νϕ

ðnÞ
 β
Þþm2

nq
 α  β
B ϕðnÞ

 α ϕðnÞ
 β
: ðB9Þ

Comparing to Eq. (B5), one recovers this form for
the choicesQ ¼ q (i.e., if the 5D quadratic tensor structures
mimic the 4D canonical quadratic tensor structures),Φ¼ϕ,

Nðm;nÞ
A ¼ δm;n, and Nðm;nÞ

B ¼ m2
nδm;n. Consider the condi-

tion on Nðm;nÞ
B in more detail:

1

πrc

Z þπrc

−πrc
dyψ ðmÞf−∂y½e−4kjyjð∂yψnÞ�

þm2
Φe

−4kjyjψng ¼ m2
nδm;n: ðB10Þ

Using the condition on Nðm;nÞ
A , this impliesZ þπrc

−πrc
dyψmf∂y½e−4kjyjð∂yψnÞ�

þ ðm2
ne−2kjyj −m2

Φe
−4kjyjÞψng ¼ 0: ðB11Þ

Anticipating that the fψmg can be made to form a complete
set, Eq. (B11) would imply that the ψn are solutions of the
following differential equation:

∂y½e−4kjyjð∂yψnÞ�þðm2
ne−2kjyj−m2

Φe
−4kjyjÞψn ¼ 0; ðB12Þ

or, when expressed in unitless combinations,
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0 ¼ ∂φ½e−4krcjφjð∂φψnÞ�
þ ððmnrcÞ2e−2krcjφj − ðmΦrcÞ2e−4krcjφjÞψn: ðB13Þ

In addition, orbifold symmetry requires that the wave
functions vanish at the orbifold fixed points—providing
boundary conditions. Finding the solution set fψng (and
corresponding values of fmnrcg) of the above equation is
precisely a Sturm-Liouville (SL) problem, for which there
is guaranteed a discrete (complete) basis of real wave
functions satisfying

1

π

Z þπ

−π
dφe−2krcjφjψmψn ¼ Nðm;nÞ

A ≡ δm;n; ðB14Þ

as required. Hence, by finding wave functions ψn that solve
Eqs. (B13) and (B14), we can KK decompose the fields in
Eq. (B1) according to the ansatz and (so long as Q ¼ q)
obtain a tower of canonical quadratic Lagrangians (B8).
Examining Eq. (B13), we see that if mΦ ¼ 0 there is a

massless flat solution, i.e., with ∂yψ0 ¼ 0. Hence a mass-
less 5D graviton will give rise to 4D massless graviton and
radion modes in this framework.21 Normalization fixes ψ0

to equal

ψ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

krcπ
1 − e−2krcπ

r
: ðB15Þ

By construction, the SL equation combined with (B14)
implies an additional quadratic integral condition:

1

π

Z þπ

−π
dφe−4krcjφj½ð∂φψmÞð∂φψnÞ

þ ðmΦrcÞ2ψmψn� ¼ ðmnrcÞ2δm;n: ðB16Þ
When mΦ ¼ 0, this becomes an orthonormality condition
on the set f∂φψng.
The existence of a discrete solution set of wave functions

is guaranteed by the SL problem. We now summarize how
to find explicit equations for the nonflat wave functions in
that solution set by following the notation and arguments
from [54]. Note that

∂φjφj ¼ sgnðφÞ; ðB17Þ

∂2
φjφj ¼ 2½δðφÞ − δðφ − πÞ�; ðB18Þ

such that ð∂φjφjÞ2 ¼ 1 and ∂2
φjφj ¼ 0 when φ ≠ 0, π.

Thus, away from the orbifold fixed points, Eq. (B13)
may be rewritten by defining quantities zn ¼ ðmn=kÞeþkjyj

and fn ¼ ðm2
n=k2Þψn=z2n, such that

0 ¼ z2n
d2fn
dz2n

þ zn
dfn
dzn

þ
�
z2n −

�
4þm2

Φ
k2

��
fn: ðB19Þ

When mΦ ¼ 0, this differential equation is solved by fn
equal to Bessel functions J2ðznÞ or Y2ðznÞ. When mΦ ≠ 0,
it is instead solved by Bessel functions JνðznÞ and YνðznÞ,
where ν2 ≡ 4þm2

Φ=k
2. Taking a superposition of the

appropriate Bessel functions yields a generic solution fn,
which may then be converted back to ψn. By demanding
that the SL boundary condition ∂φψn ¼ 0 is satisfied
simultaneously at both orbifold fixed points, the wave
functions are found to equal

ψn ¼
ε2

Nn

�
Jν

�
μnε

krc

�
þ bnνYν

�
μnε

krc

��
; ðB20Þ

where ε ≡ eþkrcjφj and μn ≡ mnrc, the normalization Nn is
determined by Eq. (B14) [up to a sign that we fix by setting
Nn > 0 and which yields ψnð0Þ < 0 for nonzero n], and the
relative weight bnν equals

bnν ¼ −
2Jνjμn=krc þ μn

krc
ð∂JνÞjμn=krc

2Yνjμn=krc þ μn
krc

ð∂YνÞjμn=krc
; ðB21Þ

where ∂Jν ≡ ∂JνðzÞ=∂z and ∂Yν ≡ ∂YνðzÞ=∂z. These
wave functions satisfy Eq. (B16), where each μn solves

0¼
�
2Jνþ

μnε

krc
ð∂JνÞ

�����
φ¼π

�
2Yνþ

μnε

krc
ð∂YνÞ

�����
φ¼0

−
�
2Yνþ

μnε

krc
ð∂YνÞ

�����
φ¼π

�
2Jνþ

μnε

krc
ð∂JνÞ

�����
φ¼0

: ðB22Þ

Although these wave functions were derived by solving
Eq. (B13) away from the orbifold fixed points, they solve
the equation across the full extra dimension. In particular,
they ensure ∂2

φψn ¼ ½ðmΦrcÞ2 − ε2μ2n�ψn at φ ¼ 0, π.
Finally, note that given a 5D Lagrangian consistent with

Eq. (B1), the wave functions ψn and spectrum fμng are
entirely determined by the unitless quantities krc andmΦrc.
In the RS1 model, the 5D graviton field lacks a bulk mass
(mΦ ¼ 0 such that ν ¼ 2), so its KK decomposition is
dictated by krc alone.

APPENDIX C: 4D EFFECTIVE RS1 MODEL

This appendix gives a more detailed description of the
4D interactions.

1. General procedure

The WFE RS1 Lagrangian equals a sum of terms,
wherein each term contains some number of 5D fields
and exactly two derivatives. Each derivative in the pair is
either a 4D spatial derivative ∂μ or an extra-dimension
derivative ∂y, and each field is either a radion r̂ or a

21Conversely, to prevent the 4D radion from contributing to
long-range gravitational forces we must include interactions
which make the physical 4D spin-0 field become massive, as
occurs during radion stabilization [54].
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graviton ĥμν. Because the Lagrangian requires an even
number of Lorentz indices in order to form a Lorentz scalar,
each derivative pair must consist of two copies of the same

kind of derivative; i.e., each term in LðRSÞ
5D can be classified

into one of two categories:
(i) A type.—The term has two spatial derivatives

∂μ · ∂ν; or
(ii) B type.—The term has two extra-dimensional deriv-

atives ∂y · ∂y.

In addition to fields and derivatives, every term in LðRSÞ
5D has

an exponential prefactor. That exponential’s specific form
is entirely determined by its type (whether A or B type) and
the number of 5D radion fields in the term. Each A-type
term is associated with a factor ε−2 ¼ e−2krcjφj whereas
each B-type term is associated with a factor ε−4 ¼ e−4krcjφj,
and every instance of a radion field provides an additional
e−πkrcεþ2 factor. These assignments correctly reproduce the
prefactors of Appendix A.
Consider a generic A-type term with H spin-2 fields and

R radion fields. Schematically, it will be of the form

XA ≡ κðHþR−2Þ½ε−2�½e−πkrcεþ2�Rð∂2
μ; ĥ

H; r̂RÞ
¼ κðHþR−2Þe−Rπkrcε2ðR−1ÞX̄A; ðC1Þ

where the combination X̄A ≡ ð∂2
μ; ĥ

H; r̂RÞ refers to a fully
contracted product of two 4D derivatives, H gravitons, and
R radions. The μ label on ∂2

μ above is only schematic and
not literal. Similarly, an equivalent B-type term would be of
the form

XB ≡ κðHþR−2Þ½ε−4�½e−πkrcεþ2�Rð∂2
y; ĥ

H; r̂RÞ
¼ κðHþR−2Þe−Rπkrcε2ðR−2ÞX̄B; ðC2Þ

where the combination X̄B ≡ ð∂2
y; ĥ

H; r̂RÞ refers to a fully
contracted product of two extra-dimensional derivatives, H
gravitons, and R radions. By construction, each B-type
term we consider never has both of its ∂y derivatives acting
on the same field (i.e., any instances of ∂2

yĥ in our 5D
Lagrangian have been removed via integration by parts),
and so we assume X̄B also satisfies this property.
We form a 4D effective Lagrangian by first KK decom-

posing our 5D fields into states of definite mass [Eq. (27)]
and then integrating over the extra dimension [Eq. (20)].
For the schematic A-type term, this procedure yields

XðeffÞ
A ¼ rc

ðπrcÞðHþRÞ=2 κ
ðHþR−2Þ

×
Xþ∞

n1;…;nH¼0

ð∂2
μ; ĥ

ðn1Þ…ĥðnHÞ; ½r̂ð0Þ�RÞ

× e−Rπkrc
Z þπ

−π
dφε2ðR−1Þψn1…ψnH ½ψ0�R: ðC3Þ

Define a unitless combination a that contains the extra-
dimensional overlap integral:

aðRj  nÞ ≡ aðRjn1…nHÞ

≡ 1

π
e−Rπkrc

Z þπ

−π
dφε2ðR−1Þψn1…ψnH ½ψ0�R; ðC4Þ

so that now we may write

XðeffÞ
A ¼

�
κffiffiffiffiffiffiffi
πrc

p
�
HþR−2

×
Xþ∞

n1;…;nH¼0

aðRjn1…nHÞð∂2
μ;ĥ

ðn1Þ…ĥðnHÞ;½r̂ð0Þ�RÞ: ðC5Þ

To simplify this expression further, we define a KK
decomposition operator X ð  nÞ½•�. The KK decomposition
operator maps a product of 5D graviton and radion fields to
an analogous product of 4D spin-2 fields labeled by KK
numbers  n ¼ ðn1;…; nHÞ and 4D radion fields r̂ð0Þ. More
specifically, X maps all r̂ in its argument to r̂ð0Þ and applies
the specified KK labels to the graviton fields (ĥμν ↦ ĥðniÞμν )
per term according to the following prescription: the labels
are applied left to right in the order that they occur in  n and
are applied to graviton fields of the form ð∂yĥÞ before being
applied to all other graviton fields. (This prescription
ensures we correctly keep track of KK number relative
to the soon-to-be-defined quantity b.) After KK number
assignment, any 4D derivatives ∂μ in the argument of X are
kept as is, while each extra-dimensional derivative ∂y is
replaced by 1=rc.
Using X , we rewrite the A-type expression:

XðeffÞ
A ¼

�
κffiffiffiffiffiffiffi
πrc

p
�
HþR−2

×
Xþ∞

n1;…;nH¼0

aðRjn1…nHÞ · X ðn1…nHÞ½X̄A�: ðC6Þ

This completes the schematic A-type procedure. B-type
terms admit a similar reorganization. First, we KK decom-
pose and integrate XB to obtain

XðeffÞ
B ¼ rc

ðπrcÞðHþRÞ=2κ
ðHþR−2Þ

×
Xþ∞

n1;…;nH¼0

ð1;ĥðn1Þ…ĥðnHÞ;½r̂ð0Þ�RÞ

×e−Rπkrc
Z
dφε2ðR−2Þð∂φψn1Þð∂φψn2Þψn3…ψnH ½ψ0�R:

ðC7Þ

We summarize the extra-dimensional overlap integral as a
unitless quantity b:
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bðRj  nÞ ≡ bðRjn1n2jn3…nHÞ

≡ 1

π
e−Rπkrc

Z þπ

−π
dφε2ðR−2Þ

× ð∂φψn1Þð∂φψn2Þψn3…ψnH ½ψ0�R; ðC8Þ

such that

XðeffÞ
B ¼

�
κffiffiffiffiffiffiffi
πrc

p
�
HþR−2 Xþ∞

n1;…;nH¼0

bðRjn1n2jn3…nHÞ

×
1

r2c
ð1; ĥðn1Þ…ĥðnHÞ; ½r̂ð0Þ�RÞ; ðC9Þ

and, via the KK decomposition operator X,

XðeffÞ
B ¼

�
κffiffiffiffiffiffiffi
πrc

p
�
HþR−2

×
Xþ∞

n1;…;nH¼0

bðRjn1n2jn3…nHÞ · X ðn1…nHÞ½X̄B�; ðC10Þ

where we recall that X maps ∂y to 1=rc after KK
number assignment. This completes the schematic B-type
procedure.
We now connect these procedures to the 4D effective

RS1 Lagrangian LðRS;effÞ
4D , following the arrangement of the

5D Lagrangian described in Sec. A. Suppose we collect all

terms from the WFE RS1 Lagrangian LðRSÞ
5D that contain H

graviton fields and R radion fields. Label this collection

LðRSÞ
hHrR . In general, we can subdivide those terms into two

sets based on their derivative content, i.e., whether they are
A type or B type:

LðRSÞ
hHrR ¼ LðRSÞ

A∶hHrR þ LðRSÞ
B∶hHrR : ðC11Þ

We may go a step further by using our existing knowledge
to preemptively extract powers of the expansion parameter
κ and any exponential coefficients:

LðRSÞ
hHrR ¼ κðHþR−2Þ½e−Rπkrcε2ðR−1ÞL̄A∶hHrR

þ e−Rπkrcε2ðR−2ÞL̄B∶hHrR �: ðC12Þ

Finally, we can apply the schematic procedures described
above to obtain a succinct expression for the effective
Lagrangian with H graviton fields and R radion fields:

LðRS;effÞ
hHrR ¼

�
κffiffiffiffiffiffiffi
πrc

p
�ðHþR−2ÞXþ∞

 n¼  0

faðRj  nÞ · X ð  nÞ½L̄A∶hHrR �

þ bðRj  nÞ · X ð  nÞ½L̄B∶hHrR �g: ðC13Þ

Computationally, a key feature of this Lagrangian is
how the dependence on the physical variables arrange

themselves. Consider the set fMPl; krc; m1g. The parameter
krc determines the wave functions fψng and spectrum
fμng ≡ fmnrcg, and thus faðRj  nÞ; bðRj  nÞg as well.
Additionally fixing the value of m1 determines rc ¼
μ1=m1 and k ¼ ðkrcÞm1=μ1. Finally, fixingMPl determines
κ=

ffiffiffiffiffiffiffi
πrc

p ¼ κ4D=ψ0 ¼ 2=ðMPlψ0Þ. Therefore, referring
back to the specific form of Eq. (C13), once krc is fixed,
changing m1 only affects the relative importance of A-type
vs B-type terms via factors of rc introduced by X ð  nÞ½•�, and
changing MPl only affects the interaction’s overall strength
via ½κ= ffiffiffiffiffiffiffi

πrc
p �ðHþR−2Þ. Alternatively, by fixing κ and rc

instead, the couplings faðRj  nÞ; bðRj  nÞg encapsulate the effect
of varying k.
For the specific case of massive spin-2 scattering, we

reduce the generality of the preceding notation somewhat
by defining

a  n ≡ að0j  nÞ; b  n ≡ bð0j  nÞ; bn1n2r ≡ bð1jn1n2Þ ðC14Þ

and noting an analogous A-type radion coupling does not
occur in the RS1 model.

2. Summary of results

Appendix A summarized all terms in the WFE RS1
Lagrangian LðRSÞ

5D that contain four or fewer fields. In
particular, it has listed explicit expressions for all relevant
L̄A and L̄B. Application of (C13) to all of these combi-
nations yields a WFE 4D effective Lagrangian of the
following form:

LðRS;effÞ
4D ¼ LðeffÞ

hh þ LðeffÞ
rr þ LðeffÞ

hhh þ � � � þ LðeffÞ
rrr

þ LðeffÞ
hhhh þ � � � þ LðeffÞ

rrrr þOðκ3Þ: ðC15Þ

Explicitly, we find

LðeffÞ
hh ¼

Xþ∞

n¼0

�
−ĥðnÞμν ð∂μ∂νĥðnÞÞ þ ĥðnÞμν ð∂μ∂ρĥ

ðnÞρνÞ

−
1

2
ĥðnÞμν ð□ĥðnÞμνÞ þ 1

2
ĥðnÞð□ĥðnÞÞ

�

þm2
n

�
−
1

2
⟦ĥðnÞĥðnÞ⟧þ 1

2
⟦ĥðnÞ⟧⟦ĥðnÞ⟧

�
; ðC16Þ

LðeffÞ
rr ¼ 1

2
ð∂μr̂ð0ÞÞð∂μr̂ð0ÞÞ; ðC17Þ

LðeffÞ
hhh ¼ κffiffiffiffiffiffiffi

πrc
p

Xþ∞

l;m;n¼0

fað0jlmnÞ · X ðlmnÞ½L̄A∶hhh� ðC18Þ

þ bð0jlmnÞ · X ðlmnÞ½L̄B∶hhh�g; ðC19Þ
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LðeffÞ
hhr ¼ κffiffiffiffiffiffiffi

πrc
p

Xþ∞

m;n¼0

fbð1jmnÞ · X ðmnÞ½L̄B∶hhr�g; ðC20Þ

LðeffÞ
hrr ¼ κffiffiffiffiffiffiffi

πrc
p

Xþ∞

n¼0

fað2jnÞ · X ðnÞ½L̄A∶hrr�g; ðC21Þ

LðeffÞ
rrr ¼ κffiffiffiffiffiffiffi

πrc
p fað3Þ · X ½L̄A∶rrr�g; ðC22Þ

LðeffÞ
hhhh ¼

�
κffiffiffiffiffiffiffi
πrc

p
�
2 Xþ∞

k;l;m;n¼0

faðklmnÞ · X ðklmnÞ½L̄A∶hhhh�

þ bðklmnÞ · X ðklmnÞ½L̄B∶hhhh�g; ðC23Þ

LðeffÞ
hhhr¼

�
κffiffiffiffiffiffiffi
πrc

p
�
2 Xþ∞

l;m;n¼0

fbð1jlmnÞ ·X ðlmnÞ½L̄B∶hhhr�g; ðC24Þ

LðeffÞ
hhrr ¼

�
κffiffiffiffiffiffiffi
πrc

p
�
2 Xþ∞

m;n¼0

fað2jmnÞ · X ðmnÞ½L̄A∶hhrr�

þ bð2jmnÞ · X ðmnÞ½L̄B∶hhrr�g; ðC25Þ

LðeffÞ
hrrr ¼

�
κffiffiffiffiffiffiffi
πrc

p
�
2Xþ∞

n¼0

fað3jnÞ · X ðnÞ½L̄A∶hrrr�g; ðC26Þ

LðeffÞ
rrrr ¼

�
κffiffiffiffiffiffiffi
πrc

p
�
2

fað4Þ · X ½L̄A∶rrrr�g: ðC27Þ

The quantity aðRj  nÞ is defined in Eq. (C4); bðRj  nÞ is shown in
Eq. (C8), and the KK decomposition operator X is
introduced below Eq. (C5).

APPENDIX D: ELASTIC SUM RULES

This appendix provides a new analytic proof for a relation
arising from the s3 and s2 sum rules. Specifically, we prove
Eq. (100) from themain text. Combining that equationwith a
proof of either the Oðs3Þ or Oðs2Þ sum rule automatically
implies a proof of the other sum rule.
In the main text, we calculated

P
j a

2
nnj and thenP

j μ
2
ja

2
nnj and thereby proved the Oðs5Þ and Oðs4Þ sum

rules, respectively. Consider the next sum in that sequence:P
j μ

4
ja

2
nnj. Two results are possible depending on howmany

factors of μ2j are absorbed into A-type couplings [via the
sequence of relations μ2jannj ¼ 2bjnn ¼ 2ðμ2nannj − bnnjÞ].
If only one factor of μ2j is absorbed into an A-type coupling,
the sum equals

X
j

μ4ja
2
nnj ¼ 2

X
j

μ2j ½μ2nannj − bnnj�annj

¼ 8

3
μ4nannnn − 2

X
j

μ2jbnnjannj: ðD1Þ

If instead both factors of μ2j are absorbed, the sum equals

X
j

μ4ja
2
nnj ¼ 4

X
j

½μ4na2nnj − 2μ2nbnnjannj þ b2nnj�

¼ 4

3
μ4nannnn þ 4

X
j

b2nnj: ðD2Þ

Because these results must be equal, together these imply

X
j

μ2jbnnjannj ¼
2

3
μ4nannnn − 2

X
j

b2nnj: ðD3Þ

Continuing along in the sequence, the next sum to
consider is

P
j μ

6
ja

2
nnj. If as many factors of μ2j are absorbed

into A-type couplings as possible, we find

X
j

μ6ja
2
nnj ¼ 4

X
j

μ2j ½μ4na2nnj − 2μ2nbnnjannj þ b2nnj�

¼ 16

3
μ6nannnn − 8μ2n

X
j

μ2jbnnjannj þ 4
X
j

μ2jb
2
nnj

¼ 4
X
j

½μ2j þ 4μ2n�b2nnj; ðD4Þ

where Eq. (D3) was utilized.
To ultimately obtain our desired result, we require

additional details about the nature of the exponential ε.
Namely, because

∂φjφj ¼ sgnðφÞ; ðD5Þ

∂2
φjφj ¼ 2½δðφÞ − δðφ − πÞ�; ðD6Þ

the exponential ε satisfies

ð∂φεÞ2 ¼ ðkrcÞ2ε2; ðD7Þ

∂2
φε ¼ ðkrcÞ2εþ 2ðkrcÞ½δðφÞ − δðφ − πÞ�ε: ðD8Þ

Furthermore, because ð∂φψnÞ ¼ 0 for φ ∈ f0; πg,

ð∂2
φεÞεð∂φψnÞ ¼ ð∂φεÞ2ð∂φψnÞ ¼ ðkrcÞ2ε2ð∂φψnÞ: ðD9Þ

This will allow us to simplify μ2jbnnj in Eq. (D4) and
thereby derive Eq. (100).
Define the commonly occurring combination D ≡

ε−4∂φ for convenience. Because
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D½εþ6ðDψnÞ2� ¼ 6ð∂φεÞεðDψnÞ2 − 2μ2nðDψnÞψn; ðD10Þ

it is the case that

∂φD½εþ6ðDψnÞ2� ¼ 12ðkrcÞ2ε2ðDψnÞ2 − 12μ2nð∂φεÞε−1ðDψnÞψn þ 2μ4nε
−2ψ2

n − 2μ2nε
4ðDψnÞ2; ðD11Þ

where Eq. (D9) was used to eliminate factors of ð∂2
φεÞ and ð∂φεÞ2. Thus,

μ2jbnnj ¼ −
1

π

Z
dφε6ðDψnÞ2½−μ2jε−2ψ j�

¼ −
1

π

Z
dφε6ðDψnÞ2½∂φDφψ j�

¼ −
1

π

Z
dφψ j∂φD½εþ6ðDψnÞ2�

¼ −
12

π
ðkrcÞ2

Z
dφε2ðDψnÞ2ψ j þ

12

π
μ2n

Z
dφð∂φεÞε−1ðDψnÞψn − 2μ4nannj þ 2μ2nbnnj; ðD12Þ

such that

X
j

μ2jb
2
nnj ¼ −

12

π
ðkrcÞ2

Z
dφε8ðDψnÞ4 þ

12

π
μ2n

Z
dφð∂φεÞε5ðDψnÞ3ψn − 2μ4nbnnnn þ 2μ2n

X
j

b2nnj: ðD13Þ

The second term can be rewritten in terms of B-type couplings

6

π

Z
dφð∂φεÞε5ðDψnÞ3ψn ¼

1

π

Z
dφð∂φε

6ÞðDψnÞ3ψn

¼ −
1

π

Z
dφε6∂φ½ðDψnÞ3ψn�

¼ 3μ2nbnnnn −
X
j

b2nnj; ðD14Þ

so that Eq. (D13) becomes

X
j

μ2jb
2
nnj ¼ −

12

π
ðkrcÞ2

Z
dφε8ðDψnÞ4 þ 4μ4nbnnnn: ðD15Þ

The only noncoupling integral I that remains may also be rewritten in terms of B-type couplings by carefully
reorganizing terms and applying Eq. (D9):

I ≡ −
12

π
ðkrcÞ2

Z
dφε8ðDψnÞ4 ¼ −

3

2π

Z
dφ½ð∂2

φεÞε7 þ 7ð∂φεÞ2ε6�ðDψnÞ4

¼ −
3

2π

Z
dφ∂φ½ð∂φεÞε7�ðDψnÞ4 ¼

3

2π

Z
dφð∂φεÞε7∂φ½ðDψnÞ4�

¼ −
6

π
μ2n

Z
dφð∂φεÞε5ðDψnÞ3ψn ¼ −

1

π
μ2n

Z
dφð∂φε

6ÞðDψnÞ3ψn

¼ 1

π
μ2n

Z
dφε6∂φ½ðDψnÞ3ψn� ¼ −3μ4nbnnnn þ μ2n

X
j

b2nnj: ðD16Þ

Thus, Eq. (D15) becomes
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X
j

μ2jb
2
nnj ¼ μ4nbnnnn þ μ2n

X
j

b2nnj; ðD17Þ

which when applied to Eq. (D4) yieldsX
j

μ6ja
2
nnj ¼ 28μ4nbnnnn þ 12μ2n

X
j

b2nnj: ðD18Þ

Finally, we can eliminate
P

j b
2
nnj from this expression in

favor of
P

j μ
4
ja

2
nnj by utilizing Eq. (D2), such that

Xþ∞

j¼0

½μ2j − 5μ2n�μ4ja2nnj ¼ −
16

3
μ6nannnn: ðD19Þ

This is the desired result.

APPENDIX E: CONNECTING
TO THE LITERATURE

As previously noted, following the appearance of [19],
and as [20] was being completed, the authors of [47]
independently proved that the scattering amplitudes of
massive spin-2 KK modes in extra-dimensional theories
grow only like OðsÞ for compactifications on arbitrary
Ricci-flat manifolds (note that RS1 is not Ricci-flat). In
addition, in Sec. III. Eof that work, the authors of [47]
consider the on-shell tree-level elastic scattering amplitude
of an arbitrary massive spin-2 state (in four dimensions)
which is coupled to one massless graviton, a tower of
massive spin-2 states, and possible additional scalar and
vector states. They consider interaction vertices involving
the most general two-derivative parity-even on-shell cubic
vertices, and quartic contact interactions which involve the
contractions of polarization tensors and momenta and
containing up to six derivatives. By assuming that the
elastic scattering amplitude of spin-0 modes of the massive
spin-2 state grows no faster than OðsÞ, they derive a set of
consistency conditions (sum rules) that must be satisfied by
these couplings. In this appendix, we present the relation-
ships of our sum rules to those presented in [47], demon-
strating that our RS1 sum rules in Eqs. (97), (99), (112),
and (118) obey the consistency conditions given there.

Our weak field expanded RS1 Lagrangian (as written
and prior to applying any coupling relations) matches their
parameterization (their Eqs. 3.78–82 as written) when

ã1 ¼ −3annn þ
6

μ2n
bnnn; ðE1Þ

ã2 ¼
1

2
ã3 ¼ −annn; ðE2Þ

b̃1 ¼
1

2
b̃2 ¼ b̃3 ¼ −ann0; ðE3Þ

c̃1 ¼
1

μ2n

ffiffiffi
3

2

r
bnnr; c̃2 ¼ 0; ðE4Þ

ẽ1 ¼
1

μ2n
½2ð2bjnn þ bnnjÞ − ð2μ2n þ μ2jÞannj�; ðE5Þ

ẽ2 ¼
1

2
ẽ3 ¼ ẽ4 ¼

1

2
ẽ5 ¼ −annj; ðE6Þ

where μn ≡ mnrc and x̃ ≡ ffiffiffiffiffiffiffi
πrc

p
x=κ. The minus signs here

reflect a difference of metric convention: we use the mostly
minus convention for ημν, whereas Ref. [47] uses mostly
plus. To ensure gauge invariance (i.e., to not generate terms
that violate 4D diffeomorphism invariance), it must be the
case that

bnn0 ¼ μ2nann0; ðE7Þ

and (Eq. 3.83 of [47])

2b1 ¼ b2 ¼
4

MPl
; ðE8Þ

which implies, via Eq. (E3) above,

κffiffiffiffiffiffiffi
πrc

p ann0 ¼ −
2

MPl
¼ −κ4D: ðE9Þ

Diffeomorphism invariance therefore implies the relation-
ship between 4D and 5D Planck scales which is necessary
to ensure our graviton reproduces the 4D Einstein-Hilbert
Lagrangian at cubic order.
Next, we substitute these explicit RS1 parameters

into the sum rules of [47] (Eqs. 3.85a–c). Let j denote
summation over all KK numbers and let a denote summa-
tion over all KK numbers except 0 and n. Their first sum
rule, Eq. 3.85a, becomes

0 ¼ a22 þ 4b21 þ
1

4

X
a

�
4 − 3

m2
a

m2
n

�
e25;a

¼ a2nnn þ 4a2nn0 þ
1

4

X
a

�
4 − 3

m2
a

m2
n

�
ð2annaÞ2

¼ 3

μ2n

X
j

�
4

3
μ2n − μ2j

�
a2nnj

¼ 3

m2
n

�
4

3
μ2nannnn −

X
j

μ2ja
2
nnj

�
; ðE10Þ

which is equivalent to our Oðs4Þ rule, Eq. (99). Next, their
Eq. 3.85b reduces as follows:

MASSIVE SPIN-2 SCATTERING AMPLITUDES IN … PHYS. REV. D 101, 075013 (2020)

075013-29



0 ¼ a22 þ 4b21 − 24c21 þ
1

4

X
a

�
5
m2

a

m2
n
− 4

�
m2

a

m2
n
e25;a

¼ a2nnn þ 4a2nn0 − 24

�
1

ðmnrcÞ2
ffiffiffi
3

2

r
bnnr

�
2

þ 1

4

X
a

�
5
m2

a

m2
n
− 4

�
m2

a

m2
n
ð2annaÞ2

¼ a2nnn þ 4a2nn0 −
36

μ2n
b2nnr þ

X
a

�
5
μ2a
μ2n

− 4

�
μ2a
μ2n

a2nna

¼ −
5

μ4n

�
−
1

5
μ4na2nnn −

4

5
μ4na2nn0 þ

36

5
b2nnr −

X
a

μ4aa2nna þ
4

5
μ2n
X
a

μ2aa2nna

�

¼ −
5

μ4n

�
4

5
ð9b2nnr − μ4na2nn0Þ −

X
j

μ4ja
2
nnj þ

4

5
μ2n
X
j

μ2ja
2
nnj

�
: ðE11Þ

The last term may be simplified using our Oðs4Þ rule, such that

0 ¼ −
5

μ4n

�
4

5
ð9b2nnr − μ4na2nn0Þ −

X
j

μ4ja
2
nnj þ

16

15
μ4nannnn

�

¼ −
5

μ4n

�
16

15
μ4nannnn þ

4

5
ð9b2nnr − μ4na2nn0Þ −

X
j

μ4ja
2
nnj

�
; ðE12Þ

which is equivalent to our Oðs3Þ relation, Eq. (112). Lastly, consider their Eq. 3.85c (and recall that our only scalar is the
massless radion):

0 ¼ 1

4

X
a

�
m2

a

m2
n
− 4

��
m2

a

m2
n
− 1

�
m2

að2annaÞ2 ¼
1

4

X
j

�
μ2j
μ2n

− 4

��
μ2j
μ2n

− 1

�
μ2jð2annjÞ2

¼ −
1

μ4n

�X
j

ð−μ6j þ 5μ2nμ
4
j − 4μ4nμ

2
jÞa2nnj

�
¼ −

1

μ4n

�
5μ2n

�X
j

μ4ja
2
nnj

�
− 4μ4n

�X
j

μ2ja
2
nnj

�
−
X
j

μ6ja
2
nnj

�
: ðE13Þ

Using the Oðs4Þ relation again, this becomes

0 ¼ 1

μ4n

�X
j

ðμ2j − 5μ2nÞμ4ja2nnj þ
16

3
μ6nannnn

�
; ðE14Þ

which implies Eq. (119) and is equivalent to our Oðs2Þ sum rule Eq. (118) once our Oðs3Þ sum rule is invoked.

APPENDIX F: KK MODE COUPLINGS AT LARGE krc

In this appendix, we consider the behavior of the KK mode couplings in the large-krc limit, to support the discussion in
Sec. VI C.

1. General considerations

At large values of krc, for nonzero n, the behavior of the irregular Bessel functions Yν implies that the coefficients bnν in
Eq. (B21) are small. The wave functions of Eq. (B20) can then be approximated

ψnðφÞ ≈
1

Nn
eþ2krcjϕjJ2½xnekrcðjϕj−πÞ�; ðF1Þ

where xn is the nth root of J1 and

Nn ≈
eπkrcffiffiffiffiffiffiffiffiffi
πkrc

p J0ðxnÞ; ðF2Þ
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corresponding to a state with mass

mn ≈ xnke−πkrc : ðF3Þ

In these expressions, we neglect terms suppressed by
higher powers of krc.
Adopting the expressions derived under the above

approximations allows us to consider the ðn; nÞ → ðn; nÞ
coupling integrals analytically. Specifically, we convert φ
integrals

Z þπ

−π
dφe−AkrcjφjfðjφjÞ ¼ 2

Z þπ

0

dφe−AkrcjφjfðφÞ ðF4Þ

to u ≡ xnekrcðφ−πÞ integrals, noting dφ ¼ du=ðkrcuÞ:
Z þπ

−π
dφe−AkrcjφjfðjφjÞ

¼ 2xAne−Akrcπ

krc

�Z
uπ

u0

du
uAþ1

fðφðuÞÞ
�
; ðF5Þ

for any n. Note the limits of integration become indepen-
dent of krc in this limit:

u0 ¼ e−krcπxn → 0; uπ ¼ xn: ðF6Þ

Furthermore, in terms of u the n ≠ 0 wave function
factorizes into separate u and krc-dependent pieces:

ψnðuÞ ≈
ffiffiffi
π

p
x2njJ0ðxnÞj

½u2J2ðuÞ�
ffiffiffiffiffiffiffi
krc

p
eπkrc : ðF7Þ

More generally, for generic j ≠ 0,

ψ jðuÞ ≈
ffiffiffi
π

p
x2njJ0ðxjÞj

�
u2J2

�
xj
xn

u

�� ffiffiffiffiffiffiffi
krc

p
eπkrc ðF8Þ

and

ð∂φψ jÞðuÞ ≈
ffiffiffi
π

p
xj

x3njJ0ðxjÞj
�
u3J1

�
xj
xn

u

��
ðkrcÞ3=2eπkrc : ðF9Þ

For the zero mode we have

ψ0 ∼
ffiffiffiffiffiffiffiffiffi
πkrc

p
: ðF10Þ

By combining all of the preceding elements, we
factor krc dependence out of the coupling in the large-
krc limit.

2. The integrals

Using these results, in the large-krc limit we find

annnn ≈ CnnnnðkrcÞe2πkrc ; ðF11Þ

ann0 ≈ Cnn0

ffiffiffiffiffiffiffi
krc

p
; ðF12Þ

bnnr ≈ CnnrðkrcÞ5=2e−πkrc ; ðF13Þ

annj ≈ Cnnj

ffiffiffiffiffiffiffi
krc

p
eπkrc ; ðF14Þ

where the coefficients C are given by the krc-independent
integrals

Cnnnn ≡
�

2π

x6nJ0ðxnÞ4
Z

xn

0

duu5J2ðuÞ4
�
; ðF15Þ

Cnn0 ≡
�

2
ffiffiffi
π

p
x2nJ0ðxnÞ2

Z
xn

0

duuJ2ðuÞ2
�
; ðF16Þ

Cnnr ≡
�

2
ffiffiffi
π

p
x2nJ0ðxnÞ2

Z
xn

0

duu3J1ðuÞ2
�
; ðF17Þ

Cnnj ≡
�

2
ffiffiffi
π

p
x4njJ0ðxjÞjJ0ðxnÞ2

×
Z

xn

0

duu3J2ðuÞ2J2
�
xj
xn

u

��
: ðF18Þ

3. Scattering amplitudes

The following combination of couplings occurs in the
helicity-zero ðn; nÞ → ðn; nÞ matrix element:

K̄nnnn ¼
1

405

�
15
X
j

m8
j

m8
n
a2nnj þ 28annnn

− 144

�
9b2nnr

ðmnrcÞ4
− a2nn0

��
: ðF19Þ

Based on our previous argument,

m8
j

m8
n
a2nnj ≈

x8j
x8n

C2
nnjðkrcÞe2πkrc ; ðF20Þ

annnn ≈ CnnnnðkrcÞe2πkrc ; ðF21Þ

b2nnr
ðmnrcÞ4

≈
1

x4n
C2
nnrðkrcÞe2πkrc ; ðF22Þ

a2nn0 ≈ Cnn0ðkrcÞ: ðF23Þ

Therefore, at large krc,
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K̄nnnn

2πkrc
¼ e2πkrc

810πx8n

�
15

Xþ∞

j¼1

x8jC
2
nnj þ 28x8nCnnnn − 1296x4nC2

nnr

�
; ðF24Þ

as quoted in Sec. VI C.
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