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Robustness in Human Manipulation of Dynamically
Complex Objects Through Control

Contraction Metrics
Salah Bazzi and Dagmar Sternad

Abstract—Control and manipulation of objects with underactu-
ated dynamics remains a challenge for robots. Due to their typically
nonlinear dynamics, it is computationally taxing to implement
model-based planning and control techniques. Yet humans can
skillfully manipulate such objects, seemingly with ease. More in-
sight into human control strategies may inform how to enhance
control strategies in robots. This study examined human control
of objects that exhibit complex - underactuated and nonlinear
- dynamics. We hypothesized that humans seek to make their
trajectories exponentially stable to achieve robustness in the face
of external perturbations. A stable trajectory is also robust to the
high levels of noise in the human neuromotor system. Motivated
by the task of carrying a cup of coffee, a virtual implementation
of transporting a cart-pendulum system was developed. Subjects
interacted with the virtual system via a robotic manipulandum
that provided a haptic and visual interface. Human subjects were
instructed to transport this simplified system to a target position
as fast as possible without ‘spilling coffee,’ while accommodating
different visible perturbations that could be anticipated. To test the
hypothesis of exponential convergence, tools from the framework of
control contraction metrics were leveraged to analyze human tra-
jectories. Results showed that with practice the trajectories indeed
became exponentially stable, selectively around the perturbation.
While these findings are agnostic about the involvement of feed-
back and feedforward control, they do support the hypothesis that
humans learn to make trajectories stable, consistent with achieving
predictability.

Index Terms—Physical human-robot interaction, dexterous
manipulation, biologically-inspired robots, virtual reality and
interfaces.

I. INTRODUCTION

PHYSICAL interaction with everyday objects and tools is a
hallmark of human behavior. Despite their limited actuator

bandwidth and information transmission speed compared to
robots, humans still outperform robots in dexterous behavior,
especially in physical interaction and object manipulation. This
disparity in performance raises the question of how humans
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achieve their remarkable skill. A better understanding of the
human sensorimotor control system may lead to advances in
robotic manipulation and control.

Insights gained from biological motor control have already
inspired several new approaches to the control of robot mo-
tion. These include central pattern generators for robot locomo-
tion [1], feedback control of postural balance with different time
delays [2], and Dynamic Movement Primitives (DMP) inspired
by discrete and rhythmic behaviors in humans [3] [4]. Most of
the bio-inspired control approaches have been in locomotion
and balance; considerably less work has been on manipulation
and how human dexterity may inspire robot control. A deeper
understanding of human motor control may also lead to more
efficient and collaborative human-robot interaction. A recent
study showed that when following a robot trajectory that shared
the same velocity-curvature relation as human movements, the
human actor exerted less force on the robot [5].

The current study examined the control strategies that hu-
mans employ when physically (and skillfully) interacting with
a dynamically complex object. Specifically, the experimental
task was motivated by the everyday action of transporting a cup
of coffee. A cup filled with coffee exemplifies a dynamically
complex object that is underactuated and nonlinear, and the
interaction forces can exhibit chaotic dynamics depending on
the applied external force [6]–[8].

Several studies on unconstrained movements have suggested
that humans utilize internal forward and inverse models that map
hand movements and muscle forces to object movements [9]–
[13]. However, control based on precise internal models of ob-
jects with underactuated and nonlinear dynamics seems daunting
for the human. Furthermore, only relying on feedback cor-
rections is not plausible as the feedback delays in the human
neuromotor system are astonishingly long and in the order of
120 ms [14]. We therefore hypothesized that humans use con-
trol strategies that make interactions predictable. Predictability
implies that uncertainties and their effects are minimized.

In previous studies investigating the control of a complex
object, specifically the “cup-of-coffee” system, predictability
was quantified by mutual information between the input to the
system (force) and its output (cup trajectory) when continuously
moving the cup [15]. Results showed that with practice humans
indeed made the dynamically complex system simpler to predict
as quantified by increased mutual information [8] [16]. Higher
mutual information indicated less uncertainty in the long-term
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evolution of the cup trajectory if the force input was known, i.e.,
more predictability.

To extend these previous findings, the present study examined
transporting the cup of coffee in the face of perturbations. Here,
predictability was operationalized in terms of stability: A stable
system rejects small perturbations and returns to its attractor,
which is predictable. A stable trajectory provides robustness
to external perturbations. We define robustness as the ability
to exponentially decay bounded external disturbances. We hy-
pothesized that when faced with perturbations, humans seek
exponential convergence since this guarantees robustness and
a fast recovery rate from disturbances.

To assess exponential stability in human trajectories, this
study applied contraction analysis [17], a method that evaluates
the dynamics of infinitesimal displacements between neighbor-
ing trajectories of dynamical systems. This differential dynamics
is approximately linear and hence admits application of several
techniques from linear systems theory. A favorable property
of contraction analysis is that it does not require knowledge
of the stable solution. This is especially useful for studying
dynamically complex physical interactions where the task is not
at steady state but rather in a transient state.

A previous study on the same model system showed that
humans exploited contraction regions to compensate for per-
turbations during complex physical interactions [18] [19]. The
identified contraction regions were those of the unforced system,
which implied that humans guided the system to regions where
it was naturally contracting without the need for any external
control effort. In this letter, we extended this work to address
the question of whether the human controller actively seeks to
stabilize the trajectories and make them contracting. The added
challenge was that the analysis had to take the forces applied
by the subjects into account. To address this, we leveraged
the concept of control contraction metrics (CCMs) [20] to test
whether humans employed exponentially stabilizing controllers
when manipulating dynamically complex objects. In order to
challenge the human controller, we presented perturbations.
However, the perturbations were visible and always present so
that humans could learn how to encounter them. We hypothe-
sized that humans would develop exponentially stable trajecto-
ries to mitigate the effect of the perturbations.

The existence of a CCM guarantees the existence of an
exponentially stabilizing controller. Unlike previous work in
robotics that used this metric for the design of a controller,
this is the first study that adapted the concept of CCMs for the
analysis of human movements. The first step was to find a CCM
and deduce the conditions that the control input had to meet to
be exponentially stabilizing. Next, we tested whether the force
applied by the subject met those conditions. If it did, then the
resulting human trajectory, or segments of it, could be regarded
as exponentially stable or contracting.

The contributions of this letter are as follows: 1) The control
contraction metrics framework was adapted such that it can be
used not only as a framework for the synthesis of a controller, but
also as a tool for the analysis of stability in human data. 2) This
framework was validated by assessing stability in a complex
human physical interaction task. Note that existing tools in the

human movement literature were not applicable to such complex
tasks. 3) The results provided support to our hypothesis that
humans seek to exponentially stabilize their trajectories in this
interactive task.

II. PRELIMINARIES, DEFINITIONS, AND PROBLEM STATEMENT

Let S+
n denote the set of symmetric positive definite ma-

trices in Rn×n. For a given matrix Q, let ̂Q := Q+QT .
The non-negative reals are denoted by R+ := [0,∞). Given
a smooth matrix-valued function M(x, t) and vector field v :
Rn × R+ → Rn defined for x ∈ Rn, t ∈ R+, the directional
derivative is defined as ∂vM :=

∑

i
∂M
∂xi

vi. The time-derivative

is Ṁ :=
∑

i
∂M
∂xi

dxi

dt + ∂M
∂t . For simplicity, all matrix-valued

functions considered in this letter will not be explicit functions
of time t, so that the time-derivative reduces to Ṁ := ∂ẋM . All
subsequent matrix inequalities are to be understood in Loewner
ordering.

The following notations and definitions from Riemannian
geometry are used: The inner product 〈γ1, γ2〉 := γT

1 M(x, t)γ2
on the tangent space of a smooth manifold X endows the
manifold with a Riemannian metric according to the metric
tensor M(x, t). The norm induced by this inner product is
‖γ‖ =

√〈γ, γ〉. A metric tensor is uniformly bounded if ∃ 0 <
α1 ≤ α2 such that α1I ≤ M(x, t) ≤ α2I ∀ x, t. For a smooth
parameterized curve r(s), s ∈ [0, 1], the Riemannian length l
and energy E are defined as

l(r) :=

∫ 1

0

√

〈rs, rs〉ds E(r) :=
∫ 1

0

〈rs, rs〉ds, (1)

where rs = ∂r
∂s . The Riemannian distance between two pointsx1

and x2 is the Riemannian length of the geodesic x1
μx2

(s, t) (the
shortest path) joining them, where μ(0, t) = x2 and μ(1, t) =
x1. If the manifold is Rn and the metric tensor M is flat,
i.e., independent of x, then all geodesics are straight lines
and the expression for the Riemannian distance reduces to
√

(x1 − x2)TM(x1 − x2).
Consider a control-affine nonlinear system described by the

following differential equation:

ẋ(t) = f(x(t)) +B(x(t))u(t), (2)

where x(t) ∈ Rn and u(t) ∈ Rm are the state and control input,
respectively, at time t ∈ R+, and f and B are smooth functions.
The ith column of B(x(t)) is denoted as bi(x(t)) where i =
1, 2, . . . ,m.

The control input is assumed to be generated by a state-
feedback policy π parameterized as the sum of an open-loop
input u∗ and a feedback term uf designed to track a desired
feasible state trajectory x∗ (achieved by u∗ in the absence of
disturbances, noise, etc.) [21]:

π(x(t), t) = u∗(t) + uf (x∗(t), x(t)). (3)

A trajectory x(t) is said to be incrementally exponentially
stable (IES) [21] with respect to a desired trajectory x∗(t), with
rate λ and overshoot R if there exists a state-feedback controller
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of the form (3) such that

|x(t)− x∗(t)| ≤ Re−λt|x(0)− x∗(0)|, (4)

where λ, R > 0 are constants independent of initial conditions.
A controller that achieves this behavior is said to be an incre-
mentally exponentially stabilizing controller.

Two sets of conditions need to be satisfied to guarantee the
exponential stability expressed in (4): 1) Conditions on the
system’s dynamics (2) which guarantee the existence of an
incrementally exponentially stabilizing controller. 2) Conditions
which the controller must meet in order to be incrementally
exponentially stabilizing. These conditions have been derived
previously using the framework of control contraction metrics
(CCMs) [20], and will be presented in the next section.

The hypothesis in this letter was that, when manipulating
dynamically complex objects, humans seek exponential stabil-
ity, especially when encountering perturbations. To test this
hypothesis, we evaluated whether the human trajectories, or
segments of them, became exponentially stable, i.e. contracting,
with practice. The analysis was conducted by combining exper-
imental data with model-based calculations. Using a model of
the system of the form (2), the experimentally collected force
measurements were used as the control input u(t). Each sample
of the data was evaluated whether it met the conditions for
an exponentially stabilizing controller and, hence, whether the
trajectory was contracting at that point.

III. CONTRACTION ANALYSIS

Contraction analysis [17] is a method for assessing stability
of nonlinear systems by studying convergence of neighboring
trajectories. The analysis examines the dynamics of infinitesimal
displacements of the system, i.e., expressing system (2) in its
variational or differential dynamics form:

δ̇x = A(x, u)δx +B(x)δu, (5)

where A(x, u) := ∂f
∂x +

∑m
i

∂bi
∂x ui and δx is an infinitesimal

displacement.
The central result of [17] is that if there exists a uniformly

bounded metric tensor M(x, t) ∈ S+
n such that Ṁ + ∂f

∂x

T
M +

M ∂f
∂x ≤ −2λM , the system is contracting with respect to that

metric with contraction rate λ, i.e., d
dt‖δx‖ ≤ −λ‖δx‖.

A. Control Contraction Metrics

As an extension, Manchester and Slotine [20] subsequently
introduced the concept of control contraction metrics. A CCM
is a uniformly bounded metric tensor M(x) ∈ S+

n that guaran-
tees the existence of an incrementally exponentially stabilizing
controller for any desired feasible trajectory. A CCM is one that
satisfies:

∂biM(x) +
̂

M(x)
∂bi
∂x

= 0, i = 1, . . . ,m (6)

δTx

(

∂fM(x) +
̂

M(x)
∂f

∂x

)

δx < −2λδTx M(x)δx, (7)

for a constant λ > 0, ∀ x, and ∀ δx �= 0 such that
δTx M(x)B(x) = 0. The proof that the existence of a CCM
guarantees the existence of an incrementally exponentially
stabilizing controller is provided in Lemma 2 in [20].

The first condition (6) ensures that the vector fields bi are
Killing vector fields (vector fields that preserve the metric) [22]
for the metric M . This ensures that for displacements along
the actuated directions the metric remains invariant and hence
distances are preserved and no expansion (to be understood as the
opposite of contraction) occurs. Condition (7) ensures that the
system is contracting in the directions orthogonal to the span of
the control inputs, i.e., that the uncontrolled manifold is naturally
contracting.

CCMs are a generalization of control Lyapunov functions
(CLFs) [23] [24]. The CCM guarantees that the Riemannian
energy of the geodesics E(μ) between the actual and desired
trajectories can be decreased exponentially, i.e., E(μ) can be
used as a CLF for the desired trajectory [21].

B. Dual Control Contraction Metrics

A favorable feature of the contraction analysis framework is
that, unlike CLFs, the search for a CCM can be written as a
convex optimization problem. This is achieved by searching
for the dual metric W (x) := M(x)−1. For the dual metric,
conditions (6) and (7) are equivalent to:

∂biW (x)−
̂∂bi

∂x
W (x) = 0, i = 1, . . . ,m (8)

BT
⊥
(

−∂fW (x) + ̂A(x, u)W (x) + 2λW (x)
)

B⊥ ≺ 0, (9)

where B⊥ satisfies BT
⊥B = 0. A computationally tractable

finite-dimensional approximation of this CCM feasibility prob-
lem can be obtained by casting it as a Sums-of-Squares (SOS)
program, whereby W (x) is parameterized as a matrix of poly-
nomials, and the Linear-Matrix-Inequality (LMI) (9) is relaxed
and expressed as a SOS constraint [25].

C. Incrementally Exponentially Stabilizing Controllers

A uniformly bounded CCM α1I ≤ M(x) ≤ α2I guarantees
the existence of an incrementally exponentially stabilizing con-
troller for any desired feasible trajectory, with contraction rate

λ and overshoot R =
√

α1

α2
. Specifically, the controller has the

form u∗ + uf and satisfies:

2 (xμ
s
x∗(1, t))

T M(x)ˆ̇x(t)− 2 (xμ
s
x∗(0, t))

T M(x∗)ẋ∗(t)

≤ −2λE(xμx∗), (10)

where xμ
s
x∗ := (∂[xμx∗ (s,t)]

∂s ), ˆ̇x(t) = f(x(t)) +B(x(t))(u∗(t)
+uf (x∗(t), x(t))), and ẋ∗(t) = f(x∗(t)) +B(x∗(t))u∗(t).
Note how the controller enforces contraction tangent to the
geodesic between the two trajectories.

Given force measurements collected from subjects perform-
ing a task, the inequality (10) was evaluated in a point-by-
point manner to assess whether the human trajectories were
IES/contracting.
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Fig. 1. (a) Real and simplified task. (b) Mechanical model. (c) Virtual environ-
ment with a subject operating the HapticMaster robot to manipulate the virtual
cup. (d) Screen display.

IV. THE EXPERIMENTAL TASK AND THE MODEL

Transporting a cup filled with coffee is an example of a phys-
ical interaction with a dynamically complex object. Motivated
by this real-life example, subjects maneuvered an underactuated
object from a starting point to a target position as fast as possible
without “spilling the coffee”.

A. The Dynamical Model

Simulating a realistic 3-dimensional cup with sloshing cof-
fee governed by nonlinear equations from fluid dynamics is
computationally taxing [6] [7]. This computational complexity
was undesirable as the study employed a virtual setup where
real-time simulations of the system dynamics were required.
The cup of coffee was therefore simplified to a semicircular
2-dimensional arc, the cup, with a ball rolling inside, the coffee;
the motion of the 2D cup was limited to the horizontal axis
only. Restricting the ball to only slide along the cup without
rolling or friction, the system was reduced to the well-known
cart-and-pendulum system with no damping. Fig. 1(a) illustrates
the real and simplified task, while Fig. 1(b) displays the mechan-
ical model of the simplified system.

Taking the state variables to be x = (y, ẏ, θ, θ̇)T , the equa-
tions of motion of the simplified system were

(mp +mc)ÿ = mpl
(

θ̇2 sin(θ)− θ̈ cos(θ)
)

+ u, (11)

lθ̈ = g sin(θ)−Gÿ cos(θ), (12)

where y denoted the position of the cart, θ denoted the pendulum
angle with a clockwise positive convention, mp was the mass
of the pendulum bob, mc was the mass of the cart, l was the
length of the massless pendulum rod, and g denoted gravitational
acceleration. To make the task more challenging, the simulated
dynamics in the virtual environment incorporated a gain G for
the cup acceleration ÿ. This was added to make the ball more
“agile” and thereby the task more difficult. The force exerted
by the human subject was u. The parameters used to simulate
this system in the virtual environment were:mc = 3.5 kg,mp =
0.3 kg, l = 0.35 m, G = 5, and g = 9.8 m/s2.

Expressing the dynamics in the form shown in (2), the equa-
tions became (ẏ, ÿ, θ̇, θ̈)T =
⎛

⎜

⎜

⎜

⎜

⎝

ẏ
mp sin(θ)(lθ̇2−g cos(θ))

P

θ̇
sin(θ)(gmc+mp(g−Glθ̇2 cos(θ)))

l(P )

⎞

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎝

0
1
P

0
−G cos(θ)

l(P )

⎞

⎟

⎟

⎟

⎠

u, (13)

where P = mc +mp(1−G cos2(θ)). Note that the resulting
input matrix B was a function of the state variable θ. It was
desirable to have B independent of the state variables, to allow
for the possibility of the dual metric W being independent of the
state variables as well. A flat metric was favored since that would
greatly simplify the calculation of geodesics in inequality (10).
Therefore, using the partial feedback linearization of [26] and
borrowing a coordinate transformation from [27], the new state
vector was x = (θ, η, y, ẏ) and the resulting dynamics were

⎛

⎜

⎜

⎜

⎝

θ̇

η̇

ẏ

ÿ

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

η cos(θ)

η2 sin(θ) + tan(θ)

ẏ

0

⎞

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎝

0

−G

0

1

⎞

⎟

⎟

⎟

⎠

u, (14)

where η = θ̇ sec(θ) and the resulting B was now independent
of x. The resulting differential dynamics were

δ̇x =

⎛

⎜

⎜

⎜

⎝

−η sin(θ) cos(θ) 0 0

−η2 cos(θ) + sec2(θ) 2η sin(θ) 0 0

0 0 0 1

0 0 0 0

⎞

⎟

⎟

⎟

⎠

︸ ︷︷ ︸

A(x)

δx

+

⎛

⎜

⎜

⎜

⎝

0

−G

0

1

⎞

⎟

⎟

⎟

⎠

︸ ︷︷ ︸

B

δu. (15)

B. The Virtual Experiment

This simplified mechanical model was simulated in a virtual
environment with visual and haptic feedback interfaced via a
robotic manipulandum (Fig. 1(c)). The projection screen dis-
played the cup as a 2D arc and a rolling ball (corresponding
to the pendulum bob), moving between a start and target box,
separated by a distance of 0.4 m (Fig. 1(d)). Subjects were
instructed to move the cup from the start box on the left to
the target box on the right as fast as possible without losing the
ball. At the end of each trial the duration of the movement was
displayed on the screen as feedback. For the trial to end, the
cup had to be completely inside the box and at rest, otherwise,
the timer would keep running. Therefore, only generating faster
movements did not necessarily lead to better performance since
a fast cup displacement could result in larger ball oscillations.
The resulting larger ball forces could impede the subject from
bringing the cup to a complete stop inside the target box.
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Fig. 2. One representative assistive and one resistive cup displacement elicit-
ing the expected different effect.

In each trial, a perturbation of magnitude 40 N, duration 20 ms,
was presented at 60% of the travel distance. This perturbation
was either in the direction of motion of the cup, i.e., assistive,
or against it, i.e., resistive. Note that the label ‘assistive’ did
not imply that the perturbation was helpful. It was an unwanted
disturbance in the direction of the cup movement, while the
resistive perturbation opposed the direction of movement. The
position of the perturbation was visually displayed as a small
bump (Fig. 1(d)). The subject knew the magnitude and direction
of the perturbation and had the opportunity to learn how to
navigate it without losing the ball. For simplicity, the virtual cup
moved through the (virtual) bump and remained on the horizon-
tal line. Seven subjects participated and gave informed written
consent before the experiment. The protocol was approved by
the Institutional Review Board of Northeastern University.

The experiment consisted of 4 blocks. Block 1 comprised 60
trials without any perturbation to allow subjects to familiarize
themselves with the task. Blocks 2 and 4 comprised 60 trials
each and involved a series of assistive or resistive perturba-
tions respectively. The order of resistive and assistive blocks
was counter-balanced between subjects. Block 3 presented 10
unperturbed trials to separate the two perturbation conditions.
At the beginning of each trial, the cup was centered in the start
box and the ball rested at the bottom of the cup.

C. Apparatus and Data Acquisition

Subjects were seated about 2 m in front of a large backprojec-
tion screen (2.4 × 2.4 m). Physical interaction with the virtual
environment occurred via a 3-degree-of-freedom admittance-
controlled robotic manipulandum (HapticMaster, Motekforce,
NL [28]). By applying a force to the handle of the robotic
arm, participants controlled the horizontal y-position of the
virtual cup. The robotic arm was restricted to move only in the
horizontal direction in the subject’s frontal plane to ensure a
linear horizontal motion of the cup, consistent with the model.
The robotic arm provided haptic feedback, allowing participants
to sense the system’s inertia, the force of the ball on the cup, and
the perturbations. The force applied by the participants to the
manipulandum (u) and the kinematics of the cup and the ball
(y, ẏ, ÿ, θ, θ̇, θ̈) were recorded at 120 Hz.

V. EXPERIMENTAL RESULTS

Representative assistive and resistive trials are shown in Fig. 2.
The resistive perturbation opposed the cup’s motion and caused a

Fig. 3. (a) Mean trial durations of successful trials across all subjects. The
shaded bands denote ± one standard error. (b) Exponential fits of subject means
for each perturbation across trials.

sharp decrease in the velocity. The opposite effect is seen for the
assistive perturbation. For blocks with a resistive perturbation
78% of the trials were successful (the ball was not lost), whereas
for assistive trials the success rate was 84%. Failed trials had a
uniform distribution across trial number and perturbation type,
with no tendency for the second perturbation block to have more
failed trials than the first.

A. Trial Duration

Subjects’ performance improved with practice; the mean
duration of successful trials across all subjects became shorter
for both resistive and assistive perturbations, as can be seen in
Fig. 3(a). Two observations are worth noting: 1) While both
perturbation conditions started with similar performance in the
first few trials, performance dropped sharply in the assistive trials
in less than 10 trials and then approached a plateau relatively fast.
In contrast, in the resistive trials the performance improved in
an approximately continuous manner, with no abrupt changes.
Fig. 3(b) displays the exponential fit for both curves (R2 = 0.99
for both fits). The time constant was −0.03 for the resistive
trials and −0.48 for the assistive trials. This indicated that it
was easier to achieve better performance in a shorter period
of practice for the assistive perturbation as opposed to the
resistive perturbation. 2) Despite this different time course in
the two perturbation types, there was no significant difference
in performance at the end of practice. A paired t-test on the last
10 trials in each perturbation condition did not reach significance
(t(9) = −0.27, p = 0.79). This indicated that perturbation type
had no effect on the best attainable performance.

B. The Contraction Rate

The SOS program expressed in (8) and (9) was solved for W
using the LMI parser Yalmip [29] [30] and the solver Mosek. In
this case, condition (8) required that the dual metric was not a
function of η or ẏ. The dual metric that was found was indeed flat,
thereby simplifying the computation of the geodesics. Note that
before solving the SOS program, the differential dynamicsA(x)
in (15) were Taylor expanded to degree 3 to obtain a polynomial
vector field.

The data collected from the subjects was post-processed and
converted to the x = (θ, η, y, ẏ) frame to make it compatible
with the model. Next, for each trial, the inequality that rendered
the controller u∗ + uf incrementally exponentially stabilizing
(10) was checked. If it was satisfied at a given sample, this
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Fig. 4. All successful trials for one representative subject in an assistive perturbation block. Trajectories are ordered by trial duration, not trial number. To enable
better alignment with the perturbation onset, they are plotted over position, not time.

meant that the force applied by the subject at that instance
was generated by an incrementally exponentially stabilizing
controller with a convergence rate of at least λ. The following
substitutions were made in the inequality:

1) x(t) = (θ(t), η(t), y(t), ẏ(t)) was the state vector of the
experimental data.

2) x∗(t) was the state vector resulting from a minimum-jerk
trajectory in the y-direction. It was assumed that the
subjects’ desired trajectory was a minimum-jerk y(t) and
the resulting θ and η from such a movement were used.
The assumption was motivated by previous work that
showed that a minimum-trajectory was an accurate de-
scription of unconstrained arm reaching movement [31].
While several models for control of non-rigid objects have
been proposed [32] [33] [34], these are only applicable to
movements that bring the internal degree of freedom (in
this case the ball) to rest at the end of the movement. In
this experiment, the instruction was to move the system as
fast as possible without the specification to bring the ball
to rest.

3) xμ
s
x∗(1, t) =x μs

x∗(0, t) = x(t)− x∗(t). Since the metric
was flat, the geodesic between any two points was just the
straight line between them.

4) To arrive at a unique solution for the SOS program in (8)
and (9), one had to specify the exponential convergence
rate λ. For the purpose of calculating the contraction met-
ric, we solved the feasibility problem, i.e., we chose λ = 1.
However, when contraction analysis was conducted and
the inequality (10) was checked, a different λ was chosen
as explained below.

5) u∗ + uf was set equal to the measured force applied by
the subject.

At first, the inequality (10) was assessed with λ = 1 for all
successful trials. In this case, the segments that satisfied the
inequality, i.e. the contracting segments, had a contraction rate
that was at least equal to the one guaranteed by the metric.
Fig. 4(a) displays the results obtained for the assistive block of
one of the subjects. However, given the movement durations

within which the subjects completed the task, a contraction
rate equal to 1 would not have been sufficient for attenuating
the perturbation’s effect. Post-processing of the data revealed
that, on average, subjects had ≈ 0.4 s to stabilize the system
after the perturbation. The required contraction rate for a time
constant τ = 0.4 s is λ = 1

τ = 1
0.4 = 2.5. Therefore, the data

was tested again, but this time the contraction rate was set
to λ = 3. We chose a slightly larger contraction rate than the
minimum sufficient one as a conservative measure. The results
for the same set of trials evaluated with λ = 1 and λ = 3 are
displayed in Fig. 4(a) and 4(b) respectively.

Fig. 4 shows that trials with shorter durations have longer
contracting segments for both λ values. Moreover, when a
stronger contraction rate was imposed, the slower trials exhibited
an even smaller number of contracting segments, as seen in
Fig. 4(b). This observation was consistent among all 7 subjects.
This observation led to three conclusions: 1) Using the slowest
contraction rate guaranteed by the contraction metric falsely
identified large segments of the trajectories as contracting,
specifically in the slower trials. 2) The faster trajectories retained
more of their contraction segments with the higher contraction
rate. 3) For faster trajectories, the contracting segments were
specifically in the vicinity of the perturbation, where contraction
was functionally useful.

These results provided evidence that faster movements, i.e.,
better performance was correlated with more and longer seg-
ments with higher contraction rates.

C. Contraction Ratio

Returning to the main hypothesis - contracting trajectories
can withstand perturbations better - a contraction ratio was
calculated for every successful trial and averaged across all
subjects. The contraction ratio was defined as the ratio of the
duration of the contracting segments in a given trial to the
duration of the trial. Fig. 5 shows that, qualitatively, the con-
traction ratio evolved with practice in a very similar manner
as the trial duration. For resistive perturbations the contraction
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Fig. 5. Mean contraction ratios of successful trials across all subjects. The
shaded bands denote ± one standard error.

Fig. 6. A negative correlation between trial duration and contraction ratio for
the (a) assistive perturbations (b) resistive perturbations.

ratio continuously increased with practice, whereas for assistive
perturbations the contraction ratio increased only in the first
10 trials and then plateaued. This correlated well with task
performance as quantified by the Pearson correlation coefficient
to be −0.73 (p = 2.4× 10−10) for assistive perturbations and
−0.80 (p = 8.0× 10−14) for resistive perturbations (Fig. 6).
This result provided further evidence for the hypothesis that sub-
jects achieved better performance by exponentially stabilizing
(contracting) their trajectories.

D. Average Contracting Segments

To further examine whether better performance correlated
with more contraction, the successful trials of each subject
for each perturbation type were split into two categories: fast
trials and slow trials. Trials were classified as ‘fast’ if they
were below the respective average, and ‘slow’ if above the
respective average. The average successful trial duration across
all subjects was 2.14 s for resistive blocks, and 1.89 s for assistive
blocks. The trials were then averaged, including the contracting
segments. Fig. 7 displays the average fast and slow trials in
each perturbation block across all 7 subjects. The color gradient
represents the percentage of trials for each sample (across all
subjects) that were contracting.

The following observations can be drawn from Fig. 7:
1) For fast trials, a larger proportion of the trajectory was

contracting than for slow trials.
2) For fast trials, there were more contracting segments at the

perturbation onset and immediately after it.
3) For the fast resistive trials, subjects used a strategy that

combined both faster movements and more contracting
segments. For assistive trials, there was no significant dif-
ference in the peak velocity between the fast and the slow
trials. In fact, the velocity profiles look almost identical,

Fig. 7. Average fast and slow trajectories and their contracting segments across
all 7 subjects in the respective perturbation blocks. The color code represents
the percentage of trials that were contracting at a given position.

yet they resulted in different trial durations due to the
differences in contracting segments.

Looking at the assistive trials, one would expect that trials with
the same velocity profile should have the same trial duration.
However, as mentioned above, the trial only stopped when the
cup was completely at rest inside the target box. In both slow and
fast trials in the assistive block, the cup took the same amount
of time to arrive at the box, however the shorter trial duration
meant that fast trials required a shorter amount of time to get to
a complete rest after entering the box. The key to achieving
these shorter trial durations was contraction, as can be seen
in Fig. 7. Subjects used a robust control strategy and changed
their control/force input (which affected the left-hand side of
inequality (10)) to render the trajectories more contracting di-
rectly before and after the perturbations. This resulted in the
effective attenuation of the perturbation effects on the ball,
allowing the cup to reach the target box with small residual
ball oscillations. This, in turn, resulted in less time to get the cup
to a complete stop after reaching the target.

VI. DISCUSSION AND CONCLUSIONS

This work examined the interactive task of transporting an
underactuated object with nonlinear dynamics, like a cup of
coffee. We tested the hypothesis that humans stabilize their tra-
jectories to withstand perturbations, both external and internal.
We proposed and validated a new method for assessing stability
of human trajectories using recently developed tools in contrac-
tion theory. The results were consistent with the hypothesis that
humans enhance the robustness of their trajectories by seeking
exponential convergence, especially in the face of perturbations.

The results revealed what the human controller seeks. Note
that this ‘higher-level’ strategy provides no indication about
whether this is achieved by feedforward and/or feedback control.
We reason that pure feedback control is unlikely given the
long feedback delays in the neuromotor system, the dynamical
complexity of the object, the short duration of a single trial,
and the task instruction to be as fast as possible. Further, the
experiment was explicitly set up to make the perturbations pre-
dictable (the perturbations were present and visible in every trial
of a block and had constant magnitude, direction, and duration).
Therefore, subjects could learn to anticipate, rather than react
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and correct. We speculate that the subjects most probably learned
a feedforward strategy, specifically one that makes the system
exonentially stable and thereby predictable. Our study contrasts
with a recent study that examined how humans deal with unpre-
dictable perturbations in reaching movements [35]. The authors
showed that humans developed a strategy that resembled robust
H∞ control. It would be interesting to study the cup-and-ball
task where perturbations are invisible and unpredictable, and
investigate whether subjects developed a similar strategy.

We posit that the results presented here are an important first
step towards addressing the questions about the structure of the
controller. As argued before, given the complexity of the under-
actuated object, an exponentially stable strategy may be possible
even when the internal model of the object is only approximate.
One option to realize such a strategy may be by modulating
impedance of the limb as has been shown before [16]. To further
address the structure of the controller and how humans actu-
ally implement their exponentially stabilizing strategy, different
experimental manipulations are required. More insights into
the underlying structure of the human controller may inspire
the development of more robust control strategies for robotic
manipulation.
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