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A Landscape Perspective on Climate-Driven Risks to Food Security: Exploring
the Relationship betweenClimate and Social Transformation in the Prehispanic

U.S. Southwest

Colleen Strawhacker , Grant Snitker, Matthew A. Peeples, Ann P. Kinzig, Keith W. Kintigh,
Kyle Bocinsky, Brad Butterfield, Jacob Freeman, Sarah Oas, Margaret C. Nelson,

Jonathan A. Sandor, and Katherine A. Spielmann

Spatially and temporally unpredictable rainfall patterns presented food production challenges to small-scale agricultural
communities, requiring multiple risk-mitigating strategies to increase food security. Although site-based investigations of
the relationship between climate and agricultural production offer insights into how individual communities may have created
long-term adaptations to manage risk, the inherent spatial variability of climate-driven risk makes a landscape-scale perspec-
tive valuable. In this article, we model risk by evaluating how the spatial structure of ancient climate conditions may have
affected the reliability of three major strategies used to reduce risk: drawing upon social networks in time of need, hunting
and gathering of wild resources, and storing surplus food. We then explore how climate-driven changes to this reliability
may relate to archaeologically observed social transformations. We demonstrate the utility of this methodology by comparing
the Salinas and Cibola regions in the prehispanic U.S. Southwest to understand the complex relationship among climate-driven
threats to food security, risk-mitigation strategies, and social transformations. Our results suggest key differences in how com-
munities buffered against risk in the Cibola and Salinas study regions, with the structure of precipitation influencing the range
of strategies to which communities had access through time.
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Los modelos de lluvia impredecibles espacial y temporal presentaban desafíos de producción de cultivos agrícola por las
comunidades, y requerían múltiples estrategias de mitigación de riesgos para aumentar la seguridad alimentaria. Si bien
las investigaciones basadas en un sitio de la relación entre el clima y la producción agrícola ofrecen información sobre
cómo las comunidades individuales pueden haber creado adaptaciones a largo plazo para gestionar el riesgo, la variabilidad
espacial inherente del riesgo impulsado por el clima hace que una perspectiva a escala de paisaje sea valiosa. En este artículo,
modelamos el riesgo evaluando cómo la estructura espacial de las condiciones climáticas antiguas puede haber afectado la
confiabilidad de tres estrategias principales utilizadas para reducir el riesgo: aprovechar las redes sociales en tiempos de
necesidad, cazar y recolectar recursos salvajes, y almacenar el excedente cultivos. Exploramos cómo los cambios climáticos
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en esta confiabilidad pueden relacionarse con las transformaciones sociales observadas arqueológicamente. Demostramos la
utilidad de esta metodología al comparar las regiones de Salinas y Cibola en el sudoeste de los Estados Unidos prehispánico.
Para comprender la relación entre los patrones climáticos a la seguridad alimentaria, analizamos las estrategias de mitiga-
ción de riesgos y las transformaciones sociales. Nuestros resultados sugieren diferencias críticas en la forma en que las comu-
nidades protegieron contra el riesgo agrícola en las regiones de enfoque de Cibola y Salinas con la estructura de la
precipitación que influye en el rango de estrategias a las que las comunidades tuvieron acceso a través del tiempo.

Palabras clave: agricultura, cambio climático, riesgo y vulnerabilidad en agricultura, seguridad alimentaria, el suroeste de los
Estados Unidos

Ancient agrarian populations across the
world created innovative social and
environmental strategies to mediate the

risk of food shortfall. These strategies included,
but are not limited to, storing food, pooling and
sharing resources, building infrastructure to
divert water and soil to fields, intensifying agri-
cultural production, diversifying food resources,
and creating social networks to trade goods or
move people when food shortfall occurred
(e.g., Cancian 1980; Cashdan 1990; Halstead
and O’Shea 1989; Winterhalder et al. 1999).
Changing climate patterns would have stressed
these established strategies, taxing food security
in a region and, some have argued, leading to
transformations in social systems in an attempt
to adapt. Many archaeologists have reconstructed
prehispanic climates and linked them to food
production and population models in a given
place, such as Mesa Verde (Cordell et al. 2007;
Schwindt et al. 2016), Cahokia (Bird et al.
2017), or the Hohokam region (Ingram 2010).
For example, one often-used explanation for
agricultural shortfall is that the climatic condi-
tions at an identified place became more challen-
ging with respect to producing food. The climate
perhaps became drier (lowering agricultural
productivity) or more variable (increasingly
unpredictable flooding that could destroy water
management structures, such as check dams or
weirs, or challenge otherwise reliable agricul-
tural strategies). These arguments provide useful
information on possible production shortfalls
and their implications for households and vil-
lages at a particular location, although they are
limited by a lack of concrete information on
how these shortfalls may relate to other parts of
the social and environmental landscape.

Another (not mutually exclusive) explanation
is that the distribution of precipitation across the

landscape changed, challenging the strategies
established to mediate food shortfall risk (Dean
and Funkhouser 1995). For example, social rela-
tionships between two communities founded on
mitigating food shortfalls would be most useful
if climatic conditions at the two sites were anti-
correlated, meaning one site experienced food
surplus while the other experienced shortfall.
Similarly, communities may have chosen to set-
tle in places where wild resources became more
abundant at times of crop stress. This could
occur at ecotones or along altitudinal gradients
(e.g., Fish and Fish 1992). If the spatial structure
of climate conditions on the landscape changed,
it could have challenged decades- or centuries-
old risk-buffering strategies. It is this possibility
and perspective that we use to explore risk
from a landscape perspective. Specifically, we
model risk by evaluating how the spatial struc-
ture of ancient climate conditions may have
affected the reliability of three major strategies
used to reduce risk: drawing upon social net-
works in time of need, hunting and gathering
of wild resources, and storing surplus food.
We then explore how climate-driven changes to
this reliability may relate to archaeologically
observed social transformations. An underlying
assumption of this work is that it is not marginal
environments per se that create subsistence risk,
but instead the changes in those environments—
both in a particular locale and across a region—
that could threaten the strategies that had evolved
over generations to mitigate that risk. Social rela-
tionships that have lasted for decades or centu-
ries, for instance, are not easily abandoned,
even if their original purposes (subsistence risk
mitigation being one possibility) are not being
served.

We first introduce a methodology for model-
ing and visualizing risk landscapes, and we
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advance preliminary interpretations anchored in
rich archaeological data. We then explore the
intersection of three risk-buffering strategies
and the way they change over time, in concert
(or not) with archaeologically observed social
transformations through case studies in the
Cibola and Salinas regions in New Mexico
(Figure 1). Social transformations in these two
regions include aggregation of small villages
into larger towns, movement of people into
new areas, and/or the creation of new exchange
networks. An initial analysis of the Salinas
region identified patterns between increasing
anticorrelation of rainfall in later prehispanic
time periods (AD 1351–1450) and growing evi-
dence of the exchange of ceramics between
anticorrelated areas at that time (Strawhacker
et al. 2017). These data suggest the improved
potential for the development of mutually bene-
ficial social networks based on the spatial struc-
ture of the risk landscape. We build upon this
preliminary study of the Salinas region, adding
additional analysis of other risk mediation strat-
egies, and we present an additional case study—
the Cibola region—to more fully demonstrate
the utility of our proposed landscape approach.
This study is an extension of the work developed
through the Long-Term Vulnerability and Trans-
formation Project (LTVTP), an interdisciplinary,
multi-institution collaborative effort led by Dr.
Margaret Nelson at Arizona State University
that focused on developing detailed comparisons
among major social transformations throughout
the prehispanic U.S. Southwest.

Risk Landscapes in Subsistence Societies

Strategies to mediate risk to food security in sub-
sistence societies are globally observed phenom-
ena, and research to better understand them has
been a critical aspect of anthropological literature
for decades. These strategies often come as a
suite of tactics that work in concert, having
been tailored to the socioecological system in
which food is procured. Communities exten-
sively modify their agricultural landscape to
ensure productivity over time and space by build-
ing check dams, terraces, irrigation canals, and
gridded gardens (e.g., Denevan 2001; Doolittle
2000). Others establish extensive social

networks or religious practices to ensure suffi-
cient productivity over time (e.g., Lansing
1991). Wiessner (1982), for example, documents
the ability of social networks to mitigate food
shortfall, which lies in the anticorrelation of fac-
tors that affect food availability or production
among members of hunter-gatherer peoples in
Botswana. Winterhalder and colleagues (1999)
also document an extensive review of risk-
mediating strategies in subsistence societies and
provide a model for conceptualizing the range
of strategies that could be incorporated into a
subsistence system to ensure food security. We
build upon this extensive literature, which often
centers on a given place on the landscape, focus-
ing on climate-driven risk to agricultural food
security in marginal environments at a landscape
scale.

Climate-driven food shortages were a key
source of risk to prehispanic peoples of the nor-
thern U.S. Southwest. Farmers in this region
relied on rainfall for agricultural production, yet
in the time periods we are considering (AD
900–1670), paleoclimate reconstructions show
that people across much of this region would
not have been able to rely on rainfall amounts
alone to support crop production (Dean 2006).
Moreover, given that rainfall is spatially and tem-
porally unpredictable, this area is classified as a
highly marginal environment for modern agri-
cultural production (Prevost et al. 1984; Sandor
and Homburg 2015). Despite these environmen-
tal challenges, prehispanic farmers in these areas
supported thousands of people for hundreds of
years through shrewd agricultural and risk-
mitigating strategies that we can observe archae-
ologically today (Gumerman 1988; Spielmann
et al. 2011; Tainter and Tainter 1996).

Many case studies illustrate the innovative
nature of these risk-mediating strategies across
the northern Southwest, illuminating how people
expanded exchange networks, sharing, and
storage facilities during times of stress (e.g.,
Spielmann and Aggarwal 2017:252–254). Dean
(2006), for example, provides a case study from
Kiet Siel in northeastern Arizona where rainfall
became increasingly unpredictable and the
water table lowered in the late AD 1200s, making
agriculture a riskier endeavor. He documents
increasing numbers of storage facilities over

Strawhacker et al.] 429A LANDSCAPE PERSPECTIVE ON CLIMATE‐DRIVEN RISKS TO FOOD SECURITY



time as living room space decreased, supporting
the assertion that storage was more heavily relied
upon during this time of stress. Hegmon (1989,
1991) models sharing patterns of Hopi

communities using ethnographic data on their
agricultural strategies. She finds that over half
of all Hopi households would have failed within
20 years if sharing had not been incorporated into

Figure 1. Map of our study areas—the Cibola and Salinas Regions—within the context of the larger Long-Term
Vulnerability and Transformation Project.
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their economic system, highlighting the risky
nature of agriculture in the area in the absence
of social networks. Hegmon concludes that a
restricted sharing strategy, in which households
share part, but not all, of their harvest with
selected households, provides the highest rate
of success for Hopi communities. These strat-
egies would have lessened the impact of climate
change (either sudden shocks or more gradual
shifts) on agricultural food security in these pre-
hispanic communities.

The people living in the Salinas and Cibola
regions did not construct any substantial irriga-
tion systems to divert water to crops in a desert
environment. Instead, they chose favorable loca-
tions for rainfed agriculture—in alluvial fans
where runoff frequently concentrated or in
areas with high water tables. They also diverted
and conserved water through rock alignments,
check dams, and gridded gardens (Doolittle
2000; Sandor and Homburg 2015; Sandor et al.
2007). Farmers would have mitigated the risk
of agricultural subsistence shortfall in the many
different ways that have been outlined by
anthropological and archaeological literature,
but here, we focus on storage, gathering of wild
resources, and/or drawing upon social networks
for our analysis. Critically, the success of these
strategies depended on deeply embedded local
knowledge that would have enhanced overall
food security.

Methodology for Quantifying and Evaluating
Risk in the U.S. Southwest: Social Networks,

Storage, and Wild Resources

Our study seeks to evaluate the relationship
between major social transformations and risk
mitigation strategies, which may have been
stressed due to changing patterns in climate at a
landscape scale. To understand the potential for
stress on these risk-buffering strategies and how
they may have related to social transformations
in the past, we model the spatiotemporal patterns
of agricultural failure, and then we examine how
patterns of predicted crop failure may have corre-
lated with other places across the landscape, the
availability of wild resources, and the reliability
of storage over time. Because the main driver
of food security in the northern Southwest was

rainfed agriculture, we focus on temporal and
spatial variability in precipitation during the
agricultural growing season (May through
October), which would have largely determined
agricultural success. Experimental studies in
the Cibola region and other parts of the South-
west have demonstrated a strong relationship
between growing-season precipitation and
maize production, making it a reasonable proxy
for this analysis (Benson 2011; Bocinsky and
Varien 2017; Muenchrath et al. 2017).

To understand how the structure of the risk
landscape changed through time, we evaluate
our risk reduction strategies via modeled paleo-
environmental reconstructions. We approach
these as a suite of strategies that can be relied
on at different times under different conditions.
The probability of failure is assessed through
the analysis of the spatial and temporal structure
of growing-season precipitation and its change
through time. We do not attempt to model actual
precipitation and yields of particular fields.
Instead, we ask how success of agricultural fields
and the viability of potential risk-mediation strat-
egies vary across space and time. We then exam-
ine what this variability might mean for the
reliability of these strategies in times of need.
As such, our calculations are standardized to
location in order to understand how changes
over time and space deviate from previous
years. For example, when agricultural crops
fail, do farmers have options for reliable access
to wild resources or social networks? Or, was
agricultural production of previous years suc-
cessful enough that it allowed for the storage of
surplus products?

We do not assume that optimal subsistence
shortfall strategies will emerge on particular land-
scapes. The existence of nearby wild resources,
for instance, does not mean that they were
exploited. Similarly, we do not assume that invest-
ments in near and distant relationships were stra-
tegically and optimally designed to minimize
the risk of subsistence shortfalls. Instead, we rec-
ognize that social relationships and obligations at
the household, village, and regional scales were
driven by more than subsistence concerns and/or
may have emerged under different environmental
conditions. The comparison, however, of known
social relationships to those that would have
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emerged were subsistence the only concern can
provide important insights into the drivers of
social relationships and obligations. Similarly,
the placement of communities near regions of
abundant wild resources during crop-stressed
times can tell us something about how these popu-
lations were perceiving and exploiting the land-
scape. We acknowledge that our identified risk
reduction strategies do not represent the complete
risk landscape, but they provide an initial explora-
tory analysis that can be built upon in future stud-
ies. Other potential aspects of risk that could be
added to the model include temperature, winter
precipitation, anthropogenic alterations to the
environment, and transportation costs of goods
(among many other factors) that could be locally
contextualized depending on the region of
study.

In order to evaluate the risk landscapes for
our case studies, we created a series of maps
and figures to visualize the potential for the
use of our identified risk mediation strategies
and how reliable or ineffective they could
have been during a given time period across
our case study regions. We assume that farmers
from the Salinas and Cibola regions had roughly
a two-generation (60-year) memory of past cli-
mate, and this knowledge was used to tailor
the analysis of the agricultural system to
expected conditions. In this way, we compare
extant climate conditions at a given time (the
current year of analysis) to an antecedent
running mean of the previous 60 years (61
years in total to include the current year of
analysis). All data were processed and analyzed
in R (version 3.3 “Frisbee Sailor”), a free
software environment for statistics and graph-
ics. Table 1 illustrates how we evaluated our
various strategies via our proposed risk land-
scape approach.

Baseline Growing-Season Precipitation Data

Reconstructing risk landscapes to evaluate the
metrics outlined in Table 1 requires retrodicted
growing-season precipitation totals for the peri-
ods of interest at a high spatial resolution across
the case study regions. The PRISM dataset
(PRISM Climate Group 2004) provides gridded
monthly precipitation data interpolated from wea-
ther stations across the contiguous United States,

resulting in a raster of 30 arc-second (∼800m ×
800m) pixels of monthly precipitation data dating
from 1910 to the present. To link the modern
PRISM data to our archaeological case studies,
paleoclimate reconstructions of growing-season
precipitation were created using the analytical
package Paleoclimate Reconstruction from Tree
Rings Using Correlation-Adjusted corRelation
(PaleoCAR), developed in R (Bocinsky et al.
2016). The resulting spatiotemporal paleoclimate
reconstruction consists of an approximately 800
m gridded resolution dataset of growing-season
precipitation for the entire U.S. Southwest,
including the Salinas and Cibola regions, from
AD 1 to 2000. Different locations have different
uncertainties associated with the reconstructions,
depending on the location and number of
tree-ring chronologies that PaleoCAR is able to
use for each location’s reconstruction. At any
given location, uncertainties increase the farther
we backcast, and PaleoCAR reconstructions
have been validated through comparisons with
other proxies (Bocinsky and Kohler 2014).
Each cell’s retrodicted growing-season (May
through October) precipitation can be displayed
on a map, with one map produced for each
year. From those data, we derive maps displaying
the average growing-season precipitation over
temporal intervals of interest. These maps and
the numbers behind them provide the baseline
data from which we calculated our storage short-
fall index and anticorrelation measures,
described below. To further quantify the anal-
ysis, we created a 10 km buffer around a repre-
sentative selection of sites within the Cibola
region. The cells within each buffer were queried
to generate a dataset of values for each transfor-
mation period and for each data type. These data-
sets are summarized and plotted as boxplots to
illustrate the range of values surrounding each
site (see Figure 9).

Reliability of the Storage of Maize over Time

Building upon the retrodicted precipitation mea-
surements, storage failure at a location is assessed
through the frequency of growing-season precipi-
tation shortfalls that occurred in that grid cell dur-
ing three consecutive years (maize is argued to be
storable for that amount of time [Stevenson
1904:353; Whiting 1939:15]). The effectiveness
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of storage as a risk-mitigating strategy is evaluated
through a scripted procedure written in R (Snitker
2019). Precipitation shortfalls are defined as years
when the growing-season precipitation is more
than 0.5 standard deviation1 below the running
mean calculated over the previous two generations,
including the year of analysis, resulting in a 61-year
running mean. For each modeled year, a z-score
(number of standard deviations that year’s value
lies above [ + ] or below [−] the running mean) is
calculated for each grid cell in the landscape.
Precipitation z-scores for the current and each of
the two previous years are then evaluated against
the threshold of 0.5 standard deviation (σ) below
the running mean. When three years in a row fall
below the −0.5σ threshold, we tally that last year
as a “storage failure” for that grid cell. The propor-
tion of years with storage failures over the given
timespan is then visualized for each cell on a
map as the storage shortfall index (Figure 2). Popu-
lations in areas that experience high frequencies of
storage shortfall due to temporal and spatial

variation in precipitation probably could not rely
on this strategy to mitigate food shortfall.

The Reliability of Social Networks Based on
Anticorrelated Growing-Season Precipitation

We measure the potential for social networks to
mitigate food shortages and assess whether that
potential is stressed over time by measuring the
anticorrelation of growing-season precipitation
within our regions of focus over a defined tem-
poral interval of archaeological interest (for
example, when a social transformation has been
observed in the archaeological record). For a
given cell of interest (what we refer to as “focal
cells”), we can indicate by colors on a map the
extent to which the growing-season rainfall for
every other cell on the map is anticorrelated
with the rainfall of that focal cell. The selection
of a different cell of interest, however, will pro-
duce a different anticorrelation map, given that
the risk relationships are relative to the cell of
interest. Although an anticorrelation map could,

Table 1. Evaluation of Risks to and Strategies for Food Security in the U.S. Southwest.

Metrics We Used
to Evaluate Risk to
Food Shortfall

Why This Factor Is Important for
Agricultural Risk in the U.S.
Southwest

Data Used to Measure
This Metric How the Data Are Evaluated

Sufficient Rainfall
to Produce
Maize

Farmers need sufficient rain
during the growing season to
support agricultural production.

May–October (maize growing
season) precipitation from
tree-ring-based retrodictions
of PRISM data.

More than 250 mm of rainfall in a
given year (or, >150 mm in the
growing season) will result in a
positive year for agricultural
productivity, based on maize
production estimates
(Muenchrath and Salvador
1995; Shaw 1988:611).

Storage of
Agricultural
Goods

If agricultural production fails in a
given year, storage can be
drawn upon to make up for food
shortfall.

Growing-season precipitation
mean and standard deviation
for the previous two
generations (estimated at 60
years).

Three running years of low
growing-season precipitation
will result in failure of storage
as a risk-mediating strategy.

Reliability of
Social Networks

Social networks can be drawn
upon for moving food, goods,
and/or people when agriculture
is failing in one region but
succeeding in another.

Modeled maps of retrodicted
growing-season precipitation
over space and time.

Changes over time in
anticorrelated rainfall
patterns with potential social
network partners will stress the
potential for this strategy.

Potential for Wild
Resource
Acquisition

Wild resources would have been
essential for nutritional
diversity, as well as mediating
agricultural shortfall.

Potential richness of available
wild plant species based on
retrodicted mean annual
temperature and precipitation
from WorldClim data.

Decreasing richness of wild
resources increases risk to
agricultural populations and
vice versa.

Note: These four metrics comprise our “risk landscape.”
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in principle, be produced for each of the 37,000
800 m × 800 m cells in the Cibola case study
area, this is impractical.

To structure the archaeological interpretation
of the risk landscape, we identified a limited set
of these focal cells that are reasonably spaced
over occupied portions of the region. They
include locations of known archaeological sites
and other culturally important locations. We
then calculate an anticorrelation map for each
focal cell for each temporal interval. To measure
anticorrelation for our case study, we choose not
to use standard measures, such as Pearson’s r or a
rank-order correlation coefficient. The reason is
that high positive or negative correlations could
be produced by very small but patterned vari-
ation around a precipitation mean—variation
that would be meaningless from the standpoint
of food production. We have devised a more
meaningful, two-dimensional measure that
focuses on good and bad years, as defined
above, that allows us to standardize the calcula-
tion to location. For this analysis, the date ranges
in the two case-study areas were then divided
into temporal intervals based on the timing of
culturally important transformations in the
archaeological record (refer to Table 2 in the

next section for identified intervals of interest
the Cibola region). Summarizing the data within
these temporal intervals allows us to examine
how the changing structure of the risk landscape
may have been associated with these major cul-
tural transformations.

We assume that the presence of substantial
year-round residences indicates that people
were employing agricultural strategies that were
successful most years. Consequently, we start
by characterizing years that were unusually wet
or dry for each particular location on the land-
scape. This calculation is done using an R script
(Snitker 2019). For every cell in every year, it
calculates a 61-year antecedent running mean
(this mean includes the year of focus plus the
60 years previous) and standard deviation for
the cell’s retrodicted growing-season precipita-
tion. It characterizes that cell’s retrodicted pre-
cipitation value for that year in terms of the
number of standard deviations above or below
the running mean (i.e., a z-score). If the cell’s
precipitation value is at or above 0.5 standard
deviation above the mean (z ≥ 0.5), the cell is
coded as experiencing an unusually “good
year” in terms of potential agricultural produc-
tion. If the focal cell’s precipitation value is at

Figure 2. Schematic of the calculation of storage shortfall maps. This calculation will produce a rasterized map (see Fig-
ure 6 as an example) that displays the proportion of years during the transformation period (e.g., AD 1201–1300) that
precipitation in the three previous years fell below the −0.5σ threshold.
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Table 2. Analysis of Our Risk Landscape Parameters through Time in the Cibola Region.

901–1050 1051–1200 1201–1300 (T1: 1225–1300) 1301–1400 (T2: 1350–1400) 1401–1540

Observed Archaeological
Settlement Pattern

Widely dispersed
room blocks

Widely dispersed room
blocks with some
larger settlements

Aggregation into nucleated towns; population
concentration

Movement downstream; other
changes in material culture

Long-lived towns

Average Growing- Season
Precipitation (Figure 5)

(4) Low, with
moderate
variability

(2) High, with highest
variability

(3) Moderate, with moderate variability (1) Highest, with moderate
variability

(5) Lowest, with least variability

Storage Stress (Figure 6) (4) Substantial
Stress

(3) Moderate Stress (2) Good time (1) Best time (5) Worst stress

Wild Resources (Figure 7 and
Supplemental Figure 1)

(4) 900–949 best of
period

(2) 1050–1099 best of
period and better than
any earlier time

(3) 1200–1249 good; 1250–1299 worst to date (1) Good; similar to 1200–1249
throughout century

(5) 1450–1499 worst, but all three
at low end

Potential for Social Networks
through Anticorrelated
Rainfall (Figure 8)

Northern area can
help southern
area of the Cibola
region

Southern area can help
northern area; Ojo
Bonito uncorrelated
with any areas

Ojo Bonito, Fort Atarque (but not Halona:wa or Pueblo
de los Muertos) can help Upper Little Colorado, Zuni,
and Pescado. El Morro Valley is not much
anticorrelated with other areas, but Techado can be
helped by most others in the region

Little anticorrelation in occupied
areas, except significant
opportunities for aid to be
received by Techado Springs

Little anticorrelation in occupied
areas, except significant
opportunities for aid to be
received by Techado Springs

Notes: Cells noted with (1) light gray indicate best times for the reliability of this strategy, whereas (5) dark gray indicates time of relative stress. Dates are in AD.
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or below a 0.5 standard deviation below the mean
(z ≤ −0.5), it is coded as experiencing a particu-
larly “bad year.” Otherwise, it is considered a
normal year.

During each of the focal cell’s good years, the
anticorrelation procedure identifies the subset of
cells within the study region that are experiencing
bad years (as described above). Similarly, when
the focal cell is experiencing a bad year, the antic-
orrelation procedure identifies all of the cells
within the study region that are experiencing
good years. Normal years are ignored in this

calculation. To create a risk landscape visualiza-
tion for a temporal interval of interest for a given
focal cell, we color every cell on the landscape
except the focal cell, using the following proced-
ure. For every nonfocal cell on the landscape,
we count the number of years within the temporal
interval that it could help the focal cell (good year
for nonfocal cell, bad year for focal cell), and we
display that value (as a proportion of the number
of years in the interval) on a continuum of varying
saturations of blue. Similarly, we count the num-
ber of years the focal cell could help the nonfocal

Figure 3. Schematic of the calculation of anticorrelation maps. (Color online)
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cell (bad year for nonfocal cell, good year for focal
cell), and we display those values on a continuum
of varying saturations of red.We can blend the red
and blue signatures together to get a two-
dimensional range from white to red on one
axis, white to blue on the other, and white to
dark purple on the diagonal. A deep purple in a
cell, for instance, means that the cell and the
focal cell are well suited to helping each other—
their good and bad years are anticorrelated in a
relatively large proportion of the years. White
means they can rarely, if ever, help each other.
Deep blue means a “one-way” relationship: the
nonfocal cell can often help the focal cell, but
the focal cell can rarely, if ever, help the nonfocal
cell. Figure 3 provides a schematic of this analyt-
ical process.

These calculations are more easily under-
stood by examining a concrete case. Here, we

provide an example from the Salinas region,
the results of which have been published (Straw-
hacker et al. 2017), and we compare it to the
Cibola case in this article. In the Salinas maps
for the AD 1351–1450 interval, we analyzed
the risk landscape relative to the focal points at
the sites at Abo, Gran Quivira, and Robinson
(Figure 4). The suite of anticorrelation values
around each site indicates different potential
options for favorable or unhelpful connections.
For example, with Abo as the focal cell (top-left
map), much of the area to the east could help
Abo, including the Jumanos Pueblo of Gran
Quivira, as noted by the blue colors. On the
other hand, Gran Quivira (top-right map) can
help the majority of the case study area with lit-
tle reciprocation, as indicated by the reds in
much of the map. We will revisit this example
and expand on its implications at the end of

Figure 4. Example anticorrelation map from three focal sites in the Salinas Region, AD 1351–1450.
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this article when we compare it to the Cibola
case study.

Wild Resources

We estimate climate-driven changes to potential
wild plant diversity by first identifying a list

of historic staple “wild” plant species from the
North American Ethnobotany Database (NAEB
2018) and drawing on archaeological knowledge
of wild plant use. This data collation yields a list
of 100 species important for the subsistence of
prehispanic farmers in the northern Southwest.

Figure 5. Growing-season precipitation from AD 901 to 1540 in the Cibola Region. (Color online)
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Ecological niche models are then developed
for each of these species by implementing the
Maxent software (Phillips et al. 2011) in the
“biomod2” package in R (Thuiller et al. 2014)

to understand the potential ranges of each species
during our time periods of interest. Models are
based on retrodicted annual temperature and pre-
cipitation reconstructions from WorldClim v. 1.4

Figure 6. Evaluation of storage stress in the Cibola region through time. The map displays the proportion of years dur-
ing each transformation period that precipitation in the three previous years fell below the −0.5σ threshold. (Color
online)
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Figure 7. Wild plant diversity in the Cibola region from AD 900 to 1550 for time periods relevant to social transformations of focus.
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Figure 8. Anticorrelation maps for Hawikku as the focal site in the Cibola region (AD 900–1540).
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(Hijmans et al. 2005), which provides global 30
arc-second interpolated, gridded climate data.
WorldClim data are used for fitting ecological
niche models for our wild resource analysis to
extend this analysis into Northern Mexico and
encapsulate the full distributions of many of
the species present in the Southwest (PRISM
data do not extend into this region). The
expected range for each species is defined indi-
vidually as the geographic space within 1.5σ of
the climate limits for occurrences with respect
to both mean annual temperature (MAT) and
mean annual precipitation (MAP). This method
generates species ranges that are proportional to
the climatic niche breadths of individuals spe-
cies, eliminating the potential for selecting
ranges with extreme values that could bias
model results. This approach allows us to create
maps that display the potential species richness
of those 100 plants at 50-year intervals from
AD 900 to 1549, a subset of those intervals
important to the Cibola social transformations
of focus that we display in Figure 7 with remain-
ing maps in Supplemental Figure 1. We acknowl-
edge that a variety of factors can influence the
availability and distribution of wild resources
—including overhunting or gathering resulting
in species depletion, complex fire landscapes,
and other anthropogenic and natural alterations
to the landscape—but this analysis provides a
baseline understanding of the potential species
richness that can be built upon in future model-
ing efforts.

Assessing Risk Landscapes in the Cibola
Region of the U.S. Southwest

To demonstrate the concepts introduced above, we
focus on the well-researched and data-rich Cibola
region and compare the results to those previously
published from the Salinas region. We assess how
the risk landscape changed over time, potentially
stressing food security and established risk-
mediating strategies, and how that changing risk
landscape may have related to major social trans-
formations observed in the archaeological record.

Social Transformations in the Cibola Region

We examine the risk landscapes before and after
two major transformations in the Cibola area

(refer to Figure 10 for a map of the subregions):
one at AD 1225–1300 and the second at approxi-
mately AD 1350–1400. From approximately AD
900 to 1200, the population was widely dis-
persed across the landscape in thousands of vil-
lages composed of one or more masonry room
blocks, nearly all of which had fewer than 35
rooms. By AD 1240, clusters of room blocks
with up to 500 rooms had appeared, although
smaller settlements continued to be occupied
(Table 2; Kintigh 1994, 2007).

In what we identify as the initial transfor-
mation (population nucleation) between about
AD 1225 and 1300, the entire population aggre-
gated into a relatively small number of towns,
with numbers of rooms ranging from 60 to as
many as 1400, usually within a single block of
rooms (Huntley and Kintigh 2004). Most of
these towns were in higher-elevation areas east
of modern Zuni Pueblo and in the El Morro Val-
ley or along the upper Little Colorado River
between St. Johns and Springerville. The end
of this transformation, between AD 1300 and
1350, was marked by a decrease in the number
of towns; the smallest and the largest of the
higher-elevation towns were depopulated at this
time.

During the second transformation, dating
between AD 1350 and 1400, the entire popula-
tion moved to nine large closely spaced protohis-
toric towns, ranging from 170 to 900 rooms, at
lower elevations along the Zuni River. These vil-
lages occupied an area from just east of Zuni
Pueblo to the Arizona state line, an area that
had only been lightly populated previously
(Kintigh 1985). Consequently, population was
entirely concentrated in the center of the Cibola
region, leaving the remainder of the region with-
out large habitation sites. Substantial changes in
material culture accompanied this second trans-
formation, with the introduction of cremation
and greater access to nonlocal ceramics and
other exotic artifacts that likely represented the
arrival of migrants from other portions of the
Southwest and increased exchange with more
distant areas (Peeples 2018).

Occupied Areas and Their Environments

Substantial population never occupied the high-
elevation areas of the Zuni Mountains (above
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Figure 9. Boxplots visualizing the range of values for selected sites for each of our risk landscape metrics.
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7,400 ft. in elevation), which cut diagonally
across the NE corner of the map, or in the
White Mountains in the SW corner of the map
(Figure 5). Prior to AD 1200, few people occu-
pied the El Morro Valley south and west of the
base of the Zuni Mountains. Most other parts
of the study area were occupied during the AD
900–1050 period. Between AD 1050 and 1200,
the population of the southern and western thirds
of the study area became progressively sparser.
The area along the Rio Puerco (northwest corner
of the map) was mostly depopulated—with the
exception of one large town near the Arizona/
New Mexico border—by the time of the first
transformation when the population of El
Morro Valley and Pescado areas increased dra-
matically. Between AD 1050 and 1400, the
population was very mobile, and nearly all settle-
ments had short occupations, probably on the
order of a generation or less. Notably, most of
the very large towns dating between AD 1250
and 1350 had similarly short occupations. In
contrast, all towns established during the proto-
historic transformation had occupations of a
century or more.

Growing-Season Precipitation

The structure of the average growing-season pre-
cipitation across the landscape (Figures 5 and 9a)
remained largely unchanged, although the AD
1300–1400 period was generally the wettest
and AD 1400–1540 the driest. Unsurprisingly,
the Zuni Mountains (with the boxplots from
Pueblo de los Muertos being the closest site)
and the White Mountains were the wettest
areas, given their higher elevations relative to
the rest of the Cibola region. It was also the
case that, from AD 1250 on, most of the popula-
tion lived in villages and towns in the better-
watered areas to the south and west of the Zuni
Mountains. Within the occupied areas, however,
there was some variation in the average rainfall.

Storage Deficit

A clearer picture of precipitation-induced sub-
sistence stress is evident in the storage deficit
maps (Figures 6 and 9b). Across the Cibola
area, storage deficits decreased over most of the
occupied areas from the AD 900–1050 period
through the AD 1300–1400 period. The largest

deficits occurred in the AD 1400–1540 period,
including in the 30 km stretch of the Zuni River
from the vicinity of Halona:wa to Hawikku,
which was the only area that remained occupied
during this period.

Consequently, for most people, the long-term
storage deficits that they experienced went from
moderate stress before the first transition to rela-
tively low stress during the first transition. Stor-
age stress continued to ameliorate during the
second transition, indicating a decreasing need
for interaction or reliance on wild plants from
the AD 900–1050 interval to the AD 1300–
1400 interval. The low storage deficit of the
second transition period (AD 1300–1400)
changed to a high storage deficit in the AD
1400–1540 interval following the second transi-
tion, indicating a substantially increased need for
access to food through social networks and/or
acquisition of wild resources. During the second
transition, however, archaeological evidence indi-
cates a major shift in agricultural technologies—
from heavy dependence on runoff agriculture to
an increased reliance on spring and riverine irriga-
tion along the Zuni River, whichwere less precipi-
tation dependent (Kintigh 1985). These new
agricultural strategies could have ameliorated the
impact of climate change on storage potential.

We should note that this storage deficit calcula-
tion does not take temperature into account. Low
temperatures in the higher-elevation areas could
shorten growing seasons to the point that crops
would likely fail more frequently, leading to stor-
age deficits that we do not model here. Tempera-
ture would have been a key variable for the El
Morro Valley, for instance, which was initially—
and heavily—occupied during the AD 1200–
1300 and 1300–1400 intervals that were both
relatively high in precipitation (despite the AD
1276–1299 drought) and low in temperature. The
second transition was marked by movement of
people into lower elevations along the Zuni
River valley, where temperatures were higher and
the growing season substantially longer, although
the Zuni River can become dry during times of
low precipitation (Kintigh 1985).

Staple Wild Plant Diversity

Within the Cibola region, the baseline wild plant
diversity of the occupied areas (calculated in
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50-year time intervals) varied somewhat through
the AD 900–1540 interval (Figures 7 and 9c;
Supplemental Figure 1). It increased substan-
tially from the AD 900–1049 period to AD
1050–1099 period and then decreased during
the AD 1100–1199 period. It increased again in
the AD 1200–1249 interval and then again
decreased for the AD 1250–1299 interval. But
the (new) occupation of the El Morro Valley
and the continued occupation of the Pescado
area, both immediately to the southwest of the
Zuni Mountains, provided accessibility for a
large percentage of the population to this area
of very high wild plant diversity. From the AD
1250–1299 interval to the AD 1300–1349 inter-
val, the staple wild plant diversity across the
occupied area further improved. At this transi-
tion, however, the dramatic increase in typical
village size (by more than an order of magnitude)
worked against the utility of using wild plants to
reduce food stress because these resources would
have been depleted more easily.2 Nonetheless,
the wild plant diversity evidence indicates that
the AD 1200–1349 period was highly favorable
to rely on wild resources to mitigate food stress.

At the second transition, the occupied area
contracted into areas more distant (30–60 km)
from the high wild-plant diversity of the Zuni
Mountains. From the AD 1300–1349 interval
to the AD 1350–1399 interval, the relatively
low local wild-resource diversities around most
occupied villages remained about the same or
decreased slightly and continued at about
these same levels until AD 1540. The extreme
concentration of population in large towns con-
tinued, and the length of village occupation
grew from generational to a century or more,
working against the utility of using wild plants
for food-stress reduction. Together, these factors
suggest that during the final protohistoric period
from AD 1350 to 1540, staple wild plants would
have had less potential impact on reducing food
stress than in the previous period.

Anticorrelated Growing-Season Rainfall

In the Cibola region, reciprocal anticorrelation
(when one place can help another when needed,
and vice versa) was almost completely absent,
although at various times, one-way relationships
were evident, with some areas able to help others

when they were in need (Figures 8, 9d, and 9e).
Although no strong and easy-to-interpret patterns
in terms of site-to-site anticorrelations are evident,
we can glean a few broader trends from the anti-
correlation maps. Most areas were positively cor-
related in the AD 900–1050 and AD 1050–1200
intervals, suggesting that few opportunities
existed for food-based exchanges among people
at different sites with complementary climatic
characteristics—at least at the spatial scale we
investigate. After AD 1200, however, we observe
greater differences among the sites examined.
Specifically, for both the AD 1200–1300 and
AD 1300–1400 periods, people at sites in the nor-
thern half of the study area (including the Zuni
River valley, El Morro Valley, and the Puerco
River to the west) could have potentially provided
surplus food to those at sites in stressed climate
conditions in areas along the southern edge of
the Colorado Plateau, in particular Mariana
Mesa, the Upper Little Colorado, and along
Carrizo Wash. By the AD 1400–1540 interval,
the primary patterns of complementary anticorre-
lation were largely limited to potential connec-
tions between people in the Mariana Mesa area
(although after AD 1325, Mariana Mesa was not
permanently occupied) and those in much of the
region to the north on the Colorado Plateau.
This north/south division between sites on the
Colorado Plateau and sites on the southern edge
of the plateau or beyond was the strongest associ-
ation across all of the sampled sites.

The structure of the regional population also
changed considerably through the periods con-
sidered here. Although a larger area was occu-
pied in the AD 900–1050 and AD 1050–1200
intervals, relative to the AD 1200–1300 interval,
people at settlements had access to stronger and
more frequent opportunities to interact with
those in anticorrelated settlements in the latter
period. This observation reinforces the storage
deficit picture, indicating that during the AD
1200–1300 interval, people may have had less
stress due to fewer storage deficits and more
opportunities to address stresses through
exchange. This flexibility may well have enabled
the dramatic population aggregation that we
observe at this transition.

In the case of the later (AD 1350–1400) trans-
formation, all of the occupied towns postdating
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AD 1375 sat along a 30 km stretch of the Zuni
River. The anticorrelation maps for the site of
Hawikku (Figures 8, 9d, and 9e) or Halona:wa
(not illustrated) show that the areas with anticorre-
lated precipitation were generally both distant and
unoccupied. As a result, deficit-driven interaction
would not have been possible within the Cibola
region. The nearest potentially valuable inter-
action for reducing food stress would have been
the Hopi Mesas, located 170 km to the northwest,
and around Acoma, 120 km to the east. Material
culture evidence indicates that there was consider-
ably more interaction withHopi and other pueblos
in the final time period than in any preceding
period—a reciprocal relationship that was also
documented historically (Cordell and McBrinn
2012:296–297, 299; Cushing 1920:76–78; Ford
1972; Talayesya 1942:52).

Our results suggest that patterns of inter-
action between people in the northern and
southern halves of the study area may have
increased after AD 1200 or AD 1300 when
those two areas grew increasingly anticorre-
lated. Peeples (2018) explores a number of dif-
ferent lines of evidence focused on identifying
patterns of interaction across the broader Cibola
region (largely on the post-1200 period). He
investigates the frequency of interaction through
proxies, including shared technological styles
for pottery production and domestic architec-
ture, as well as the circulation of painted and
unpainted ceramics (Figure 10). These different
lines of evidence suggest considerable inter-
action between people in the northern half of
the study area with those in the south between
about AD 1200 and 1275. Indeed, Peeples

Figure 10. Cibola social networks. The northern (gray) and southern (white) shaded areas represent clusters of sites that
showed strong similarities in technology for multiple material classes (Peeples 2018). (Color online)
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(2018) documents high volumes of ceramics
moving between these regions, in particular
between the central Zuni region and areas to
the south as well as more gradational patterns
of similarity in terms of material culture tech-
nology. Counter to our expectations based on
the anticorrelation patterns we document, how-
ever, as the anticorrelation between the north
and south increased (from the AD 1200–1300
to the 1300–1400 period), interaction between
regions decreased; they became increasingly
local in nature (especially after AD 1275).

This lack of fit between our anticorrelation
analysis and Peeples’s interpretations of interac-
tions may suggest that at the scale considered in
our study, reciprocal subsistence-based inter-
action among areas with complementary climate
and weather regimes was not a major risk-
buffering strategy. Our analysis indicates that,
in fact, the climatic patterns did not provide
many opportunities for such interactions. How-
ever, the asymmetric climatic patterns (enabling
people at the sites in the north to provide sur-
pluses to people experiencing food stress at
sites in the south, but not vice versa) could
have encouraged exchanges of nonagricultural
products.

Several earlier studies in other portions of
the Southwest (Borck et al. 2015; Cordell
et al. 2007; Rautman 1993) found stronger-
than-expected interactions between areas
experiencing complementary climate condi-
tions. Notably, the patterns of complementarity
documented in these past studies were at far
greater spatial scales (largely including interac-
tions occurring across 100 km or more). Such
distances were likely far beyond the distances
that we might reasonably expect people to
have moved food in order to deal with resource
shortfalls. As a result, these long-distance con-
nections characterized by complementarity
may have been more about providing options
for migration when the challenges faced were
the most extreme (Duff 1998).

Comparison of Cibola and Salinas Risk
Landscapes

The Cibola case study provides an in-depth
example of the utility of the risk landscape

approach in evaluating the relationship between
climate-driven risk to food shortfall and risk-
mediating strategies in the prehispanic U.S.
Southwest. From our analysis, it appears that
there was a potential link between severe storage
stress between AD 1400 and 1540 and a major
shift in agricultural technologies in the region
at that time. This correlation should be explored
further in future studies. Interestingly, however,
there is little evidence for a connection between
established social networks observed archaeo-
logically, shifting anticorrelations in the risk
landscape, and social transformations through
time in the Cibola region. Indeed, it appears
that interactions observed in the Cibola region
may not be related to anticorrelated rainfall at all.

This was not true in the Salinas region, located
approximately 250 km to the east of Cibola in cen-
tral New Mexico. Unlike the Cibola region, Sali-
nas was characterized by times of social,
settlement, and economic stability during our
period of study fromAD1100 to 1450 (Spielmann
et al. 2011). Social transformations observed in the
Salinas region were mostly related to changes in
settlement patterns and types, including transi-
tions from pithouses to jacal villages to plaza-
oriented pueblos to nucleated large pueblos over
the centuries of focus (Chamberlin 2008;
Spielmann 1996). In initial analyses of the Salinas
region (Strawhacker et al. 2017), we solely
analyze the relationship among archaeological
exchange networks, anticorrelation patterns, and
anthropogenic alterations to the landscape. Unlike
the Cibola region, we find patterns in established
prehispanic social networks that correspond to
the anticorrelation landscape structure.

Returning to Figure 4 above, in the later peri-
ods of Salinas prehistory (AD 1351–1450), anti-
correlations of growing-season rainfall became
more pronounced compared to previous time peri-
ods. These more pronounced anticorrelations cor-
responded with evidence for increased trade.
Mutual reliance for food assistance between the
Manzanos (Quarai and Abo) and Jumanos (Gran
Quivira and Pueblo Blanco) pueblos after the
mid-1300s would have been reinforced by
exchange of plain-ware vessels from villages on
the eastern side of the Manzano Mountains
(e.g., Quarai; Capone 2017) and later glaze-ware
ceramics from Abo to the Jumanos pueblos,
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which grew substantially in the mid-1400s
(Mobley-Tanaka 2017). Bison and salt products
from the Jumanos pueblos could have been
offered in return. The Salinas case also demon-
strates the importance of the local context to
fully understand the risk landscape. Whereas the
Salinas region presented a clear link between
anticorrelated rainfall patterns and archaeologi-
cally observed exchange of materials, the Cibola
case revealed that storage stress may have been a
stronger driver of risk-mediating strategies.

It is possible that this contrast between regions
may have been driven by differences in localwater
availability in each region, allowing for the adop-
tion of alternative risk-buffering strategies.
Whereas agricultural communities in the Cibola
region could draw more reliable water from a
major river, the Salinas region had no meaningful
surfacewater to relyonwhen rainfall fell short.We
have excellent data substantiating landscape mod-
ifications around the Jumanos pueblos in the Sali-
nas region that were designed to raise the water
table in very localized areas (Strawhacker et al.
2017)—a strategy that concentrates water to
crops in times of insufficient rainfall. These mod-
ifications, however, would not have been nearly as
productive as agriculture along the Zuni River in
the Cibola region. As a result, as the Cibola popu-
lation concentrated along the Zuni River in the
fourteenth century, risk-buffering strategies for
rainfed farming became less important with easier
access to riverine water sources that could feed
fields via small canals. Salinas farmers, however,
were forced to continue to rely on rainfed farming,
which potentially drove them to rely more heavily
on anticorrelated social networks in times of need
during the same time periods.

Next Steps and Conclusions

The above analysis represents a significant step
toward creating substantive and quantified meth-
ods to assess risk for our archaeological case stud-
ies at a landscape scale. This method evaluates
how prehispanic populations may have invested
in risk management strategies based on climate
structure and helps explain how these investments
would have been stressed in times of climate
change. This conceptual framework and method-
ology provide a risk-based approach that can be

applied in many different ways across other ar-
chaeological regions (depending on the spatial
and temporal resolution of available environmental
and archaeological data). From these initial
results, the analysis shows that both the Cibola
and Salinas regions may have contended with
considerable changes in risk landscapes through
time, potentially resulting in the need for people
to use different risk-mediating strategies. The
Cibola region exhibited little evidence for anti-
correlated rainfall patterns in concert with archae-
ologically observed social networks, whereas the
Salinas case did indeed show evidence for
increasing anticorrelation through time in con-
junction with complementary exchange patterns.
The differences between the Cibola and Salinas
regions show that these regions faced varying
risk landscape structures over time.

For the purposes of this analysis, we focus
on precipitation-driven risks to food security,
but precipitation is not the only climate- or
microclimate-related risk factor to successful
food production in the U.S. Southwest or in
other regions. Other factors that could be incor-
porated into this kind of analysis include tem-
perature (such as late or early freezes, which
could threaten crops, or insufficient growing-
degree days), winter rainfall (which is critical
for sufficient soil moisture at planting), cold air
drainages (which can threaten early growth of
crops), anthropogenic alterations to the environ-
ment, soil degradation, crop pest and disease
problems, or overexploitation of wild resources.
The methods demonstrated in this analysis
could be applied to many different environmen-
tal factors that may present a risk to food produc-
tion, provided the data exist. Our efforts are a step
forward to better understanding climate-driven
risk to food production at a landscape scale and
the ways in which people may have structured
various risk-mediating strategies based on accu-
mulated local knowledge of that established cli-
mate structure. When that climate structure
changes over time, we can observe how these
strategies may have been stressed and/or altered
to mediate the risk of agricultural failure through
archaeologically observed strategies, including
storage, exchange of goods, and changes in agri-
cultural practices. This analysis adds to our
understanding of the complex, landscape-scale
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choices people made in the context of changing
climate, and they can inform future hypotheses
testing regarding archaeologically observed strat-
egies to avoid food shortfall.
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Supplemental Figure 1. All available maps of wild plant
diversity in the Cibola region from AD 900 to 1550. Those
maps relevant to Cibola Social transformations are displayed
in Figure 7.

Notes

1. A 0.5 standard deviation was selected based on ethno-
graphic and historic observations on dry farmed agriculture in
the U.S. Southwest that indicates that most unirrigated agricul-
tural fields are seriously stressed or fail in one out of every three
to four years (Bradfield 1971; Cushing 1920; Hack 1942).

2. With our data, we are not measuring depletion of wild
resources due to human exploitation but simply the potential
of the wild plant diversity based on retrodicted baseline
environmental conditions. It is important, however, to con-
sider that humans did have an impact on wild resource avail-
ability due to overexploitation and that these resources would
have been important for diversifying diets.
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