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ABSTRACT 
Despite the increasing attention to infusing CT into middle and 
high school content area classrooms, there is a lack of information 
about the most effective practices and models to support teachers 
in their efforts to integrate disciplinary content and CT principles. 
To address this need, this paper proposes the Code, Connect and 
Create (3C) professional development (PD) model, which was 
designed to support middle and high school content area teachers 
in infusing computational thinking into their classrooms. To 
evaluate the model, we analyzed quantitative and qualitative data 
collected from Infusing Computing PD workshops designed for in-
service science, math, English language arts, and social studies 
teachers located in two Southeastern states. Drawing on findings 
from our analysis of teacher-created learning segments, surveys, 
and interviews, we argue that the 3C professional development 
model supported shifts in teacher understandings of the role of 
computational thinking in content area classrooms, as well as their 
self-efficacy and beliefs regarding CT integration into disciplinary 
content. We conclude by offering implications for the use of this 
model to increase teacher and student access to computational 
thinking practices in middle and high school classrooms. 

CCS CONCEPTS 
• Social and professional topics→ Computational thinking; 
K-12 education 

KEYWORDS 
Computational thinking; Professional development; K-12 
computing; Teacher education 

ACM Reference format: 

Robin Jocius, Deepti Joshi, Yihuan Dong, Richard Robinson, Veronica 
Cateté, Tiffany Barnes, Jennifer Albert, Ashley Andrews, Nicholas Lytle. 

2020. Code, Connect, Create: The 3C Professional Development Model to 
Support Computational Thinking Infusion. In Proceedings of the 51st ACM 
Technical Symposium on Computer Science Education (SIGCSE ’20), March 
11-14, Portland, OR, USA. ACM, New York, NY, USA. 7 pages. 
https://doi.org/10.1145/3328778.3366797 

1 INTRODUCTION 
As state and national standards for content area learning continue 
to evolve, computational thinking (CT), which involves “solving 
problems, designing systems, and understanding human behavior, 
by drawing on the concepts fundamental to computer science” [27, 
p. 33], is rapidly becoming an integral piece of P-12 curricula 
(National Research Council, [19]). CT is not simply the integration 
of technology (e.g., use of computers or iPads) into P-12 education, 
but rather a set of practices and habits of mind that students can 
learn with or without the introduction of technology [20, 23]. 
Researchers [31] have even suggested that framing computational 
thinking as an essential component of disciplinary learning can 
support students’ abilities to interact meaningfully with both 
computing and disciplinary content. 

However, despite the increasing attention to integrating CT 
within K-12 content area instruction, there is little information 
available about the best ways to support teachers in developing 
and implementing learning experiences that explicitly target both 
disciplinary and content learning. In order to address this gap, this 
paper proposes the Code, Connect and Create (3C) professional 
development (PD) model, which is centered around three primary 
components—Code (Bootcamp), Connect (connecting disciplinary 
content and pedagogy to computational thinking), and Create (the 
development of CT-infused learning segments) (see section 3). The 
3C model is developed as an essential component of a three-year 
research project, Infusing Computing, which aims to document 
how middle and high school teachers create and implement 
interdisciplinary, CT-infused lessons.  

The 3C design and development process drew on the 
knowledge and experience of the research and facilitation team, 
which included computer scientists, education faculty who have 
worked as classroom teachers, in-service computer science 
teachers, and in-service content area teachers. Because teacher 
learning has often been a fragmented system [26], utilizing a 
situative perspective allowed us to examine not only what 

Permission to make digital or hard copies of part or all of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 
on the first page. Copyrights for components of this work owned by others than ACM 
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, 
to post on servers or to distribute to lists, requires specific permission and/or a fee. 
Request permissions from Permissions@acm.org. 
SIGCSE ’20, March 11-14, 2020, Portland, OR, USA. 
© 2020 Association for Computing Machinery.  
ACM ISNB 978-1-4503-6793-6/20/03...$15.00 
https://doi.org/10.1145/3328778.3366797 

Paper Session: Professional Development A  SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

971



 
 

 

 

teachers learn, but why they learn “to explore the connections 
among professional development activities and processes on the 
one hand, and individual teachers’ knowledge and instructional 
practices on the other” [5, p. 7].  

The 3C model has been implemented across two years of 
summer workshops that supported 116 middle and high school 
content area teachers in 2018 and another 150 teachers in 2019 in 
infusing computational thinking principles into their classrooms. 
This paper draws on qualitative and quantitative analyses of data 
from the Summer 2018 PD sessions and the 2018-2019 academic 
year implementation. Of the 116 teachers who attended summer 
workshops in 2018, 58 teachers that attended the North Carolina 
PD, 41% identified as science teachers, 36% identified as math 
teachers, and 22% identified as humanities teachers. Of the 58 
teachers attending South Carolina PD, 33% identified as science 
teachers, 34% identified as math teachers, and 29% identified as 
humanities teachers. All 3C sessions were led by members of the 
research team with support from teacher leaders with computing 
infusion experience, including teachers who participated in the 
pilot study in which they infused CT into their classrooms. The 
results are discussed in section 4. 

2 BACKGROUND 
More than a decade ago, Wing’s [27] seminal work described 
computational thinking as a “fundamental skill for everyone, not 
just for computer scientists” (p. 33). Since that time, there has been 
a growing interest in introducing CT in P-12 schools to support 
students’ development of multi-faceted skills, such as critical, 
systematic thinking [15], scientific reasoning [21], mathematical 
practices [25], and expository writing [28]. The increasing 
availability of visual, block-based programming languages such as 
Scratch [17] and Snap! [14], as well as CT’s potential to expand 
upon 21st century learning frameworks that emphasize problem-
solving, innovation, and critical thinking [18], have been 
instrumental in creating an increased demand for CT integration 
into P-12 classrooms. 

However, districts and schools continue to face significant 
challenges to CT integration, including a lack of clear policy 
guidance and logistical barriers to implementation. Currently, only 
22 states have created computer science standards and only 15 
states have adopted policies to ensure that all high school students 
have access to computer science (Code.org & CSTA, [8]). 
Researchers have discussed numerous solutions to overcome 
issues of access, including increasing the availability of after-
school enrichment programs that emphasize programming [16], 
incorporating CT training into pre-service education courses [31], 
and providing training for teachers to teach AP Computer Science 
Principles and other computer-science-specific courses [1, 11]. 
While expanding CT practices into content classes has been 
proposed as a potentially valuable pathway for increasing access 
and broadening participation, mechanisms for introducing and 
supporting CT integration have been largely unexplored. As 
Grover and Pea [13] note, exploring the affordances for 
incorporating CT into disciplinary teaching, or “dovetailing the 
introduction of CT at K–12 with a transfer of problem-solving 

skills in other domains,” has been an “under-investigated” area for 
both research and practice (p. 11).   

Our work is grounded in the idea that computational 
thinking can be envisioned as an essential component of 
disciplinary learning. In order to accomplish the infusion of CT 
into disciplinary teaching and learning, teachers must integrate 
“activities that make visible the inherent overlap of computational 
thinking ideas and practices with subject area concepts,” allowing 
students to interact meaningfully with both content and CT 
practices and skills [29, p. 567]. However, before any of these 
integration opportunities are possible, teachers must first 
understand what CT is, how it connects to their standards and 
curricula, and how it supports students’ understandings of 
content. 

Research has demonstrated that teacher professional 
development is critical to any successful change in educational 
policy or practice [22], including changes related to computational 
thinking integration into P-12 schools [3, 4]. Specifically, Barr and 
Stevenson [4] identified two major areas of need in relation to 
teacher PD in computational thinking: (1) a clear definition of 
what CT is and how it applies to students and content, and (2) 
explicit, ongoing training and support for P-12 teachers. To 
address these needs, the 3C model incorporates a reorganized 
definition of CT called PRADA, which is a practical way of 
introducing the big ideas of CT to non-computing teachers across 
disciplines to support them in infusing CT into their curricula [2].  
PRADA is a mnemonic device that reorders and refines elements 
of Google’s CT definition [12] to make the model more adaptable 
to different disciplines: Pattern Recognition: observing and 
identifying patterns and trends; Abstraction: identifying ideas that 
are important and relevant (giving them a name and hiding 
details); Decomposition: breaking down problems into meaningful 
smaller parts; and Algorithms: a composition of instructions for 
solving a problem and similar problems. These PRADA elements 
are used throughout each 3C session to provide support for 
teachers’ developing understandings of CT and their design and 
development of CT-infused learning segments. 

3 THE 3C MODEL 
Within the 3C model, as teachers work towards the shared goal of 
creating learning segments that infuse computational thinking 
into their existing curricula, they expand on the models, 
vocabulary, forms of interaction, and participation structures 
within the computer science discipline. By the end of each week-
long PD workshop, participants were expected to use their 
developing understandings of CT to design a lesson that involved 
the use of Snap! (2011), a programming language based on Scratch 
[17]. Teachers were tasked with creating the following 
components: (1) a Snap! prototype; (2) a detailed lesson plan; and 
(3) supplemental pedagogical materials, such as slides, links, or 
handouts. All elements of the 3C model were explicitly designed to 
scaffold teachers towards increasingly complex understandings of 
CT. Further, 3C aims to help teachers recognize integration 
opportunities in both discipline-specific and interdisciplinary 
ways. Figure 1 provides an overview of the 3C model, including 
the expected amount of time spent on each 3C session each day of 
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the PD workshop, facilitator characteristics, and sample activities 
for each component. 
 

 
 

Figure 1: Code, Connect, Create (3C) Professional 
Development Code 

 
 

3.1 Code 
The goal of the first 3C PD model component, Code, is to provide 
participants with opportunities to build their understandings of 
CT principles, learn programming concepts, and gain experience 
in programming with Snap!. One of the primary affordances that 
led to the selection of Snap! is its focus on helping users create 
their own new modules, called custom blocks, by giving a name to 
a set of blocks and hiding the details of the block. Custom blocks 
have been used to extend Snap! to build in complex functionalities, 
such as scientific or mathematical simulations in Netsblox [6]. This 
affordance is particularly important for teachers needing to 
customize programming projects for different levels of abstraction 
or complexity to align with their pedagogical needs and curricula. 
Further, Snap! can allow students to ignore or explore code as 
needed. Code sessions also provide teachers with opportunities to 
collaborate with each other and with facilitators, including expert 
teacher-leaders and university faculty, to familiarize themselves 
with the functionality of Snap! as a programming language and to 
get hands-on experience in coding from the student perspective. 

During 105-120 minute Infusing Computing Code sessions 
held each day, teachers were introduced to computational thinking 
concepts (e.g., algorithms, abstraction, pattern recognition, 
decomposition), which were then reinforced in the Connect 
sessions, as well as programming-specific terms (variables, loops, 
conditionals, lists). Each session was designed using a Use-Modify-
Create structure, where teachers were expected to use existing 
code, modify code to solve Parson’s problems and create code for 
use in their learning segments. Each programming activity was 
broken down into five to seven tasks, from reading worked 
examples, fixing bugs in the code, to creating a short script. Table 
1 lists the specific topics covered in the Code sessions, which 
include repeat loops, variables, mathematical operators, custom 
blocks, and labels. 
 
3.2 Connect 
The goal for the Connect sessions is for teachers to engage with 
content area colleagues to refine their understandings of CT 
principles outlined in the PRADA model. Connect session content 
is designed to reinforce computational thinking concepts and 
vocabulary introduced during the Code sessions. These daily 

sessions focus on a particular PRADA theme (pattern recognition, 
abstraction, decomposition, and algorithms) and begin with a 
whole-group discussion in which teachers discuss concrete 
examples of how their existing teaching practices included 
PRADA elements, even if they did not use the PRADA 
terminology at the time. To support teachers in identifying 
integration opportunities and to demonstrate the inherent 
connections between CT and their disciplinary teaching, teachers 
examine their standards and brainstorm sample plugged or 
unplugged activities that would support students’ disciplinary 
understandings, as well as their developing knowledge of CT 
concepts. 

During the 60-minute Infusing Computing Connect sessions, 
teachers engaged in a collaborative standards mapping activity in 
which they were asked to identify a standard number and 
indicator, describe the standard, identify and explain related 
PRADA elements, and suggest sample plugged or unplugged 
activities that could be implemented in the classroom setting. 
Standards mapping was done collaboratively, using Google Forms 
and a spreadsheet with exported responses so that all teachers 
could see their colleagues’ work to make explicit connections 
between PRADA elements and standards. Table 2 contains sample 
participants’ standards mapping responses. 
 
3.3 Create 
One of the key elements of the 3C model is that it provides 
opportunities for participants to engage in CT infusion and 
programming as both learners and teachers. Each Create session 
begins with a discussion in which teachers reflect on their new 
learning from the two morning sessions, develop goals for 
designing and creating their learning segment, and discuss areas of 
need. Then, participants work in teams or individually to develop 
their learning segments. Participants also create materials to 
present their learning segments to other participants, as well as 
invited guests and school administrators, during a Demo Fair on 
the final day of the workshop. The Create session time is 
specifically designed for flexible utilization, as the ways that 
teachers will use the time will vary based on the nature of their 
intended learning segment. 

During the 120-minute Infusing Computing Create sessions, 
teachers utilized varying resources and types of support that 
depended on their needs and the goals of their particular learning 
segments. For example, to create learning segments that centered 
around teacher-created simulations that required students to use 
or modify existing code, participants worked in close collaboration 
with computer science experts to explore the Snap! Programming 
language. One middle school science teacher, for instance, 
designed a Snap! thermometer lab and starter code for a 9th-grade 
biology course in which students code adjustments to calculate 
energy output based on different temperatures. This required her 
to work closely with computer science experts to create custom 
blocks and to refine the Snap! environment to maximize student 
learning. Other participants chose to dedicate the majority of their 
work time to the design of the learning segment plan and 
pedagogical artifacts. This was particularly important for teachers 
who designed learning segments that required students to learn 
coding skills to create original products. For example, one group of 
middle school teachers created a multi-day learning segment that 
involved students’ original design and programming of quilt 
squares reflecting Appalachian culture. In order to be able to 
anticipate students’ challenges and to build pedagogical supports 
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to help them connect to multiple disciplinary standards, this group 
developed a multi-faceted system of support that included 
introductory slide shows, reading selections, multimodal materials, 
and student tutorials. 

4  RESULTS AND IMPACT OF THE 3C MODEL 
Our analysis of the impact of the 3C model focused on examining 
changes in teachers’ self-efficacy and beliefs regarding CT 
integration into disciplinary content. Analysis of quantitative 
survey results revealed significant shifts in teacher self-efficacy. 
For instance, on the pre-PD surveys, 78% of teachers (n=115) rated 
their knowledge and understanding of CT infusion as poor or fair, 
with only 7.6% rating themselves as very good or excellent. By the 
end of the PD, 48.3% of teachers rated themselves as very good or 
excellent, with only 16.9% rating their understandings of CT 
infusion as poor or fair. Further, on the post-PD surveys, more 
than 90% of teachers (n=114) either agreed or strongly agreed with 
all three of the following statements: “I am more likely to 
incorporate CT activities in my classroom, I can more effectively 
design CT activities, and I can better engage students in making 
sense of CT and designing solutions to problems”.  

Further analysis of teacher implementation surveys (n=26) 
returned after the 2018-2019 academic year revealed that the 3C 
model extended teachers’ knowledge, skills, and performances so 
that they could implement their new knowledge in the classroom 
setting. Overall teacher beliefs regarding the impact of the 
professional development on classroom instruction were measured 
using 5 Likert scale items, with 1 meaning that they strongly 
disagreed with the item and 5 meaning that they strongly agreed 
(see Table 3). 
Qualitative responses also indicated that the model was an 
impactful component of teachers’ experience. As a high school, 
social studies teacher said, “The summer PD was outstanding and I 
learned so much that I was able to bring back to the classroom. 
The techniques I learned invigorated my curriculum and 
challenged my students.” 
In order to understand changes in teachers’ beliefs from pre-PD to 
post-PD, we also categorized qualitative responses on pre and 
post-PD survey items targeting their goals for classroom 
integration of CT into one of five themes: enrichment, review, 
collaboration, disciplinary-computational thinking connections, 
and unsure (see Table 4 for definitions and examples of codes used 
for pre-PD and post-PD responses). 

 

Table 1. Initial Plan for Code Session Activities, Main CT Concepts, and Programming Concepts Introduced or Highlighted 

 Monday Tuesday Wednesday Thursday 
Activity Introduction to the Snap 

programming environment. 
Draw a square, a triangle, a 
house, and a row of houses 

Create and manipulate a 
shopping list in Snap 

Data exploration and 
visualization by 
creating graphs in 
Snap 

Explore the Cellular 
programming 
environment and the 
Epidemic Disease Activity 
Example 

Main CT Concept Abstraction Pattern Recognition & 
Decomposition 

Algorithms All PRADA 

Programming 
Concepts 
Introduced or 
Highlighted 

Custom blocks, Variables, 
and Repeat loop 

Data Structures- lists as 
containers for data, 
conditionals for decision 
making, Variables for 
storing input 

Abstract Data Types, 
Global Variables, 
Labels, Mathematical 
operators 

Event-driven 
programming, Forever 
loops, relational 
operators, Manipulating 
Variables 

 

Table 2. Sample Standards Mapping Responses 

Grade 
and 

Subject 
Area Standard PRADA Connections Sample Activity 

Plugged or 
Unplugged 

9th Grade 
Algebra 

Solve quadratic equations in 
one variable that have complex 
solutions. 

Abstraction, Algorithm 
Students will use the quadratic 
formula, which will require 
following an algorithm to solve 
the problem correctly 

Students will break down the process 
step by step, determine the possible 
outcomes (discriminant), and create 
the SNAP code to apply the quadratic 
formula to any quadratic equation 

Both 

7th Grade 
World 
History 

Summarize mercantilism as a 
way of building a nation’s 
wealth, including government 
policies to control trade. 

Abstraction 
Standard calls for summarizing 
while abstraction focuses on 
hiding details 

Analyze the image and create a chart 
with the main points. 
Drag and Drop Items from colonies to 
benefit mother countries 

Both 

9th Grade 
Biology 

Develop and use models to 
exemplify the changes that 
occur in a cell during the cell 
cycle and predict, based on the 
models, what might happen to 
a cell that does not progress 
through the cycle correctly. 

Decomposition 
Students must decompose all 
components of the cell 
membrane and how they 
interact to pass materials 
through it.  

Building a Cell Membrane Challenge 
(limited materials must be "purchased", 
used in the construction, and 
demonstrate passive and active 
transport). 

Both 
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Then, to triangulate responses across data sources, we 
analyzed the teacher-created CT-integrated lesson plans, as well as 
reflective surveys from the implementation of the lessons during 
the 2018-2019 academic year. 

Before the PD began, teachers viewed CT as either 
enrichment that went above and beyond the borders of their 
curricula, or as a way to foster student engagement and 
collaboration. Specifically, on the pre-PD survey, the majority of 
teachers (51%) described their goals for integrating computing as 
providing enrichment beyond the existing curriculum for a small 
group or whole class of students (45%) or reviewing content or 
material already covered in class (6%). While 24% noted that they 
hoped to be able to integrate or infuse computational thinking into 
their disciplinary teaching and 9% referenced interdisciplinary 
collaboration, there was a lot of uncertainty regarding how these 
goals might be accomplished. For instance, one teacher noted that 
her goal was “making connections between math to science,” 
while another said, “I hope to teach my students how to use 
coding to perform mathematical computations that we would be 
using in my content areas of Math,” but details about how they 
could support these connections were missing entirely. 
Additionally, 16% were unsure of how they would integrate 
computing into the classroom; as one teacher said, she hoped to 
“make my students do some projects with coding,” but thought 
that she “should learn more before I start using coding in my 
classroom.” 

As teachers progressed throughout the workshop, many 
began to see the infusion of CT into their content teaching as the 
primary goal of the professional development. On the post-PD 
survey, 70% of teachers reported that the primary goal of their 
learning segments was to integrate CT into their disciplinary 

teaching. As one teacher noted, “Our project is taking an idea from 
marine science and giving the students an opportunity to learn 
coding in order to develop a model to demonstrate their learning.” 
Further, 4% reported that the primary goal was collaboration and 
7% reported a primary goal of reviewing concepts covered in 
current or previous classes. However, within the review category, 
several teachers referenced the importance of review in solidifying 
learning; for example, as one teacher said, “We made modest gains 
in the ACT composite score last year. We will continue to address 
strengthening language, math, science, and writing. Implementing 
a novel forum for improvement will ensure that learning isn’t 
forgotten with the conclusion of the testing administration.” 
Finally, 17% of teachers reported conceptualizing their learning 
segments as enrichment projects that would supplement the 
existing curriculum, which represented a 28% decrease from the 
beginning of the week. 

Analysis of implementation data, including lesson plans, 
teacher reflections, and video recordings of teacher lessons, 
showed that some teachers were able to successfully embed 
computational thinking into disciplinary content. A group of 
middle school science teachers, for example, collaboratively 
designed a lesson in which students explored the structure of 
water molecules to reinforce their knowledge of the properties of 
water. Kevin, who implemented the lesson in Spring 2019, said, 
“The end result of the lesson is that each student group was able to 
draw the water molecule and create a program of molecule coming 
together.” Kevin did note several changes that he would make to 
the lesson implementation, stating, “When I implement Snap! next 
year, I will develop lessons that sequentially build programming 
skills. For example, lessons will start by building simple skills and 
culminate by integrating all the skills.” 

 
 

Table 3. Teacher Beliefs Regarding the Impact of the 3C Model 

Likert Items Mean (n=26) 
Infusing Computing extended my knowledge, skills, and performances. 4.73 
What I learned during the Infusing Computing program positively impacted the achievement of my students. 4.19 
The content of Infusing Computing is relevant to my professional responsibilities. 4.38 
 

 
Table 4. Themes, Definitions, and Examples of Codes for Teachers’ CT Infusion Goals 

Theme Definition Example 
Enrichment Activities, materials, or resources that 

would be utilized as an addition to the 
existing curriculum for individual 
students, small groups, or the whole 
class 

“I will try to integrate it as a differentiation piece for small collaborative 
groups or individual instruction.” (pre-PD) 

Review Review of concepts, ideas, or content 
covered in current or previous courses 

“Hopefully, the app will allow my students to practice for the AP exam” 
(post-PD) 

Collaboration Working with other teachers and 
colleagues to develop collaborative 
materials and activities 

“I hope to collaborate with others so that I can create transdisciplinary 
STEM units that will help foster critical thinking skills to help my 
students become geared for career readiness.” (post-PD) 

Disciplinary- 
Computational 
Thinking 
Connections 

Integrating CT into disciplinary 
teaching to support students’ 
development of content knowledge, 
CT knowledge, or both 

“As a science teacher, I plan to develop lessons for students to create 
models and simulations related to chemistry (building molecules and 
atoms), develop water quality assessment programs related to hydrology, 
and have students develop programs to collect data/surveys related to 
biotechnology practices.” (pre-PD) 

Unsure Uncertainty regarding the goals of the 
workshop or ideas for CT infusion 

“I'm getting my bearings as it pertains to coding and I feel like I need to 
let it all sink in before I can begin the integration phase.” (pre-PD) 
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While many teachers were able to successfully implement 
their lessons, others faced several barriers, including a lack of 
technological resources, difficulty in aligning schedules to conduct 
interdisciplinary lessons, and the need to more fully develop a 
series of integrated lessons for ongoing implementation. As one 
high school algebra teacher said, “I feel that I need to expand upon 
it to make the coding practices more successful but in the limited 
time we spent on coding, I think my students made great progress. 
I'd like to add additional coding lessons to each of the Algebra 
units to reinforce how simple algorithms (like solving equations) 
can be automated by the computer.” As we discuss in the next 
section, we are currently working on designing systems of 
ongoing support, including student tutorials and technical guides, 
in order to help teachers overcome some of these barriers. 

6 CONCLUSION 
Given the fundamental role of computational thinking to nearly all 
elements of 21st-century life, there is a growing need to develop 
systems that enable P-12 teachers to fully integrate CT within 
existing curricula and disciplinary teaching. It’s essential that 
teachers come to understand the value of computational thinking--
not just as an isolated concept that relates to computer science, but 
also as a way to enhance and support more complex discipline-
specific and interdisciplinary understandings. Our findings offer 
important implications for increasing access to computational 
thinking through supporting teachers in integrating CT in middle 
and high school content classrooms. Analysis of data from the 
implementation of the 3C model indicates that it effectively 
supported shifts in teacher beliefs and self-efficacy regarding the 
role of CT in P-12 classrooms. Further, findings suggest that 
teachers found great value in learning to code, thinking critically 
about connections between disciplinary content and 
computational thinking principles, and collaborating with 
colleagues to support discipline-specific and interdisciplinary 
learning. Overall, we believe that the combination of Code, 
Connect, and Create sessions helped to shift teacher beliefs about 
the role of CT in disciplinary content, while simultaneously 
addressing their concerns that they might be unequipped with the 
programming experience and knowledge to support students in 
learning to code. 

While the 3C model proposes a new framework that has 
promise for supporting teachers in learning to integrate 
computational thinking into their classrooms, there are still many 
areas that need further exploration and analysis. First, there is a 
pressing need to develop ongoing, flexible, and differentiated 
scaffolds to support teachers’ computational thinking infusion. A 
key next step is for researchers to collaborate with practitioners to 
study the impact of tiered supports that can prevent teachers’ 
knowledge from becoming inert [30]. Further, in order to support 
sustained integration into disciplinary content and curricula, 
studies must identify explore the forms and functions of 
collaborative, school and district-based communities for teachers 
to reflect on pedagogical innovations and failures. 

In order to address teacher needs that we identified during 
our analysis of Infusing Computing teacher implementation data, 
we are currently engaging in design research to develop, evaluate, 
and refine scaffolds to extend and support ongoing teacher 
learning during the academic year implementation. Examples of 
supports that we are currently analyzing include: 1) monthly 
webinars, with topics ranging from unplugged CT lessons to 
assessment of CT; 2) using Slack as a community-building tool; 3) 

podcasts as a way to support asynchronous engagement; and 4) 
the development of repositories for sharing lesson plans, 
resources, and feedback from classroom infusion experiences. 
Further, during the Summer 2019 Infusing Computing workshop, 
we introduced and are currently analyzing the impact of 
differentiated 3C sessions, including targeted Code sessions using 
Python and Connect sessions for teachers in instructional 
leadership roles within their schools. It is our hope that engaging 
in these cycles of design and analysis will allow us to establish a 
comprehensive model of teacher professional development that 
will not only increase access to CT but can also promote more 
critical connections to content area learning and interdisciplinary 
thinking. 
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