
Code, Connect, Create: The 3C Professional Development Model
to Support Computational Thinking Infusion

Robin Jocius1, Deepti Joshi2, Yihuan Dong3, Richard Robinson2, Veronica Cateté3, Tiffany Barnes3,
Jennifer Albert1, Ashley Andrews1, Nicholas Lytle3

1Zucker Family School of Education
The Citadel

 Charleston, SC, USA
(rjocius, jalbert, ashley.andrews)

2School of Science and Mathematics
The Citadel

 Charleston, SC, USA
(djoshi, rjmr)

3Department of Computer Science
 North Carolina State University

 Raleigh, NC, USA
(ydong2, vmcatete, tmbarnes,

naltyle)

ABSTRACT
Despite the increasing attention to infusing CT into middle and
high school content area classrooms, there is a lack of information
about the most effective practices and models to support teachers
in their efforts to integrate disciplinary content and CT principles.
To address this need, this paper proposes the Code, Connect and
Create (3C) professional development (PD) model, which was
designed to support middle and high school content area teachers
in infusing computational thinking into their classrooms. To
evaluate the model, we analyzed quantitative and qualitative data
collected from Infusing Computing PD workshops designed for in-
service science, math, English language arts, and social studies
teachers located in two Southeastern states. Drawing on findings
from our analysis of teacher-created learning segments, surveys,
and interviews, we argue that the 3C professional development
model supported shifts in teacher understandings of the role of
computational thinking in content area classrooms, as well as their
self-efficacy and beliefs regarding CT integration into disciplinary
content. We conclude by offering implications for the use of this
model to increase teacher and student access to computational
thinking practices in middle and high school classrooms.

CCS CONCEPTS
• Social and professional topics→ Computational thinking;
K-12 education

KEYWORDS
Computational thinking; Professional development; K-12
computing; Teacher education

ACM Reference format:

Robin Jocius, Deepti Joshi, Yihuan Dong, Richard Robinson, Veronica
Cateté, Tiffany Barnes, Jennifer Albert, Ashley Andrews, Nicholas Lytle.

2020. Code, Connect, Create: The 3C Professional Development Model to
Support Computational Thinking Infusion. In Proceedings of the 51st ACM
Technical Symposium on Computer Science Education (SIGCSE ’20), March
11-14, Portland, OR, USA. ACM, New York, NY, USA. 7 pages.
https://doi.org/10.1145/3328778.3366797

1 INTRODUCTION
As state and national standards for content area learning continue
to evolve, computational thinking (CT), which involves “solving
problems, designing systems, and understanding human behavior,
by drawing on the concepts fundamental to computer science” [27,
p. 33], is rapidly becoming an integral piece of P-12 curricula
(National Research Council, [19]). CT is not simply the integration
of technology (e.g., use of computers or iPads) into P-12 education,
but rather a set of practices and habits of mind that students can
learn with or without the introduction of technology [20, 23].
Researchers [31] have even suggested that framing computational
thinking as an essential component of disciplinary learning can
support students’ abilities to interact meaningfully with both
computing and disciplinary content.

However, despite the increasing attention to integrating CT
within K-12 content area instruction, there is little information
available about the best ways to support teachers in developing
and implementing learning experiences that explicitly target both
disciplinary and content learning. In order to address this gap, this
paper proposes the Code, Connect and Create (3C) professional
development (PD) model, which is centered around three primary
components—Code (Bootcamp), Connect (connecting disciplinary
content and pedagogy to computational thinking), and Create (the
development of CT-infused learning segments) (see section 3). The
3C model is developed as an essential component of a three-year
research project, Infusing Computing, which aims to document
how middle and high school teachers create and implement
interdisciplinary, CT-infused lessons.

The 3C design and development process drew on the
knowledge and experience of the research and facilitation team,
which included computer scientists, education faculty who have
worked as classroom teachers, in-service computer science
teachers, and in-service content area teachers. Because teacher
learning has often been a fragmented system [26], utilizing a
situative perspective allowed us to examine not only what

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to distribute to lists, requires specific permission and/or a fee.
Request permissions from Permissions@acm.org.
SIGCSE ’20, March 11-14, 2020, Portland, OR, USA.
© 2020 Association for Computing Machinery.
ACM ISNB 978-1-4503-6793-6/20/03...$15.00
https://doi.org/10.1145/3328778.3366797

Paper Session: Professional Development A SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

971

teachers learn, but why they learn “to explore the connections
among professional development activities and processes on the
one hand, and individual teachers’ knowledge and instructional
practices on the other” [5, p. 7].

The 3C model has been implemented across two years of
summer workshops that supported 116 middle and high school
content area teachers in 2018 and another 150 teachers in 2019 in
infusing computational thinking principles into their classrooms.
This paper draws on qualitative and quantitative analyses of data
from the Summer 2018 PD sessions and the 2018-2019 academic
year implementation. Of the 116 teachers who attended summer
workshops in 2018, 58 teachers that attended the North Carolina
PD, 41% identified as science teachers, 36% identified as math
teachers, and 22% identified as humanities teachers. Of the 58
teachers attending South Carolina PD, 33% identified as science
teachers, 34% identified as math teachers, and 29% identified as
humanities teachers. All 3C sessions were led by members of the
research team with support from teacher leaders with computing
infusion experience, including teachers who participated in the
pilot study in which they infused CT into their classrooms. The
results are discussed in section 4.

2 BACKGROUND
More than a decade ago, Wing’s [27] seminal work described
computational thinking as a “fundamental skill for everyone, not
just for computer scientists” (p. 33). Since that time, there has been
a growing interest in introducing CT in P-12 schools to support
students’ development of multi-faceted skills, such as critical,
systematic thinking [15], scientific reasoning [21], mathematical
practices [25], and expository writing [28]. The increasing
availability of visual, block-based programming languages such as
Scratch [17] and Snap! [14], as well as CT’s potential to expand
upon 21st century learning frameworks that emphasize problem-
solving, innovation, and critical thinking [18], have been
instrumental in creating an increased demand for CT integration
into P-12 classrooms.

However, districts and schools continue to face significant
challenges to CT integration, including a lack of clear policy
guidance and logistical barriers to implementation. Currently, only
22 states have created computer science standards and only 15
states have adopted policies to ensure that all high school students
have access to computer science (Code.org & CSTA, [8]).
Researchers have discussed numerous solutions to overcome
issues of access, including increasing the availability of after-
school enrichment programs that emphasize programming [16],
incorporating CT training into pre-service education courses [31],
and providing training for teachers to teach AP Computer Science
Principles and other computer-science-specific courses [1, 11].
While expanding CT practices into content classes has been
proposed as a potentially valuable pathway for increasing access
and broadening participation, mechanisms for introducing and
supporting CT integration have been largely unexplored. As
Grover and Pea [13] note, exploring the affordances for
incorporating CT into disciplinary teaching, or “dovetailing the
introduction of CT at K–12 with a transfer of problem-solving

skills in other domains,” has been an “under-investigated” area for
both research and practice (p. 11).

Our work is grounded in the idea that computational
thinking can be envisioned as an essential component of
disciplinary learning. In order to accomplish the infusion of CT
into disciplinary teaching and learning, teachers must integrate
“activities that make visible the inherent overlap of computational
thinking ideas and practices with subject area concepts,” allowing
students to interact meaningfully with both content and CT
practices and skills [29, p. 567]. However, before any of these
integration opportunities are possible, teachers must first
understand what CT is, how it connects to their standards and
curricula, and how it supports students’ understandings of
content.

Research has demonstrated that teacher professional
development is critical to any successful change in educational
policy or practice [22], including changes related to computational
thinking integration into P-12 schools [3, 4]. Specifically, Barr and
Stevenson [4] identified two major areas of need in relation to
teacher PD in computational thinking: (1) a clear definition of
what CT is and how it applies to students and content, and (2)
explicit, ongoing training and support for P-12 teachers. To
address these needs, the 3C model incorporates a reorganized
definition of CT called PRADA, which is a practical way of
introducing the big ideas of CT to non-computing teachers across
disciplines to support them in infusing CT into their curricula [2].
PRADA is a mnemonic device that reorders and refines elements
of Google’s CT definition [12] to make the model more adaptable
to different disciplines: Pattern Recognition: observing and
identifying patterns and trends; Abstraction: identifying ideas that
are important and relevant (giving them a name and hiding
details); Decomposition: breaking down problems into meaningful
smaller parts; and Algorithms: a composition of instructions for
solving a problem and similar problems. These PRADA elements
are used throughout each 3C session to provide support for
teachers’ developing understandings of CT and their design and
development of CT-infused learning segments.

3 THE 3C MODEL
Within the 3C model, as teachers work towards the shared goal of
creating learning segments that infuse computational thinking
into their existing curricula, they expand on the models,
vocabulary, forms of interaction, and participation structures
within the computer science discipline. By the end of each week-
long PD workshop, participants were expected to use their
developing understandings of CT to design a lesson that involved
the use of Snap! (2011), a programming language based on Scratch
[17]. Teachers were tasked with creating the following
components: (1) a Snap! prototype; (2) a detailed lesson plan; and
(3) supplemental pedagogical materials, such as slides, links, or
handouts. All elements of the 3C model were explicitly designed to
scaffold teachers towards increasingly complex understandings of
CT. Further, 3C aims to help teachers recognize integration
opportunities in both discipline-specific and interdisciplinary
ways. Figure 1 provides an overview of the 3C model, including
the expected amount of time spent on each 3C session each day of

Paper Session: Professional Development A SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

972

the PD workshop, facilitator characteristics, and sample activities
for each component.

Figure 1: Code, Connect, Create (3C) Professional
Development Code

3.1 Code
The goal of the first 3C PD model component, Code, is to provide
participants with opportunities to build their understandings of
CT principles, learn programming concepts, and gain experience
in programming with Snap!. One of the primary affordances that
led to the selection of Snap! is its focus on helping users create
their own new modules, called custom blocks, by giving a name to
a set of blocks and hiding the details of the block. Custom blocks
have been used to extend Snap! to build in complex functionalities,
such as scientific or mathematical simulations in Netsblox [6]. This
affordance is particularly important for teachers needing to
customize programming projects for different levels of abstraction
or complexity to align with their pedagogical needs and curricula.
Further, Snap! can allow students to ignore or explore code as
needed. Code sessions also provide teachers with opportunities to
collaborate with each other and with facilitators, including expert
teacher-leaders and university faculty, to familiarize themselves
with the functionality of Snap! as a programming language and to
get hands-on experience in coding from the student perspective.

During 105-120 minute Infusing Computing Code sessions
held each day, teachers were introduced to computational thinking
concepts (e.g., algorithms, abstraction, pattern recognition,
decomposition), which were then reinforced in the Connect
sessions, as well as programming-specific terms (variables, loops,
conditionals, lists). Each session was designed using a Use-Modify-
Create structure, where teachers were expected to use existing
code, modify code to solve Parson’s problems and create code for
use in their learning segments. Each programming activity was
broken down into five to seven tasks, from reading worked
examples, fixing bugs in the code, to creating a short script. Table
1 lists the specific topics covered in the Code sessions, which
include repeat loops, variables, mathematical operators, custom
blocks, and labels.

3.2 Connect
The goal for the Connect sessions is for teachers to engage with
content area colleagues to refine their understandings of CT
principles outlined in the PRADA model. Connect session content
is designed to reinforce computational thinking concepts and
vocabulary introduced during the Code sessions. These daily

sessions focus on a particular PRADA theme (pattern recognition,
abstraction, decomposition, and algorithms) and begin with a
whole-group discussion in which teachers discuss concrete
examples of how their existing teaching practices included
PRADA elements, even if they did not use the PRADA
terminology at the time. To support teachers in identifying
integration opportunities and to demonstrate the inherent
connections between CT and their disciplinary teaching, teachers
examine their standards and brainstorm sample plugged or
unplugged activities that would support students’ disciplinary
understandings, as well as their developing knowledge of CT
concepts.

During the 60-minute Infusing Computing Connect sessions,
teachers engaged in a collaborative standards mapping activity in
which they were asked to identify a standard number and
indicator, describe the standard, identify and explain related
PRADA elements, and suggest sample plugged or unplugged
activities that could be implemented in the classroom setting.
Standards mapping was done collaboratively, using Google Forms
and a spreadsheet with exported responses so that all teachers
could see their colleagues’ work to make explicit connections
between PRADA elements and standards. Table 2 contains sample
participants’ standards mapping responses.

3.3 Create
One of the key elements of the 3C model is that it provides
opportunities for participants to engage in CT infusion and
programming as both learners and teachers. Each Create session
begins with a discussion in which teachers reflect on their new
learning from the two morning sessions, develop goals for
designing and creating their learning segment, and discuss areas of
need. Then, participants work in teams or individually to develop
their learning segments. Participants also create materials to
present their learning segments to other participants, as well as
invited guests and school administrators, during a Demo Fair on
the final day of the workshop. The Create session time is
specifically designed for flexible utilization, as the ways that
teachers will use the time will vary based on the nature of their
intended learning segment.

During the 120-minute Infusing Computing Create sessions,
teachers utilized varying resources and types of support that
depended on their needs and the goals of their particular learning
segments. For example, to create learning segments that centered
around teacher-created simulations that required students to use
or modify existing code, participants worked in close collaboration
with computer science experts to explore the Snap! Programming
language. One middle school science teacher, for instance,
designed a Snap! thermometer lab and starter code for a 9th-grade
biology course in which students code adjustments to calculate
energy output based on different temperatures. This required her
to work closely with computer science experts to create custom
blocks and to refine the Snap! environment to maximize student
learning. Other participants chose to dedicate the majority of their
work time to the design of the learning segment plan and
pedagogical artifacts. This was particularly important for teachers
who designed learning segments that required students to learn
coding skills to create original products. For example, one group of
middle school teachers created a multi-day learning segment that
involved students’ original design and programming of quilt
squares reflecting Appalachian culture. In order to be able to
anticipate students’ challenges and to build pedagogical supports

Paper Session: Professional Development A SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

973

to help them connect to multiple disciplinary standards, this group
developed a multi-faceted system of support that included
introductory slide shows, reading selections, multimodal materials,
and student tutorials.

4 RESULTS AND IMPACT OF THE 3C MODEL
Our analysis of the impact of the 3C model focused on examining
changes in teachers’ self-efficacy and beliefs regarding CT
integration into disciplinary content. Analysis of quantitative
survey results revealed significant shifts in teacher self-efficacy.
For instance, on the pre-PD surveys, 78% of teachers (n=115) rated
their knowledge and understanding of CT infusion as poor or fair,
with only 7.6% rating themselves as very good or excellent. By the
end of the PD, 48.3% of teachers rated themselves as very good or
excellent, with only 16.9% rating their understandings of CT
infusion as poor or fair. Further, on the post-PD surveys, more
than 90% of teachers (n=114) either agreed or strongly agreed with
all three of the following statements: “I am more likely to
incorporate CT activities in my classroom, I can more effectively
design CT activities, and I can better engage students in making
sense of CT and designing solutions to problems”.

Further analysis of teacher implementation surveys (n=26)
returned after the 2018-2019 academic year revealed that the 3C
model extended teachers’ knowledge, skills, and performances so
that they could implement their new knowledge in the classroom
setting. Overall teacher beliefs regarding the impact of the
professional development on classroom instruction were measured
using 5 Likert scale items, with 1 meaning that they strongly
disagreed with the item and 5 meaning that they strongly agreed
(see Table 3).
Qualitative responses also indicated that the model was an
impactful component of teachers’ experience. As a high school,
social studies teacher said, “The summer PD was outstanding and I
learned so much that I was able to bring back to the classroom.
The techniques I learned invigorated my curriculum and
challenged my students.”
In order to understand changes in teachers’ beliefs from pre-PD to
post-PD, we also categorized qualitative responses on pre and
post-PD survey items targeting their goals for classroom
integration of CT into one of five themes: enrichment, review,
collaboration, disciplinary-computational thinking connections,
and unsure (see Table 4 for definitions and examples of codes used
for pre-PD and post-PD responses).

Table 1. Initial Plan for Code Session Activities, Main CT Concepts, and Programming Concepts Introduced or Highlighted

 Monday Tuesday Wednesday Thursday
Activity Introduction to the Snap

programming environment.
Draw a square, a triangle, a
house, and a row of houses

Create and manipulate a
shopping list in Snap

Data exploration and
visualization by
creating graphs in
Snap

Explore the Cellular
programming
environment and the
Epidemic Disease Activity
Example

Main CT Concept Abstraction Pattern Recognition &
Decomposition

Algorithms All PRADA

Programming
Concepts
Introduced or
Highlighted

Custom blocks, Variables,
and Repeat loop

Data Structures- lists as
containers for data,
conditionals for decision
making, Variables for
storing input

Abstract Data Types,
Global Variables,
Labels, Mathematical
operators

Event-driven
programming, Forever
loops, relational
operators, Manipulating
Variables

Table 2. Sample Standards Mapping Responses

Grade
and

Subject
Area Standard PRADA Connections Sample Activity

Plugged or
Unplugged

9th Grade
Algebra

Solve quadratic equations in
one variable that have complex
solutions.

Abstraction, Algorithm
Students will use the quadratic
formula, which will require
following an algorithm to solve
the problem correctly

Students will break down the process
step by step, determine the possible
outcomes (discriminant), and create
the SNAP code to apply the quadratic
formula to any quadratic equation

Both

7th Grade
World
History

Summarize mercantilism as a
way of building a nation’s
wealth, including government
policies to control trade.

Abstraction
Standard calls for summarizing
while abstraction focuses on
hiding details

Analyze the image and create a chart
with the main points.
Drag and Drop Items from colonies to
benefit mother countries

Both

9th Grade
Biology

Develop and use models to
exemplify the changes that
occur in a cell during the cell
cycle and predict, based on the
models, what might happen to
a cell that does not progress
through the cycle correctly.

Decomposition
Students must decompose all
components of the cell
membrane and how they
interact to pass materials
through it.

Building a Cell Membrane Challenge
(limited materials must be "purchased",
used in the construction, and
demonstrate passive and active
transport).

Both

Paper Session: Professional Development A SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

974

Then, to triangulate responses across data sources, we
analyzed the teacher-created CT-integrated lesson plans, as well as
reflective surveys from the implementation of the lessons during
the 2018-2019 academic year.

Before the PD began, teachers viewed CT as either
enrichment that went above and beyond the borders of their
curricula, or as a way to foster student engagement and
collaboration. Specifically, on the pre-PD survey, the majority of
teachers (51%) described their goals for integrating computing as
providing enrichment beyond the existing curriculum for a small
group or whole class of students (45%) or reviewing content or
material already covered in class (6%). While 24% noted that they
hoped to be able to integrate or infuse computational thinking into
their disciplinary teaching and 9% referenced interdisciplinary
collaboration, there was a lot of uncertainty regarding how these
goals might be accomplished. For instance, one teacher noted that
her goal was “making connections between math to science,”
while another said, “I hope to teach my students how to use
coding to perform mathematical computations that we would be
using in my content areas of Math,” but details about how they
could support these connections were missing entirely.
Additionally, 16% were unsure of how they would integrate
computing into the classroom; as one teacher said, she hoped to
“make my students do some projects with coding,” but thought
that she “should learn more before I start using coding in my
classroom.”

As teachers progressed throughout the workshop, many
began to see the infusion of CT into their content teaching as the
primary goal of the professional development. On the post-PD
survey, 70% of teachers reported that the primary goal of their
learning segments was to integrate CT into their disciplinary

teaching. As one teacher noted, “Our project is taking an idea from
marine science and giving the students an opportunity to learn
coding in order to develop a model to demonstrate their learning.”
Further, 4% reported that the primary goal was collaboration and
7% reported a primary goal of reviewing concepts covered in
current or previous classes. However, within the review category,
several teachers referenced the importance of review in solidifying
learning; for example, as one teacher said, “We made modest gains
in the ACT composite score last year. We will continue to address
strengthening language, math, science, and writing. Implementing
a novel forum for improvement will ensure that learning isn’t
forgotten with the conclusion of the testing administration.”
Finally, 17% of teachers reported conceptualizing their learning
segments as enrichment projects that would supplement the
existing curriculum, which represented a 28% decrease from the
beginning of the week.

Analysis of implementation data, including lesson plans,
teacher reflections, and video recordings of teacher lessons,
showed that some teachers were able to successfully embed
computational thinking into disciplinary content. A group of
middle school science teachers, for example, collaboratively
designed a lesson in which students explored the structure of
water molecules to reinforce their knowledge of the properties of
water. Kevin, who implemented the lesson in Spring 2019, said,
“The end result of the lesson is that each student group was able to
draw the water molecule and create a program of molecule coming
together.” Kevin did note several changes that he would make to
the lesson implementation, stating, “When I implement Snap! next
year, I will develop lessons that sequentially build programming
skills. For example, lessons will start by building simple skills and
culminate by integrating all the skills.”

Table 3. Teacher Beliefs Regarding the Impact of the 3C Model

Likert Items Mean (n=26)
Infusing Computing extended my knowledge, skills, and performances. 4.73
What I learned during the Infusing Computing program positively impacted the achievement of my students. 4.19
The content of Infusing Computing is relevant to my professional responsibilities. 4.38

Table 4. Themes, Definitions, and Examples of Codes for Teachers’ CT Infusion Goals

Theme Definition Example
Enrichment Activities, materials, or resources that

would be utilized as an addition to the
existing curriculum for individual
students, small groups, or the whole
class

“I will try to integrate it as a differentiation piece for small collaborative
groups or individual instruction.” (pre-PD)

Review Review of concepts, ideas, or content
covered in current or previous courses

“Hopefully, the app will allow my students to practice for the AP exam”
(post-PD)

Collaboration Working with other teachers and
colleagues to develop collaborative
materials and activities

“I hope to collaborate with others so that I can create transdisciplinary
STEM units that will help foster critical thinking skills to help my
students become geared for career readiness.” (post-PD)

Disciplinary-
Computational
Thinking
Connections

Integrating CT into disciplinary
teaching to support students’
development of content knowledge,
CT knowledge, or both

“As a science teacher, I plan to develop lessons for students to create
models and simulations related to chemistry (building molecules and
atoms), develop water quality assessment programs related to hydrology,
and have students develop programs to collect data/surveys related to
biotechnology practices.” (pre-PD)

Unsure Uncertainty regarding the goals of the
workshop or ideas for CT infusion

“I'm getting my bearings as it pertains to coding and I feel like I need to
let it all sink in before I can begin the integration phase.” (pre-PD)

Paper Session: Professional Development A SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

975

While many teachers were able to successfully implement
their lessons, others faced several barriers, including a lack of
technological resources, difficulty in aligning schedules to conduct
interdisciplinary lessons, and the need to more fully develop a
series of integrated lessons for ongoing implementation. As one
high school algebra teacher said, “I feel that I need to expand upon
it to make the coding practices more successful but in the limited
time we spent on coding, I think my students made great progress.
I'd like to add additional coding lessons to each of the Algebra
units to reinforce how simple algorithms (like solving equations)
can be automated by the computer.” As we discuss in the next
section, we are currently working on designing systems of
ongoing support, including student tutorials and technical guides,
in order to help teachers overcome some of these barriers.

6 CONCLUSION
Given the fundamental role of computational thinking to nearly all
elements of 21st-century life, there is a growing need to develop
systems that enable P-12 teachers to fully integrate CT within
existing curricula and disciplinary teaching. It’s essential that
teachers come to understand the value of computational thinking--
not just as an isolated concept that relates to computer science, but
also as a way to enhance and support more complex discipline-
specific and interdisciplinary understandings. Our findings offer
important implications for increasing access to computational
thinking through supporting teachers in integrating CT in middle
and high school content classrooms. Analysis of data from the
implementation of the 3C model indicates that it effectively
supported shifts in teacher beliefs and self-efficacy regarding the
role of CT in P-12 classrooms. Further, findings suggest that
teachers found great value in learning to code, thinking critically
about connections between disciplinary content and
computational thinking principles, and collaborating with
colleagues to support discipline-specific and interdisciplinary
learning. Overall, we believe that the combination of Code,
Connect, and Create sessions helped to shift teacher beliefs about
the role of CT in disciplinary content, while simultaneously
addressing their concerns that they might be unequipped with the
programming experience and knowledge to support students in
learning to code.

While the 3C model proposes a new framework that has
promise for supporting teachers in learning to integrate
computational thinking into their classrooms, there are still many
areas that need further exploration and analysis. First, there is a
pressing need to develop ongoing, flexible, and differentiated
scaffolds to support teachers’ computational thinking infusion. A
key next step is for researchers to collaborate with practitioners to
study the impact of tiered supports that can prevent teachers’
knowledge from becoming inert [30]. Further, in order to support
sustained integration into disciplinary content and curricula,
studies must identify explore the forms and functions of
collaborative, school and district-based communities for teachers
to reflect on pedagogical innovations and failures.

In order to address teacher needs that we identified during
our analysis of Infusing Computing teacher implementation data,
we are currently engaging in design research to develop, evaluate,
and refine scaffolds to extend and support ongoing teacher
learning during the academic year implementation. Examples of
supports that we are currently analyzing include: 1) monthly
webinars, with topics ranging from unplugged CT lessons to
assessment of CT; 2) using Slack as a community-building tool; 3)

podcasts as a way to support asynchronous engagement; and 4)
the development of repositories for sharing lesson plans,
resources, and feedback from classroom infusion experiences.
Further, during the Summer 2019 Infusing Computing workshop,
we introduced and are currently analyzing the impact of
differentiated 3C sessions, including targeted Code sessions using
Python and Connect sessions for teachers in instructional
leadership roles within their schools. It is our hope that engaging
in these cycles of design and analysis will allow us to establish a
comprehensive model of teacher professional development that
will not only increase access to CT but can also promote more
critical connections to content area learning and interdisciplinary
thinking.

ACKNOWLEDGMENTS
This material is based upon work supported by the National
Science Foundation under grant numbers 1742351 and 1742332.

REFERENCES
[1] Dan Garcia, Brian Harvey, and Tiffany Barnes. 2015. The beauty and joy of

computing. ACM Inroads, 6, 4 (2015), 71-79.
[2] Yihuan Dong, Veronica Cateté, Robin Jocius, Nicholas Lytle, Tiffany Barnes,

Jennifer Albert, Deepti Joshi, Richard Robinson, and Ashley Andrews. 2019.
PRADA: A practical model for integrating computational thinking in K-12
education. In Proceedings of the 50th ACM Technical Symposium on Computer
Science Education (SIGCSE ’19). ACM, New York, NY, 906-912. DOI:
10.1145/3287324.3287431

[3] Charoula Angeli, Joke Voogt, Andrew Fluck, Mary Webb, Margaret Cox, Joyce
Malyn-Smith, and Jason Zagami. 2016. A K-6 computational thinking curriculum
framework: Implications for teacher knowledge. Journal of Educational
Technology & Society 19, 3 (2016), 47-57.

[4] Valerie Barr and Chris Stephenson. 2011. Bringing computational thinking to K-
12: What is involved and what is the role of the computer science education
community? ACM Inroads 2, 1 (February 2011), 48-54.

[5] Hilda Borko. 2004. Professional development and teacher learning: Mapping the
terrain. Educational Researcher, 33, 8 (2004), 3-15.

[6] Brian Broll, Akos Lédeczi, Peter Volgyesi, Janos Sallai, Miklos Maroti, Alexia
Carrillo, Stephanie L. Weeden-Wright, Chris Vanags, Joshua D. Swartz, and
Melvin Lu. 2017. A visual programming environment for learning distributed
programming. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education (SIGCSE ’17). ACM, New York, NY, 81-86.

[7] Kathy Charmaz. 2006. Constructing grounded theory. Sage, London, UK.
[8] Code.org and CSTA. 2018. 2018 State of Computer Science Education. Retrieved

from https://advocacy.code.org/
[9] David Cohen, Stephen W. Raudenbush, and Deborah Loewenberg Ball. 2003.

Resources, instruction, and research. Educational Evaluation and Policy Analysis
25, 2 (2003), 119-142.

[10] Barney Glaser and Anselm Strauss. 1999. Discovery of grounded theory: Strategies
for qualitative research. Routledge, London, UK.

[11] Joanna Goode and Jane Margolis. 2011. Exploring computer science: A case study
of school reform. ACM Transactions on Computing Education (TOCE) 11, 2 (2011),
12-16.

[12] Google. 2018. What is computational thinking? Retrieved from
https://computationalthinkingcourse.withgoogle.com

[13] Shuchi Grover and Roy Pea. 2013. Computational thinking in K–12: A review of
the state of the field. Educational Researcher 42, 1 (2003), 38-43.

[14] Brian Harvey and Jens Mönig. 2010. Bringing “no ceiling” to Scratch: Can one
language serve kids and computer scientists? Constructionism (2010), 1–10.

[15] Yasmin Kafai and Quinn Burke. 2013. Computer programming goes back to
school. Phi Delta Kappan 95, 1 (2013), 61-65.

[16] Irene Lee, Fred Martin, Jill Denner, Bob Coulter, Walter Allan, Jeri Erickson,
Joyce Malyn-Smith, and Linda Werner. 2011. Computational thinking for youth
in practice. ACM Inroads 2, 1 (2011), 32-37.

[17] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn
Eastmond. 2010. The scratch programming language and environment. ACM
Transactions on Computing Education (TOCE) 10, 4 (2010), 1-15.

[18] Punya Mishra, Matthew J. Koehler, and Danah Henriksen. 2011. The seven trans-
disciplinary habits of mind: Extending the TPACK framework towards 21st
century learning. Educational Technology 11, 2 (2011), 22–28.

[19] National Research Council. 2012. A framework for K-12 science education:
Practices, crosscutting concepts, and core ideas. National Academies Press,
Washington, DC.

Paper Session: Professional Development A SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

976

https://advocacy.code.org/
https://computationalthinkingcourse.withgoogle.com/

[20] Seymour Papert. 1980. Mindstorms: Children, computers, and powerful ideas. Basic
Books, New York, NY.

[21] Pratim Sengupta, John S. Kinnebrew, Satabdi Basu, Gautam Biswas, and Douglas
Clark. 2013. Integrating computational thinking with K-12 science education
using agent-based computation: A theoretical framework. Education and
Information Technologies 18, 2 (2013), 351-380.

[22] Lee S. Shulman and Judith H. Shulman. (2004). How and what teachers learn: A
shifting perspective. Journal of Curriculum Studies 36, 2 (2004), 257-271.

 [23] Valerie Shute, Chen Sun, and Jodi Asbell-Clarke. 2017. Demystifying
computational thinking. Educational Research Review 22 (2017), 142-158.

[24] Anselm Strauss and Juliet M. Corbin. 1990. Basics of qualitative research:
Grounded theory procedures and techniques. Sage, London, UK.

[25] David Weintrop, Elhelm Beheshti, Michael Horn, Kai Orton, Kemi Jona, Laura
Trouille, and Uri Wilensky. 2016. Defining computational thinking for
mathematics and science classrooms. Journal of Science Education and Technology
25, 1 (2016), 127-147.

[26] Suzanne Wilson and Jennifer M. Berne. (1999). Teacher learning and the
acquisition of professional knowledge: An examination of research on

contemporary professional development. Review of Research in Education 24, 1
(1999), 173-209.

[27] Jeannette M. Wing. 2006. Computational thinking. Communications of the ACM,
49, 3 (2006), 33-35.

[28] Ursula Wolz, Meredith Stone, Kim Pearson, Sarah Monisha Pulimood, and Mary
Switzer. 2011. Computational thinking and expository writing in the middle
school: A novel approach to broadening participation in computing. ACM
Transactions on Computing Education (TOCE) 11, 2 (2011), 61-83.

[29] Aman Yadav, Hai Hong, and Chris Stephenson. 2016. Computational thinking for
all: pedagogical approaches to embedding 21st century problem solving in K-12
classrooms. TechTrends 60, 6 (2016), 565-568.

[30] Aman Yadav, Chris Mayfield, Ninger Zhou, Suzanne Hambrusch, and John T.
Korb. 2014. Computational thinking in elementary and secondary teacher
education. ACM Transactions on Computing Education (TOCE) 14, 1 (2014), 1-16.

[31] Aman Yadav, Ninger Zhou, Chris Mayfield, Suzanne Hambrusch, and John T.
Korb. 2011. Introducing computational thinking in education courses. In
Proceedings of the 42nd ACM Technical Symposium on Computer Science Education
(SIGCS ’11). ACM, New York, NY, 465-470.

Paper Session: Professional Development A SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

977

