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ABSTRACT: The functionality of well-tailored nanomaterials can only be
retained if they are robust to the environmental factors in which they operate. The
inability of Cu to withstand such factors is largely responsible for its current status
as a second-tier plasmonic nanomaterial. Herein, it is demonstrated that atomic
layer deposition can be used as a pliable technique for the application of oxide
coatings to substrate-based Cu nanostructures where suitably protected structures
become robust to oxidation, high temperatures, and aqueous, acidic, and alkaline
solutions without unduly influencing important plasmonic properties. Moreover,
strategies are presented for maximizing plasmonic near-fields and allowing for the transport of hot electrons while maintaining
coating integrity. The findings demonstrate that there does not exist a one-solution-fits-all approach but that coating design must
follow an application-specific methodology. Within the scope of the investigation, alumina, hafnia, titania, and combinations thereof
were all shown to be effective under certain conditions, but where hafnia shows the greatest durability in extreme pH environments
and alumina-hafnia multilayers provide Cu with protection from oxidation to temperatures as high as 600 °C. The work advances the
use of Cu nanostructures as durable plasmonic materials and provides broad-based strategies for protecting other vulnerable
nanomaterials from harsh environments.

■ INTRODUCTION
Material stability, be it photo, thermal, chemical, mechanical,
or a combination thereof, is a ubiquitous subject of
fundamental importance. It often decides whether a technol-
ogy is viable, reliable, and sustainable and where the outcomes
have economic, environmental, and social impacts. Even
though numerous applications call for low-cost earth-abundant
metals that can withstand an environmental attack while
retaining important physicochemical properties, it is a call that
is rarely answered by elemental metals. Nevertheless, the use of
these same metals is pervasive due to material solutions that
mitigate environmental sensitivities. The use of Cu inter-
connects in electronics is, for example, a viable option only
because dielectric coatings are used to passivate its otherwise
reactive surface. If these same earth-abundant metals are to be
exploited as nanomaterials, then it will likewise call for
innovative application-based solutions, but where the chal-
lenges encountered are amplified by large surface-to-volume
ratios, intricate nanostructure architectures, and heightened
chemical reactivity.
Despite being prone to oxidation under ambient conditions,

Cu has emerged as a standout nanomaterial with applications
in catalysis,1,2 electronics,3 displays,4−6 and sensing.7−9 With
Cu exhibiting a facet-dependent catalytic activity, a high
electrical conductivity, and size- and shape-dependent
plasmonic properties, there has been a strong impetus for
formulating a colloidal chemistry that now encompasses every
common nanostructure architecture.10−17 As a plasmonic
material, Cu usage lags well-behind that of Au and Ag. Putting

aside environmental sensitivities, there is a strong case to be
made for Cu as a material of choice for low-cost plasmonics.
Current Au and Ag prices are 9600 and 100 times that of Cu,
respectively. Although Cu plasmons are strongly damped when
photon energies exceed its interband transition value of 2.1
eV,16 the localized surface plasmon resonance peak (LSPR) is
comparable to that of Au in a low loss window extending from
620 to 750 nm.8,11,18 Interestingly, Zheng et al.11 have recently
shown that specific plasmon modes of Cu nanocubes are
relatively impervious to the interband transition, displaying an
intense LSPR peak centered at 585 nm (2.12 eV). The result
suggests that the usable window for Cu plasmonics can be
extended through rational design. Also noteworthy is that hot
holes formed during the dephasing of the Cu plasmon have a
lifetime and energy dependence that is distinct from Au,19,20 a
property of significance to plasmonic-based photocatalysis and
photovoltaics. With alternate plasmonic materials21,22 showing
lower LSPR quality factors22,23 or requiring cost-prohibitive
epitaxial growth modes,21 Cu remains unique among these
nanomaterials. Nevertheless, Cu has, to a large extent, been
abandoned by the device community as a candidate material
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for on-chip plasmonics due to its inability to withstand
environmental factors.
The applications for plasmonic materials are so diverse that

they collectively place a set of demands on materials so
stringent that there exists no single material that can meet all of
them. With the ability to confine light energy into
subwavelength volumes, plasmonic nanostructures by their
very nature create an energy intense environment that
generates electric fields, hot electrons, and heat which, by
themselves, can lead to morphological and chemical dis-
ruptions, especially when illuminated with high-intensity light
sources such as lasers or concentrated solar.24,25 To meet the
demands of sensing technologies, plasmonic nanostructures
must sustain performance in air, H2O (liquid, vapor, and
steam), acids, bases, solvents, reactive gases (e.g., CO, H2,
SO2), and a wide range of chemical and biological analytes.
Applications requiring elevated temperatures, such as those
associated with refractory plasmonics25,26 or catalysis,27,28 must
maintain functionality in an environment conducive to
diffusion-induced shape changes and heightened chemical
reactivity. With such demands, it is not surprising that Cu has
been underutilized as a plasmonic material because its
nanostructures readily oxidize under ambient conditions,
leach in aqueous environments, show poor corrosion
resistance, and, like all noble metals, lack dimensional stability
at elevated temperatures.
The drawbacks associated with Cu largely preclude its use in

on-chip plasmonic devices unless protective coatings are
applied. This limits its usage to applications where plasmonic
properties are not unduly influenced or negated by the coating.
Oxides are the most obvious candidate materials for protective
coatings in that they can (i) transmit light, (ii) offer extremely
low oxygen self-diffusion coefficients, (iii) choke off metal
surface diffusion pathways, and (iv) provide a high resistance
to corrosive environments. There also exists a set of important
sensing techniques where the encapsulation of plasmonic
nanostructures within pinhole-free oxide shells is carried out,
not merely to protect a vulnerable metal but as a means to
enhance device performance. Shell-isolated nanoparticle-
enhanced Raman spectroscopy (SHINERS)29−32 is a sensing
technique that is analogous to surface-enhanced Raman
scattering (SERS),32 but where the separation of the analyte
from the plasmonic metal by a thin chemically inert dielectric
spacer allows for sensing modalities that (i) are often more
reproducible than SERS, (ii) allow for detection in corrosive
environments and at elevated temperatures, (iii) isolate the
metal surface from application-specific environmental con-
taminants, (iv) create a noninvasive environment for biological
species that are sensitive to nanometal surfaces or leached
metal ions, and (v) result in a sensing surface with improved
recyclability. Similarly, shell-isolated nanoparticle enhanced
fluorescence (SHINEF)33−35 utilizes plasmonic near-fields to
enhance the fluorescence of an adjacent fluorophore, but
where a spacer is required to prevent the quenching of the
fluorescence by the metal. Additionally, dual-mode
SHINERS−SHINEF detection is an emerging technique with
biomedical applications.33

The use of coatings in on-chip plasmonic applications is
becoming increasingly prevalent. Aluminum has, notably,
emerged as a material of significance for ultraviolet
plasmonics36,37 ostensibly due to a naturally occurring
protective oxide layer that provides air stability to an otherwise
highly reactive element. The application of synthetic coatings

as physical and chemical barriers to substrate-based Ag
structures38−45 is now receiving considerable attention, a
trend that is partially due to the poor shelf life of Ag-based
devices. Albrecht et al.46 advanced the use of Au in refractory
plasmonic applications by demonstrating that lithographically
defined Au nanorods, when coated with a thin layer of Al2O3,
can retain their shape when heated to temperatures as high as
800 °C. In a subsequent report,39 they showed that the same
strategy could be successfully applied to numerous other
metals, but where the results for Cu proved disappointing. Li et
al.47 demonstrated that graphene, when applied to Cu
nanostructures formed through solid-state dewetting, slowed
the rate of oxidation under ambient conditions. Duan et al.48

have demonstrated the utility of embedding electrochemically
synthesized Cu nanowires in a polycarbonate template.
Even though protective coatings for on-chip plasmonics have

been advanced, there has not yet been a comprehensive effort
directed toward the design of durable application-specific
coatings where the coating is engineered to protect the
underlying nanostructure from particular environmental
threats or that accentuate critical plasmonic properties. Herein,
we demonstrate atomic layer deposition (ALD)38,49 as a viable
method for applying oxide coatings to substrate-based Cu
nanostructures in a manner that effectively mitigates environ-
mental sensitivities while preserving important plasmonic
properties. Endurance testing reveals that suitably designed
coatings can protect Cu against oxidation, high temperatures,
and aqueous, acidic, and alkaline solutions, but where no single
coating material is able to withstand all environmental factors.
The results advance the use of Cu as an attractive low-cost
nanomaterial for on-chip plasmonic devices while emphasizing
the importance of trade-offs in terms of attaining durability−
performance characteristics that meet the needs of specific
applications.

■ RESULTS AND DISCUSSION
The results presented in this section describe the processing
science that was formulated to obtain substrate-supported Cu
nanostructures that are encapsulated within an ultrathin
pinhole-free oxide shell as well as an assessment of their
durability when exposed to harsh environments. The Cu
nanostructures used were either substrate-truncated spheres or
cuboctahedra where the latter was used to assess the impact of
faceting on shell formation and durability. The substrate-
truncated spheres were produced as both periodic arrays with a
narrow size distribution and as structures with randomized size
and placement. Both formats proved effective in durability
studies, but where the arrayed structures presented a superior
platform for cases where a statistical analysis of nanostructure
failure rates is desired. Al2O3 (alumina), HfO2 (hafnia), and
TiO2 (titania) were assessed as coatings because they have
favorable refractory and corrosion-resistant properties as bulk
materials and are readily deposited using the ALD technique.
The coating integrity was assessed under various environ-
mental conditions where in all cases bare Cu nanostructures
were exposed to the same environment to establish baseline
performance metrics. Coating failure modes are identified, and
when possible, mitigation strategies are advanced.

Synthesis and Characterization of Cu Nanostructures
with Oxide Coatings. Substrate-based Cu nanostructures
have previously been prepared using a number of techniques
including the (i) lithographic patterning of polycrystalline
films,18,39,50 (ii) dispersal and self-assembly of colloids on
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surfaces,12,16,51 and (iii) solid-state dewetting of films.47,52−55

Figure 1 shows schematic representations of the three different
schemes used to form Cu nanostructures in the current study
as well as SEM images of the structures obtained. The first
method relies on the solid-state dewetting56 of an ultrathin
sputter-deposited Cu film, a technique in which a heated film
breaks up into nanoscale islands that then agglomerate so as to
reduce the overall surface energy (Figure 1a). The structures
realized are highly crystalline52 with a truncated nanosphere
morphology (Figure 1b). The second method, which yields
highly faceted cuboctahedra, subjects the dewetted structures
formed using the first method to a liquid-phase chemical

synthesis that promotes facet growth (Figure 1c).57,58 The
structures obtained exhibit crisp faceting characterized by
prominent {100} and {111} facets (Figure 1d). The third
method, referred to as templated dewetting,59 uses nano-
imprint lithography to define a periodic array of polycrystalline
Cu discs that each agglomerates into a single-crystal truncated
nanosphere when subjected to high temperatures (Figure
1e).60 The so-formed structures (Figure 1f) have a roundish
morphology and narrow size distribution centered on a
diameter of approximately 120 nm (Figure S1). It should be
noted that all of the dewetting procedures are carried out
under a H2−Ar atmosphere to prevent the oxidation of Cu.

Figure 1. Scheme schematics and SEM images for substrate-based Cu nanostructures fabricated using (a,b) solid-state dewetting, (c,d) solid-state
dewetting followed by a liquid-phase chemical synthesis, and (e,f) templated-dewetting facilitated by nanoimprint lithography.

Figure 2. (a) Schematic of the cyclic ALD process used to deposit Al2O3 coatings on Cu nanostructures. (b) Absorbance spectra of a periodic array
of 120 nm diameter Cu nanostructures for Al2O3 coating thicknesses ranging from 0 to 15 nm. (c) XRD data for Cu nanostructures with a 5 nm
thick Al2O3 coating. Percent survivability of coated Cu nanostructures when exposed to nitric acid as a function of coating thickness for (d) Al2O3,
(e) HfO2, and (f) TiO2.
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Cu nanostructures produced using the various schemes were
encapsulated in an oxide coating using ALD where the
deposition parameters are comparable to those typically used
for Al2O3,

61−63 HfO2,
64,65 and TiO2.

66,67 ALD, which has
evolved into a mainstream deposition technique for the
microelectronics industry, is ideally suited for the application
of protective coatings to substrate-supported nanomaterials
that exhibit chemical and thermal fragility. Its advantage stems
from the ability to apply compositionally uniform conformal
layers to intricately shaped three-dimensional objects at low
temperatures where the layer thickness can be controlled with
atomic-scale precision. Figure 2a shows a schematic of the
ALD process for the fabrication of Al2O3 coatings. The
deposition proceeds by sequentially exposing a surface to two
chemically distinct gaseous precursors in a pulsed, alternating,
and nonoverlapping manner where each pulse leads to a self-
limiting “half-reaction” with the exposed surface that results in
the deposition of a monolayer. A conformal film of the desired
thickness can, hence, be deposited though the cyclic
application of the two precursors where the number of cycles
is set to the required number of monolayers. For the case of
Al2O3, the trimethylaluminum (TMA) precursor attaches to
the surface as a monolayer where its subsequent exposure to
H2O vapor leads to the oxidation of aluminum with methane
(CH4) as the byproduct. HfO2 and TiO2 coatings are
produced in much the same manner, but where TEMAH
(tetrakis(ethylmethylamido)hafnium) and TDMAT (tetrakis-
(dimethylamido)titanium) are used as the source for Hf and
Ti, respectively. For all cases, the as-deposited coatings are
amorphous where the exact stoichiometry is ill-defined as is
typical for ALD processing.
Cu nanostructures coated with ALD-deposited oxide layers

were characterized to (i) determine the influence of the
coating on plasmonic properties, (ii) assess whether Cu
nanostructures oxidize during the coating procedure, and (iii)
establish the minimum coating thickness that is free of

pinholes. Figure 2b shows the absorbance spectra obtained as
the thickness of the applied Al2O3 coating is systematically
varied from 0 to 15 nm. The results reveal that the Cu LSPR is
not adversely affected by the Al2O3 layer but instead steadily
red shifts as its absorbance increases. Both of these effects are
as expected because the refractive index of Al2O3 (n = 1.65)62

causes a red shift in the LSPR that in turn intensifies the
plasmon peak since a shift away from the Cu interband
transition lessens the degree to which the LSPR is damped.18

Similar dependencies are observed for the other oxide coatings,
but where the red shift for a given thickness is greater due to
the larger refractive indices of HfO2 (n = 1.98)68 and TiO2 (n
= 2.2)69 (Figure S2). X-ray diffraction (XRD) measurements
(Figure 2c) show the expected (111) Cu reflection with no
discernible peaks originating from Cu2O or CuO. The absence
of significant Cu oxidation is corroborated by discrete dipole
approximation (DDA) simulations70 of the absorbance spectra
(Figure S3). These simulations can account for the observed
shift in the plasmon resonance as the Al2O3 coating is added
without the inclusion of a Cu2O layer. It should be noted that
such a layer would lead to a substantial red shift in the plasmon
resonance.17 With pinholes in the ALD-deposited layer being
highly undesirable, a statistical analysis was carried out to
determine the minimum coating thickness where the vast
majority of Cu nanostructures is encapsulated in their entirety.
The data was obtained by exposing the structures to 1 M nitric
acid for 20 min so that any pinholes would lead to the
formation of an oxide shell devoid of Cu. The hollowed-out
shells are readily identified in SEM images (Figure S4), and as
such, provide an easily obtained metric for establishing
whether a nanostructure coating has pinholes. The results,
presented in Figure 2d−f, indicate that Al2O3, HfO2, and TiO2
require thicknesses of at least 4.5, 4, and 3 nm to ensure shell
integrity (≥98% survivability).

Durability in Air. The long-term stability of Cu
nanostructures under ambient conditions was assessed for

Figure 3. (a) Schematic of the procedure used to assess the air stability of coated and bare Cu nanostructures. The time dependent absorbance
spectra obtained for (b) bare Cu nanostructures and (c) identical structures coated with 5 nm of Al2O3. Plots showing the time dependence of the
LSPR wavelength (red) and maximum absorbance (blue) for Cu nanostructures coated with 5 nm of (d) Al2O3, (e) HfO2, and (f) TiO2.
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bare and oxide-coated structures. The experimental procedure,
which is shown schematically in Figure 3a, begins by
depositing and dewetting Cu films so as to obtain four
samples with near-identical absorbance spectra. Al2O3, HfO2,
and TiO2 coatings with a 5 nm thickness were applied to three
of the samples, while the fourth was left bare. The absorbance
spectrum of each was then monitored over a period of several
months to determine the effectiveness of the coating in
preventing oxidation. As expected, the prolonged exposure of
the bare structures to air resulted in a continuously varying
LSPR that red shifts and broadens with time (Figure 3b). The
LSPR absorbance increases over the first 16 days after which it
gradually falls. This behavior, which is similar to that observed
in prior studies,18,71,72 is consistent with the gradual oxidation
of Cu. The red shift is caused by the encapsulation of Cu with
a dielectric coating (i.e., Cu2O), while the initial rise in
absorbance is due to a decline in damping as the LSPR red
shifts away from the interband transition of Cu. These effects
are quite analogous to those observed when Cu nanostructures
are coated with Al2O3 (Figure 2b), but with the key difference
being that the plasmonic nanostructures are being consumed
through oxidation. When the Cu nanostructures are coated
with the various oxides, the plasmonic properties show no
signs of deterioration for durations lasting many months.
Figure 3c shows the high degree of overlap in the absorbance
spectra obtained for the Al2O3-coated sample over the period
studied where the differences observed fall within the
experimental uncertainty of the measurement. Plots showing
the time dependence of both the wavelength and maximum
absorbance of the Cu LSPR for the three coating materials
show no changes of significance (Figure 3d−f), indicating that
they all effectively passivate the Cu surface under atmospheric
conditions. The results strongly suggest that the plasmonic
properties of Cu can be retained for long durations, a property
of significance to applications requiring a long shelf life.

Durability in Aqueous Media. Durability tests in aqueous
media proceeded in much the same manner as those carried
out in air (Figure 4a). The LSPR for samples showing long-
term stability (i.e., > 4 days) were monitored by periodically
removing them from the aqueous solution (8 mL) for optical
characterization, while those showing poor stability were
measured in situ. Bare Cu nanostructures exhibit remarkably
poor chemical stability in aqueous environments, showing an
LSPR that is completely extinguished in less than 60 min
(Figure 4b). Unprotected Cu nanostructures are highly
susceptible to oxidative etching in H2O

73 and, as such,
completely disappear from the substrate surface over time. It
should be noted that such effects are highly exaggerated for
these substrate-based Cu nanostructures since the total
number of Cu atoms on the substrate surface (i.e., 5.8 ×
1015) is exceedingly small, being outnumbered by the amount
of dissolved oxygen within the H2O by more than 200-fold
under ambient conditions. When coated with 5 nm of Al2O3,
the Cu nanostructures show improved durability, but where
the plasmon is extinguished over a 90 h time frame (Figure
4c). The failure mode is one in which the Al2O3 coating
roughens, breaches, and eventually delaminates from the
surface, as the Cu nanostructure diminishes in size due to
leaching (Figure S5). The continuous decline in the LSPR
absorbance without a significant peak shift is consistent with a
somewhat rapid hollowing process where only a relatively small
number of structures are breached at any given time. Although
it has been reported that the exposure of ALD-deposited Al2O3
films to high temperature anneals results in enhanced chemical
stability,74,75 this, by itself, is not a workable solution since
such anneals lead to the formation of pinholes (vide inf ra) that
provide access points from which the structure is similarly
hollowed. In stark contrast, Cu nanostructures protected by
HfO2 and TiO2 coatings were able to withstand H2O
immersion, showing no ill effects for the 100 day duration
studied (Figure 4d,e). Nanostructures with these two coatings

Figure 4. (a) Schematic of the procedure used to assess the H2O stability of coated and bare Cu nanostructures. In situ absorbance spectra obtained
for (b) bare Cu nanostructures and (c) identical structures coated with 5 nm of Al2O3 while continuously immersed in H2O. Time dependence of
the LSPR wavelength (red) and maximum absorbance (blue) for Cu nanostructures coated with 5 nm of (d) HfO2 and (e) TiO2 that were
continuously immersed in H2O except when undergoing optical characterization.
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were also subjected to 1 M NaOH and HNO3 to assess their
chemical resistance to high and low pH environments (Figure
S6). Only HfO2 was able to withstand prolonged aggressive
exposure to these extreme pH conditions, a result of potential
significance to chemical sensing in highly corrosive environ-
ments.
Durability at Elevated Temperatures. Elevated temper-

atures represent a particularly challenging environment for
metal nanostructures due to accelerated rates of oxidation and
diffusion-induced morphological transformations. The LSPR
for unprotected Cu nanostructures is, for example, completely
extinguished in a mere 4 h when heated to 100 °C as the
structures grow in size and develop irregular surface
morphologies (Figure S7). Figure 5a−c summarizes the results
obtained when Al2O3 coatings with thicknesses of 5, 10, and 15
nm were applied to arrayed Cu nanostructures and heated to
various temperatures for 1 h. The 1 h time frame, while
somewhat arbitrary, was chosen out of practicality to facilitate
the testing of many samples. Figure 5a,b shows SEM images of
a Al2O3-coated sample that proved robust when subjected to a
500 °C heat treatment and an identical sample that underwent
catastrophic failure when heated to 600 °C. It is apparent from
the morphology of the failed structures that the failure mode is
one in which the Al2O3 shell is locally breached, creating a
fissure through which material is extruded due to the volume
expansion that occurs when Cu is suddenly exposed to high
temperature oxidation processes. With the failure of individual
structures being easily identified using SEM images, a statistical
analysis of the nanostructure survivability as a function of both
temperature and coating thickness was carried out. The results,
shown in Figure 5c, reveal that coating thicknesses of 5, 10,
and 15 nm can withstand temperatures of 100, 300, and 500
°C, respectively. These operational limits were confirmed

through spectroscopic characterization that reveal that the
LSPR of the Cu nanostructures remained intact as long as the
integrity of the coating was maintained (Figure S8). This result
rules out the possibility that significant Cu oxidation results
from the diffusion of oxygen through the coating.
It is well-documented that ALD-deposited amorphous

Al2O3, when heated, undergoes a densification that leads to
surface roughening74 and nanopore formation.63,76 It is,
therefore, likely that this same densification process is
responsible for coating failure. Consistent with this conclusion
is the fact that HfO2 and TiO2 coatings have significantly lower
crystallization temperatures than Al2O3

66,77,78 and correspond-
ingly fail at temperatures that are much lower. Studies of ALD-
deposited films have also revealed that crystallization processes
can be impeded in multilayer structures composed of Al2O3
and HfO2.

79−81 These investigations, however, did not address
whether the formation of such multilayers stabilizes the coating
against pinhole formation. Studies were, therefore, undertaken
that assessed Al2O3−HfO2−Al2O3 coatings with total thick-
nesses of 5, 10, and 15 nm as a potential failure mitigation
strategy where the three layers were of the same width (i.e.,
1.67, 3.33, and 5 nm). The results, shown in Figure 5d, reveal
that the multilayer structures can increase the thermal damage
threshold over that of an Al2O3 coating by 100, 150, and 100
°C for coating thicknesses of 5, 10, and 15 nm, respectively.
This finding not only demonstrates that triple-layer coatings
offer Cu thermal protection at significantly higher temper-
atures but also points toward the large parameter space offered
by multilayered structures (e.g., number of layers, layer
thickness, oxide material) as a potential avenue for achieving
enhanced performance.
In addition to oxidation, there is a strong tendency for metal

nanostructures to morphologically reconfigure when

Figure 5. SEM images of Cu nanostructures coated with 15 nm of Al2O3 after being heated to (a) 500 °C and (b) 600 °C for 1 h where the latter
has undergone catastrophic failure, while the former proved robust to the annealing temperature. Percent survivability vs annealing temperature for
Cu nanostructures coated with various thicknesses of (c) Al2O3 and (d) Al2O3−HfO2−Al2O3. (e) SEM images of highly faceted bare Cu
nanostructure heated in air and in a H2−Ar mixture. (f) Image of faceted structures with a 15 nm multilayer coating that withstood a 1 h heat
treatment at 600 °C.
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heated.24,25,27,28 With nanostructure properties being highly
dependent on shape, this tendency is highly detrimental in that
it can disrupt or destroy optical properties that were so
carefully engineered in the first place and, in doing so, puts
important applications at risk.25−28 Figure 5e shows SEM
images that demonstrate the morphological disruptions that
occur when highly faceted bare Cu nanostructures are exposed
to elevated temperatures in both air and a H2−Ar gas mixture.
Although both scenarios lead to morphological transforma-
tions, the latter is entirely due to surface diffusion processes
that act to round the faceted structures. The deposition of an
oxide coating onto faceted structures prior to heating will
inevitably obstruct these surface diffusion pathways and, hence,
act to preserve the nanostructure architecture when
heated.40,46 Thermal endurance testing carried out on faceted
structures showed that both the Al2O3 and Al2O3−HfO2−
Al2O3 coatings maintained nanostructure faceting (Figure 5f)
where the thermal damage threshold showed no obvious
deviation from those presented in Figure 5c,d. The result
indicates that the corners created by crisp faceting do not
adversely influence the coating integrity.
Enhancing Plasmonic Near-Fields. The encapsulation of

a plasmonic nanostructure within a pinhole-free oxide shell will
inevitably disrupt the near-fields that develop near its surface
when the LSPR is excited. The color maps shown in Figure 6a,
obtained through DDA simulations, depict the near-fields of a
one-third truncated Cu cuboctahedra for the cross section
having the maximum near-field intensity when resonantly
excited. Figure 6b−f shows the analogous maps for the same
structures when coated with Al2O3 shells of various thickness.
The bare structure shows maximum near-field intensities (i.e.,
hot spots) at the perimeter of the nanostructure where it meets
the substrate, as is typical for a substrate-truncated
structure.82,83 This is due to the high curvature expressed by
the nanostructure at the interfacial plane as well as the

dielectric environment provided by the substrate. As the
coating is applied and made progressively thicker, the near-
fields undergo an evolution in which their overall spatial extent
increases, but where the most intense near-fields become
entrapped within shell boundaries. Similar trends are observed
for substrate-truncated spheres, but where the near-fields are
less intense (Figure S9). A positive aspect of these results is
that sizable near-fields extend beyond the spatial extent of the
coating for all cases. There is, nevertheless, an obvious
downside to the application of coatings in terms of the
plasmonic near-fields accessible, and as such, methods and
processing conditions that are able to obtain thinner pinhole-
free coatings are highly desirable.
The results presented in Figure 2d place a lower limit of 4.5

nm on the Al2O3 thickness needed to obtain pinhole-free shells
in high yield for as-deposited ALD coatings. To circumvent
this limit, a scheme was devised in which Al2O3 coatings were
first deposited to a thickness of 5 nm so as to allow pinholes to
fill in through lateral growth after which the shell was thinned
using a NaOH etch (Figure 6g). To invoke such a strategy
required that the Al2O3 etch rate be accurately determined.
This was done through a series of experiments in which Al2O3
layers of various thicknesses were deposited on Cu
nanostructures and then slowly etched away while spectro-
scopically monitoring the blue shift in the LSPR resulting from
a thinning of the Al2O3 layer. The complete removal of the
Al2O3 layer resulted in a spectroscopic signature characterized
by a rapid decline in the rate of LSPR shift. The Al2O3 etch
rate of 0.64 nm·min−1 was then extracted from a plot of the
Al2O3 layer thickness vs etching time (Figure S10). With
etching conditions identified, it is a straightforward procedure
to prepare a series of identical Cu nanostructures with an initial
Al2O3 coating thickness of 5 nm that are thinned to varying
degrees and then perform acid etch tests to determine if shell
integrity is preserved. Figure 6h shows a comparison of the

Figure 6. (a) Simulations of the near-field enhancements (|E/E0|
2) for a 120 nm diameter substrate-truncated Cu cuboctahedron that is resting on

a sapphire substrate. (b−f) Near-field enhancements for the same nanostructure when coated with Al2O3 shells of various thickness. (g) Schematic
of the scheme used to obtain pinhole-free Al2O3 coatings with thicknesses that are less than that obtainable from as-deposited coatings. (h) Cu
nanostructure survivability as a function of the coating thickness for as-deposited and etched Al2O3 layers.
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survivability data for Cu nanostructures with as-deposited
shells with those obtained through the thinning procedure.
The data clearly shows that the devised procedure allows for
thinner shells. Although the thickness reduction obtained for
Al2O3 coatings in absolute terms is only 2 nm, it should be
understood that such changes can be of great significance since
achievable SERS enhancement from a spherical nanoparticle of
radius a decreases as (1 + r/a)−10 where r is the distance
between the absorbate and the plasmonic nanostructure.84

Broader Implications. From a broader perspective, it
should be recognized that the strategies and processing science
described herein are not specific to Cu nanostructures but
could instead be applied to other vulnerable nanomaterials. Ag
nanostructures, for example, tarnish in air,85 are readily leached
in aqueous environments,86 are subject to shape changes when
heated,39 and could, thus, gain increased functionality if its
surface were similarly protected. With Ag having far superior
plasmonic properties, a sufficiently thin coating could lead to a
trade-off whereby its somewhat diminished plasmonic response
provides it with both durability and performance character-
istics that exceed that of bare Au. Moreover, both Au and Ag
could benefit from coatings that effectively stifle surface
diffusion processes when heated and, as a result, nullify
morphological disruptions including the dulling of the sharp
corners that are crucial in obtaining high near-field intensities.
Even if such solutions prove workable, Cu still has a price point
advantage over its more noble metal counterparts. Addition-
ally, its far greater sensitivity to environmental factors makes it
a superior testbed for advancing coating solutions since aging
effects are both accelerated and exaggerated. It should also be
noted that the devised coating strategies share synergies with
research directed toward the advancement of countermeasures
that are able to combat the durability issues associated with
colloidal nanostructures.27,28,87,88

Even though coatings offer solutions in terms of durability,
their potential influence upon the performance of on-chip
plasmonic devices cannot be overlooked. An examination of
the most relevant plasmonic properties reveals both advantages
and disadvantages. Both the thickness and dielectric properties
of the coating material strongly influence the LSPR. Such
influences must, therefore, be engineered into an overall
solution so as to give rise to a plasmonic response that meets
the demands of a particular application. It should, however, be
noted that the fine control offered by ALD could prove
advantageous in tuning the LSPR wavelength to a desired value
even in a scenario where plasmonic nanostructure fabrication
results in sample-to-sample variations. Plasmonic near-fields
are inevitably diminished when a coating is applied, but where
such influences could be partially mitigated by the coating’s
ability to preserve sharp corners and where the durability
offered allows for the use of Ag as opposed to bare Au. The
coating is also advantageous to near-field-based applications
requiring a dielectric spacer (e.g., SHINERS, SHINEF).29−32

Applications in which near-influences are to be felt within the
substrate material (e.g., photovoltaics) will also be largely
unaffected. Likewise, the hot electrons produced as the
plasmon dephases can easily enter the substrate material.
With a relatively low band gap, TiO2 coatings could similarly
allow for the injection of hot electrons into surrounding
media,20 a property that has been widely exploited as an
enabler for plasmonic photochemistry.89,90 Al2O3 and HfO2
would, however, prove unsatisfactory as hot electron transport
media. Photocatalytic reactions requiring an exposed metal

surface are also unworkable. Plasmonic heating91 could, in fact,
benefit from the application of a coating because it results in an
increased absorbance. Such benefits could, however, be offset
by the thermal properties of the coating material. Moreover,
the versatility of the ALD technique allows for the use of oxide
materials beyond those described herein. Although SiO2 is an
obvious candidate,92 its compatibility with Cu is question-
able.93 Taking all factors into account, the overall challenge is
to effectively utilize coating materials in instances where
application-specific trade-offs prove beneficial.

■ CONCLUSION
In summary, we have demonstrated that ultrathin oxide
coatings, when applied to substrate-based Cu nanostructures,
provide a level of durability that greatly exceeds that of
unprotected structures. The work takes advantage of the fine
controls and conformal coating capabilities offered by ALD. In
doing so, a mainstream wafer-based processing technique is
integrated with plasmonic nanostructure nanofabrication
capabilities to achieve Cu-based photoactive surfaces with
extraordinary resistance to environmental attack. Cu coating
solutions have been advanced that are able to ensure long
shell-lives, resist degradation while operating in air and H2O,
endure prolonged aggressive exposure to extreme pH environ-
ments, and resist oxidation and morphological transformations
at temperatures as high as 600 °C. Although some plasmonic
properties are inevitably diminished due to the presence of the
coating, it can also be advantageous in that the coating can be
used to fine-tune the plasmon resonance, preserve the sharp
faceting that gives rise to hot spots, and act as a dielectric
spacer in applications that demand one. Additionally, Al2O3
coatings are amenable to a thinning strategy that enhances the
accessible near-fields, while TiO2 coatings provide the means
to transport hot electrons to the outside surface of the coating.
With the potential for applying these and related strategies to
other vulnerable nanomaterials such as Ag, there is the
opportunity to bring otherwise inaccessible functionalities to
the substrate surface and, in the process, broaden the scope of
applications to which these nanomaterials can be applied.

■ EXPERIMENTAL SECTION
Chemicals and Materials. The Cu target used to sputter-deposit

films was cut from a 0.5 mm thick foil with 99.9999% purity (Alfa
Aesar). Two-side polished [0001]-oriented sapphire substrates were
diced from a 100 mm diameter wafer (MTI Corp.). Cu
nanostructures were assembled in an ultrahigh purity 10%−90%
H2−Ar gas mixture (Airgas). Nanoimprint lithography utilized stamps
obtained from Lightsmyth Technologies, a trichloro(1H,1H,2H,2H-
perfluorooctyl)silane antisticking layer (MilliporeSigma), and a 7030R
thermal resist (Micro Resist Technology, GmbH). The ALD
precur so r s t r imethy l a luminum (TMA) and te t r ak i s -
(ethylmethylamido)hafnium (TEMAH) were sourced from Milli-
poreSigma, while tetrakis(dimethylamido)titanium (TDMAT) was
obtained from SAFC Hitech. Solution-based synthesis utilized copper
nitrate (Cu(NO3)2 (MilliporeSigma) and L-ascorbic acid (AA,
MilliporeSigma). Durability tests were carried out using nitric acid
(HNO3, Alfa Aesar) and sodium hydroxide (NaOH, MilliporeSigma).
Deionized (DI) water with a resistivity of 18.2 MΩ·cm was used for
the preparation of all aqueous solutions. All chemicals were used as
received.

Dewetted Cu Nanostructures with Random Size and
Placement. Cu films with a thickness of 1.3 nm were sputter
deposited at room temperature onto 5 mm × 10.5 mm × 0.6 mm
[0001]-oriented sapphire substrates. Depositions proceeded at a rate
of 9 nm·min−1 in 7 × 10−5 Torr of Ar using Penning ion gun current
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and voltage settings of 200 μA and 6 keV. The coated substrate was
removed from the sputter coater, placed in an alumina crucible, and
inserted into a quartz tube furnace under a flowing 10%−90% H2−Ar
atmosphere. After a 30 min interval in which residual air was flushed
from the quartz tube, the flow rate was reduced from 120 to 60 cm3·
min−1, and the sample was heated to 900 °C in 22 min, held at this
temperature for 3 min, and then rapidly cooled to room temperature
in approximately 45 min. The Cu nanostructures produced, when
removed from the furnace, were immediately subjected to the next
processing step, characterization procedure, or durability test so as to
minimize the influence of oxidation. In an effort to eliminate the
possibility of cross contamination with other processes, all Cu
dewetting procedures were carried out in a dedicated quartz tube and
alumina crucible. The tube and crucible were baked before use.
Cu Cuboctahedra. Cu nanostructures with roundish morpholo-

gies were fabricated using the procedures outlined in the previous
section, but where the Cu film thickness and maximum processing
temperature were adjusted to values more conducive to the formation
of equiaxed structures (i.e., 11 nm and 1040 °C).57 Upon removal
from the tube furnace, the Cu nanostructures were immediately
subjected to a solution-based synthesis that, in a matter of minutes,
transforms the near-spherical geometries into cuboctahedra. The
synthesis begins by preparing 95 °C aqueous solutions of Cu(NO3)2
(3 mL, 1 mM) and AA (1 mL, 10 mM). The substrate-supported Cu
nanostructures are inserted into the AA solution, and after a waiting
period of 10 s, the Cu(NO3)2 is quickly added. The addition causes a
chemical reaction to ensue that sees Cu2+ ions reduced by AA to form
a neutral Cu0 species that readily deposits onto the existing Cu
nanostructures. After a 5 min interval, the substrate is removed, rinsed
in DI H2O, and dried under flowing N2 gas. Details of the procedure
can be found elsewhere.57

Periodic Arrays of Cu Nanostructures. Nanostructure arrays
are formed using a benchtop nanofabrication procedure in which
nanoimprint lithography is used to define periodic arrays of
polycrystalline Cu discs that are then exposed to a heating regimen
that causes each disc to assemble into a single-crystal nanostructure.
The lithographic steps, which are described in detail elsewhere,60,94

proceed by spin coating a 400 nm thick moldable polymeric resist
onto a 10 mm × 10.5 mm × 0.6 mm sapphire substrate, embossing it
with a commercially available silicon stamp expressing a square
pattern of nanocylinders (length = 350 nm, diameter = 260 nm, pitch
= 700 nm), and then exposing the imprinted resist to a reactive ion
etching (RIE) treatment that creates openings to the substrate surface
at the embossed sites. A 15 nm thick layer of Cu is then sputter-
deposited over the entire surface. This is followed by a lift-off
procedure that dissolves the resist and removes the Cu that once
resided on the surface of the resist, leaving behind an array of Cu discs
on the substrate surface. The arrayed structures are inserted into a
tube furnace and exposed to the same heating regimen as described in
the previous section. Upon removal from the tube furnace, arrays
were often cleaved into smaller pieces to facilitate their immediate use
in multiple experiments.
Atomic Layer Deposition. A Cambridge NanoTech Savannah

100 ALD system was used to deposit the Al2O3 and HfO2 coatings,
while an Oxford FlexAl system was used for TiO2. The key differences
between the two systems are that the Oxford instrument has a lower
base pressure (1 vs 270 mTorr) and is equipped with a load lock to
facilitate sample insertion and removal. In an effort to mitigate any Cu
oxidation stemming from the higher base pressure in the Savannah,
the depositions were expedited by initially purging the system with N2
gas for 60 s at 5 times the flow rate used during the deposition (i.e.,
100 sccm). The flow is then reduced to 20 sccm over the course of 10
s followed by the immediate initiation of the deposition through the
introduction of the first precursor. TMA, TEMAH, and TDMAT
were used as the Al, Hf, and Ti precursors, respectively, while H2O
was used as the oxidant for all three cases. Growth cycles for Al2O3
utilized alternating 20 ms exposures of Al2O3 and H2O separated by a
7 s N2 gas purge. HfO2 depositions proceeded in much the same
manner except that a longer pulse time of 150 ms was used for
TEMAH, and the N2 purge time was increased to 10 s. TiO2 utilized

TDMAT and H2O pulse times of 800 ms and 1 s, respectively,
separated by a purge time of 7 s and a 3 s pumping interval. The
deposition temperature for all three oxides is 200 °C. These
processing parameters resulted in deposition rates of 1.0, 0.9, and
0.25 Å/cycle for Al2O3, HfO2, and TiO2, respectively. The Al2O3−
HfO2−Al2O3 triple layer coatings, used to obtain the data in Figure
5d, were deposited using the same conditions, but where an extended
purge time of 60 s was used when switching from one oxide growth to
another. Table S1 of the Supporting Information summarizes all the
relevant parameters associated with the ALD depositions. The etch
tests used to determine whether ALD-deposited coatings are pinhole-
free (Figure 2d−f) proceeded by exposing the structures to 1 M
HNO3 for 20 min.

Simulations. DDA simulations70 utilized the DDSCAT 7.3
software package. The simulated geometries were designed and
visualized using LAMMPS and Visual Molecular Dynamics (VMD)
software packages, respectively. For all simulations, the total number
of dipoles defining the nanostructure−coating−substrate system was
approximately 270000. The dielectric constants for ALD-deposited
Al2O3 were taken from the work of Groner et al.,62 while those
associated with Cu and the sapphire substrate utilized well-accepted
sources. The simulated Cu structures used to obtain the data in Figure
6a−f had a point-to-point diameter of 120 nm and a truncation
factor82 of one-third. The color maps show the |E/E0|

2 values
occurring at the resonant wavelength for nanostructure cross sections
taken through the structure in the direction of light polarization.

Instrumentation. Cu was sputter deposited in a Model 681
Gatan high resolution ion beam coater. Nanoimprint lithography
utilized a (i) Laurell Spin Coater, (ii) SAMCO RIE-1C Reactive Ion
Etcher, and (ii) home-built press.60 ALD depositions were performed
using a Cambridge Savannah S100 or an Oxford FlexAl System.
Coating thicknesses were measured with a Gaertner L116S
ellipsometer. LSPR spectra were recorded using a JASCO V-730
UV−visible spectrophotometer. SEM images were obtained using a
Magellan 400 FEI field emission scanning electron microscope
(FESEM). XRD spectra were recorded using a Bruker D8 Advance
diffractometer.
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