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a b s t r a c t

Anisotropic thermal conduction plays an important role in determining the structure of the hot plasma
in the solar corona. When hot plasma appears, the conductivity rises with temperature and becomes
highly nonlinear. Explicit solvers for parabolic problems often lead to much smaller time-steps limited
by a Courant–Friedrichs–Lewy (CFL) condition in comparison with hyperbolic Magnetohydrodynamics
(MHD) equations. In this work, we present a pseudo-linear, directionally-split, semi-implicit method
allowing for large time-steps as well as the optimized parallelization algorithm, integrated with the
MHD solver. Our scheme can perfectly preserve the monotonicity and the geometry of shocks and
discontinuities in complex MHD problems. Two sets of numerical tests show that an increase in time
step of ∼ 600 can be easily achieved with an acceptable error by our scheme compared to explicit
methods, and the use of large time-steps can still follow fast dynamic processes reliably. In addition,
the extendibility studies have proven that the associated parallel efficiency is comparably high. This
method is also useful for any kind of time-dependent conductivity problems for the solar applications
in the future.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Solar activity is usually recognized in temperature profiles
from observations at different wavelengths, and anisotropic ther-
mal conduction plays a non-negligible role for the associated
hot structures. Particularly, in the process of solar eruptions, the
released magnetic energy is converted partially into the ther-
mal energy, which contributes to a significant variation on the
temperature of plasma. For instance, Interface Region Imaging
Spectrograph (IRIS) bombs (Peter et al., 2014) were observed
in the low chromosphere, of which the temperature reached to
8 × 104 K. Also, micro-flares of 106 K observed in the chromo-
sphere might be related to the coronal heating (Shimizu, 2015).
Thermal conduction also has a drastic effect on the spectra for
low-frequency nanoflares diagnosis (Bradshaw et al., 2012). In
the corona, X-ray flux was successfully identified on the top
of hot flare loops (Liu, 2013; Liu et al., 2013), and even hotter
regions of the order of 107 K can be found in the coronal mass
ejection (CME)/flare reconnecting current sheet (Ciaravella et al.,
2002; Reeves and Golub, 2011). Lemen et al. (2012) summarized
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the effective range of the temperature response function in each
Atmospheric Imaging Assembly (AIA) and IRIS band, and associ-
ated hot structures at different heights. The spatial distribution
of temperature observed by various devices can provide a better
understanding for the energy conversion and release in CME
events. On the other hand, due to specific objectives of diverse
observational instruments, the observation bands from the filters
should greatly differ from each other in order to obtain a series
of distinguishable images in each band.

In order to explain the fundamental physical mechanisms
related to the hot structures in observations, astrophysical MHD
simulations are used, where thermal conduction is anisotropic.
Sharma and Hammett (2007) have pointed out that simple finite-
differencing of the anisotropic diffusion equation leads to nega-
tive temperatures at large temperature gradients, because
unphysical numerical fluxes are created at cell surfaces. This
eventually results in an imaginary sound speed and the stationary
temperature becomes complex. They also show that the use of
slope limiters (Leveque, 2002) to calculate the fluxes at cell sur-
faces keeps the temperature oscillations suppressed and prevents
the creation of artificial extrema. Thus, the temperature is always
positive as required physically for a CFL stable timestep. A similar
fully implicit method was developed by Kannan et al. (2016,
2017) to simulate the black hole feedback taking account into
thermal conduction with respect to a moving mesh.
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Current open source MHD codes, such as ZEUS (Stone and Nor-
man, 1992a,b; Stone et al., 1992), ATHENA (Gardiner and Stone,
2005, 2008; Stone and Gardiner, 2009) and NIRVANA (Ziegler,
2005, 2008, 2011), solve explicitly the MHD equations including
thermal conduction. The timesteps of fully explicit methods are
limited by the CFL condition. In some of astronomical environ-
ments, the timestep provided by thermal conduction as δt <
∆x2/2κ∥, where ∆x is the grid spacing and κ∥ is the anisotropic
diffusion coefficient, can be much smaller than the MHD CFL
time limiter. In our previous work about the cascading (turbulent)
reconnection during solar eruptions (Ye et al., 2019), thermal
conduction was not included; otherwise it would lead to an
enormous computation time because of the above limitation (∼
1000 times slower). For this reason, thermal conduction alone
is expected to be treated implicitly, while the MHD parts are
treated explicitly. Balsara et al. (2008) have developed a tempo-
rally second-order implicit–explicit solver to do so, but it is not
monotonicity-preserving, i.e. the temperature oscillations remain
till late times of the simulation. Further, the implementation of
their iterative method is somewhat difficult, because it requires
a fairly large number of iterations per timestep when the dif-
fusion is strongly non-linear. We also experimented with the
classical Newton’s method (Atkinson, 1989) to achieve the fully
implicit thermal conduction solver, but the convergence becomes
worse. Since the Jacobian matrix is often ill-posed (i.e. of a large
condition number) when the iterative solution approaches the
exact solution, a large timestep might lead to a bad behavior
in finding the optimized updates and eventually a failure in
convergence. Alternatively, we considered the alternate direc-
tion implicit (ADI) schemes which are unconditionally stable for
isotropic diffusion applications, but the explicit treatment for
the transverse terms ∂2T/∂x∂y makes the scheme unstable for
timesteps larger than a few times the CFL timestep. Sharma and
Hammett (2011) then report a directionally-split semi-implicit
method for constant-coefficient anisotropic diffusion in the intra-
cluster medium, which realizes a speed-up of ∼ 1000 in contrast
to fully explicit methods.

For a realistic application in the corona, namely magnetic
reconnection during the flares, ejecting hot plasma to form tur-
bulent hot structures of flare loops, the parallel and perpendic-
ular conductivity coefficients, κ∥ and κ⊥, are modeled by Spitzer
theory (Spitzer, 1962), which are highly nonlinear with respect
to temperature. In addition, it is found in most solar applica-
tions that κ⊥ ≪ κ∥, conduction is mainly along the magnetic
field. The temperature-dependent nonlinearity gives rise to a high
risk of instabilities for large timesteps. The Super TimeStepping
method (Meyer et al., 2012) is also very popular in many codes,
which provides a Runge–Kutta kind of corrections allowing for
large, second-order accurate time-steps. A ∼ s2 times larger time-
step needs s inner iterations at each time, and the number s
should be an odd integer for the sake of stability. In other words,
this permits an s-fold gain in computation cost over explicit
forward Euler sub-cycling.

We present here a novel semi-implicit scheme for the
nonlinear diffusion problem as well as an optimization of the par-
allelization algorithm. This method combines the fluxes
directionally-split technique from Sharma and Hammett (2011)
and the ADI schemes for nonlinear diffusion equations as de-
scribed in Witelski and Bowen (2003) and Bruno and Jimenez
(2014). The resulting scheme is not only unconditionally stable
and ∼ 600 times faster than fully explicit methods, but also easy
to parallelize in any cluster.

The paper is organized as follows: Section 2 presents the de-
tailed numerical methods and parallelization algorithm. Two tests
regarding the accuracy and the parallel efficiency are presented
in Section 3. Lastly, conclusion and discussion are described in
Section 4.

2. Numerical methods

We consider the dimensionless magnetohydrodynamic equa-
tions including the resistivity and the anisotropic diffusion sim-
plified as follows:
∂ρ

∂t
+ ∇ · [ρv] = 0, (1)

∂ρv
∂t

+ ∇ · [ρvv − BB + P∗
] = 0, (2)

∂E
∂t

+ ∇ · [(E + P∗)v − B(B · v)]

= ∇ · (ηB × (∇ × B) + κ∥(∇T · B̂)B̂), (3)
∂B
∂t

= ∇ × (v × B − η∇ × B), (4)

P∗
= P +

B · B
2
, (5)

E = P/(γ − 1) +
ρ(v · v)

2
+

B · B
2
, (6)

P = ρT . (7)

where ρ is the plasma mass density, v is the velocity field, E is
the total energy density, B is the magnetic field, B̂ = B|B| is
the unit vector in the direction of the magnetic field, T is the
temperature, P is the gas pressure, η is the normalized magnetic
resistivity and γ is the ratio of specific heats set to 5/3 (ideal
gas). The conductivity coefficient κ∥ used in the heat conduction
term is assumed either constant value or nonlinear function of
temperature. Regarding most solar applications, conduction along
the magnetic field is dominated by electrons, and Spitzer (1962)
gives the description of the parallel conductivity in normalized
form

κ∥ = c1 ·
1.84 × 10−10

Z lnΛ
T 5/2. (8)

Here, lnΛ is the Coulomb logarithm set to 30, Z is the mean
ionic charge number set to 1, the normalization factor c1 =

µ0T
7/2
N /(B2

NLNvAN ). We choose TN , BN , LN and ρN as the normal-
ization units for temperature, magnetic field, length and mass
density, respectively. Actually, TN can be deduced from BN and
ρN . Thus the reference Alfvén speed is given by vAN = BN/

√
µ0ρN ,

where the magnetic permeability µ0 = 4π × 10−7. Note that we
do not include the cross-field conduction term in the above MHD
model, because the perpendicular conductivity κ⊥ is computed
to be several orders of magnitude smaller than the parallel one in
the corona. In practice, we only introduce the numerical diffusion
instead of the cross-field diffusion. To complete the above equa-
tions, the divergence-free condition (∇·B = 0) should be satisfied
at all times. Current popular astrophysical codes, as mentioned
previously, are used to solving the whole system by two steps
using Strang splitting. Within the spirit of such operator splitting
schemes one formally rewrites Eqs. (1)–(7) as
∂U
∂t

= LMHD(U) + Lcond(U),

where U is the conservative parameters, LMHD and Lcond represent
the gradients of the MHD fluxes and the conduction fluxes, re-
spectively. The first step consists of solving the resistive MHD
equations ∂U/∂t = LMHD(U); the second step updates only the
energy change by ∂E/∂t = ∇ · (κ∥(∇T · B̂)B̂). For simplicity, the
second step is equivalent to solve a nonlinear thermal conduction
problem rewritten by
∂T
∂t

= ∇ · (κ(T )(∇T · B̂)B̂),

+Boundary conditions.
(9)
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Here, κ(T ) is proportional to κ∥. A number of well-developed
explicit schemes are used to solve the MHD step, such as operator
splitting finite-differencing (Stone and Norman, 1992b) or unsplit
Godunov schemes (Stone and Gardiner, 2009). We often follow
the rules that the MHD time-step is computationally expensive,
and that should not be reduced in any way. Thus the MHD solver
takes it largest time-step permitted by its CFL condition at each
time tn:

δt =C0min(
∆x

|vnx,i,j,k| + Cn
f ,i,j,k

,
∆y

|vny,i,j,k| + Cn
f ,i,j,k

,

∆z
|vnz,i,j,k| + Cn

f ,i,j,k
),

(10)

where C0 ≤ 0.5 is the CFL number, vnx , v
n
y , v

n
z are the fluid

velocities in x, y, z−directions and Cn+1
f denotes the fast mag-

netosonic speed evaluated at cell centers. Therefore, the next
step for solving the parabolic conduction equation is crucial for
a proper timestep δt to compete with the one obtained from the
MHD step.

2.1. Anisotropic diffusion

Our work is dedicated to optimize the method to solve the
anisotropic thermal conduction problem embedded in the resis-
tive MHD system. Without loss of generality, we consider the
two dimensional uniform grid in Cartesian coordinates. Eq. (9) is
integrated in a single cell Vij as∫

Vij

∂T
∂t

dV =

∮
Sij

κ(T )(∇T · B̂)B̂ · n⃗dS

=

∫ yj+1/2

yj−1/2

[
κ(T )

∂T
∂x

B̂xB̂x

]xi+1/2

xi−1/2

dy

+

∫ xi+1/2

xi−1/2

[
κ(T )

∂T
∂y

B̂yB̂y

]yj+1/2

yj−1/2

dx

+

∫ yj+1/2

yj−1/2

[
κ(T )

∂T
∂y

B̂xB̂y

]xi+1/2

xi−1/2

dy

+

∫ xi+1/2

xi−1/2

[
κ(T )

∂T
∂x

B̂xB̂y

]yj+1/2

yj−1/2

dx.

(11)

The terms on the right side are the fluxes flowing through the
cell faces Sij. In the manner of finite volumes discretization, the
system is updated by two-steps Strang splitting along the x- and
y-direction. Then, the fluxes are taken semi-implicitly in each
direction as follows:

T ∗

i,j − T n
i,j

∆t
= κ(T ∗

i+1/2,j)B̂
2
x,i+1/2,j

T ∗

i+1,j − T ∗

i,j

∆x2

−κ(T ∗

i−1/2,j)B̂
2
x,i−1/2,j

T ∗

i,j − T ∗

i−1,j

∆x2

+κ(T n
i+1/2,j)

B̂x,i+1/2,jB̂y,i+1/2,j

∆x∆y
∆T̄ n

i+1/2,j

−κ(T n
i−1/2,j)

B̂x,i−1/2,jB̂y,i−1/2,j

∆x∆y
∆T̄ n

i−1/2,j, (12)

T n+1
i,j − T ∗

i,j

∆t
= κ(T n+1

i,j+1/2)B̂
2
y,i,j+1/2

T n+1
i,j+1 − T n+1

i,j

∆y2

−κ(T ∗

i−1/2,j)B̂
2
y,i,j−1/2

T n+1
i,j − T n+1

i,j−1

∆y2

+κ(T ∗

i,j+1/2)
B̂y,i,j+1/2B̂x,i,j+1/2

∆x∆y
∆T̄ ∗

i,j+1/2

−κ(T ∗

i,j−1/2)
B̂y,i,j−1/2B̂x,i,j−1/2

∆x∆y
∆T̄ ∗

i,j−1/2, (13)

where {i, j} are the coordinates of grid cells and {i±1/2, j±1/2}
represent the appropriate cell faces. T ∗ stands for the interme-
diate state for temperature, T n and T n+1 indicate the state at
t = tn and t = tn+1, respectively. Unlike the ADI scheme (implicit
meaning), only the cross-gradient terms are treated explicitly
here (i.e. semi-implicit), and our method is first order accurate
in time. The notation

∆T̄i+1/2,j = L(Ti+1,j+1 − Ti+1,j, Ti+1,j − Ti+1,j−1,

cTi,j+1 − Ti,j, Ti,ja − Ti,j−1), (14)
∆T̄i,j+1/2 = L(Ti+1,j+1 − Ti,j+1, Ti,j+1 − Ti−1,j+1,

Ti+1,j − Ti,j, Ti,j − Ti−1,j) (15)

are the central differences of the temperature at appropriate cell
faces, and L stands for the slope limiter of van Leer (1977) to
capture the temperature extrema, given by

L(a, b) =
2ab
a + b

, if ab > 0,

= 0, else.
(16)

Furthermore, its version for 4 arguments is described as
L(a, b, c, d) = L(L(a, b), L(c, d)), which is symmetric by the defi-
nition. However, other slope limiters are also available, such as
minmod and monotonized central (MC) limiters (see Leveque,
2002 for more details). We have also experimented with the
sharper limiter MC, and found that the condition of the matrix is
more sensible to large time-steps than the more diffusive limiter
such as van Leer. Unlike the constant-coefficient linear problem
in Sharma and Hammett (2011), we still have the unknown heat
conduction coefficient κ(T ∗) in Eq. (12) as well as κ(T n+1) in
Eq. (13). To skip the complexity of the nonlinear solve at each
step, we use the predictor of the solution at the time tn+1 that re-
sult from qth order of extrapolatory approximations with known
values {T n, . . . , T n−q+1

} at previous time levels. It functions as
a predictor–corrector estimation at each time-step. It is found
that the use of this predictor can still preserve the discontinuity
on temperature profiles by our experiments. Particularly, the
approximation of T n+1 takes the polynomial form, given by

T̃ n+1
=

q−1∑
i=0

ωiT n−i, (17)

where the coefficients ωi take the values from Table 1. If we
do not make the prediction at each time-step, then they are
equivalent to Eqs. (12)–(13) with the time-lagged explicit coef-
ficients κ(T ), hence we call them pseudo-linear approximations
for (17). In particular, we have T n+1

= T̃ n+1
+ O(∆tq) as ∆t →

0. To ensure the convergence of our method, the temperature
should be always positive valued, and we made a correction
with a predefined tiny number (∼ 10−20) as the temperature
floor. In most applications, this temperature floor also can be
defined depending on local physical environments, such as 105 K
in solar corona and 104 K in solar chromosphere, so that T̃ n+1

=

max{T̃ n+1, TinyNumber} at each time step. Substituting T ∗ and
T n+1 by T̃ n+1 into the heat conduction coefficients, we get thus

κ(T ∗) ≈ κ(T̃ n+1), κ(T n+1) ≈ κ(T̃ n+1). (18)

Thanks to these approximations, we transform Eqs. (12) and (13)
into a linear problem for T n+1. Accordingly, this substitution,
whatever the choice of q is, preserves the first order accuracy in
time found in Eqs. (12), (13). Since the high order approximations
for q ≥ 4 are more sensible to the numerical errors proven by our
tests, we set practically q = 2 for all test simulations in Section 3.
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Table 1
Extrapolation coefficients ωi for T n+1 .
q ω0 ω1 ω2 ω3 ω4

2 2 −1 0 0 0
3 3 −3 1 0 0
4 4 −6 4 −1 0
5 5 −10 10 −5 1

Generally, these two equations can be represented in a linear
algebra problem as follows:

aixi−1 + bixi + cixi+1 = fi, i = 1, . . . ,N − 1. (19)

Hence, a tridiagonal matrix system is obtained for each direc-
tional update. To solve such systems, the Thomas’ algorithm is
available, and the solution can be obtained in O(N) operations
instead of O(N3) required by Gaussian elimination. Normally, this
method is stable when the matrix is diagonally dominant.

Since the conductivity coefficient varies in magnitude, we have
defined a minimum , κmin and a maximum, κmax without loss of
generality, so that κmin ≤ κ(T ) ≤ κmax. For a fixed volume Vij, we
have the following relationship at time t = tn+1 deduced from
Eq. (12) for x-direction:

T ∗

i,j − T n
i,j

∆t
≤ κmaxB̂2

x,i+1/2,j

T ∗

i+1,j − T ∗

i,j

∆x2

−κmaxB̂2
x,i−1/2,j

T ∗

i,j − T ∗

i−1,j

∆x2

+κmax
B̂x,i+1/2,jB̂y,i+1/2,j

∆x∆y
∆T̄ n

i+1/2,j

−κmax
B̂x,i−1/2,jB̂y,i−1/2,j

∆x∆y
∆T̄ n

i−1/2,j, if dT ∗ > 0, (20)

or
T ∗

i,j − T n
i,j

∆t
≤ κminB̂2

x,i+1/2,j

T ∗

i+1,j − T ∗

i,j

∆x2

−κminB̂2
x,i−1/2,j

T ∗

i,j − T ∗

i−1,j

∆x2

+κmin
B̂x,i+1/2,jB̂y,i+1/2,j

∆x∆y
∆T̄ n

i+1/2,j

−κmin
B̂x,i−1/2,jB̂y,i−1/2,j

∆x∆y
∆T̄ n

i−1/2,j, if dT ∗ < 0, (21)

where dT ∗
= T ∗

ij − T n
ij . Similarly, for y-direction, we have

T n+1
i,j − T ∗

i,j

∆t
≤ κmaxB̂2

x,i+1/2,j

T n+1
i+1,j − T n+1

i,j

∆x2

−κmaxB̂2
x,i−1/2,j

T ∗

i,j − T ∗

i−1,j

∆x2

+κmax
B̂x,i+1/2,jB̂y,i+1/2,j

∆x∆y
∆T̄ n

i+1/2,j

−κmax
B̂x,i−1/2,jB̂y,i−1/2,j

∆x∆y
∆T̄ n

i−1/2,j,

if dT n+1 > 0, (22)

or

T n+1
i,j − T ∗

i,j

∆t
≤ κminB̂2

x,i+1/2,j

T n+1
i+1,j − T n+1

i,j

∆x2

−κminB̂2
x,i−1/2,j

T ∗

i,j − T ∗

i−1,j

∆x2

+κmin
B̂x,i+1/2,jB̂y,i+1/2,j

∆x∆y
∆T̄ n

i+1/2,j

−κmin
B̂x,i−1/2,jB̂y,i−1/2,j

∆x∆y
∆T̄ n

i−1/2,j,

if dT n+1 > 0, (23)

where dT n+1
= T n+1

ij − T ∗

ij . To prove the numerical stability,
we substitute the temperature eigenmode T (x, y, t) = T0r(t)
e−i(kxx+kyy) into Eqs. (20), (21), (22), (23) to determine the ampli-
fication factor r(t), where kx and ky are the wavenumbers along
x-axis and y-axis. The amplification factor can be rewritten by
r = r1r2, with r1 and r2 the amplification factors in x- and
y-direction, respectively. For simplicity, we assume that B̂x, B̂y are
constant in space. The calculation is similar to that in Sharma and
Hammett (2011). We have thus, for x-direction,

r1 ≤
1 −

κmax∆t
∆x∆y B̂xB̂ysin(kx∆x)sin(ky∆y)

1 + 4 κmax∆t
∆x2

B̂2
xsin2(kx∆x/2)

, (24)

or

r1 ≤
1 −

κmin∆t
∆x∆y B̂xB̂ysin(kx∆x)sin(ky∆y)

1 + 4 κmin∆t
∆x2

B̂2
xsin2(kx∆x/2)

. (25)

And, for y-direction,

r2 ≤
1 −

κmax∆t
∆x∆y B̂xB̂ysin(kx∆x)sin(ky∆y)

1 + 4 κmax∆t
∆y2

B̂2
ysin2(kx∆x/2)

, (26)

or

r2 ≤
1 −

κmin∆t
∆x∆y B̂xB̂ysin(kx∆x)sin(ky∆y)

1 + 4 κmin∆t
∆y2

B̂2
ysin2(kx∆x/2)

. (27)

Consequently, one can prove that the full time step factor |r| =

|r1r2| ≤ 1 is guaranteed for any ∆t in two dimensions at the
given time t = tn+1, and our method is unconditionally stable as
is usual for implicit methods. For three dimensions, the expansion
of our method is not unconditionally stable any more, because
the amplification factor |r| could be greater than 1 for a large
∆t . However, Sharma and Hammett (2011) also suggest a 4-step
method in three dimensions, which was numerically verified to
be unconditionally stable for a constant conductivity. We leave
it for future work, because for the applications of our current
interest the thermal structure would be better understood in 2D
(or 2.5D).

In closing, the accuracy of the present solver is only first
order in time and second order in space. Although the above
linear stability analysis predicts an unconditional stability, our
method is not numerically stable for an enormous ∆t , because
the explicit ‘transverse’ flux terms (∂2T/∂x∂y) in Eqs. (12) and
(13) are symmetrized with respect to the x− and y−updates.
Additionally, extremely nonlinearity of the heat conduction coef-
ficient or limiters might lead to a high risk of instability to large
time-steps.

In order to speed up the simulations, we made an exhaustive
effort to parallelize the thermal conduction problem (second step)
to integrate with the MHD updates (first step). There are two
major parallel algorithms that are widely used for the tridiagonal
system (19). One is the domain decomposition algorithm (Wang
and Georgiadis, 1991), the other uses higher dimensional linear
recurrences to solve the diatriangular linear system (Wang and
Vanka, 1993). However, to be in harmony with the parallelized
method for the first step, we focus here on the optimization of
the domain decomposition algorithm in this work.

In the domain decomposition algorithm, the main domain is
divided into many subdomains, where the number of subdomains
is usually chosen to be a power of 2. The data in a subdomain
depend on other domains only through the inner boundaries be-
tween those domains. Within a subdomain, the nodal data have a
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Fig. 1. Domain decomposition based on local line inversion.

well-defined interdependency. For the linear system (19), the so-
lution consists of decomposing the matrix A into sub-blocks and
implementing the line inversion algorithm in parallel. The key of
the execution is to remove the interprocessor data dependency
and carry out the local line inversion in each processor.

The standard ADI decomposition consists of collecting the
block of data from each thread along the splitting direction into
one thread to perform the line inversion. But this increases a
lot the burden of the computation work. Thus, we stripped the
original block of data of each thread first and then combined them
along the splitting direction, in order to keep the computation
complexity consistent with the explicit method in the original
block of data. For instance, uniform Cartesian grids are initially
decomposed into 4 × 4 subdomains with 16 processors in parallel
(Fig. 1). The first step updates explicitly the conservative parame-
ters from the MHD equations without thermal conduction in each
subdomain by a single processor, and the rank of each processor
is randomly arranged in Fig. 1a. At the second step, the domain
is decomposed vertically into 16 subdomains by the increasing
rank for the x-update and each processor uses the horizontal
lines of each subdomain to solve Eq. (19) to obtain a new xi or Ti
(Fig. 1b). Based on those values, the domain is decomposed again
into perpendicular subdomains for the y-update, and Eq. (19) is
then solved in the vertical direction in parallel (Fig. 1c). Lastly,
the updated values are rearranged into the corresponding sub-
domains in Fig. 1a before the next iteration in time. Note that
the boundary node value of each horizontal domain or vertical
domain is always taken from the physical boundary conditions.
Because the heat conduction coefficient node value resulting from
Eq. (17) is taken from previous data, it will take more iterations
to converge if massively parallel processors are used.

Using the present parallelization algorithm, the whole linear
tridiagonal equation system is divided into P subsystems with
a matrix transformation on matrix A. Then P processors are
assigned to deal with each subsystem in parallel. This method
needs many transforms to take into account the effect of the in-
ternal boundary node, which increases a little the communication
between processors. However, a comparison between the itera-
tion time and the communication time, through our numerical
tests for a 1000 × 1000 grid, indicates that the time spent on
communicating the data is relatively short compared to that for
solving the associated subsystems. In fact, the communication of
inner boundaries between parallel nodes is also required in ex-
plicit solvers such as pure sub-time stepping or super-time step-
ping methods when performing parallel calculations. Therefore,
our parallel algorithm is considerably faster to solve the linear
system (19).

Fig. 2. Initial log10 temperature distribution and magnetic field lines.

3. Numerical tests

In this section, we study exhaustively two tests for our new
algorithm.

3.1. Diffusion in a static ring

Considering a magnetostatic state of the low Corona, a hot
patch is located in the fixed circular magnetic field lines. The
problem is equivalent to solving only the thermal conduction
equation (9). To be consistent with parameters in the realistic
corona, we reconsider Eq. (9) in SI units. This is a crucial test
to check monotonicity properties of the anisotropic diffusion
method, because field lines make all possible angles with respect
to the Cartesian grid. For the steady regime, the temperature is
expected to be uniform along each magnetic field line in the ring
as t → ∞. We have given a characteristic length L = 105 m,
so that the computational domain is [−2L, 2L] × [−2L, 2L] in 2D
Cartesian coordinates. The initial temperature distribution is

T0 = 107 K if L < r < 1.4L and
11
12
π < θ <

13
12
π,

= 105 K else,
(28)

where r =

√
x2 + y2 and tanθ = y/x, and B̂x = −y/

√
x2 + y2,

B̂y = x/
√
x2 + y2 (see Fig. 2). The nonlinear diffusivity is κ(T ) =

1 × 10−9T 5/2 (measured in SI units). The magnetic field and the
conduction vanish outside r = 2L. Adiabatic boundary conditions
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Fig. 3. Log10 temperature contour plots at t = 3000 s for evaluating only the anisotropic diffusion scheme using a 128 × 128 grid. Different CFL numbers C were
used to yield the ∆t in Eqs. (12) and (13). Additionally, the temperature plot with fully explicit method is given for comparison.

(∂T/∂x = 0 at boundaries in the x-direction, ∂T/∂y = 0 at
boundaries in the y-direction) are utilized for the temperature.

The CFL condition predicts an explicit timestep with

∆tCFL = ∆x2/4κmax, (29)

measured in seconds. Despite the fact that our method is uncon-
ditionally stable in 2D, a very large ∆t is still not appropriate
because of numerical errors. Hence, we want to figure out roughly
the maximum increase in time step with respect to a CFL number
C , so that ∆t = C∆tCFL, without degrading the solution compared
with the explicit method. A 128 × 128 mesh is used, and then we
have ∆tCFL ≈ 7.72 × 10−3 s according to Eq. (29). Fig. 3 shows
the logarithm temperature at t = 3000 s solved by Eqs. (12)
and (13) with different CFL numbers (C) as well as the solution
solved by the fully explicit method for comparison. We stress
that the fully explicit methods utilized the same slope limiters
as the new solver, in order to exclude the effect of limiters. As
expected, our method is unconditionally stable for C ≥ 1, but the
solution degrades as C increases. One can find that the solution
for C = 600 is still very similar with the explicit solution. A
very large time step, such as C = 2500, leads to a significant
numerical diffusion in the perpendicular direction to the local
magnetic field (see Fig. 3g) as well as the enlargement of the
temperature extrema region. In order to determine the largest
possible value for C so that the solution does not deteriorate too
much, we compute also the relative error at t = 3000 s as

err =
∥TC (x, y) − Tex(x, y)∥L1

∥Tex(x, y)∥L1
, (30)

where TC is the solution obtained by our method with a CFL num-
ber C , Tex is the solution obtained by the fully explicit scheme, and
∥ · ∥L1 represents the norm in the L1 space. As shown in Fig. 4a,
the corresponding error in the L1 space is an exponentially mono-
tonically increasing function with respect to the CFL number, and
the circles indicate the values of C = 10, 100, 200, 300, 400, 500,
600, 700, 800, 900, 1000, 1200, 1500, 1800, 2000, 2200, 2500.
The relative error varies from 0.0085% at C = 10 to 50.8% at
C = 2500. In our experiments, when the value of C approaches
to 3000, temperature profiles close to zero begin to appear.
Clearly, the solution for C above 2500 may not be reliable due
to the large error. To maintain both the satisfiable computa-
tion efficiency and the high numerical accuracy of simulations,

Fig. 4. The relative error defined in Eq. (30) as a function of the CFL number C .

a compromise between them should be made on the choice
of the value C . As a guide, errors below 3.5% would normally
be considered acceptable for nonlinear simulations. This figure
shows an increase in time step of 600 compared to the fully
explicit method for the Spitzer kind of thermal conduction model,
with a relative error of 3.42%. The temperature tends to be steady
at latter times, and the relative error decreases as time goes for a
fixed constant C . Since the conductivity varies with temperature,
the prediction of Eq. (17) validates better for a smooth evolution,
but delays somewhat the fast dynamics in our experiments.

In particular, taking C = 600, we computed the fractional
error distribution as

errf =
|TC (x, y) − Tex(x, y)|

∥Tex(x, y)∥L∞
, (31)

where ∥ · ∥L∞ is the L∞ norm. As shown in Fig. 5a, the largest
values locate near the edge of the hot region because of the
discontinuous initial condition. If excluding the values on the
edge, one can find the maximum fractional error of ∼ 5.1% inside
the hot region according to the histogram of the fractional error
in Fig. 5b.
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Fig. 5. The fractional error distribution (a) and the associated histogram (b).

Fig. 6. The energy conservation discrepancy as a function of (a) the CFL number C and (b) the grid resolution ∆x.

It is expected that the energy conservation holds for any time
step ∆t . So, the conservation law was checked by integrating the
temperature profiles in the entire simulation domain. One can
find in Fig. 6a that the energy conservation discrepancy between
t = 0 s and t = 3000 s increases with the CFL number C . And
that is 1.73% at C = 600. With a large CFL number C > 600,
the discrepancy becomes unacceptable, and that is related to
the numerical perpendicular diffusion coming from the predic-
tion of the temperature in Eq. (17). In our experiments, we
observed that some fluctuations happened around the areas of
steep temperature gradients initially at first several time-steps,
which contribute the main part of the numerical error respon-
sible for the failure of the energy conservation. If a smoother
initial condition is considered, the associated discrepancy could
be much smaller. Also, we plot the conservation discrepancy as
a function of the grid resolution at C = 600 in Fig. 6b, showing
that using high resolution grids suppresses greatly the error. All
the analyses above approve that the increase in time step of 600
agrees well with the explicit methods and the extra numerical
errors can be minor.

The CFL number is expected to be of the same order (C) for
all resolutions, and this statement is confirmed numerically by
our experiments. Fig. 7 shows the logarithm temperature contour
at t = 3000 s for different grid resolutions with a fixed CFL
number (C = 600). Clearly, a higher grid resolution (see Fig. 7d)

preserves more accurately the temperature extrema and reduces
the perpendicular numerical diffusion for the fixed CFL number,
while a lower grid resolution generates a less accurate temper-
ature profile and the parallel diffusion seems to be suppressed
(see Fig. 7a). In our work, the temperature is well bounded by
the initial minimum temperature (Tmin = 105 K) for the CFL
number from C = 1 to C = 2500 or for the grid resolution from
n = 32 to n = 512; the relative discrepancy is under 10−11, which
means that the monotonicity properties of the scheme is perfectly
preserved.

Despite of the non-physical perpendicular diffusion in the
model, a rough estimate of the time averaged numerical per-
pendicular diffusion can be obtained by adding a numerical term
κ⊥,num in Eq. (9) as follows:

∂T
∂t

= ∇ ·

(
κ(T )(∇T · B̂)B̂ + κ⊥,num(∇T − (∇T · B̂)B̂)

)
(32)

Analytically, the temperature diffuses only in the ring. However,
because of the finite numerical diffusion in the perpendicular
direction, it spreads out of the ring. Thus, κ⊥,num is given by

κ⊥,num =

∫
(Tf − Ti)dV∫
dt(

∫
∇2TdV )

, (33)

where the space integral is taken over the region out of the hot
ring (L < r < 1.4L), the time integral is taken from t = 0 s to
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Fig. 7. Log10 temperature contour plots at t = 3000 s solved by our method on a n × n grid for a fixed CFL number (C = 600).

Fig. 8. The ratio of perpendicular (numerical) to the initial maximum parallel diffusivity (circles) at t = 3000 s as a function of (a) the CFL number C on the
128 × 128 mesh; (b) the grid size with a fixed C = 600.

t = 3000 s, and Ti and Tf are the initial and the final temperature
distributions accordingly. Then we normalize the result by the
initial maximum parallel diffusivity as κ∥,max = κT0,max to ob-
tain the ratio of perpendicular (numerical) to parallel diffusivity.
Fig. 8a shows the ratio κ⊥,num/κ∥,max as a function of the CFL
number C , and the plot is monotonically increasing, as confirmed
in Fig. 3. Because of the temperature-dependent conductivity,
a larger CFL number can lead to a stronger perpendicular nu-
merical diffusion. Meanwhile, the spacial resolution introduces a
significant effect on the perpendicular diffusivity at a fixed CFL
number (C = 600) as shown in Fig. 8b. The circles represent
the grid size of N = 16, 32, 64, 128, 256, 400, 512 and the red
dashed line indicates a second order convergence. Unlike the
constant diffusivity cases of Sharma and Hammett (2011), the
convergence rate of our results is between O(∆x) and O(∆x2).
The reasonable explanation is that the prediction of Eq. (17) for
T n+1 brings extra numerical errors to depress the second-order
accurate convergence. Since both the CFL number and the grid

size affect the perpendicular numerical diffusion, the resulting
plot deviates from the expected second order convergence.

In fact, the CFL number should be ≲ (l/∆x)2 for practical
applications, where l is the characteristic length. Depending on
how accurate we want the temperature to be, we can adjust the
CFL number to obtain a better computation efficiency (Fig. 3).
Specifically, for applications in corona, the increase in time step
by C = 1500 is also acceptable without disrupting the general
diffusion process, but the error on the temperature profile can
reach > 10%. A compromise between the accuracy and the
computation efficiency should be made before launching the
simulation. However, an increase in time step of ∼ 600 can be
easily achieved by our method to meet the accuracy requirement.

3.2. Plasmoid instability in a corona current sheet

Plasmoid instability is an important topic for energy dissipa-
tion in solar physics. For a common application in the corona,
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Table 2
Summary of normalization units used for diverse thermal conduction models using different solvers.
Case TN LN BN ρN S κ∥ Solver

(107 K) (107 m) (0.005 T) (1.204 × 10−10 kg m−3) for thermal conduction

A 1 1 1 1 4
6 × 106T 3/2

0 0 No

B 1 1 1 1 4
6 × 106T 3/2

0 κ∥ of Eq. (8) Fully explicit

C 1 1 1 1 4
6 × 106T 3/2

0 κ∥ of Eq. (8) Our new scheme

D 1 1 1 1 4
6 × 107T 3/2 0 No

E 1 1 1 1 4
6 × 107T 3/2 κ∥ of Eq. (8) Fully explicit

F 1 1 1 1 4
6 × 107T 3/2 κ∥ of Eq. (8) Our new scheme

G 1 1 0.2 0.04 4
6 × 107T 3/2 κ∥ of Eq. (8) Our new scheme

we present MHD simulations of a reconnecting current sheet as
implemented on ATHENA 4.2 (Gardiner and Stone, 2005, 2008;
Stone and Gardiner, 2009) including our new method to solve
the thermal conduction problem. When solving such a complex
MHD problem, the question that how would this perform around
shocks or discontinuities needs to be answered. The plasmoid
test starts to investigate this issue by following the work of Ni
et al. (2012), except that our initials conditions are more realistic.
Considering the dimensionless MHD equations (1)–(7), we set the
simulation domain as (x, y) ∈ [0, 1] × [0, 4]. We choose a Harris
current sheet as the initial condition for the magnetic field:

By0 = b0tanh
(
x − 0.5
λ

)
, Bx0 = 0, (34)

where λ is the initial width of the current sheet set to 0.05 and
b0 = 1. To make the tearing instabilities happen, the current
sheet must be thin enough so that the condition can be satisfied:
2/λ(1/kλ− kλ) > 0, where k = 2π/ly is the wave number of the
initial perturbations and ly stands for the length in the y-direction
(= 4 for this case). Deriving the initial equilibrium from Eq. (2)
with v0 = 0, we have

∇ · (p0I) = −∇ ·

[
1
2
|B0|

2I − B0B0

]
. (35)

Substituting B0 = By0ŷ, where ŷ is the unit vector in the
y-direction, into the above equation, one can get the initial
equilibrium gas pressure as

p0 = −
1
2
B2
y0 + C0, (36)

with C0 a constant to be determined later. Since |By0| = 1 at
x = 0, 1 from Eq. (34), and the plasma β is given by β = p/2B2,
C0 is calculated as C0 = β0 + 1/2, where β0 is the initial plasma
β at the x-boundaries. Then the initial pressure reads

p0 =
1 + β0 − B2

y0

2
, (37)

and the initial equilibrium total energy is

e0 = p0/(γ − 1) + B2
y0/2. (38)

Supposing an isothermal atmosphere and the ideal gas law, we
derive the initial equilibrium mass density and temperature as

ρ0 = p0/T0 =
1 + β0 − B2

y0

β0
, T0 =

β0

2
. (39)

Additionally, we add small initial perturbations on the magnetic
field to trigger plasmoid instabilities in the current sheet in the
form

bx1 = −ε · 0.5sin(πx)cos(πy/2), (40)
by1 = ε · cos(πx)sin(πy/2). (41)

The amplification factor ε is set to 0.05 in our simulations. As
described in Ni et al. (2012), this kind of perturbations can yield
a large primary magnetic island, and eventually many secondary
plasmoids due to tearing instabilities if the Lundquist number is
above 104 (Shen et al., 2011). Reflecting boundary conditions are
used in the x-direction and periodic boundary conditions are used
in the y-direction, respectively.

Seven groups of tests with different configurations are dis-
cussed in this paper. The normalization units for temperature,
length, magnetic field and density are set to TN = 107 K, LN = 107

m, BN = 0.005 T, and ρN = 1.204 × 10−10 kg m−3, respectively.
According to the definition of c1 in Eq. (8), the choice of the
normalization units affects the significance of thermal conduction
in these cases. Table 2 summaries the normalization units used
for diverse thermal conduction models using different solvers in
order to get a general comparison in terms of the accuracy and
efficiency. The initial plasma β0 is set to 0.2 for all groups, thus
we have T0 = β0/2 = 0.1. Notice that the constant Lundquist
number is only related to the initial temperature S = 4/6 ×

106T 3/2
0 for A, B and C, so that S is the order of 104 and no

secondary magnetic islands appear. For the others, we choose S =

4/6×107T 3/2 in order to make the Lundquist number sufficiently
high to yield the secondary occurrence plasmoid instabilities in
the current sheet.

Accordingly, the initial temperature T0 in the dimensional
space is TI = 0.1·TN = 106 K. The magnetic field is of the order of
50G and the mass density is of order of 1.204×10−10 kg m−3. The
configuration for A–F corresponds more likely to the low corona,
and we add also the Case G with the typical BN = 0.001 T and
ρN = 2.883×10−12 kg m−3 for the higher corona. As a result, the
value c1 in Eq. (8) for Case G is greater than that in Case A − F .
Notice that, among all the cases above, the resulting characteristic
temperature is TN = 107 K, the Alfvén speed is vAN = 406.6 km/s
and the Alfvén time is tA = 24.6 s.

The simulations are implemented on a uniform Cartesian grid
of 320 × 1280 using 64 CPUs for parallelization. To ensure that
this resolution is appropriate for the plasmoid instability study,
we resimulated the case D with the grids of 160 × 640 and
640 × 2560 for comparison with our choice. The reconnection
rates versus time are very similar in general for the meshes of
320 × 1280 and 640 × 2560. We observe that the higher the
resolution is, the earlier the plasmoid instability starts, but their
peak values are almost the same. In other words, the physical
resistivity dominates in the overall evolution. In order to have
a faster convergence, we only use the grid of 320 × 1280 here.
Lastly, the simulation time is 40tA for all groups. Fig. 9 shows the
temperature profiles at times t = 6, 10, 20, 36tA for Case A–C.
A large primary island is formed and the current sheet shrinks as
time goes, but no secondary island appears. In the first row of the
figure, Case A establishes a reference without thermal conduction
for the other two cases. The second row for Case B, which involves
the Spitzer thermal conduction model, is the solution obtained
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Fig. 9. Temperature plots at times t = 6, 10, 20, 36tA for Case A (1st row), B (2nd row) and C (3rd row).

by the fully explicit method. At each time iteration, the time step
takes the minimum between ∆tMHD provided by the MHD part
(first step) and ∆tcond provided by the thermal conduction part
(second step), so that ∆t = min(∆tMHD,∆tcond). The number of
the time steps is 725486 and the total CPU time is about 110.9
h. Because the maximum temperature can reach around 0.3 at

latter times, so that the corresponding ∆t = 3.49 × 10−5tA. The
third row for Case C is the solution provided by our scheme with
a fixed C = 600, so that the number of time steps is 39917
and the CPU time is 6.1 h (18 times faster than B). ∆tMHD is
slightly smaller than ∆tcond at the beginning, and the acceleration
ratio ∆tMHD/∆tcond can reach ∼ 12 at later times. The fact is that
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Fig. 10. Temperature plots at times t = 6, 10, 20, 36tA for Case D (1st row), E (2nd row) and F (3rd row).

thermal conduction results in the smooth spreading temperature
as expected, the profiles of B and C are identical at all times.

Similarly, the results of Case D–F are presented in Fig. 10.
And, Case D gives the reference without thermal conduction for
the other two cases in presence of plasmoid instabilities. Case E
and F is the solution provided by the fully explicit method and

our scheme, respectively. The number time steps of Case E is
966700 taking 144.4 h, while that of Case F is 51060 taking 7.96
h. Indeed, the later is nearly 19 times faster, and the maximum
∆tMHD/∆tcond = 19.3 is attained. Particularly, for Case G with
the larger value of c1 in Eq. (8), we have a better maximum
acceleration ratio ∆tMHD/∆tcond =∼ 220. Clearly, Case E and
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Fig. 11. Reconnection rate (left column) and maximum temperature (right column) versus time for Case A–G.

F are identical at t = 6, 10tA, but they deviate slightly from
each other at t = 20, 36tA because of the fast dynamics of
plasmoid instabilities. As mentioned in Section 3.1, the use of
larger time steps used by our scheme can delay the generation
of the small-scale plasmoids.

To ensure that our scheme does not alter the physical pro-
cesses in comparison with fully explicit methods, we calculate
the time-dependent reconnection rate as γ (t) = ∂(ψX (t) −

ψO(t))/∂t , where ψX and ψO are magnetic flux functions at the
main reconnection X-point and the primary O-point. In this way,
γ (t) is the global reconnection rate over the entire current sheet.
Fig. 11 presents the temporal reconnection rates and maximum
temperature for Case A–G. In Fig. 11ab, thermal conduction has no
effect on reconnection rates in absence of plasmoid instabilities,
but lowers the temperature amplitude. However, B and C are
identical at all times. In Fig. 11c, secondary plasmoid instabilities
start earlier for both E and F than Case D because of thermal
conduction, and eventually result in faster reconnection rates. We
observe that the rise in the reconnection rate of Case F provided
by our scheme is slightly delayed compared with that of Case E
from the occurrence of secondary plasmoid instabilities, but their
dynamics are very similar in general. Another comparison can be
found in the temperature profiles in Fig. 11d. The results for E
and F are the same with a little shifting, and their temperatures
are smaller than Case D as expected. Also, we have investigated
the profiles around shocks and discontinuities from the solu-
tion obtained by our scheme. In here, we focus on the above
scheme property at discontinuity layers and employ the same
conduction coefficient as shown in Eq. (8) instead of investigating
more microscale physical effects of electron collision processes
between pre-shocked and post-shocked plasma. Fig. 12a shows
the divergence of fluid velocity and the magnetic field at t = 20tA
for Case F. We observe that the shocks locate mainly inside the

current sheet and around the large plasmoid. Then the density
and temperature along the line x = 0.35 across the shock
are plotted in Fig. 12b. Our scheme preserves well the jump of
the density at the shock front near y = 2.2 as well as the
temperature. Similarly, Fig. 12c presents the associated profiles
along the current sheet x = 0.5, and the discontinuities caused
by small-scale magnetic islands are accurately captured. Overall,
our scheme works well for the current sheet tests, where there
is sudden heating. But it does delay slightly the fast dynamics in
simulations, such as plasmoid instability.

Our scheme also has some advantages in comparison with the
popular Super TimeStepping method (STS). Technically, the STS
method for a s2 larger time step requires s extra sub-loops at
each time step, with s an even integer. For a N × N grid, a STS
method recognizes a computation complexity of O(sN2), while
our scheme can get to O(N2) as same as the full explicit methods,
when having ∆tMHD/∆tcond ≈ s2. Thus, as s becomes larger
in an extremely high-temperature environment or fine spatial
resolution simulations, our scheme can work much better than
the STS method. In terms of the parallel efficiency, we performed
a series of tests to study the extendibility of our method, because
the use of the semi-implicit techniques (see Fig. 1) requires a
massive data communication between processors. This evalu-
ation consists of two standard indicators in general. The first
indicator (blue line in Fig. 13) is the strong extendibility (SE)
, in which we resimulated Case F with a grid of 640 × 2560
using 32, 64, and 128 processors on Milkyway-2 supercomputer
centre in Guangzhou, respectively. In fact, each node on the
cluster possesses 24 CPU cores and we want to compare the
computation time from multiple nodes. Taking the 32 processors
job as the reference, it is 2.05 times faster using 64 processors
and the associated efficiency of each thread is 100%. Similarly, the
efficiency for 128 processors is about 85.3%. On the other hand,
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Fig. 12. (a) Divergence of fluid velocity and magnetic field at t = 20tA for Case F (b) The density and temperature along the line x = 0.35 across the shock (c) The
density and temperature along the central line x = 0.5.

Fig. 13. The parallel efficiency as a function of the number of processors via
the strong (blue) and weak (red) extendibility studies.

we resimulated Group F with three sizes of grids using 32, 64 and
128 processors. The principle of the second indicator (red line in
Fig. 13) is to keep the quantity of data calculated by each thread
unchanged in three cases in order to estimate the total time con-
sumed by the data communication between processors, namely,
the weak extendibility (WE). We show the results using the grids
of 320× 1280, 640× 1280, and 640 × 2560 for nt = 49013 time
steps here. Note that nt = 49013 is the total time step number
required for a simulation time of 40tA in Group F considering the
320 × 1280 mesh. Again, the 32 processors job for the grid of
320 × 1280 takes totally 7.41× 103 s, and the computation time
for the 64 processors job of 640 × 1280 is 8.84 × 103 s. Thus,
the acceleration ratio is 2 × 7.41 × 103/8.84 × 103

≈ 1.675 and
the corresponding efficiency of each thread is 83.7%. Similarly, we
have the efficiency of 66.8% for 128 processors. Both SE and WE
studies are very stable. Our parallelism seems not great, because
our parallelization algorithm will increase by a factor of a few
the burden of the data communication between processors which
eventually weakens the acceleration efficiency for each thread,
but its general performance for thinner grids is still satisfactory.

However, our scheme is only first order accurate in time. If
cooperating with MHD codes which are of higher order accurate
in time, this method will degrade the global accuracy to the first
order as well. It is straightforward to expand the present method
into a higher order in time, but it will increase the complexity of

solving the linear systems (with large sparse matrix) and the data
communication work for each thread. Substantial improvements
in terms of the anisotropic diffusion solver and the parallelization
algorithm can be made in the future.

4. Discussion and conclusions

Anisotropic thermal conduction is important for solar applica-
tions to predict realistic hot structures in numerical experiments.
In this work, we present a semi-implicit solver for the nonlinear
anisotropic diffusion problem within a numerical MHD scheme
as well as the associated parallelization strategy. This solver is
linearly stable for large timesteps and easily realizes an increase
in time step of ∼ 600 compared with fully explicit methods
for the problem in Section 3.1. Its accuracy is only first order
in time and second order in space in present work, and the use
of slope limiters for large temperature gradients can preserve
well the temperature extremes (monotonicity). The polynomial
approach for prediction to the nonlinear conductivity at the pos-
teriori time successfully linearizes the system without causing
instabilities. Benefitting from the directional split, our scheme has
two independent tridiagonal matrices to solve, whose complexity
is O(2N) on a N × N mesh instead of O(N2) for iterative implicit
methods (Atkinson, 1989).

The parallelization strategy is based on the domain decom-
position method, and we decomposed the domain according to
the splitting direction for each implicit update. The advantage of
this action is that the quantity of data available for computing
in each processor remains unchanged in both explicit updates
of MHD parts and implicit updates of thermal conduction, but it
does increase the data communication work somewhat.

Two numerical tests are exhaustively studied in this work. The
first one shows that a large timestep leads to a greater numerical
perpendicular diffusion and the convergence as the function of
the spacial resolution stays between first order and second order
accurate. It achieved easily an increase in time step of 600 with
a relative error under 3.42%. The second one represents a more
realistic case of Ni et al. (2012) using ATHENA4.2. We can find
out that the evolution obtained show no difference in general, but
the semi-implicit solver does delay slightly the generation of the
secondary islands at later times. However, our scheme provides
the correct reconnection rates as well as the temperature magni-
tudes, by which we are most interested. Also, our results confirm
that thermal conduction does increase the reconnection rate in
presence of plasmoid instabilities as reported by Ni et al. (2012).
Moreover, we have studied the extendibility (strong, weak) of the
parallelization algorithm, the efficiency for each processor turns
out to be satisfactory. So far, this scheme has been working well



14 J. Ye, C. Shen, J. Lin et al. / Astronomy and Computing 30 (2020) 100341

for our present purposes, but there is still some progress to make
in the future, such as using higher dimensional linear recurrences
to solve the diatriangular linear system (Wang and Vanka, 1993).
The use of non-uniform or AMR meshes is possible as well.

For most solar applications, thermal conduction is primarily
along the magnetic field for hot plasmas and the Spitzer conduc-
tivity is used for highly ionized gases. Actually, our method can be
applied to any kind of conductivity (constant, space-dependent,
time-dependent, or temperature-dependent). Our scheme is
perfectly monotonicity-preserving and also fast so that the con-
duction time-steps can be the same order of the MHD time-
steps. It will be quite useful for our future applications to study
the hot flare plasmas and the fine (turbulent) structure of the
reconnection current sheet.
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