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ABSTRACT

Sound provides a valuable tool for long-term monitoring of sensi-

tive animal habitats at a spatial scale larger than camera traps or field

observations, while also providing more details than satellite imagery.

Currently, the ability to collect such recordings outstrips the ability to

analyze them manually, necessitating the development of automatic

analysis methods. While several datasets and models of large corpora

of video soundtracks have recently been released, it is not clear to

what extent these models will generalize to environmental recordings

and the scientific questions of interest in analyzing them. This paper

investigates this generalization in several ways and finds that models

themselves display limited performance, however, their intermediate

representations can be used to train successful models on small sets

of labeled data.

Index Terms— Ecoacoustics, soundscape analysis, transfer

learning

1. INTRODUCTION

Arctic-boreal forests in Alaska and Northern Canada are vast, remote,

and relatively undisturbed, but they have been warming at a rate two

to three times the global average [1]. At the same time, human devel-

opment for resource extraction continues to encroach and intensify

in these same areas. The inaccessibility of these regions presents

challenges for the study of their ecosystems over their full spatial

and temporal extents. Traditional in situ studies provide infrequent

measurements at small spatial scales. Remote sensing using, e.g.,

satellite imaging, cannot capture information about wildlife behavior

or phenology (the timing of life-cycle events). Autonomous audio

recording networks, however, avoid both of these problems and are

able to provide long-term observations over a large spatial extent.

These recordings can be used in the new field of soundscape

ecology [2], which has used similar recordings in other ecosystems

for biodiversity assessment [3], detecting threatened and invasive

species [4], measuring levels of habitat destruction, fragmentation,

and chemical pollution [5], and determining the abundance of bird

species [6]. It explores the collection of biological, geophysical and

anthropogenic sounds and the methods of processing their temporal,

spatial and spectral characteristics to understand their association

with ecological processes.

Most soundscape ecology studies, however, are still carried out

using manual annotations collected from expert listeners reviewing

these recordings at close to real-time speeds [7], limiting their ability

to scale. For this reason, researchers are looking for ways to take

advantage of machine learning algorithms for automating natural

sound processing [8]. While it is still time-consuming and expensive

to manually label training data for these methods, transfer learning [9]

can reduce the amount of labeled data needed. Transfer learning

involves the use of a model pre-trained on a large mismatched dataset

to generate input features for another machine learning system trained

on the target dataset. One popular pre-trained model for audio is

VGGish [10].

This paper investigates whether the VGGish model and the re-

lated Audio Set dataset [11], both based on soundtracks of YouTube

videos, can be effectively applied to the analysis of ecoacoustic sound-

scape recordings collected in the summer of 2016 from 20 sites along

the Colville River and its delta in the North Slope of Alaska [12].

This area provides transportation to the oil and gas extraction activi-

ties in the Prudhoe Bay Oil Field. The village of Nuiqsut is situated

on the Colville and is home to a Native Alaskan community that

harvests caribou for their subsistence. Some harvesters have reported

changes in caribou distribution and yields because of aircraft traffic

in the area [13]. Thus, we analyze the presence of aircraft and other

human-generated sounds in these recordings.

We also analyze the presence of bird sounds in these recordings.

Every year millions of long-distance migratory birds travel from their

overwintering grounds throughout North America to the North Slope

of Alaska. There is emerging evidence that Arctic-breeding birds

may be vulnerable to the fact that the timing of spring snow and ice

cover melt is becoming increasingly heterogeneous in both time and

space [14, 15]. Thus, the automatic identification of both songbirds

and waterfowl in these recordings is of interest as well in identifying

the timing of their spring and autumn migrations. Preliminary stud-

ies [16] have shown success in this endeavor using supervised and

unsupervised approaches to classifying audio texture features [17].

The current study extends this to use deep learning models in the

context of transfer learning.

Thus, in this study, we measure the ability of several different

acoustic classifiers to recognize in these recordings sounds of eight

different classes, including birdsong, waterfowl sounds, and aircraft

noise. These acoustic classifiers include the bulbul model [18], an

attention-based Audio Set classifier [19] with a manual mapping of

tags to our classes, the same classifier with a learned mapping of tags,

and a collection of standard supervised machine learning algorithms

predicting our classes directly from the VGGish embeddings. A

summary of these three systems is shown in Figure 1.

2. RELATION TO PRIOR WORK

The development of machine learning tools for applications in eco-

logical studies using sound recordings is an interdisciplinary field





Tag NPos Bulbul Manual Audio Set VGGish10 VGGish1

Wind 641 0.70 0.66 0.85 (gp) 0.90 (gp) 0.91 (nn)

Cable noise 456 0.70 0.65 0.80 (rbf) 0.87 (gp) 0.86 (gp)

Songbird 409 0.86 0.70 0.77 (gp) 0.83 (nn) 0.86 (nn)

Running water 210 0.70 0.57 0.85 (gp) 0.92 (nn) 0.89 (nn)

Water bird 196 0.65 0.59 0.74 (gp) 0.76 (nn) 0.77 (rbf)

Insect 190 0.58 0.66 0.79 (nn) 0.87 (lsvm) 0.82 (lsvm)

Rain 102 0.56 0.44 0.81 (rbf) 0.85 (gp) 0.82 (gp)

Aircraft 28 0.66 0.52 0.78 (nn) 0.86 (ab) 0.52 (gp)

Table 1. Labels applied to 1300 10-second clips, the total number positive examples annotated (NPos), and area under the ROC curve (AUC)

results on our test set for bulbul, manual grouping of Audio Set tags (Manual), and classic machine learning models taking as input either

Audio Set label predictions (Audio Set), averaged raw VGGish embeddings (VGGish10), or single VGGish embeddings (VGGish1). The best

classifier was selected for each task on the validation set and is reported next to the result on the test set: lsvm: Linear Support Vector Machine

(SVM), rbf: Radial Basis Function SVM, nn: Neural Network, ab: AdaBoost, gp: Gaussian process

Songbird: Bird; Owl; Bird vocalization, bird call, bird song; Pigeon,

dove; Coo; Chirp, tweet; Squawk; Bird flight, flapping wings;

Gull, seagull; Chirp tone; Hoot

Water Bird: Duck; Goose; Quack; Frog; Croak; Caw

Insect: Fly, housefly; Insect; Bee, wasp, etc.; Buzz; Mosquito;

Cricket; Rustle

Aircraft: Engine; Fixed-wing aircraft, airplane; Aircraft engine,

Propeller, airscrew; Aircraft; Helicopter

Running Water: Waterfall; Waves, surf

Cable: Bang; Slap, smack; Whack, thwack; Smash, crash; Breaking;

Knock; Tap; Thump, thud; Whip; Flap; Clip-clop

Wind: Wind; Howl

Rain: Rain; Raindrop; Rain on surface

Predictions for each event category were taken to be the maxi-

mum prediction confidence over all of the labels grouped into that

category. Note that no label was included in more than one category.

Results for this approach are shown in the “Manual” column of

Table 1. It was able to achieve AUC scores of 0.70 for Songbird, 0.66

for Insect and Wind, 0.65 for Cable noise, and 0.59 for Water bird.

4.3. Exp 2: Traditional classifiers on top of Audio Set labels

Results obtained using manual Audio Set mapping are lower than we

expected, so we investigated the relationship between each Audio Set

label and each event category individually in order to understand the

model’s behaviour. Figure 2 shows the AUC score on the test set for

each category given the predictions of a single Audio Set label. For

readability, only the 38 labels with the highest scores are shown. This

heatmap includes many examples of labels successfully predicting

categories that should not be related, e.g., the Animal label has a

higher AUC in predicting the Rain category than it does for Songbird,

Water bird, or Insect.

In order to address these issues of misalignment between descrip-

tions and predictions, we trained several classic machine learning

algorithms to predict our event categories from the predicted Audio

Set labels. We choose following ML algorithms: nearest neighbors,

linear support vector machine (SVM), radial basis function SVM,

gaussian process, decision tree, random forest, multi-layer percep-

tron, and adaptive boosting. These classifiers used predictions over

all Audio Set labels as input since we found that attempting to limit

the labels hurt performance.

Results for these classifiers are shown in the “Audio Set” column

of Table 1. For each event category, we select the classifier that

performs best on the validation set and report its results on the test

set in the table. Comparing the “Audio Set” column to the “Manual”

column shows consistent improvements. For instance, the AUC score

of Songbird increased by 7 percentage points (pp) from 0.70 to 0.77,

Insect by 13 pp, and Water Bird by 15 pp.

4.4. Exp 3: Traditional classifiers on VGGish embeddings

Because of the general mismatch between the Audio Set labels and

our event categories, we investigated whether these same classical

machine learning models could predict our categories from the VG-

Gish embeddings directly, without the intervening Audio Set labels.

Thus, we trained classic machine learning algorithms on the raw

and normalized VGGish embeddings. Since VGGish generates a

128-dimensional embedding vector for each second of audio, we

experimented with two methods of combining ten of these vectors

to make a prediction for a 10-second clip: averaging the embedding

vectors and making predictions from the average, as well as concate-

nating the embedding vectors. We found that averaging worked better

than concatenating and that the raw VGGish embeddings worked

better than the scaled embeddings on the development set, so we use

those.

Results from this approach are shown in the “VGGish10” column

of Table 1 and show consistent improvement over the predictions

based on the Audio Set labels. Comparing to the “Audio Set” column

shows improvements of 8 pp for Insect and Aircraft, 7 pp for Cable

noise and Running water, 6 pp for Songbirds, 5 pp for Wind, 4 pp for

Rain, and 2 pp for Water birds.

We also experimented with weakly supervised classifiers of 1-

second recordings. To do this, we divided each 10-second sample

into 10 1-second samples, while assigning the labels of the original

sample to all 10 samples. Then, we trained the classical ML models

on those embeddings, and at inference time used the maximum over

the 10 individual predictions for each category as the prediction for

the 10-second clip. Results from this approach are shown in the

“VGGish1” column of Table 1 and show that it performs similarly

to “VGGish10”. Notably, it achieves better results on the Songbird

class using the Multi-layer Perceptron (MLP) classifier, bringing it

to parity with the Bulbul model, which is specifically designed to

recognize all birds. Table 1 shows that Bulbul does not identify Water

birds well, achieving an AUC of 0.65 compared to our VGGish1

model’s 0.77. Bulbul achieves a higher AUC on Wind, Cable Noise,
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