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ABSTRACT

Sound provides a valuable tool for long-term monitoring of sensi-
tive animal habitats at a spatial scale larger than camera traps or field
observations, while also providing more details than satellite imagery.
Currently, the ability to collect such recordings outstrips the ability to
analyze them manually, necessitating the development of automatic
analysis methods. While several datasets and models of large corpora
of video soundtracks have recently been released, it is not clear to
what extent these models will generalize to environmental recordings
and the scientific questions of interest in analyzing them. This paper
investigates this generalization in several ways and finds that models
themselves display limited performance, however, their intermediate
representations can be used to train successful models on small sets
of labeled data.

Index Terms— Ecoacoustics, soundscape analysis, transfer
learning

1. INTRODUCTION

Arctic-boreal forests in Alaska and Northern Canada are vast, remote,
and relatively undisturbed, but they have been warming at a rate two
to three times the global average [1]. At the same time, human devel-
opment for resource extraction continues to encroach and intensify
in these same areas. The inaccessibility of these regions presents
challenges for the study of their ecosystems over their full spatial
and temporal extents. Traditional in sifu studies provide infrequent
measurements at small spatial scales. Remote sensing using, e.g.,
satellite imaging, cannot capture information about wildlife behavior
or phenology (the timing of life-cycle events). Autonomous audio
recording networks, however, avoid both of these problems and are
able to provide long-term observations over a large spatial extent.

These recordings can be used in the new field of soundscape
ecology [2], which has used similar recordings in other ecosystems
for biodiversity assessment [3], detecting threatened and invasive
species [4], measuring levels of habitat destruction, fragmentation,
and chemical pollution [5], and determining the abundance of bird
species [6]. It explores the collection of biological, geophysical and
anthropogenic sounds and the methods of processing their temporal,
spatial and spectral characteristics to understand their association
with ecological processes.

Most soundscape ecology studies, however, are still carried out
using manual annotations collected from expert listeners reviewing
these recordings at close to real-time speeds [7], limiting their ability
to scale. For this reason, researchers are looking for ways to take
advantage of machine learning algorithms for automating natural

sound processing [8]. While it is still time-consuming and expensive
to manually label training data for these methods, transfer learning [9]
can reduce the amount of labeled data needed. Transfer learning
involves the use of a model pre-trained on a large mismatched dataset
to generate input features for another machine learning system trained
on the target dataset. One popular pre-trained model for audio is
VGGish [10].

This paper investigates whether the VGGish model and the re-
lated Audio Set dataset [11], both based on soundtracks of YouTube
videos, can be effectively applied to the analysis of ecoacoustic sound-
scape recordings collected in the summer of 2016 from 20 sites along
the Colville River and its delta in the North Slope of Alaska [12].
This area provides transportation to the oil and gas extraction activi-
ties in the Prudhoe Bay Oil Field. The village of Nuigsut is situated
on the Colville and is home to a Native Alaskan community that
harvests caribou for their subsistence. Some harvesters have reported
changes in caribou distribution and yields because of aircraft traffic
in the area [13]. Thus, we analyze the presence of aircraft and other
human-generated sounds in these recordings.

We also analyze the presence of bird sounds in these recordings.
Every year millions of long-distance migratory birds travel from their
overwintering grounds throughout North America to the North Slope
of Alaska. There is emerging evidence that Arctic-breeding birds
may be vulnerable to the fact that the timing of spring snow and ice
cover melt is becoming increasingly heterogeneous in both time and
space [14, 15]. Thus, the automatic identification of both songbirds
and waterfowl in these recordings is of interest as well in identifying
the timing of their spring and autumn migrations. Preliminary stud-
ies [16] have shown success in this endeavor using supervised and
unsupervised approaches to classifying audio texture features [17].
The current study extends this to use deep learning models in the
context of transfer learning.

Thus, in this study, we measure the ability of several different
acoustic classifiers to recognize in these recordings sounds of eight
different classes, including birdsong, waterfowl sounds, and aircraft
noise. These acoustic classifiers include the bulbul model [18], an
attention-based Audio Set classifier [19] with a manual mapping of
tags to our classes, the same classifier with a learned mapping of tags,
and a collection of standard supervised machine learning algorithms
predicting our classes directly from the VGGish embeddings. A
summary of these three systems is shown in Figure 1.

2. RELATION TO PRIOR WORK

The development of machine learning tools for applications in eco-
logical studies using sound recordings is an interdisciplinary field
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Fig. 1. System diagram of our three experiments

of research. Along with soundscape ecology, another term coined
to bring such studies under one umbrella is ecoacoustics [20]. Ecoa-
coustics studies have also contributed to the automated calculation
of indices such as the Acoustic Diversity Index and Bioacoustic
Index [21]. Such studies have enabled the monitoring of animal bio-
diversity in tropical forests [22]. Classification of animal species is
another common machine learning application using ecological sound
data, including identifying species of birds [23, 24] and frogs [25],
and detecting koalas [26]. Measuring the negative human impact on
ecosystems in the context of global warming with ecological sound
data is an active research area as well [27].

3. TECHNICAL DESCRIPTION OF SYSTEM

We use a pre-trained VGGish model [10] to generate audio embed-
ding vectors from log mel spectrograms of 1-second sound excerpts.
VGGish’s architecture is similar to the vision system VGGNet [28];
VGGNet is a deep convolutional network originally developed for
object recognition. VGGish’s only difference is that it has 3087 sig-
moid units in its output layer. While the original VGGNet has 144M
weights and 20B multiplies, the audio variant uses 62M weights and
2.4B multiplies. VGGish is trained on the Youtube-100M dataset [29].
We use the model to predict 128-dimensional embedding vectors from
non-overlapping 960 ms segments of audio. Each segment is pro-
cessed with a short-time Fourier transformation with 25 ms windows
calculated every 10 ms. The generated spectrograms are converted to
64 mel-spaced frequency bins and the magnitude of each bin is log
transformed. At the end of this pre-processing, the log-mel spectro-
gram patches are of size 96 x 64.

As part of the same project, Google released a large labeled
dataset of YouTube video soundtracks called Audio Set which is a
collection of hierarchically organized sound events [11]. Audio Set
covers many everyday sounds from human and animal activities to
natural and environmental sounds [11]. This dataset is composed
of human-labeled 10-second audio clips extracted from YouTube
videos. The total size of the Audio Set dataset is over 1 million
excerpts (~ 112 days), but it is still only 0.05% of the Youtube-100M
dataset. Hershey et al. [10] find that predicting Audio Set labels from
VGGish embeddings is more accurate than predicting them directly
from spectrograms. Kong et al. [19] apply attention-based neural
networks to VGGish embedding vectors for Audio Set classification
and further improve performance. During our experiments, this was
the best result in the literature, so we used this model to make Audio
Set Ontology-based classifications on our data set.

Detection of bird sound events is of prime importance to our
research. We assess the detection performance of the VGGish system
by comparing its prediction patterns with those of the state-of-the-art
bulbul system [18]. The bulbul system achieved the highest score
in the 2017 Bird Audio Detection challenge [30]. In this paper, we
use a modified version of bulbul, which was employed as the com-

petitive baseline for the most recent Bird Audio Detection challenge
in DCASE 2018. Bulbul generates predictions of the presence or
absence of bird sound of any kind.

4. EXPERIMENTS

4.1. Data

Our experiments use ecological sounds collected by Taylor Stinch-
comb [12] along the Colville River in Alaska. This dataset is com-
posed of recordings made continuously in 20 different locations over
a period of 3 months (June, July, and August of 2016) with total
duration 837 days. Stinchcomb [12] used these recordings to manu-
ally investigate where and to what extent aircraft disturbance poses a
threat to caribou harvest practices in Nuigsut.

To assess the performance of the Audio Set classifiers on these
recordings, three of the authors applied eight event categories to
1300 10-second clips sampled uniformly at random from them. We
found the 10-second audio duration, which is used by the attention-
based Audio Set predictor [19], to also be suitable for our annotation
purposes. The eight categories are: wind, running water, rain, cable
noise, songbird, waterbird, insect, and aircraft. The total number of
positive instances of each label is shown in Table 1. We preferred high-
level categories rather than specific species of animals to decrease the
cost of manual labeling. Cable noise was caused by cables from the
recorders banging against other pieces of equipment when blown by
the wind.

Annotations were made using a simple GUI interface imple-
mented in a Jupyter notebook showing the eight description cate-
gories. The annotators were allowed to listen to a clip as many times
as needed and were asked to select all detected events. Our choice of
tags was established by listening to random clips and enumerating all
of the sounds present. We also provided a write-in option for annota-
tors to report any additional sounds beyond these categories. None of
the write-in descriptions appeared with any regularity, suggesting that
the eight categories are sufficient for describing the sounds present in
these recordings.

These clips were split into train, validation, and test sets in pro-
portions of 60%, 20%, and 20%. Classifier performance is evaluated
using area under the receiver operating characteristic (AUC) within
each class.

4.2. Exp 1: Manual Audio Set mapping

In order to produce predictions of our eight categories from the Audio
Set model of [19], we first experimented with a manual mapping,
combining multiple Audio Set labels into each event category. The
following list shows mappings between the event categories and their
corresponding Audio Set labels (separated by semicolons):



Tag NPos Bulbul  Manual Audio Set VGGish10  VGGishl
Wind 641 0.70 0.66 0.85(gp)  0.90 (gp) 0.91 (nn)
Cable noise 456 0.70 0.65 0.80 (rbf)  0.87 (gp) 0.86 (gp)
Songbird 409 0.86 0.70 0.77 (gp)  0.83 (nn) 0.86 (nn)
Running water 210 0.70 0.57 0.85 (gp) 0.92 (nn) 0.89 (nn)
Water bird 196 0.65 0.59 0.74 (gp)  0.76 (nn) 0.77 (rbf)
Insect 190 0.58 0.66 0.79 (nn)  0.87 (Isvm)  0.82 (Isvm)
Rain 102 0.56 0.44 0.81 (rbf)  0.85 (gp) 0.82 (gp)
Aircraft 28 0.66 0.52 0.78 (nn)  0.86 (ab) 0.52 (gp)

Table 1. Labels applied to 1300 10-second clips, the total number positive examples annotated (NPos), and area under the ROC curve (AUC)
results on our test set for bulbul, manual grouping of Audio Set tags (Manual), and classic machine learning models taking as input either
Audio Set label predictions (Audio Set), averaged raw VGGish embeddings (VGGish10), or single VGGish embeddings (VGGish1). The best
classifier was selected for each task on the validation set and is reported next to the result on the test set: Isvm: Linear Support Vector Machine
(SVM), tdf: Radial Basis Function SVM, nn: Neural Network, ab: AdaBoost, gp: Gaussian process

Songbird: Bird; Owl; Bird vocalization, bird call, bird song; Pigeon,
dove; Coo; Chirp, tweet; Squawk; Bird flight, flapping wings;
Gull, seagull; Chirp tone; Hoot

Water Bird: Duck; Goose; Quack; Frog; Croak; Caw

Insect: Fly, housefly; Insect; Bee, wasp, etc.; Buzz; Mosquito;
Cricket; Rustle

Aircraft: Engine; Fixed-wing aircraft, airplane; Aircraft engine,
Propeller, airscrew; Aircraft; Helicopter

Running Water: Waterfall; Waves, surf

Cable: Bang; Slap, smack; Whack, thwack; Smash, crash; Breaking;
Knock; Tap; Thump, thud; Whip; Flap; Clip-clop

Wind: Wind; Howl
Rain: Rain; Raindrop; Rain on surface

Predictions for each event category were taken to be the maxi-
mum prediction confidence over all of the labels grouped into that
category. Note that no label was included in more than one category.

Results for this approach are shown in the “Manual” column of
Table 1. It was able to achieve AUC scores of 0.70 for Songbird, 0.66
for Insect and Wind, 0.65 for Cable noise, and 0.59 for Water bird.

4.3. Exp 2: Traditional classifiers on top of Audio Set labels

Results obtained using manual Audio Set mapping are lower than we
expected, so we investigated the relationship between each Audio Set
label and each event category individually in order to understand the
model’s behaviour. Figure 2 shows the AUC score on the test set for
each category given the predictions of a single Audio Set label. For
readability, only the 38 labels with the highest scores are shown. This
heatmap includes many examples of labels successfully predicting
categories that should not be related, e.g., the Animal label has a
higher AUC in predicting the Rain category than it does for Songbird,
Water bird, or Insect.

In order to address these issues of misalignment between descrip-
tions and predictions, we trained several classic machine learning
algorithms to predict our event categories from the predicted Audio
Set labels. We choose following ML algorithms: nearest neighbors,
linear support vector machine (SVM), radial basis function SVM,
gaussian process, decision tree, random forest, multi-layer percep-
tron, and adaptive boosting. These classifiers used predictions over
all Audio Set labels as input since we found that attempting to limit
the labels hurt performance.

Results for these classifiers are shown in the “Audio Set” column
of Table 1. For each event category, we select the classifier that
performs best on the validation set and report its results on the test
set in the table. Comparing the “Audio Set” column to the “Manual”
column shows consistent improvements. For instance, the AUC score
of Songbird increased by 7 percentage points (pp) from 0.70 to 0.77,
Insect by 13 pp, and Water Bird by 15 pp.

4.4. Exp 3: Traditional classifiers on VGGish embeddings

Because of the general mismatch between the Audio Set labels and
our event categories, we investigated whether these same classical
machine learning models could predict our categories from the VG-
Gish embeddings directly, without the intervening Audio Set labels.
Thus, we trained classic machine learning algorithms on the raw
and normalized VGGish embeddings. Since VGGish generates a
128-dimensional embedding vector for each second of audio, we
experimented with two methods of combining ten of these vectors
to make a prediction for a 10-second clip: averaging the embedding
vectors and making predictions from the average, as well as concate-
nating the embedding vectors. We found that averaging worked better
than concatenating and that the raw VGGish embeddings worked
better than the scaled embeddings on the development set, so we use
those.

Results from this approach are shown in the “VGGish10” column
of Table 1 and show consistent improvement over the predictions
based on the Audio Set labels. Comparing to the “Audio Set” column
shows improvements of 8 pp for Insect and Aircraft, 7 pp for Cable
noise and Running water, 6 pp for Songbirds, 5 pp for Wind, 4 pp for
Rain, and 2 pp for Water birds.

We also experimented with weakly supervised classifiers of 1-
second recordings. To do this, we divided each 10-second sample
into 10 1-second samples, while assigning the labels of the original
sample to all 10 samples. Then, we trained the classical ML models
on those embeddings, and at inference time used the maximum over
the 10 individual predictions for each category as the prediction for
the 10-second clip. Results from this approach are shown in the
“VGGish1” column of Table 1 and show that it performs similarly
to “VGGish10”. Notably, it achieves better results on the Songbird
class using the Multi-layer Perceptron (MLP) classifier, bringing it
to parity with the Bulbul model, which is specifically designed to
recognize all birds. Table 1 shows that Bulbul does not identify Water
birds well, achieving an AUC of 0.65 compared to our VGGishl
model’s 0.77. Bulbul achieves a higher AUC on Wind, Cable Noise,
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and Running water than Water birds. Note that Bulbul only makes
a single prediction, and here we are evaluating this same prediction
against each of our event categories.

This deficiency of Bulbul on Water bird prediction likely
comes from the data that it was trained on, namely the datasets
“freefield1010” (7,690 excerpts from field recordings around the
world), “warblrb10k” (8,000 smartphone audio recordings from
around the UK), and “BirdVox-DCASE-20k” (20,000 audio clips of
flight calls collected from remote monitoring units near Ithaca, NY).

With this last experiment, we found a model that is performing
well enough that we can use it with a certain confidence. We used it
to predict Songbird events over the three months from the sites for
which we have the longest duration of recordings. We visualized these
predictions in Figure 3, which shows them at a 2-hour resolution.

Figure 3 shows a good amount of agreement between the pre-
dictions at different sites, suggests that the approach is relatively
self-consistent. The one site that is less similar is “USGS”, which is
on the coast as opposed to the other sites, which are inland. Overall
songbird detection drops substantially around July 16 at all of the
inland sites, but continues through mid-August at the coastal site.

5. CONCLUSIONS AND FUTURE WORK

This paper examined the use of transfer learning to identify eight
acoustic event categories of interest in recordings from an acoustic
sensor network in Norther Alaska in the summer of 2016. We found
that it was possible to identify all but one of the eight categories
with AUC above 80% using classical machine learning models taking
VGGish embeddings as input. This approach performed as well as
Bulbul at detecting songbirds, which Bulbul was designed to detect,
but was able to predict the other categories much more accurately.

This approach also out-performed models based on manual or auto-
matic grouping of Audio Set predictions from the attention-based
model of Kong et al. [19]. The one category that was not recog-
nized at above 80% AUC was Water birds. This might be because
we grouped waterfowl together with shorebirds, making recognition
more difficult for our systems.

These results show promise for analyzing soundscape recordings
that we are currently collecting from a larger area of Northern Alaska
at a larger number of sites. Future work will break these categories
down into a finer granularity, potentially to the species level [31, 32,
33]. We plan to focus on utilizing these recordings and their analyses
to identify important events in the phenology of the bird communities
in these recording areas as well as measuring the characteristics of
human-generated noise that might affect the phenology of caribou
herds.
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