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Abstract—— DC networks are becoming more popular in a
wide range of applications. However, the difficulty in detect-
ing and localizing a high impedance series arc fault presents,
a major challenge slowing the wider deployment of dc net-
works/microgrids. In this paper, a Kalman Filter (KF) based al-
gorithm to monitor the operation of a dc microgrid by estimating
the line admittances and consequently detecting/localizing series
arc faults is introduced. The proposed algorithm uses voltage and
current samples from the nodes in the distribution network to
estimate the line admittances. By determining these values, it is
possible to quickly isolate the faulted section and reconfigure the
network after a fault occurs. Since, the disturbance caused by a
high impedance series arc fault spreads across almost the entire
microgrid, the KF algorithm is structured to detect the faulted
line in the grid with precision. Simulation and Control Hardware
in the Loop (CHIL) results are presented demonstrating the
feasibility of implementation.

Index Terms—Kalman filter, dc microgrid, series arc fault,
parameter estimation, fault detection, fault localization.

I. INTRODUCTION

S the adoption of dc microgrids [1]-[3] continue to
increase in Electric Vehicles (EVs) [4], [5], More Elec-

tric Aircraft (MEA) [6], electric ships [7]-[9], and charging
stations [10], [11], it is extremely important to analyze and
detect any dangers or faults that occur while operating these
networks. One type of fault which is difficult to detect and
localize in dc systems is the series arc fault [12]. The fault
occurs when a dc voltage difference exists across an air gap
in series with the circuit. It is typically caused by loose
connections, line degradation, etc. and can be mistaken for
load change due to its low fault current. The lack of zero
voltage crossings in a dc system further prevents this type of
fault from naturally extinguishing (as opposed to ac networks).
In recent years, it has been shown that the series arc’s
disturbance/noise can travel to adjacent lines and trigger
detectors in multiple sections of a network [13]-[15]. In order
to mitigate this problem and accurately detect the faulted line,
[16] and [17] propose parameter estimation techniques for a
single line based on continuous time (gradient method) and in
discrete time (Recursive Least Squares (RLS), Kalman Filter
(KF)) methods respectively. However, in both these papers
fault detection was obtained by estimating the line resistances
and inductances locally, i.e. over each line independently. With
regards to series arc fault detection, [18] uses a band pass filter
to decrease the low frequency grid voltage fluctuation caused
by the load variations and high frequency system noises.
By measuring voltage drop on the load side, a decision is

taken to disconnect the load from the circuit. Nevertheless,
since the series arc noise can travel to adjacent lines in a
microgrid, multiple detectors can trip using this technique
[19]. A KF based approach is used to detect a fault on a
PV circuit in [20]. Here the signal is studied on the basis of
its component frequencies and Signal to Noise Ratio (SNR)
to detect the fault. However, localization (locating the line
affected by series arc fault) is not addressed. Fault detection
by using an algorithm based on machine learning is shown in
[21]. The algorithm is considerably complex as it is layer based
and needs to be trained by test data to detect the series arc
signatures before being deployed in real time. Although it has
high detection accuracy, localization of series fault on a large
network is not explored. Moreover, on a dynamic topology
with variable current flow directions based on power demands,
the machine learning algorithm would require more training.
Therefore, it can be seen that most detection techniques use
local measurements (current and/or voltage) within a single
line to detect a series arc fault. However, multiple detectors
could be triggered since the fault noise can spread through
the system. Thus, it is important to consider a centralized
methodology which analyzes the entire network. Additionally,
a centralized approach takes advantage of the different sensors
available in a microgrid, leading to a better and more accurate
estimation of the parameters (line admittances) being used to
detect and localize a series arc fault.

In ac power systems, line admittance and topology esti-
mation has been studied in recent years. In [22], estimation
of the topology with admittance parameters in a poly-phase
distribution network using the voltage and current from all
nodes, is presented based on the Least Absolute Shrinkage and
Selection Operator (LASSO) method. Furthermore, a convex
optimization relaxation for LASSO was introduced which is
capable to detect and localize critical events. The paper [23]
tests the Newton Method (NM) and the Approximate Newton
Method (ANM) to estimate the line admittances of an ac
network by using nodal voltage and injected current mea-
surements while including measurement noise. In [24] least
squares method is implemented to estimate line admittances
in a three node power grid. Group LASSO algorithm is used
to estimate a mesh or a radial topology for medium and low
voltage distribution grids by using smart meter measurements
[25]. Sparse data of current and voltage measurements to
estimate a distribution grid’s topology has always been a
concern. To address this issue [26] suggests, an optimal
placement of meters can help lower the number of sensors
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deployed and maintain full observability of the distribution
grid. In [27], a physical-probabilistic-network (PPN) model
for inferring overall operation mode of distribution networks
is presented. On the basis of input and output noise correlation
and nonlinear power flow equations, a model that considers
the measurement errors in its variables is formulated as a
Maximum Likelihood Estimation (MLE) problem for joint
topology and line parameter estimation in [28]. Admittance
based detection has been proposed in dc systems for short
circuit (parallel) faults [29]. In this case, a drop in resistance
(increase in admittance) is used to detect and isolate a short
circuit fault on a Medium Voltage Direct Current (MVDC)
system within 20 ms.

Application of Kalman Filter on dynamic systems can be
notably seen in aerospace, transportation, navigation, stock
market predictions and others. The KF has been further
improved into Extended Kalman Filter (EKF) and Unscented
Kalman Filter (UKF) in order to incorporate estimations of
unobservable variables in nonlinear systems. In [30], [31], an
application of EKF coupled with robust control to estimate the
dynamic state variables of a power system is presented. A new
variant of UKF is implemented and compared to the existing
versions of UKF and the EKF in power system dynamic state
estimation [32]. A robust generalized maximum likelihood
based KF is implemented to estimate the rotor angle and speed
of synchronous generators in [33]. The paper [34] applies
the Ensemble Kalman Filter to detect and localize a fault
on transmission lines. The paper [35] presents a self-tuning
control technique which adaptively estimates the discrete time
transfer function of a dc-dc buck converter by using the KF
and a M-Max partial adaptive filtering technique to compute
the controller gains online.

Motivated by the recent developments in ac network topol-
ogy estimation, this paper presents a KF based algorithm to es-
timate the admittance matrix (hence line admittances) for a dc
microgrid. The admittance matrix is introduced as a dynamic
system to KF. The main contributions of our work include,
formulation and application of KF and Adaptive Kalman Filter
(AKF) algorithms for series arc fault detection and localization
through line admittance estimation, which are not susceptible
to normal transient operations on a dc microgrid. The proposed
method is operated at each iteration/sample which can help in
faster series arc fault detection and can be easily implemented
on any dc based microgrid such as EVs, MEA, electric ships,
charging stations, space vehicles etc. where, the detection and
localization of series arc fault needs to be achieved as fast
as possible. It is shown that the AKF is a suitable choice
for series arc fault detection and localization with very good
performance.

This paper is structured as follows. In Section II, a descrip-
tion of dc microgrid is presented. In Section III, the KF and
AKEF algorithms are described in detail and a description of
the cases considered to evaluate these algorithms along with
their respective simulation results are shown in Section IV.
Furthermore, Section V presents Control Hardware In Loop
(CHIL) results using the Opal RT to run KF/AKF and the
Plecs RT Box to simulate the network. Finally, a conclusion
and future work are stated in Section VI

The following notations are used in this paper. For a
matrix A € IR™*", its vectorization is denoted as vec(A) =
(Alh T A’ml; A127 T Am27 e 7A1na e aAm’n)T
The symbol ® denotes the Kronecker product of two matrices.
An N-dimensional Identity matrix is represented by, Zy.

II. SYSTEM DESCRIPTION

In this section, a typical dc microgrid is described on the
basis of its voltage and current measurements to estimate its
line admittances.

A. Microgrid Description

A typical dc microgrid is composed of loads, generators and
distribution lines. The dc generators can be based on renewable
energy sources (e.g. wind, solar, etc.), energy storage, and/or
fuel based engines (main energy source in aircrafts or electric
ships). Both generators and loads are connected to the network
through dc/dc converters. When the load is actively regulated,
it is typically classified as nonlinear Constant Power Load
(CPL) [36]. The energy sources commonly share power using
droop control [37], although decentralized and distributed
techniques have been proposed recently [38]. Moreover, volt-
age and current sensors are assumed to be installed at each
node in the network.

In steady state, a dc microgrid can be described by the
following nodal equations:

I(k) =Y (k) V (k) (D

where, I(k) € RY and V (k) € RY are the vectors of injected
current and voltage measurements respectively, obtained from
all the nodes at every k" sample, i.e.

I(k)" = (k) Is(k)
V(R = (Vi(k) Va(k)
and Y € RV*N is the admittance matrix.
In order to use parameter identification techniques to esti-

mate the admittance matrix, it is necessary to place the system
(1) in linear regression form as follows:

y(k) = H(k) z(k) + v(k). 3)

In(K))

N

Where, y(k) is the output (related to the sensors in a network),
x(k) contains the parameters to be estimated (e.g. admittance
matrix elements), H (k) is the basis matrix, and v(k) is the
measurement noise. This implies the need to vectorize the
admittance matrix Y, to be contained in the unknown vector
of states (k). Using (1), we can obtain the following:

vec (I(k)) = vec (Y (k)V (k)). 4)
Which can be simplified as [22]:
I(k) = (V(k)" @ In) vec (Y (k). (5)
~—
y(k) LHy (k) zy (k)

However, as the admittance matrix Y is symmetric and the
elements along the diagonal are sign opposite to the sum of the
elements along the respective row or column (assuming there
are no line to ground resistances), the dimension of vector
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x(k) can be reduced to contain only the elements in the lower
triangular matrix without considering the diagonal elements.
This allows the number of parameters being estimated for an
(N x N) dimensional admittance matrix Y to be MJF,
which is a significant reduction. Therefore, for an admittance

matrix of the form:

Yii(k) Yio (k) Y1 n (k)
Yk = 3”2,1:(/<?) Y2,2:(k) Yz,l\:/(k) ©
Yni(k) Yna(k) Yy (k)

The state vector for an unknown network topology becomes:

ﬂﬂaop = (Y21 Y3a Yso Yio Yyn-1) (7)

and equation (1) can be further simplified as:

y(k) = [(V(K)" ® In) Qy] Zuop(k). (8)

The matrix Qy is defined such that vec (Y (k)) = Qy Zuwop (k).
The algorithm for obtaining the (Qy matrix for any N bus
network is shown in Table III in the appendix.

Lastly, as the topology for dc microgrids is generally
defined, the number of unknowns in (7) can be further reduced
by eliminating those elements for which a line does not exists.
Therefore, the system for parameter estimation is defined as:

y(k) = [(V(k)" @ In) Qy M] . ©)
H(k)

Where H(k) £ [(V(k)T ®@ZIn)QyM]|, M satisfies
vec (Y) = Qy Mz, and x contains only the line admittance
elements that are present in the network.

The detection and localization of series arc fault (high
impedance change in line) can then be performed by the
estimation of the line admittance values in x. The values of
the line admittances will be estimated at every sample “k”.

B. Series Arc Fault

The main type of fault considered in this paper is the series
arc due to its difficulty in detection and localization. Series
arc fault is defined as an unintended power discharge between
two conductors in series with the circuit, shown in Fig. 1. As
the air in the gap becomes ionized by the high relative charge
on either side of the conductors, it allows for the current to
flow by generating heat and can eventually cause fires. This
gap can be caused by loose or chafed wire connections [12].

Series Arc
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e

Fig. 1. Example of series arc fault on a line.
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TABLE I. Kalman Filter Algorithm [39].

Model: a(k+1) = Ta(k) + w(k), w(k) ~ N0, Q(k))

y(k) = H(k)z(k) + v(k) v(k) ~N(0, R(k))
Initialize: P(0)=E [(az(o) — 2)(2(0) — x)T]

#(0) = E [x]

Gain: K(k) = P=(k)HT (k) [H(k)P~ (k)HT (k) + R] "
Update: PH(k) = P~ (k) — K(k)H(k)P~ (k)

&t (k) =27 (k) + K(k) [y(k) — H(k)&~ (k)]
Propagation: P~ (k+1)=IPH(K)IT +Q

&= (k+1) = Tat (k)

The detection of series arc is difficult since the fault current
is relatively low, compared to parallel faults. Moreover, the
noise caused by the arc can travel to adjacent lines and trigger
detectors in multiple sections of a network [15]. From Fig. 1,
it can be seen that during a series arc fault, a resistance is
added in series with the line/circuit.

III. KALMAN FILTER BASED ADMITTANCE ESTIMATION

In this section, the derivation of the KF is described in
accordance with the system in (9) to estimate the admittances
in dc microgrid with known topology.

A. Kalman Filter Algorithm

We first formulate the state vector x(k) as a discrete linear
system of the form,

x(k) = F(k—1Dxz(k — 1)+
Gk —Du(k —1) +w(k —1).

Where, w(k) is the process noise and u(k) contains the inputs.
However, for parameter estimation, (10) is simplified to:

z(k) =Zz(k—1)+w(k —1)

(10)

(1)

Therefore, F' = 7 is an identity matrix of appropriate dimen-
sion and the input vector u(k) is zero. Defining & (k) as the
estimates of z(k), we can define the following:

P(k) 2 E [(a(k) - 2)(@(k) — )" ] (12)
R(k)2E [U(k)v(kﬂ (13)
Q)2 E [w(k)w(kﬂ . (14)

Where, P(k), R(k), and Q(k) denote the error, measurement
noise, and the process noise covariance matrices respectively.
The mean of the process and measurement noise is assumed
to be zero.

The matrix P is P(0) =
E [(i(O) —z)(2(0) — x)T} which updates over every
iteration. The measurement and process noise covariance,
R and @, are typically fixed. In this paper, R = n Z and
QQ = pZ, where n and p are constants.

initialized as
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The KF minimizes the sum of the squares of the a posteriori
errors at time k, i.e. Tr (P(k)™"), to derive the gain matrix:

K(k) = P~ (k)H" (k)[ H(k)P~()HT (k) + R] . (15)

Where, P(k)~ denotes the a priori error covariance estimate,
computed as follows:

P (k)=F(k-1)PT(k-1)FT(k-1)+Q.

= P (k)=ZP"(k—-1IT +Q. (16)
Similarly, the a priori state estimate is given by:
27 (k)=F(k-12% (k- 1)+ Gk — Du(k — 1)
= & (k)=Z2" (k- 1) 17)
Finally, at time k, the optimal estimate is:
#t (k) =2 (k) + K(k) [y(k) — H(k)a~ (k)] (18)
P (k) = P~ (k) — K(k)H (k)P (k) (19)

The steps involved in the implementation of the KF are
summarized in Table I.

B. Adaptive Kalman Filter

As described in the previous subsection, the process noise
covariance, Q(k), is typically assumed to be constant. How-
ever, since the actual process covariance is difficult to know
a priori, it is possible to estimate it iteratively [40]-[42]. The
Adaptive Kalman Filter (AKF) evaluates this matrix at every
kth sample. Considering z; to be the i*” element of x, this
can be accomplished as follows:

w; £ &i(k)" —&i(k)”
QUk) = X diag [[uwr]?: [wa]? s ] -

Where, A is a positive gain. The equation (21) is added prior
to the propagation phase of the Kalman Filter which changes
the error covariance matrix at propagation phase to:

(20)
21

P (k)=F(k-1)P (k—1)FT(k-1)+Q(k —1).

It will be shown in the case study section that estimating the
process covariance, Q(k), has better performance than if it is
considered to be constant in the regular KF.

TABLE II. DC microgrid parameters

Line Length Inductance Resistance Admittance
(miles) (H) (9] ©)
(1,3) 0.1 1.6e-4 0.12 8.33
24) 0.1 1.6e-4 0.12 8.33
(3,6) 0.125 2e-4 0.15 6.67
4.7 0.125 2e-4 0.15 6.67
(5,6) 0.15 2.4e-4 0.18 5.55
6,7) 0.05 8e-5 0.06 16.67

Arc initiated:

e Case2: At 0.466 s

e Case 3: At0.732s
v

Arc initiated:
e Case2: At02s
e Case3: At02s

LOAD

LOAD

Yo7

2 You 4 Y 7
DG O 8.

LOAD

@

(a) The 7 node dc microgrid used in the case studies.
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(b) Schematic of voltage regulator and droop control for
each distributed source.

Fig. 2. DC microgrid considered in the case studies and closed loop
feedback control structure for one source.

IV. CASE STUDY AND OFFLINE SIMULATION RESULTS

In this section, we illustrate the ability of the proposed
algorithms in estimation of line admittances, fault detec-
tion/localization, and robustness to nominal operation condi-
tions. The dc microgrid shown in Fig. 2a was simulated using
Matlab Simpower Systems. The simulation time step is 10 us
while, the total simulation time is 1 s. The sensors at every
node were sampled at a rate of 100 us. Each generator and
load is connected to the network through a buck converter.
The inductance and capacitance of each converter are 1 mH
and 1 mF respectively. The nominal dc voltage of the network
is assumed to be 390 V. The input voltage of the generator
converters is 600 V. The generators share power through the
traditional droop control [37]. An example of the controller
for one source is shown in Fig. 2b. The network includes five
sources at nodes 1, 2, 4, 5 and 7 and three loads at nodes 3, 4
and 6. The initial value of the load currents at nodes 3, 4, and
6 are 175 A, 150 A, and 125 A respectively, with an output
load side voltage of 220 V. The total load power is 100 KW

The resistance and inductance values for each line are shown
in Tab. II. After a series arc fault occurs, the lines Y3 and
Y5 ¢, increase their line resistances from 0.15 €2 to 1.65 €2 and
from 0.18 € to 1.98 2 respectively, to imitate the behavior
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Fig. 3. Simulation results for Case 1. Change in Load 4’s current occurs at ¢ = 0.175 s, change in Load 3’s current occurs at ¢t = 0.4 s,
Load 6 is turned off at ¢ = 0.625 s and Generator 1 is turned off at ¢t = 0.85 s.
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Fig. 4. Simulation results for Case 2. The first series arc occurs at t = 0.2 s on line (3,6) followed by a second high impedance fault occurs
at t = 0.466 s on line (5,6) and then, line (5,6) is disconnected at ¢ = 0.732 s.
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Fig. 5. Simulation results for Case 3. First series arc occurs at ¢ = 0.2 s on line (3, 6) followed by a current change by Load 4 at ¢ = 0.466
s and a second series arc fault occurs at ¢ = 0.732 s on line (5,6).

of the series fault in line. The KF/AKF algorithms are then by another series arc fault on line (5,6) at ¢ = 0.466 s and

tested over the following three cases: disconnection of line (5,6) at t = 0.732 s.

o Case 3 : Series arc fault on line (3,6) at t = 0.2 s, change
in Load 4 at t = 0.466 s, followed by another series arc
fault on line (5,6) at t = 0.732 s.

o Case 1 (Nominal Operation): Change in Load 4 at ¢ =
0.175 s, change in Load 3 at ¢t = 0.4 s, Load 6 is switched
off at £ = 0.625 s and Generator 1 is turned off at ¢ =
0.85 s.

o Case 2 : Series arc fault on line (3,6) at ¢t = 0.2 s followed
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A. Case 1

In this case, KF and AKF are used to estimate the line
admittances in the presence of load and generator changes.
The nodal voltages and injection currents at each bus are
shown in Fig. 3a. The estimation of line admittances using
KF is shown in Fig. 3b. Fig. 3¢ shows the estimation of line
admittances by AKF. Since there was no fault during this case,
the line admittances should not be affected by the source/load
changes. However, using KF, it can be clearly seen that these
events cause small transients in the admittance estimation as
shown in Fig. 3b. The proposed AKF technique shows a better
response as seen in Fig. 3c. Only a small transient is seen in
the admittance estimation of line (4,7) during a change in
load 4.

B. Case 2

In this case, the proposed methods are tested during multiple
line faults and one line disconnection. The overall results are
shown in Fig. 4. The nodal voltages and current injections are
shown in Fig. 4a. The first series arc fault occurs on line (3,6)
at t = 0.2 s and a second series arc occurs on line (5,6) at
t = 0.466 s. The admittance on line (3,6) drops from 6.67 O
to 0.6 U which is shown by the yellow line in Figs. 4b, 4c.
Similarly, the line admittance on line (5,6) drops from 5.55 U
to 0.5 U shown by the green line in Figs. 4b, 4c. Furthermore,
line (5,6) is disconnected at ¢ = 0.732 s which can be seen by
the green line going to zero in Figs. 4b, 4c.

It can be clearly seen that series arc fault occurrence on
the specified lines could cause a very small transient in the
admittance estimation of the other lines while using KF.
Whereas, we observe no such transience in line admittance
estimation while using the AKF. However, it should be noted
that both KF and AKF are capable to detect and localize series
arc faults.

C. Case 3

In this case, two series faults are initiated with one load
change in between them. The simulation results are shown in
Fig. 5. The nodal voltages and current injections in the network
are shown in Fig. 5a. The first series arc fault occurs on line
(3,6) at t = 0.2 s. This is followed by a change in Load 4’s
current from 150 A to 90 A at ¢ = 0.466 s which can be shown
by the purple line in Fig. 5a. A second series arc fault is set
to occur on line (5,6) at £ = 0.732 s. The admittance on line
(3,6) drops from 6.67 U to 0.6 U during the first fault, shown
by the yellow line in Figs. 5b, Sc. Similarly, the admittance
on line (5,6) drops from 5.55 U to 0.5 U on the occurrence of
series arc fault at ¢ = 0.732 s, which is shown by the green line
in Figs. 5b, 5c. Using KEF, it can be seen that the occurrence
of series arc faults affect the line estimation of adjacent lines
as well. However, the proposed AKF method presents better
performance and robustness to nominal load changes.

V. CONTROL HARDWARE IN LOOP RESULTS

In this section, the dc microgrid used in the offline sim-
ulation results and shown in Fig. 2a is implemented in real

' DC Microgrid Real Time Simulation

Ts=10us
Arcinitiated at 0.2 LOAD
Mo
1 3\ g 3
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(a) Control Hardware in the Loop (CHIL) platform. The dc microgrid is
simulated in real time using Plecs and the KF based admittance
estimation is implemented in an Opal RT system.

Plecs RT Box

1 Opal RT’s OP
| 4510

(b) Overview of the CHIL setup.

Fig. 6. CHIL results of series arc in line Y3 and admittance
estimation.

time using Plecs RT Box [43]. The simulation is executed
at a time step of Ts = 10 pus. However, this time step was
achieved by simplifying the loads to Constant Current Loads
(CCLs) operating at 390 V, while the sources are still based on
detailed buck converter models (Fig. 2b). The high impedance
series arc occurs only on line (3,6) at ¢ = 0.2 s followed by a
change in current drawn by Load 4 at ¢ = 0.3 s from an initial
150 A to 90 A.

The KF algorithm (general and adaptive) were implemented
in an Opal RT system [44]. The time step of the algorithms is
T. = 100 us. The nodal voltages and nodal current injections
are transferred from the model simulated by PLECS RT Box
into the OPAL RT for line admittance estimation using the
corresponding analog 1/Os. The line admittances are then
displayed on an oscilloscope connected to the OPAL RT’s
Analog Output (AO) slot. The overall platform is described
and shown in Figs. 6a and 6b.

The results of the admittance estimation are shown in
Figs. 7a and 7b by KF and AKF respectively. In these graphs,
only four admittances are observed: Yoy, Y36, Y56, and Yg7.
As can be seen by the light blue trace (Y3g), there is a large
decrease in admittance, from 6.67 U (3.33 V) to 0.60 U,
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(a) Line admittances (four) during series arc on line (3,6) at ¢t =0.2 s
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Fig. 7. CHIL results by Kalman Filter and Adaptive Kalman Filter.

T
Image

indicating a large increase from 0.15 € to 1.65 ) in the line
resistance. Thus, it can be inferred that a high impedance fault
occurred on this line. It can be seen that the algorithm can
quickly estimate the right value during a fault. Moreover, the
estimation of the other line admittances are not significantly
affected by this change. A magnified picture within the graphs
show the behavior on Y34’s estimation during the fault. A
small transient in the admittance estimation can be seen in
Fig. 7a, whereas the line (3,6) estimated in Fig. 7b (AKF) is
not affected. This further demonstrates the advantage of AKF
over the regular KF. In addition, at ¢ = 0.3 s a change in
current demand at Load 4 is added and does not affect the
line admittance estimates significantly, especially the AKF.

VI. CONCLUSION AND FUTURE WORK

A centralized application of Kalman Filter and Adaptive
Kalman Filter for series arc fault detection and localization are
demonstrated on a dc microgrid. The formulation of KF/AKF
for any N node grid is presented in combination with steps
to express the admittance equation in linear regression form.
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The KF based estimation algorithms are then demonstrated
over three cases to include the conditions that imitate a
regular operation of a dc microgrid. The results illustrate an
accurate estimation of microgrid’s line admittances followed
by a quick detection and localization of two independent
series arc faults. CHIL results were obtained by interfacing
the Plecs RT Box (simulating the dc microgrid) and the
Opal RT’s OP 4510 (KF based estimation), demonstrating the
detection/localization performance for high impedance series
arc faults.

For future work, the entire dc microgrid will be imple-
mented using actual hardware. In addition, more in-depth
analysis will be conducted for cases where not all node voltage
or current injections can be measured. Techniques will be
developed and implemented in order to accommodate for these
cases.

APPENDIX
ALGORITHM TO OBTAIN (Qy MATRIX

Tab. III presents a pseudo code to generate the (Jy matrix
for any NV node dc microgrid. The (Jy matrix helps reconstruct
the vectorized form of the admittance matrix vec (Y) by using
only the lower triangular matrix minus the diagonal elements,
i.e. vec (Y) = Qy Tywp, Where zyop is defined in (7).

TABLE III. Algorithm to generate the (Jy matrix used in the
vec (V).

Set p= [NLIN=1]

Set a=(1,0,—1)
. —1In_1
At j = 1 Set =
J QY ( INfl
for j=234,--.N
Set Z =0, ,t=0 and counter =0
for £=0,1,2,3,---,5-2
Sett=t+1
Set counter = counter +t
Set ¢ = Right-Circular-shift [a ,k X N + j — counter — 1]
Set QY = z

Y1),z = (%) and
i i
D = Sum along each column of Z

Op—N41
ON-1,p—N+1

end

IN_;

— (0 2 0 2
Set o = ( N—jNj—N—L24+1 N—jp—Nj+iz+1

Set D =-[D + Sum along each column of o] and

Qv=(Qy D &)

end
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