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We numerically investigate the momentum-space entanglement entropy and entanglement spectrum of the
random-dimer model and its generalizations, which circumvent Anderson localization, after a quench in the
Hamiltonian parameters. The type of dynamics that occurs depends on whether or not the Fermi level of the
initial state is near the energy of the delocalized states present in these models. If the Fermi level of the initial
state is near the energy of the delocalized states, we observe an interesting slow logarithmic-like growth of
the momentum-space entanglement entropy followed by an eventual saturation. Otherwise, the momentum-
space entanglement entropy is found to rapidly saturate. We also find that the momentum-space entanglement
spectrum reveals the presence of delocalized states in these models for long times after the quench and the
many-body entanglement gap decays logarithmically in time when the Fermi level is near the energy of the
delocalized states.

Introduction.—The growth of entanglement after a sudden
quantum quench in many-body systems has been an active re-
search area over the past decade and has even been experi-
mentally observed [1]. Typically, the entanglement entropy
(EE) and entanglement spectrum (ES) [2] are used to quan-
tify entanglement. To calculate the ES, one forms the den-
sity matrix, ρ(t), from a pure quantum state, |ψ(t)〉. The
Hilbert space is then partitioned into two regions, A and B.
Region B is traced over, giving the reduced density matrix,
ρA(t) = TrB(ρ(t)). The ES is related to the eigenvalues
of ρA. From it, one obtains the more commonly studied
EE, S(t) = −Tr[ρA(t) ln(ρA(t))]. Real-space EE in one-
dimension (1D) after a quench has well-known behaviour. For
example, for a generic 1D system with translational invari-
ance, the EE typically grows linearly until it saturates with a
volume dependence [3–6]. Such behavior can be understood
from a quasi-particle picture [3] or operator spreading [6]. For
Anderson-localized 1D systems the EE initially grows ballis-
tically and then saturates to an area law [7, 8]. In many-body
localized systems, S(t) grows logarithmically (after some ini-
tial power-law like growth) [7, 9, 10]. While there have been
several works on the real-space ES after a quench [11–22], no
general results have emerged.

On the other hand, the (ground-state) EE and ES be-
tween novel bipartitions of the many-body Hilbert-space have
proven useful for investigating exotic phases of matter. No-
table examples include the EE and ES between left-and right-
movers in 1D [23–29] and the bulk ES [30–33]. The lat-
ter can reveal topological order and probe topological phase
transitions from a single wavefunction [30] and the former
has highlighted an interesting connection between fractional
quantum Hall systems and critical quantum spin chains [23].
Entanglement between left-and right-moving particles, i.e.
momentum-space entanglement, is useful in identifying de-
localized states and the delocalization-localization transition
in 1D disordered systems [34–38]. With just a single disorder
configuration, the momentum-space ES can reveal the pres-
ence of delocalized states in several 1D disordered models
with correlated disorder. These models include the random-
dimer model (and its generalizations) [34, 35], the Aubry-

André model [35] and a model with long-range correlated
disorder [36]. The momentum-space ES can also reveal the
critical point in interacting disordered models [38]. We note
momentum-space entanglement has also been studied in high-
energy physics [39–44].

More recently, momentum-space entanglement in
Tomonaga-Luttinger liquids was studied after a quench
of Hamiltonian parameters (quantum quench) [45]. It
was found that the momentum-space EE saturates quickly,
drastically different from the rapid entanglement growth
in real-space typically observed, and that the entanglement
gap (difference between the two lowest levels of the ES)
is a universal function of the Luttinger parameter. Fur-
thermore, it was shown that ES levels are given by the
overlap of certain states with the initial state, allowing for the
momentum-space EE and ES to be measured experimentally
for Tomonaga-Luttinger liquids.

In this work, we numerically investigate the momentum-
space EE and ES of the non-interacting random-dimer model
and its generalizations after a global quantum quench from a
clean to disordered system. If the Fermi level of the initial
state is near the energy of the delocalized states of these mod-
els (and the disorder strength is far below its critical value),
the momentum-space EE grows logarithmically-like until it
eventually saturates. When the Fermi level of the initial state
is far away from the energy of the delocalized states, the
momentum-space EE rapidly saturates. We argue that this
behavior is due to the absence of backscattering between de-
generate states near the energies of the delocalized states of
these models. We also find the ES reveals the presence of de-
localized states for long times after the quench and the many-
body entanglement gap decays logarithmically in time when
the Fermi level is near resonance. To the best of our knowl-
edge, such slow growth of entanglement has only been seen in
real-space EE and our work provides the first example of slow
entanglement growth for a non-local Hilbert space bipartition.

Random-dimer model.—We now review the random-dimer
model, originally introduced by P. Phillips et al. [46], and its
generalizations [47]. The Hamiltonian of this model (and its
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(a) Random-dimer Model (b) Random-trimer Model

FIG. 1. (color online) EE between left-and right-movers (divided by N ) for a single disorder configuration of the random-dimer model (a) and
the random-trimer model (b) as a function of t and doping level of initial state. There is a clear suppression of entanglement for initial states
with EF near the resonant energies of these models (dashed red lines). Parameters: N = 702 and εb = −3/4.

generalizations) is of the form,

H = J
N∑
i=1

(
c†i+1ci + c†i ci+1

)
+

N∑
i=1

εic
†
i ci , (1)

where c†i is the creation operator for an electron on site i, εi
is the on-site energy, N is the system size, and J is the hop-
ping energy, which is set to one without loss of generality.
Throughout this work, we take N = 4n+ 2, where n ∈ Z, to
avoid a degenerate Fermi sea. For the random-dimer model,
εi is restricted to two discrete values, εa and εb, and one of the
on-site energies always appears in pairs, i.e. on two consec-
utive sites. Without loss of generality, εa is taken to be zero
and always appears in pairs and εa and εb have an equal prob-
ability of appearing. In this case, a delocalized state exists at
E = 0 for |εb| < 2J . We will refer to single-particle en-
ergies at which delocalized states exist as resonances. There
are generalizations of this model, where instead of εa always
appearing in pairs, it appears in groups of three or more [47].
In addition to the random-dimer model, we consider the case
when εb always appears in groups of three, which is called
the random-trimer model. For the random-trimer model, there
exist delocalized states at E = ±J . The delocalized state at
E = J(−J) persists for−J < εb < 3J(−3J < εb < J). We
note that real-space entanglement properties of these models
have been investigated in Refs. [34, 35, 37, 48, 49].

Fourier transforming the electronic creation operator, c†x =
1√
N

∑N−1
k=0 e

i2πkx/Nc†k, yields,

H =
N−1∑
k,k′=0

(
2J cos(

2π

N
k)δk,k′ + Vk,k′

)
c†kck′ , (2)

where Vk,k′ =
N∑
x=1

εxe
i 2πN x(k−k′) is the scattering matrix in

momentum-space. We see that disorder induces entanglement

between different momentum modes, making a momentum-
space partition particularly natural.

Formalism.—To calculate entanglement, we use the formal-
ism introduced in Ref. [50] which allows one to calculate en-
tanglement for large non-interacting systems. More specifi-
cally, to compute entanglement properties, we only need the
two-point correlation function, 〈ψ(t)|c†kck′ |ψ(t)〉. To begin,
we first diagonalize our Hamiltonian via a unitary transfor-
mation, U . This gives H =

∑N−1
r=0 εrd

†
rdr, where εr are

the single-particle energy levels of the disordered system and
ck =

∑N−1
r=0 Ukrdr. We take our initial state, |ψ0〉, to be the

ground state of the clean system (εi = 0 ∀ i) with a variable
Fermi level, i.e. |ψ0〉 =

∏kf
k=ki

c†k|0〉. For example, at half-
filling, ki = N/4 + 1/2 and kf = 3N/4 − 1/2. We label
the Fermi level of the initial state, EF , by the single-particle
energy to which the post-quench Hamiltonian is filled. We
always vary the number of total particles by two to avoid a de-
generate Fermi sea. The wavefunction of the system evolves
as |ψ(t)〉 = e−iHt|ψ0〉, where t is the time after the quench.
We restrict ourselves to weak quenches, i.e. disorder strengths
much less than the disorder strength at which all states become
delocalized. The correlation function, which depends on EF ,
is given by

〈ψ(t)|c†kck′ |ψ(t)〉 =
N−1∑
s,r=0

Ts,rU
∗
ksUk′re

−i(Er−Es)t, (3)

where Ts,r =
∑kf
k′′=ki

(U−1sk′′)
∗U−1rk′′ . 〈ψ(t)|c†kck′ |ψ(t)〉 is

calculated numerically for all left-moving momenta (k, k′ ∈
{0, 1, . . . , N/2 − 1}) [45]. The ES and EE between
left-and right-movers can be obtained from the eigenval-
ues of this N/2 by N/2 correlation matrix. More specif-
ically, the reduced density matrix is given by ρA(t) =

exp
[∑N/2−1

g=0 εg(t)χ
†
gχg

]
, where εg(t) is the single-particle

ES and χ†g is a linear combination of c†k. The single-particle
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(a) (b) (c)

FIG. 2. (color online) (a) Cs(k) as a function of t and momentum for EF ≈ 0 (for a single disorder configuration). Momentum modes near
the Fermi momentum of |ψ0〉 give rise to the largest contribution to S(t). (b) Distribution of S(t)/N of the random-dimer model as a function
of t for various disorder configurations. Solid black line is disorder averaged S(t)/N . A clear slow logarithmic-like growth is observed for
intermediate times. Inset: S(t)/N for N = 502 (solid-blue line) and N = 702 (dashed-red line). For early enough times, the curves lie on
top of each other demonstrating that S(t) obeys a volume law. (c) Disorder averaged S(t)/N of the random-dimer model versus t for various
EF . For large enough EF , there is no apparent logarithmic-like growth and S(t) saturates. Parameters: N = 702 and εb = −3/4.

ES is related to the eigenvalues of the correlation matrix,
ξg(t), as follows ξg(t) = (eεg(t) + 1)−1. The EE is then,

S(t) =
∑N/2−1

g=0 Sg(t), where Sg(t) = −(ξg ln(ξg) + (1 −
ξg) ln(1 − ξg)). As seen from Sg(t), correlation eigenvalues
near 1/2 contribute the most.

Momentum-space entanglement entropy.—We now are in a
position to calculate the momentum-space EE. We first note
that the momentum-space EE is numerically found to scale
linearly with N for all parameters and times, i.e. S(t) obeys
a volume law (up to some finite-size effects, which are dis-
cussed later). This can be seen by disorder averaging for
two different N while keeping EF and εB fixed [51]. The
momentum-space EE of Tomonaga-Luttinger liquids after a
quench was also found to obey a volume law for all times
[45].

In Fig. 1a, S(t) is plotted as a function of time and EF

for the random-dimer model for a single disorder configura-
tion. Momentum-space EE growth is clearly suppressed for
initial states with EF ≈ 0, which is the energy of the delo-
calized state of the random-dimer model. Note, this does not
correspond to a half-filled initial state. In Fig. 1b, we plot the
momentum-space EE for the random-trimer model. Again,
there is a suppression of EE growth near a delocalized state
of the random-trimer model, EF = −1 (the other delocalized
state atEF = 1 is close to becoming localized for εb = −3/4,
so the suppression does not appear).

We now turn to gaining a qualitative understanding of this
observation. In general, this is a challenging problem as a
single-particle eigenstate of the clean system has overlap with
all single-particle disordered eigenstates [52]. However, weak
disorder (in our case, εB � 4J) only mixes momentum states
that are close in energy. Therefore, which momentum-modes
contribute to momentum-space entanglement? To quantify
this, we look at the entanglement contour [53], which is given

by Cs(k) =
∑N/2−1

g=0 |φk(g)|2Sg , where φk(g) describes the
momentum structure of the gth eigenvector of the correlation

matrix. Summing Cs(k) over all k in region A yields S(t).
This quantity has been used to investigate which real-space
modes contribute to the entanglement between spatial regions.
As expected, for real-space entanglement, modes near the bi-
partition give rise to a larger contribution. In our case, we
numerically find (after some transient behavior in which a
wide range of momentum modes contribute) only momentum
modes near the Fermi surface contribute to entanglement for
weak quenches, regardless of EF (see Fig. 2a). We are now
in a position to qualitatively understand the features seen in
Fig. 1. For the random-dimer model (and its generalizations),
backscattering between degenerate single-particle states with
the same energy as the delocalized state is suppressed [10].
Given these two facts, we expect S(t) to be suppressed when
EF is near resonance. Indeed, we observe this numerically
(see Fig. 1).

We now investigate how fast momentum-space entan-
glement grows. In Fig. 2b, we plot the distribution of
momentum-space EE (for the random-dimer model) versus
time for five-hundred disorder configurations, along with the
disorder averaged EE, when EF ≈ 0. After initial power-
law like growth, a slow logarithmic-like growth is observed
at intermediate times. Finally, at late times, there is eventual
saturation. This slow growth occurs for all disordered con-
figurations considered. We note the kink around t ≈ 400
in Fig. 2b is a finite-size effect and is found to appear at
later times as one increases N (see inset of Fig. 2b). We
believe the presence of this finite-size effect is indicative of
the delocalized state present at EF = 0. Upon varying
EF , the saturation time decreases, the saturation value in-
creases, and the rate at which the EE grows increases (slope
of log growth). This is illustrated in Fig. 2c. For large
enough EF , our system size is greater than the localization
length. Thus, there are no finite-size effects and no sharp
kinks, in contrast to when EF is at resonance. Finally, when
EF is far enough away from resonance, there is no longer
any logarithmic-like growth of EE and it rapidly saturates, as
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(a) (b) (c)

FIG. 3. (color online) (a) Single-particle ES of the random-trimer model as a function of EF for t = 50. When EF is near resonance
(dashed red lines), there is a gap in the single-particle ES for long-times (b) Single-particle ES of the random-dimer model as a function of t
for EF = 0. The single-particle entanglement gap remains for long-times. (c) Distribution of Δξ versus t for the random-dimer model (at
resonance) for various disorder configurations. The solid-black line is the disorder averaged entanglement gap. Δξ decays logarithmically
after some initial power-law like decay. The kink observed at t ≈ 400 is a finite-size effect and occurs at later times as N increases. Here,
NA = 189. Parameters: N = 702 and εb = −3/4.

shown in Fig. 2c. We conjecture this slow growth is due to the
absence of single-particle backscattering between degenerate
states near resonance. As such, any entanglement between
momentum modes would be induced by scattering between
non-degenerate states, which is a suppressed process for weak
disorder [52]. Hence, momentum-space EE grows slowly. It
would be desirable to prove this conjecture analytically. We
leave this as an open problem.

We now ask if this logarithmic-like growth is related to log-
arithmic growth observed in the real-space EE dynamics of
various models. These models include 1D many-body local-
ized systems [7, 9, 10] (including quasi-many-body localiza-
tion [54]), 1D non-interacting fermions with integrable disor-
der [55], the central-spin model [56], a two-dimensional non-
interacting disordered fermion system with potential disor-
der [57], and, perhaps counter-intuitively, 1D translationally-
invariant spin chains with long-range interactions [58, 59] and
1D disordered fermions with long-range hopping [60, 61]. For
the 1D systems mentioned above, the EE grows as S(t) ∝
log(t), while in our case, it grows as S(t) ∝ N log(t), i.e.
a volume law for all times, strongly indicating a different
mechanism is responsible for the dynamics we observe [62].
For the two-dimensional disordered system, the real-space EE
grows as S(t) ∝ N log(t) [57]. However, the authors of
Ref. [57] relate this slow growth to logarithmic connections
that arise in two-dimensions. Given that our model is one-
dimensional, their argument likely cannot explain our results.
We therefore conclude the logarithmic growth we observe is
not related to the logarithmic growth that has been previously
observed in real-space for various models.

Entanglement spectra.—We now turn to the ES, which may
reveal more information [2]. We first consider the single-
particle ES (eigenvalues of the correlation matrix) after a
quench and investigate the single-particle ES as a function of
EF of the initial state for a fixed time. We find that when
EF is near resonance, there is a gap in the single-particle
ES (see Fig. 3a), signaling the presence of delocalized states.

This behavior is reminiscent of the single-particle ES of the
ground-state wavefunction [34], where the single-particle ES
also reveals the presence of delocalized states. Furthermore,
the resonance atEF = 1 is more apparent compared to the EE
(see Fig. 1b), signaling a possible advantage of the ES over the
EE in revealing this phyiscs. The single-particle entanglement
gap (at resonance) remains open for long-times after a quench,
as shown in Fig. 3b for the random-dimer model.

One can also consider the many-body ES. We investigate
the difference between the two lowest eigenvalues of the
many-body ES, which is referred to as the many-body entan-
glement gap [63], Δξ. Upon fixing the number of particles
in region A, NA, the gap Δξ can be expressed in terms of
the single-particle ES as follows, Δξ = εg=N/4+x−1/2(t) −
εg=N/4+x+1/2(t), where x is the number of left-moving par-
ticles above or below half-filling (for half-filling, x = 0).
In general, one can construct the exact many-body ES from
εg(t), but this is time consuming (as well as limited by compu-
tational resources) because one must take products of single-
particle ES. At resonance, Δξ is found to decrease logarithmi-
cally after some initial-power law like decay (see Fig. 3c). In
contrast, for clean interacting systems, Δξ was found to sat-
urate rapidly after a quench [45]. This slow logarithmic de-
cay continues until t ≈ 400, at which time finite-size effects
become important (this is the same time at which finite-size
effects occur for S(t), as seen in Fig. 2b). Due to this finite-
size effect, we can not investigate whether or not Δξ closes.
Finally, we note that doping away from resonance (or increas-
ing εb) increases the rate at which Δξ decreases.

Discussion.— We have investigated the entanglement be-
tween left- and right-movers after a quench for the random-
dimer model and its generalizations. We found that there
is a suppression of momentum-space entanglement and that
momentum-space entanglement entropy features logarithmic-
like growth when the Fermi level of the initial state is at a
certain energy (the energy of the delocalized states present in
these models). We also found that the momentum-space en-
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tanglement spectrum has clear signatures of the delocalized
states present in these models and the entanglement gap de-
cays logarithmically. In the future it would be interesting to
develop an analytical theory for the above results and investi-
gate the effect of interactions on entanglement dynamics for
the random-dimer model [64]. The latter problem is partic-
ularly interesting as the interacting random-dimer model cir-
cumvents the Imry-Ma argument [65].
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