

Dynamic fine-scale sea-icescape shapes adult emperor penguin foraging habitat in East Antarctica

4 Sara Labrousse¹, Alexander D. Fraser^{2,3}, Michael Sumner^{3,4}, Takeshi Tamura^{2,5,6},
5 David Pinaud⁷, Barbara Wienecke⁴, Roger Kirkwood⁴, Yan Ropert-Coudert⁷, Ryan
6 Reisinger⁷, Ian Jonsen⁸, Rick Porter-Smith², Christophe Barbraud⁷, Charles-André
7 Bost⁷, Rubao Ji¹, Stéphanie Jenouvrier^{1,7}.

(1) Biology Department MS-34, Woods Hole Oceanographic Institution, Woods Hole, MA, USA

(2) Antarctic Climate & Ecosystems Cooperative Research Centre, University of Tasmania, Private Bag 80, Hobart, Tasmania, 7001, Australia

(3) Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tasmania, 7001, Australia

(4) Australian Antarctic Division, Department of the Environment, 203 Channel Highway, Kingston Tasmania, 7050, Australia

(5) National Institute of Polar Research, Tachikawa, Tokyo 190-8518, Japan

(6) SOKENDAI (*The Graduate University for Advanced Studies*), Tachikawa, Tokyo 190-8518, Japan

(7) Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 79360, Villiers en Bois, France

(8) Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia

*Corresponding author Sara Labrousse: sara.labrousse@gmail.com

Keypoints

- Dynamic fine-scale sea-icescape in East Antarctica affects the foraging routes and effort of emperor penguins during the breeding season
- Emperor penguins used short-term ephemeral polynya openings to forage during the breeding season instead of using the persistent ones
- The breeding foraging habitat was consistent among months, years, sexes and sites despite the highly dynamic sea-ice environment

Keywords

emperor penguin; foraging ecology; polynya; fast ice; sea ice; icebergs

Abstract

The emperor penguin, an iconic species threatened by projected sea-ice loss in Antarctica, has long been considered to forage at the fast ice edge, presumably relying

37 on large/yearly-persistent polynyas as their main foraging habitat during the breeding
38 season. Using newly developed fine-scale sea-icescape data and historical penguin
39 tracking data, this study for the first time suggests the importance of less-recognized
40 small openings, including cracks, flaw leads and ephemeral short-term polynyas, as
41 foraging habitats for emperor penguins. The tracking data retrieved from 47 emperor
42 penguins in two different colonies in East Antarctica suggest that those penguins
43 spent 23% of their time in ephemeral polynyas and did not use the large/yearly-
44 persistent, well-studied polynyas, even they occur much more regularly with
45 predictable locations. These findings challenge our previous understanding of
46 emperor penguin breeding habitats, highlighting the need for incorporating fine-scale
47 seascape features when assessing the population persistence in a rapidly changing
48 polar environment.

49

50 **Plain Language Summary**

51 Polar ecosystems are threatened by future loss of sea ice. The availability of satellite
52 sea-ice products has facilitated a better assessment of the impact of sea ice on polar
53 species. Yet most studies have focussed on coarse spatial scale sea-ice products
54 hampering an understanding of the mechanisms by which sea ice affects species. The
55 development of fine-scale sea-ice products now provides an unprecedented
56 opportunity to better understand the responses of sea-ice obligate species to climate
57 change. The emperor penguin is an iconic species threatened by projected sea-ice loss
58 in Antarctica. Here we used fine-scale satellite sea-ice observations to understand the
59 emperor penguin's sea-ice habitat during the entire breeding and Antarctic winter
60 season. Sea-ice characteristics affect both the foraging routes and effort of polar
61 species, with consequences for their reproduction and survival, ultimately affecting
62 population dynamics and species persistence. Emperor penguins dived at the edge of
63 the landfast sea ice in cracks, flaw leads and open water areas called polynyas, formed
64 by winds on both long and short time-scales. By using daily passive microwave
65 observations, we identified that emperor penguins did not venture into the
66 large/persistent polynyas but dived instead in the ephemeral polynyas associated with
67 daily changes in wind direction.

68

69 **1. Introduction**

70 Antarctic sea ice extent has shown considerable inter-annual variability with
71 marked regional variation (Zwally et al., 2002; Liu et al., 2004; Comiso and Nishio,
72 2008; Turner et al., 2009; Parkinson and Cavalieri, 2012; Hobbs et al., 2016; Meehl et
73 al., 2019; Parkinson et al., 2019). Accordingly, Antarctic predator populations do not
74 respond uniformly to changes in sea-ice coverage around the continent. In these
75 populations, contrasting trends are observed that reflect regional differences in sea-ice
76 conditions but also the variability in the species' ecology and biological requirements
77 (Massom and Stammerjohn, 2010; Constable et al., 2014; Robertson et al., 2014;
78 Southwell et al., 2015; Jenouvrier et al., 2017).

79 The availability of satellite sea-ice products has facilitated a better
80 understanding of the impact of sea ice on polar species (e.g. seabirds: Jenouvrier et
81 al., 2005; polar bears: Stern and Laidre, 2016; seals: Labrousse et al., 2018; whales:
82 Herr et al., 2019). Yet most studies have focussed on coarse-resolution estimates of
83 sea-ice concentration and extent at large spatial scales due to the limited resolution /
84 availability of sea-ice products (e.g. emperor penguin: Barbraud and Weimerskirch,
85 2001; Jenouvrier et al., 2012). However, the sea-ice habitat that influences polar
86 species is diverse at a fine scale (Ainley et al., 2010). Sea-ice characteristics affect
87 both the foraging routes and effort of polar species (e.g. Le Guen et al., 2018), with
88 consequences for their vital rates (reproduction: Massom et al., 2009; Ropert-Coudert
89 et al., 2018; survival: Kooyman et al., 2007; Fretwell et al., 2019), ultimately
90 affecting population dynamics (Ainley et al., 2010) and species persistence
91 (Jenouvrier et al., 2014). Yet, we lack an understanding of these proximate
92 mechanisms. The development of fine-scale sea-ice products now provides an
93 unprecedented opportunity to better understand the responses of sea-ice obligate
94 species to climate change within the sea-icescape.

95 Specifically, four broad habitat types can be distinguished within the seasonal
96 sea-ice zone (from south to north) (Massom et al., 2010): (i) a coastal zone
97 comprising a band of compact "landfast ice" in which persistent regions of open water
98 (and/or thin ice or low sea-ice concentration) formed by dominant winds can be found
99 that range from tens to tens of thousands of square kilometers in area, called coastal
100 (i.e. latent heat) polynyas (Barber and Massom, 2007); (ii) the continental slope
101 region and the Antarctic Slope Current, in East Antarctica near the boundary between
102 fast ice and pack ice, which represent a cold, dynamic and topographically
103 constrained structure where nutrient rich circumpolar deep water upwells onto the

104 shelf (Jacobs, 1991); (iii) the "inner pack ice" zone comprising large floes separated
105 by flaw leads; and finally (iv) the highly-dynamic "marginal ice zone", which
106 typically extends hundreds of kilometers north to the ice edge (< 15% ice cover;
107 Worby et al., 2013), and is generally made up of small floes and diffuse ice
108 conditions. In the first two habitats, the presence of grounded icebergs is an important
109 sea-icescape feature (e.g. Smith et al., 2007; Chambert et al., 2012; Joiris, 2018).

110 The emperor penguin (*Aptenodytes forsteri*) is an Antarctic circumpolar sea-
111 ice obligate species that relies on sea ice throughout its life cycle. Emperor penguins
112 forage under the winter sea ice at two key periods of their life cycle: after egg-laying
113 (~late May until mid-July) when females are rebuilding their reserves while the males
114 incubate eggs; and during the chick provisioning period from mid-July to December
115 when both males and females alternate periods of foraging with periods caring for the
116 chick (Prévost, 1961). Several studies hypothesized the use by emperor penguins of
117 open water areas between the landfast ice and the inner pack ice and the importance
118 of fast ice extent on penguin access to the water, which affects their performance at-
119 sea as well as breeding success (Ancel et al., 1992; Kooyman et al., 1993; Kirkwood
120 and Robertson, 1997a, 1997b, Wienecke and Robertson, 1997; Rodary et al., 2000;
121 Zimmer et al., 2007; Massom et al., 2009). However, most of these studies covered
122 only one to three of the six months of the breeding season, used coarse sea-ice
123 concentration data or prevalent fast ice conditions, and did not quantify the sea-ice
124 habitat use especially because of the lack of fine resolution satellite sea-ice products.

125 In this study, we assess how emperor penguins respond to fine scale sea-ice
126 habitat over their entire breeding season (May-November) in two East Antarctic
127 colonies. In the dynamic and changing seasonal sea-ice environment, we assess for
128 the first time whether the habitat is consistent among months, years, and sites but also
129 between sexes. Specifically, we investigate (i) whether penguins use large/yearly-
130 persistent coastal polynyas or ephemeral (i.e. daily to monthly scale) polynya
131 openings between the pack ice and the fast ice to forage; (ii) the effect of the fast ice
132 extent distribution on their movements; (iii) whether they use the continental slope to
133 forage; (iv) whether the presence of icebergs influences their travelling paths; and
134 finally (v) whether patches with thin ice, a proxy of recent/future open water areas,
135 are preferentially used. To do so, we used concomitant historical tracking data of 47
136 breeding emperor penguins in two different colonies in East Antarctica (previously
137 published in Kirkwood and Robertson, 1997a, 1997b; Rodary et al., 2000; Wienecke

138 and Robertson, 1997), with high-resolution fast ice satellite images and unique sea-ice
139 production metrics to identify ephemeral polynyas.

140 The novelty of this research lies in using fine-scale sea-ice products only
141 accessible through multidisciplinary approaches in order to understand how complex
142 and changing sea-ice features affect an Antarctic predator foraging movements at sea
143 (Meijers et al., 2019). Our study is the first to quantify the habitat use, and combines
144 tracking data collected for emperor penguins raising chicks over two years at two
145 colonies along the East Antarctic coast. In doing so, we provide more accurate
146 information on the foraging habitat requirements for this key Antarctic species.

147

148 **2. 2 Data and Methods**

149 *2.1 Logger deployments*

150 A total of 56 breeding emperor penguins were instrumented with trackers at
151 the Auster colony (67.38°S, 64.07°E) at the Mawson Coast in 1993 and 1994, and at
152 the Pointe Géologie colony (Dumont d'Urville station, 66.67°S, 40.03°E) in Terre
153 Adélie in 1996 and 1997 (see the supporting information, Tables S1, S2 and S3).
154 After filtering the tracks, 47 penguin tracks (23 females, 15 males and 9 individuals of
155 unknown sex; Table S1) were usable for further analysis. For more details about
156 animal handling, logger deployment and the filtering process of the location data, see
157 the supporting information.

158

159 *2.2 Sea ice*

160 Visible (when available) or thermal infrared images showing fast ice extent
161 were obtained from the AVHRR Coastal Atlas of East Antarctica (Michael et al.,
162 2003) with a 1.1 km resolution. Data in the Atlas are presented for five selected areas
163 along the East Antarctic coastline and named according to the main Antarctic station
164 in the region. In this study, we used the data from Mawson and Terre Adélie areas.
165 The Atlas provides one image per month over an 8-year period (1992-1999). The
166 months of July, August and September 1994 are missing in the Atlas, so, instead we
167 used original AVHRR images from Global Area Coverage (GAC) with a resolution of
168 4 km. Images were sorted based on their cloud coverage and the best image within a
169 month was selected. On each monthly image, the fast ice contour was drawn using the
170 function *locator* in the R package *graphics*. From this, fast ice polygons were created

171 using the functions *Polygon*, *Polygons* and *SpatialPolygons* from the R package *sp*
172 (Pebesma and Bivand, 2005; Bivand et al., 2013). Occasionally, the thermal infrared
173 image indicated that the fast ice was warmer (i.e. thinner) than in previous/upcoming
174 images, suggesting some recent open water regions within the given month. We
175 decided to exclude these regions to be as conservative as possible, i.e. open regions
176 were categorized as “not fast ice”. The distances between the penguin locations and
177 the edge of the fast ice were then computed using the function *spDistsNI* of the R
178 package *sp*. Rasters of distance to the fast ice extent and the upper continental slope
179 were calculated using the function *distanceFromPoints* of the R package *raster*
180 (Hijmans, 2017). Our analysis would have been improved by analyzing fast ice
181 satellite images weekly instead of monthly. However, for the winter months, cloud
182 cover did not allow regular clear images for a consistent weekly analysis. Thus, the
183 time spent near the fast ice edge may have been underestimated by monthly fast ice
184 delineations missing open water areas through the process of fast ice formation within
185 a given month.

186 Coastal latent heat polynyas are regions of open water and/or thin ice or low
187 sea-ice concentration (recurrent and/or persistent), ranging from tens to tens of
188 thousands of square kilometers in surface extent (Barber and Massom, 2007). They
189 are mechanically formed in shelf regions of divergent sea ice due to dominant winds,
190 oceanic currents, and/or barriers (e.g. ice shelves, icebergs) blocking the passage of
191 pack ice, and promoting the formation of new sea ice from the heat lost from the
192 ocean to the atmosphere (Morales and Maqueda, 2004; Tamura et al., 2016). Here, we
193 defined these latent heat polynyas at two temporal scales: a) at the scale of the year
194 (i.e. March to October through the sea-ice season), large recurrent and persistent in
195 time, well studied, found adjacent to the continental margin; b) at the daily to monthly
196 scale, ephemeral openings found both close to the coast but also nearby the fast ice
197 edge, close to the continental slope, that can be small openings or extended areas from
198 persistent polynyas. These ephemeral polynyas forming in these locations are indeed
199 latent-heat polynyas (and not bathymetry-driven warm water upwelling-associated
200 sensible heat polynyas, e.g., Jacobs & Comiso (1989)) by observing the presence of
201 frazil-ice streaks in recent Sentinel-1 Synthetic Aperture Radar imagery (not shown).
202 We used thin ice thickness estimates from passive microwave polarization ratio
203 (Tamura et al., 2007) to identify thin ice areas (< 0.2 m), as a proxy of recent/future
204 open water areas. It is worth noting the uncertainty associated with thin ice thickness

205 estimates - the spread around the line linking polarisation ratio to thickness is
206 considerable. Moreover, this thin ice zone becomes at any time solid ice again due to
207 sea-ice growth by cold air temperatures and sea ice rafting/ridging by ice convergence
208 by wind. Thin ice patches and yearly polynya delineations were determined as
209 detailed in Labrousse et al. (2018) using estimated thin ice thickness (expressed in m)
210 and sea-ice production (expressed in m.y⁻¹). From Labrousse et al. (2018), we added
211 daily polynya delineations. We used a sea-ice production threshold of 0.002 m.d⁻¹ to
212 identify any patch of open water. Thin ice thickness and sea-ice production data with
213 a resolution of 12.5km were obtained from Tamura et al. (2007, 2008, 2011) and
214 updated from Tamura et al. (2016).

215 Iceberg locations for both colonies were digitised from RAMP AMM-1 SAR
216 Image Mosaic of Antarctica (Jezek et al., 2013).

217 Given the uncertainties associated with penguin locations before the filtering
218 process (Table S4) and fast ice delineation, we investigated the time spent within 10
219 km of the fast ice edge and 3 km of the iceberg centroids.

220

221 *2.3 Niche modelling*

222 To model habitat suitability for breeding emperor penguins and explore their
223 sea-ice niche with respect to colony sites, seasons and sexes, we used the "ecological
224 niche factor analysis" (ENFA; Hirzel et al., 2002). Theoretically, the analysis of
225 habitat selection corresponds to the comparison of environmental conditions of used
226 sites (sites where the species is present) with environmental conditions of available
227 sites (sites where the species could be present; Aarts et al., 2008). The study area is
228 discretized into resource units (corresponding to pixels of a raster map). Each
229 resource unit is characterized by several environmental variables; here we used four
230 different rasters of 6.25 km resolution: the distance between a pixel and the fast ice
231 extent (corresponding to the area where an open water area is observed between pack
232 ice and fast ice); the distance to the upper part of the continental slope; the cumulative
233 number of days within a month where a daily polynya was observed in a pixel (sea-
234 ice production greater than 0.002 m.d⁻¹); and the cumulative number of days within a
235 month where thin ice (sea ice with thickness less than 0.2 m) is present within a pixel.
236 There are two units describing the availability and the utilization weights of the
237 resource unit by the penguins. Here, we defined equal availability weights for all
238 resource units, and the utilization weight was defined by the sum of the time spent per

239 pixel by all the penguins (6.25 km resolution). We considered the habitat from May to
240 October (although some tracking data lasted until December in 1996). November is
241 considered the end of the breeding season and December could either correspond to
242 remaining chick provisioning and/or the departure of chicks and adults from the
243 colony; as such November and December tracking data may not be fully
244 representative of the breeding foraging habitat (e.g. Rodary et al., 2000). Penguin tags
245 were not always retrieved before the penguins returned to the colony, so some
246 individual tracking data were recorded while the penguins were at the colony. To
247 analyse the time spent out of the colony, a reliable proxy of foraging intensity and
248 feeding success (Bost et al., 1997), we set to zero the time spent within a radius of 5
249 km around the colonies.

250 The principle of the ENFA analysis is to first compute the marginality vector.
251 This vector gives the direction and the magnitude from which the distribution of
252 habitat use differs from the distribution of the habitat available in average. Then the
253 cloud of resource units is projected on the hyperplane orthogonal to the marginality
254 vector. Next, the direction is found in this subspace where the specialization
255 (minimizing the ratio between the variance of the distribution of availability weights
256 and the variance of the distribution of utilization weights) is the largest, i.e. which
257 proportion of the habitat available is used. Finally, a "Mahalanobis distance factor
258 analysis" (MADIFA) was used in order to describe the monthly habitat selection for
259 each site. The methods and results are presented in the supporting information.

260

261 **3. Results**

262 *3.1 Summary of the tracking data*

263 A total of 9962 locations from 47 breeding emperor penguins were recorded in
264 1993, 1994, 1996 and 1997. Detailed metrics of the tracking data are available in the
265 supporting information, Table S1 and S2. Trackers recorded trips from 8 to 146 days
266 (average \pm sd of 55 ± 35 d). The maximum distance a penguin travelled was 5058 km
267 (average \pm sd of 1024 ± 903 km) and the furthest distance from the colony was 1643
268 km (average \pm sd of 234 ± 325 km) (Figure 1).

269

270 *3.2 Time spent in different habitats*

271 Of the total time spent away from the colony (T_{oc}), penguins spent 27%
272 crossing the fast ice to reach and return from open water and 33% of the T_{oc} within 10

273 km of the fast ice edge (on the fast ice walking or in the water). Once they reached
274 water, they spent 23% of the T_{oc} inside ephemeral polynya openings adjacent to the
275 fast ice edge (all individuals cumulatively between May and October; Figures 2, 3 and
276 4a; animations S1-S4); these were either small openings or extended areas of large
277 coastal polynyas. Adult emperor penguins did not visit the large, yearly-persistent
278 coastal polynyas adjacent to the continental margins except on one occasion, when
279 one penguin (from Pointe Géologie colony) passed through the Mertz polynya (Figure
280 1b). Iceberg centroids were located within the fast ice, near the fast ice edge and in
281 pack ice regions further offshore. The penguins spent 17% of the T_{oc} within 3 km of
282 iceberg centroids (all individuals cumulatively between May and October).

283

284 *3.3 Qualitative description of habitat use*

285 *Pointe Géologie colony.* From May to July 1996, when females were at-sea,
286 they mostly used the region northeast of the colony at the edge of the fast ice
287 sometimes overlapping with the large polynya in the east of the region (Figures 2a, b,
288 c; S2a, b, c). This region is of particular interest for its complex bathymetry, ranging
289 from 200 to 500 m. In August 1996, when males and females started to alternate trips
290 to sea, all individuals (n=5) spent most of their time in an open water region within
291 the fast ice, not identified as a polynya by the sea-ice production data (Figures 2d and
292 S2d; i.e. lighter colour of the fast ice indicating that this region was opened at the
293 beginning of the month and closed in the month); from September to October 1996,
294 they used a V-shaped inlet in the fast ice to the northwest of the colony, which lay
295 over an oceanic trough (depth of ~700 to 1000 m) between the Adélie and Dibble
296 banks and where ephemeral polynya openings formed (Figures 2e, f; S2e, f). This
297 inlet cuts across the continental shelf to the northwest of Pointe Géologie and almost
298 reaches the coast at the colony. This area is the site of ephemeral mid-season
299 breakouts (see Massom et al., 2009). In September 1997, the penguins both used the
300 open water region within the fast ice in front of the colony as in 1996 but also foraged
301 at the edge of the fast ice in daily polynya openings (Figures 2h; S2h). The V-shaped
302 ice break-out west of the colony in October 1996 was not present in 1997. In its
303 absence, the penguins foraged mainly to the northeast of the colony at the edge of the
304 fast ice sometimes overlapping with the large polynya on the east side of the region in
305 October 1997 (Figures 2i and S2i).

306 *Auster colony.* The situation was different from the Pointe Géologie colony.
307 From May to October in 1993 and 1994, penguins foraged at the edge of the fast ice
308 and spread along the edge with a slight preference for the east side of the region
309 where both small and large polynya openings occurred (Figures 3 and S3).

310

311 3.4 Quantitative modeling of habitat use

312 The ENFA identified a strong marginality (x-axis) / specialization (y-axis)
313 pattern in the data (the two first axes represented 54.5% and 39.8% of the variance of
314 the time spent per pixel), with a substantial contribution of the distance to the fast ice
315 and continental slope edges and the number of days when polynyas were present
316 (Figure 4b). However, the presence of thin ice patches had a weak influence.
317 Penguins spent most of their time at the shortest distance from the fast ice edge and
318 the upper edge of the continental slope (Figure 4d, e); this corresponds to the open
319 water areas between the fast and pack ice, i.e., cracks, leads or the ephemeral polynya
320 openings that showed a positive effect on the time spent. Overall, there was a clear
321 difference between the habitat available and the habitat used by the penguins (Figure
322 4b-e). The distance to the fast ice and continental slope edges contributed to both the
323 marginality and the specialization. Specifically, we observed a negative correlation
324 for the marginality (i.e. penguins spent more time at shorter distances). For the
325 specialization, only the absolute value is important: the variance of the habitat
326 available is larger than the variance of the habitat used (i.e. the penguins target a
327 narrow range of distances from the continental slope and the fast ice edge). The
328 number of days when polynyas were present only influenced the marginality, i.e.
329 penguin spent more time in areas with ephemeral polynya openings but did not show
330 any preference for areas with a certain number of days the polynyas were open.

331 The habitat available differed slightly between months (see the supporting
332 information, Figure S4a) as did the habitat used (Figure S4b). The ellipse of habitat
333 used in May had the smallest area, restricted to the shortest distance to the fast ice and
334 the upper continental slope edges. From June to October, the used habitat ellipses
335 grew larger with months, with slightly longer distances from the fast ice and the
336 continental slope edges. No strong difference was observed between the two sites and
337 between sexes, neither in the habitat availability nor in the habitat use (see the
338 supporting information, Figure S4c, d, e, f). Larger differences between the two
339 colonies were observed in habitat availability compared to habitat use, meaning that

340 foraging individuals reached the same environmental conditions despite differences in
341 habitat availability between the two sites.

342

343 **4. Discussion**

344 This study assesses the sea-ice habitat of a sentinel species of Antarctic
345 ecosystems combining historical and modern state-of-the-art sea-ice products with
346 historic tracking data of movements at-sea over different months, years and sites. The
347 selection/use of habitat was very consistent among months, years, sexes and sites.
348 This indicates that emperor penguins consistently use areas with specific
349 environmental properties, even in a dynamic sea-ice habitat. To our knowledge, very
350 few studies of Antarctic marine predators compared and quantified such ecological
351 niches using tracking data of different breeding sites, years and sexes simultaneously
352 (but see e.g Ainley et al., 2004; Hindell et al., 2016).

353 Emperor penguins foraged in ephemeral polynya openings between the fast
354 ice and the pack ice areas near to or over the continental slope, instead of using the
355 well-studied persistent polynyas, such as the Mertz Glacier or Cape Darnley polynyas.
356 These ephemeral openings are only detectable with fine temporal and spatial scale
357 sea-ice products. Persistent polynyas are driven by prevailing wind speed and
358 direction while ephemeral openings occur due to temporary shifts in the wind
359 direction. Different studies hypothesized the use of polynyas between the fast ice edge
360 and the pack ice over or near the continental slope as a prime foraging habitat during
361 the breeding season (Ancel et al., 1992; Kirkwood and Robertson, 1997a, 1997b;
362 Wienecke and Robertson, 1997; Rodary et al., 2000; Zimmer et al., 2007). However,
363 the distinction in terms of the temporal characteristics and location of the polynya use
364 by penguins has never been assessed in previous studies.

365 Using coarse temporal products at an annual scale (i.e. March-October) one
366 could have concluded that penguins do not use polynyas, but with fine scale, daily
367 sea-ice products we were able to show that ephemeral polynya openings comprised a
368 large component of penguins' foraging habitat. We speculate that penguins did not
369 visit large/yearly persistent polynyas for two possible reasons. First, persistent/yearly
370 polynyas have higher sea-ice production than small/ephemeral polynyas. This has
371 implications on the mixing of the water column and in turn on the prey availability;
372 the deepening of the winter mixed layer is function of wind and sea-ice formation.
373 Polynyas with minor sea-ice production will have a relatively shallow winter mixed

layer while in polynyas with strong sea-ice production, the winter mixed layer extends all the way to the bottom seafloor. Penguins may be advantaged by hunting prey aggregated at the boundary of the Winter Mixed layer in ephemeral polynyas rather than foraging in a homogeneous water column in yearly/persistent polynyas likely associated with strong sea ice production (Williams et al., 2011; Labrousse et al., 2018). In addition, ephemeral polynyas are more likely to sustain food resources for emperor penguin than persistent large polynyas. Several studies in the Ross sea polynya identified the south-central waters, the most deeply mixed due to extremely high sea-ice production, as a virtual "desert" in terms of birds and mammals, while most top predators were observed in the marginal ice zone ringing the polynya (Ainley et al., 1984). Short-term polynya openings, ringing the yearly/persistent large polynyas or small areas created by change in the wind direction, may be preferred by emperor penguins as they may harbor higher quantities of fish and krill than persistent polynyas' central waters. Indeed, in the Ross Sea/Terra Nova Bay polynyas, well-lit waters often harbor more diatoms compared to central mixed waters, due to their higher nonlimited growth rate and resistance to photo-inhibition (Karnovsky et al., 2007). Diatoms were found to dominate the phytoplankton community in the marginal ice zone of the Ross sea polynya and represented a major food source for krill (Quetin and Ross, 1985; Quetin and Ross, 1991). In contrast, the genus *Phaeocystis* was found to dominate the more deeply mixed open waters of the Ross sea polynya due to an ability to grow faster at variable irradiance levels. From acoustic surveys, krill, the staple of the food chain, is presumably mostly confined to the edge of the marginal ice zone in the Ross sea polynya (Azzali and Kalinowski, 1999), where it preferentially feed on diatoms over the genus *Phaeocystis* (Haberman et al., 2003). These processes may explain why emperor penguins spent more time in the ephemeral polynya openings instead of the large/persistent polynyas associated with deeply mixed waters; the former being probably associated with a diatom-based trophic chain based fuelling a higher secondary production. Finally, these persistent polynya openings were slightly further away from the two colonies we considered than the ephemeral polynyas were.

Penguin locations also occurred outside the polynya areas, near the fast ice edge, likely in small open water areas such as cracks or flaw leads. Fast ice extent is thus influencing emperor penguin's ability to acquire resources during the breeding season. Indeed, a fast ice breakout event over a large section of the Mawson Coast

408 coincided with a change in the diet of emperor penguins (Kirkwood and Robertson,
409 1997b) from continental pelagic slope species to benthic shelf species. Formation of
410 fast ice throughout the season is complex and may be non-symmetrical. This was
411 particularly clear for the Pointe Géologie colony, where in 1996 the fast ice broke out
412 over the deep-water trough to the north-northwest of Pointe Géologie; this is likely to
413 happen when storms cross the region (Massom et al., 2009). The fast ice extent should
414 then be assessed locally (i.e., for each colony) and its variability should be taken into
415 account to understand and predict emperor penguin responses to climate change.

416 The formation, position and extent of the fast ice may influence the type of
417 foraging strategy used by emperor penguins (benthic versus pelagic, including very
418 shallow dives of 0-30m). This has important implications for their foraging
419 performance through the type of prey they may be able to catch, whether krill, squid
420 or fish. The Antarctic krill species *Euphausia superba* lives on the continental slope
421 and offshore waters while on the shelf this species is replaced by crystal krill *E.*
422 *crystallorophias* (smaller than *E. superba* and not abundant in the emperor penguin
423 diet) and the Antarctic silverfish *Pleuragramma antarctica* (Kirkwood and Robertson,
424 1997b). Regions with particular bathymetric features, such as the one northeast of the
425 Pointe Géologie colony with continental slopes from 200 m to 500 m depths (used by
426 adults in 1996 and 1997 and previously observed by Ancel et al. (1992) and Zimmer
427 et al. (2007) in 1990 and 2005, respectively), or the continental slope for the Auster
428 colony, may aggregate prey where local upwelling stimulates primary production
429 (Nicol et al., 2000).

430 Resource acquisition during the breeding season is critically important for
431 raising offspring successfully. A strong correlation between fast ice extent and the
432 breeding success of emperor penguins was found at the Pointe Géologie colony
433 (Massom et al., 2009). However, there was no relationship between fast ice and
434 breeding success at another colony at Taylor Glacier ~ 150 km west of Auster
435 (Robertson et al., 2014) highlighting the complex interactions between environment
436 and penguin foraging behavior, and their consequences for breeding performances.
437 We hypothesise that the fast ice extent may be much more constant across years at
438 Taylor glacier than it is at Pointe Géologie, leading to higher and less variable
439 breeding success. This may explain why there is no relationship with breeding success
440 and fast ice extent while emperor penguins still likely use a similar sea-ice habitat.

441 Some differences in the sea-icescape were observed between the sites on the
442 satellite images. Particularly, fast ice formation creating an inlet or fast ice breakout
443 over the deep-water bathymetric trough in Terre Adélie and the close proximity
444 between the fast ice edge and the continental slope at the Mawson Coast led to slight
445 differences in the habitat availability between the two sites. The sea-ice habitat also
446 differs across different sectors of Antarctica where emperor penguin colonies are
447 located. For example, in the Ross Sea sector, the fast ice edge (e.g. Cape Crozier,
448 Franklin and Coulman Islands, Cape Roget and Washington) is much closer to
449 emperor penguin colonies than in East Antarctica, and shows different configurations
450 relative to the continent and the ice shelves (Ancel et al., 1992; Kooyman et al., 1993;
451 M. Larue, pers. comm). However, at our two study sites the ecological niche
452 remained consistent, and this indicates that in a dynamic habitat the relationship
453 between this species and its foraging environment remains stable, defining its
454 ecological niche.

455 Finally, fields of small icebergs which define the limits of stable fast ice extent
456 are generally quite static (Fig. 6 in Fraser et al., 2010); however, on short (daily to
457 monthly) time-scales, changes in fast ice distribution may occur in response to
458 changes in wind properties (e.g., Fraser, 2011), precipitating commensurate changes
459 in adjacent polynya size and production (e.g., as shown in the Cape Darnley polynya
460 by Fraser et al., 2019). Moreover, larger changes in the coastal configuration
461 (including fast ice and polynya distribution) are precipitated by the
462 passage/grounding/ungrounding of large tabular icebergs (e.g., the grounding of B15
463 and C16 west of McMurdo Sound in the early 2000s; Kim et al., 2018). These events
464 are currently impossible to predict, due to the stochastic nature of iceberg calving and
465 grounding processes (Kim et al., 2018). The response of predators to changes in the
466 sea-icescape is governed by their physiological plasticity to tolerate change, adapt to
467 new environmental conditions or disperse/migrate to alternative foraging grounds that
468 enable survival (Jenouvrier et al., 2017). Our study calls for more research on the role
469 of Antarctic polynyas (ephemeral or persistent water openings under wind action) and
470 fast ice on the at-sea movements of emperor penguins in different sectors of
471 Antarctica during the breeding season.

472

473 **5. Conclusion**

474 Using fine scale sea ice products we found that emperor penguins spent time

475 foraging in ephemeral (i.e. daily to monthly scale) polynya openings instead of
476 large/yearly-persistent coastal polynyas (question (i)). Our study calls for more
477 research on the geophysics of Antarctic polynyas (ephemeral or persistent water
478 openings under wind action) to better understand the impact on the ecosystems. In
479 addition, we found that emperor penguins spent time diving and foraging at short
480 distance from the fast ice edge (ii) and the continental slope (iii), regardless of colony
481 location. To understand better the consequences on breeding performance, hence
482 population persistence, it is thus important to characterize how fast ice mean and
483 variability, as well as the presence of topographic features vary across different
484 region. Finally, there is no clear influence of the presence of icebergs (iv) and patches
485 with thin ice (v), although a previous study has shown that giant iceberg can strongly
486 impact the reproduction and survival of upper level predator (seals and penguins).

487 This study highlights (i) the important role of geophysics in ecological studies;
488 (ii) the need for more multidisciplinary approach, combining historical satellite sea
489 ice images, state-of-the-art sea-ice products with revisited, historical data on the
490 movements of predators at-sea; (iii) the unprecedented opportunity to use geoscience
491 (e.g. sea ice and ocean-atmosphere interactions) to better understand polar species
492 responses to the sea-icescape and its variability. Quantifying such sea-ice niches is
493 important for understanding the extinction risk predicted for polar species under
494 climate change (Thomas et al., 2004). Moreover, this is essential from regional to
495 circumpolar scales, if we are to provide conservation bodies with relevant information
496 on the habitats that must be preserved for the sake of wildlife in the Southern Ocean.

497

498 **Acknowledgements**

499 This study was supported financially and logistically by the Australian Antarctic
500 Division, the Australian Government's Cooperative Research Centre program through
501 the Antarctic Climate and & Ecosystems Cooperative Research Centre, and by the
502 Australian Research Council's Special Research Initiative for Antarctic Gateway
503 Partnership (Project ID SR140300001), the French Polar Institute (Institut Paul Emile
504 Victor, IPEV) research projects, and the postdoctoral scholar award from Woods Hole
505 Oceanographic Institution. S.J. acknowledges support from NSF award number
506 #1744794 and #1643901. C.B. and Y.R.-C. acknowledge support from the BNP
507 Paribas Foundation as part of programme SENSEI (SENtinelS of the SEa Ice). Y.R.-
508 C. and R.R.R. acknowledge support from the WWF-UK through R. Downie. Special

509 thanks go to Y. le Maho in charge of the research program in Terre Adelie in 1996/97,
510 M. LaRue for the field opportunity in the Ross sea, illuminating sea icescapes and
511 movements of emperor penguins during the breeding season, D. Ainley for interesting
512 discussions, D. Iles for the proofreading and all colleagues and volunteers involved in
513 the research on emperor penguins in Terre Adélie and at the Mawson Coast,
514 especially D. Rodary and W. Bonneau. All animals in this study were treated in
515 accordance with the IPEV and Polar Environment Committees guidelines, and
516 Australian Antarctic Program Animal Ethics Committee permits. Data and data
517 products related to the paper are available on the following repository
518 <http://www.usap-dc.org/view/dataset/601209> with the doi: 10.15784/601209.

519

520 **References**

521 Aarts, G., MacKenzie, M., McConnell, B., Fedak, M., & Matthiopoulos, J. (2008). Estimating space-
522 use and habitat preference from wildlife telemetry data. *Ecography*, 31(1), 140–160.
523 <https://doi.org/10.1111/j.2007.0906-7590.05236.x>

524 Ainley, D., Russell, J., Jenouvrier, S., Woehler, E., Lyver, P. O., Fraser, W. R., & Kooyman, G. L.
525 (2010). Antarctic penguin response to habitat change as Earth's troposphere reaches 2°C
526 above preindustrial levels. *Ecological Monographs*, 80(1), 49–66. Retrieved from
527 <http://www.esajournals.org/doi/abs/10.1890/08-2289.1>

528 Ainley, D. G., Ribic, C. A., Ballard, G., Heath, S., Gaffney, I., Karl, B. J., et al. (2004). Geographic
529 structure of adelie penguin populations: overlap in colony-specific foraging areas. *Ecological
530 Monographs*, 74(1), 159–178. <https://doi.org/10.1890/02-4073>

531 Ancel, A., Kooyman, G. L., Ponganis, P. J., Gendner, J.-P., Lignon, J., Mestre, X., et al. (1992).
532 Foraging behaviour of emperor penguins as a resource detector in winter and summer. *Nature*,
533 360(6402), 336–339. <https://doi.org/10.1038/360336a0>

534 Azzali, M., & Kalinowski, J. (2000). Spatial and Temporal Distribution of Krill *Euphausia superba*
535 Biomass in the Ross Sea (1989–1990 and 1994). In F. M. Faranda, L. Guglielmo, & A. Ianora
536 (Eds.), *Ross Sea Ecology: Italianartide Expeditions (1987–1995)* (pp. 433–455). Berlin,
537 Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-59607-0_31

538 Barber, D. G., & Massom, R. A. (2007). Chapter 1 The Role of Sea Ice in Arctic and Antarctic
539 Polynyas. In *Elsevier Oceanography Series* (Vol. 74, pp. 1–54). Elsevier. Retrieved from
540 <http://linkinghub.elsevier.com/retrieve/pii/S0422989406740016>

541 Bivand, R. S., Pebesma, E., & Gomez-Rubio, V. (2013). *Applied spatial data analysis with R, Second
542 edition*. Springer, NY. Retrieved from <http://www.asdar-book.org/>

543 Bost, C., Georges, J., Guinet, C., Cherel, Y., Pütz, K., Charrassin, J., et al. (1997). Foraging habitat and
544 food intake of satellite-tracked king penguins during the austral summer at Crozet
545 Archipelago. *Marine Ecology Progress Series*, 150, 21–33.
546 <https://doi.org/10.3354/meps150021>

547 Calenge, C. (n.d.). Exploratory Analysis of the Habitat Selection by the Wildlife in R: the adehabitatHS
548 Package, 60.

549 Chambert, T., Rotella, J. J., & Garrott, R. A. (2012). Environmental extremes versus ecological
550 extremes: impact of a massive iceberg on the population dynamics of a high-level Antarctic
551 marine predator. *Proceedings of the Royal Society B: Biological Sciences*, 279(1747), 4532–
552 4541. <https://doi.org/10.1098/rspb.2012.1733>

553 Clark, J. D., Dunn, J. E., & Smith, K. G. (1993). A Multivariate Model of Female Black Bear Habitat
554 Use for a Geographic Information System. *The Journal of Wildlife Management*, 57(3), 519.
555 <https://doi.org/10.2307/3809276>

556 Comiso, J. C., & Nishio, F. (2008). Trends in the sea ice cover using enhanced and compatible AMSR-
557 E, SSM/I, and SMMR data. *Journal of Geophysical Research*, 113(C2).
558 <https://doi.org/10.1029/2007JC004257>

559 Constable, A. J., Melbourne-Thomas, J., Corney, S. P., Arrigo, K. R., Barbraud, C., Barnes, D. K. A.,
560 et al. (2014). Climate change and Southern Ocean ecosystems I: how changes in physical
561 habitats directly affect marine biota. *Global Change Biology*, 20(10), 3004–3025.
562 <https://doi.org/10.1111/gcb.12623>

563 Fraser, A. D., Ohshima, K. I., Nihashi, S., Massom, R. A., Tamura, T., Nakata, K., et al. (2019).
564 Landfast ice controls on sea-ice production in the Cape Darnley Polynya: A case study.
565 *Remote Sensing of Environment*. <https://doi.org/10.1016/j.rse.2019.111315>

566 Fraser, A. D., Massom, R. A., & Michael, K. J. (2010). Generation of high-resolution East Antarctic
567 landfast sea-ice maps from cloud-free MODIS satellite composite imagery. *Remote Sensing of
568 Environment*, 114(12), 2888–2896. <https://doi.org/10.1016/j.rse.2010.07.006>

569 Fraser, A.D., (2011). Ph.D. Thesis: East Antarctic Landfast Sea-Ice Distribution and Variability.
570 University of Tasmania.

571 Fretwell, P. T., & Trathan, P. N. (2019). Emperors on thin ice: three years of breeding failure at Halley
572 Bay. *Antarctic Science*, 1–6. <https://doi.org/10.1017/S0954102019000099>

573 Haberman, K. L., Ross, R. M., & Quetin, L. B. (2003). Diet of the Antarctic krill (*Euphausia superba*
574 *Dana*): II. Selective grazing in mixed phytoplankton assemblages. *Journal of Experimental
575 Marine Biology and Ecology*, 283(1), 97–113. Retrieved from
576 <http://www.sciencedirect.com/science/article/pii/S0022098102004677>

577 Herr, H., Kelly, N., Dorschel, B., Huntemann, M., Kock, K., Lehnert, L. S., et al. (2019). Aerial
578 surveys for Antarctic minke whales (*Balaenoptera bonaerensis*) reveal sea ice dependent
579 distribution patterns. *Ecology and Evolution*, ece3.5149. <https://doi.org/10.1002/ece3.5149>

580 Hijmans, R. J. (2017). *raster: Geographic Data Analysis and Modeling*. Retrieved from
581 <https://CRAN.R-project.org/package=raster>

582 Hindell, M. A., McMahon, C. R., Bester, M. N., Boehme, L., Costa, D., Fedak, M. A., et al. (2016).
583 Circumpolar habitat use in the southern elephant seal: implications for foraging success and
584 population trajectories. *Ecosphere*, 7(5). Retrieved from
585 <http://onlinelibrary.wiley.com/doi/10.1002/ecs2.1213/full>

586 Hirzel, A. H., Hausser, J., Chesson, D., & Perrin, N. (2002). Ecological-niche factor analysis: how to

587 compute habitat-suitability maps without absence data?, 83(7), 10.

588 Hobbs, W. R., Massom, R., Stammerjohn, S., Reid, P., Williams, G., & Meier, W. (2016). A review of
589 recent changes in Southern Ocean sea ice, their drivers and forcings. *Global and Planetary
590 Change*, 143, 228–250. <https://doi.org/10.1016/j.gloplacha.2016.06.008>

591 Jacobs, S. S., & Comiso, J. C. (1989). Sea ice and oceanic processes on the Ross Sea continental shelf.
592 *Journal of Geophysical Research*, 94(C12), 18195. <https://doi.org/10.1029/JC094iC12p18195>

593 Jacobs, S. S. (1991). On the nature and significance of the Antarctic Slope Front. *Marine Chemistry*,
594 35(1–4), 9–24. Retrieved from
595 <http://www.sciencedirect.com/science/article/pii/S0304420309900056>

596 Jenouvrier, S., Barbraud, C., & Weimerskirch, H. (2005). Long-term contrasted responses to climate of
597 two Antarctic seabirds species. *Ecology*, 86, 2889–2903.

598 Jenouvrier, Stéphanie, Holland, M., Stroeve, J., Barbraud, C., Weimerskirch, H., Serreze, M., &
599 Caswell, H. (2012). Effects of climate change on an emperor penguin population: analysis of
600 coupled demographic and climate models. *Global Change Biology*, 18(9), 2756–2770.
601 <https://doi.org/10.1111/j.1365-2486.2012.02744.x>

602 Jenouvrier, Stéphanie, Holland, M., Stroeve, J., Serreze, M., Barbraud, C., Weimerskirch, H., &
603 Caswell, H. (2014). Projected continent-wide declines of the emperor penguin under climate
604 change. *Nature Climate Change*, 4(8), 715–718. <https://doi.org/10.1038/nclimate2280>

605 Jenouvrier, Stéphanie, Garnier, J., Patout, F., & Desvillettes, L. (2017). Influence of dispersal processes
606 on the global dynamics of Emperor penguin, a species threatened by climate change.
607 *Biological Conservation*, 212, 63–73. <https://doi.org/10.1016/j.biocon.2017.05.017>

608 Jezek, K. C., Curlander, J. C., Carsey, F., Wales, C., and Barry, R. G. (2013). RAMP AMM-1 SAR
609 Image Mosaic of Antarctica, Version 2. Boulder, Colorado USA. NSIDC: National Snow and
610 Ice Data Center. doi: <https://doi.org/10.5067/8AF4ZRPULS4H>.

611 Joiris, C. R. (2018). Seabird hotspots on icebergs in the Amundsen Sea, Antarctica. *Polar Biology*,
612 41(1), 111–114. <https://doi.org/10.1007/s00300-017-2174-4>

613 Jonsen, I. D., McMahon, C. R., Patterson, T. A., Auger-Méthé, M., Harcourt, R., Hindell, M. A., &
614 Bestley, S. (2019). Movement responses to environment: fast inference of variation among
615 southern elephant seals with a mixed effects model. *Ecology*, 100(1), e02566.
616 <https://doi.org/10.1002/ecy.2566>

617 Karnovsky, N., Ainley, D. G., & Lee, P. (2007). Chapter 12 The Impact and Importance of Production
618 in Polynyas to Top-Trophic Predators: Three Case Histories. In *Elsevier Oceanography Series*
619 (Vol. 74, pp. 391–410). Elsevier. Retrieved from
620 <http://linkinghub.elsevier.com/retrieve/pii/S0422989406740120>

621 Kim, S., Saenz, B., Scanniello, J., Daly, K., & Ainley, D. (2018). Local climatology of fast ice in
622 McMurdo Sound, Antarctica. *Antarctic Science*, 30(2), 125–142.
623 <https://doi.org/10.1017/S0954102017000578>

624 Kirkwood, R., & Robertson, G. (1997a). Seasonal change in the foraging ecology of emperor penguins
625 on the Mawson Coast, Antarctica. *Marine Ecology Progress Series*, 156, 205–223. Retrieved
626 from

627 https://www.researchgate.net/profile/Roger_Kirkwood/publication/250216297_Seasonal_change_in_the_foraging_ecology_of_emperor_penguins_on_the_Mawson_Coast_Antarctica/links/00b4951ee27ca39438000000.pdf

628

629

630 Kirkwood, R., & Robertson, G. (1997b). The foraging ecology of female emperor penguins in winter.

631 *Ecological Monographs*, 67(2), 155–176. Retrieved from

632 [http://www.esajournals.org/doi/abs/10.1890/0012-9615\(1997\)067%5B0155:TFEOF%5D2.0.CO%3B2](http://www.esajournals.org/doi/abs/10.1890/0012-9615(1997)067%5B0155:TFEOF%5D2.0.CO%3B2)

633

634 Kooyman, G., Ainley, D., Ballard, G., & Ponganis, P. (2007). Effects of giant icebergs on two emperor

635 penguin colonies in the Ross Sea, Antarctica. *Antarctic Science*, 19, 31–38.

636 Kooyman, G. L., Ponganis, P. J., Castellini, M. A., Ponganis, E. P., Ponganis, K. V., Thorson, P. H., et

637 al. (1992). Heart rates and swim speeds of emperor penguins diving under sea ice. *The*

638 *Journal of Experimental Biology*, 165, 161–180.

639 Kooyman, Gerald L. (1993). Breeding habitats of emperor penguins in the western Ross Sea. *Antarctic*

640 *Science*, 5(02). <https://doi.org/10.1017/S0954102093000203>

641 Labrousse, S., Williams, G., Tamura, T., Bestley, S., Sallée, J.-B., Fraser, A. D., et al. (2018). Coastal

642 polynyas: Winter oases for subadult southern elephant seals in East Antarctica. *Scientific*

643 *Reports*, 8(1). <https://doi.org/10.1038/s41598-018-21388-9>

644 Le Guen, C., Kato, A., Raymond, B., Barbraud, C., Beaulieu, M., Bost, C.-A., et al. (2018).

645 Reproductive performance and diving behaviour share a common sea-ice concentration

646 optimum in Adélie penguins (*Pygoscelis adeliae*). *Global Change Biology*, 24(11), 5304–

647 5317. <https://doi.org/10.1111/gcb.14377>

648 Liu, J. (2004). Interpretation of recent Antarctic sea ice variability. *Geophysical Research Letters*,

649 31(2). <https://doi.org/10.1029/2003GL018732>

650 Massom, R., Hill, K., Barbraud, C., Adams, N., Ancel, A., Emmerson, L., & Pook, M. (2009). Fast ice

651 distribution in Adélie Land, East Antarctica: interannual variability and implications for

652 emperor penguins *Aptenodytes forsteri*. *Marine Ecology Progress Series*, 374, 243–257.

653 <https://doi.org/10.3354/meps07734>

654 Massom, R. A., & Stammerjohn, S. E. (2010). Antarctic sea ice change and variability – Physical and

655 ecological implications. *Polar Science*, 4(2), 149–186.

656 <https://doi.org/10.1016/j.polar.2010.05.001>

657 Meehl, G. A., Arblaster, J. M., Chung, C. T. Y., Holland, M. M., DuVivier, A., Thompson, L., et al.

658 (2019). Sustained ocean changes contributed to sudden Antarctic sea ice retreat in late 2016.

659 *Nature Communications*, 10(1), 14. <https://doi.org/10.1038/s41467-018-07865-9>

660 Meijers, A. J. S., Meredith, M. P., Murphy, E. J., Chambers, D. P., Belchier, M., & Young, E. F.

661 (2019). The role of ocean dynamics in king penguin range estimation. *Nature Climate Change*, 9(2), 120–121. <https://doi.org/10.1038/s41558-018-0388-2>

662 Michael, K. J., Hill, K., Australia. Antarctic Division, Antarctic CRC, & Commonwealth Bureau of

663 Meteorology (Australia). (2003). *Sea ice atlas : East Antarctica : AVHRR imagery 1992-1999, August 2003*. Antarctic CRC.

664

665

666 Nicol, S., Pauly, T., Bindoff, N. L., & Wright, S. (2000). Ocean circulation off east Antarctica affects

667 ecosystem structure and sea-ice extent. *Science*, 260, 1617–1623. Retrieved from
668 <http://www.ccpo.odu.edu/~klinck/Reprints/PDF/nicolNature00.pdf>

669 Parkinson, C. L., & Cavalieri, D. J. (2012). Antarctic sea ice variability and trends, 1979-2010. *The*
670 *Cryosphere*, 6(4), 871–880. <https://doi.org/10.5194/tc-6-871-2012>

671 Parkinson, C. L. (2019). A 40-y record reveals gradual Antarctic sea ice increases followed by
672 decreases at rates far exceeding the rates seen in the Arctic. *Proceedings of the National*
673 *Academy of Sciences*, 116(29), 14414–14423. <https://doi.org/10.1073/pnas.1906556116>

674 Pebesma, E. J., & Bivand, R. S. (2005). Classes and methods for spatial data in R. *R News*, 5(2), 9–13.
675 Retrieved from <https://CRAN.R-project.org/doc/Rnews/>

676 Prévost, J. (1961). *Écologie du manchot empereur Aptenodytes forsteri Gray* (Vol. 1291). Hermann.

677 Quetin, L. B., & Ross, R. M. (1985). Feeding by Antarctic Krill, *Euphausia superba*: Does Size Matter?
678 In W. R. Siegfried, P. R. Condy, & R. M. Laws (Eds.), *Antarctic Nutrient Cycles and Food*
679 *Webs* (pp. 372–377). Berlin, Heidelberg: Springer Berlin Heidelberg.
680 https://doi.org/10.1007/978-3-642-82275-9_52

681 Quetin, Langdon B., & Ross, R. M. (1991). Behavioral and physiological characteristics of the
682 Antarctic krill, *Euphausia superba*. *American Zoologist*, 31(1), 49–63. Retrieved from
683 <http://az.oxfordjournals.org/content/31/1/49.abstract>

684 Robertson, G., Wienecke, B., Emmerson, L., & Fraser, A. D. (2014). Long-Term Trends in the
685 Population Size and Breeding Success of Emperor Penguins at the Taylor Glacier Colony,
686 Antarctica. *Polar Biolg*, 37, 251–259.

687 Rodary, D., Bonneau, W., Le Maho, Y., & Bost, C. A. (2000). Benthic diving in male emperor
688 penguins *Aptenodytes forsteri* foraging in winter. *Marine Ecology Progress Series*, 207, 171–
689 181. Retrieved from <http://www.jstor.org/stable/24863788>

690 Ropert-Coudert, Y., Kato, A., Shiomi, K., Barbraud, C., Angelier, F., Delord, K., et al. (2018). Two
691 Recent Massive Breeding Failures in an Adélie Penguin Colony Call for the Creation of a
692 Marine Protected Area in D'Urville Sea/Mertz. *Frontiers in Marine Science*, 5, 264.
693 <https://doi.org/10.3389/fmars.2018.00264>

694 Smith, K. L., Robison, B. H., Helly, J. J., Kaufmann, R. S., Ruhl, H. A., Shaw, T. J., et al. (2007). Free-
695 Drifting Icebergs: Hot Spots of Chemical and Biological Enrichment in the Weddell Sea.
696 *Science*, 317(5837), 478–482. <https://doi.org/10.1126/science.1142834>

697 Southwell, C., Emmerson, L., McKinlay, J., Newbery, K., Takahashi, A., Kato, A., et al. (2015).
698 Spatially extensive standardized surveys reveal widespread, multi-decadal increase in East
699 Antarctic Adélie penguin populations. *PLOS ONE*, 10(10), e0139877.
700 <https://doi.org/10.1371/journal.pone.0139877>

701 Stammerjohn, S., Massom, R., Rind, D., & Martinson, D. (2012). Regions of rapid sea ice change: An
702 inter-hemispheric seasonal comparison. *Geophysical Research Letters*, 39(6).
703 <https://doi.org/10.1029/2012GL050874>

704 Stern, H. L., & Laidre, K. L. (2016). Sea-ice indicators of polar bear habitat. *The Cryosphere*, 10(5),
705 2027–2041. <https://doi.org/10.5194/tc-10-2027-2016>

706 Tamura, T., Ohshima, K. I., Markus, T., Cavalieri, D. J., Nihashi, S., & Hirasawa, N. (2007).

707 Estimation of Thin Ice Thickness and Detection of Fast Ice from SSM/I Data in the Antarctic
708 Ocean. *Journal of Atmospheric and Oceanic Technology*, 24(10), 1757–1772.
709 <https://doi.org/10.1175/JTECH2113.1>

710 Tamura, T., Ohshima, K. I., & Nihashi, S. (2008). Mapping of sea ice production for Antarctic coastal
711 polynyas. *Geophysical Research Letters*, 35(7). <https://doi.org/10.1029/2007GL032903>

712 Tamura, T., Ohshima, K. I., Nihashi, S., & Hasumi, H. (2011). Estimation of Surface Heat/Salt Fluxes
713 Associated with Sea Ice Growth/Melt in the Southern Ocean. *SOLA*, 7, 17–20.
714 <https://doi.org/10.2151/sola.2011-005>

715 Tamura, T., Ohshima, K. I., Fraser, A. D., & Williams, G. D. (2016). Sea ice production variability in
716 Antarctic coastal polynyas. *Journal of Geophysical Research: Oceans*.
717 <https://doi.org/10.1002/2015JC011537>

718 Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., et al.
719 (2004). Extinction risk from climate change, 427, 5.

720 Turner, J., Comiso, J. C., Marshall, G. J., Lachlan-Cope, T. A., Bracegirdle, T., Maksym, T., et al.
721 (2009). Non-annular atmospheric circulation change induced by stratospheric ozone depletion
722 and its role in the recent increase of Antarctic sea ice extent. *Geophysical Research Letters*,
723 36(8). <https://doi.org/10.1029/2009GL037524>

724 Wienecke, B., & Robertson, G. (1997). Foraging space of emperor penguins Aptenodytes forsteri in
725 Antarctic shelf waters in winter. *Marine Ecology Progress Series*, 159, 249–263.
726 <https://doi.org/10.3354/meps159249>

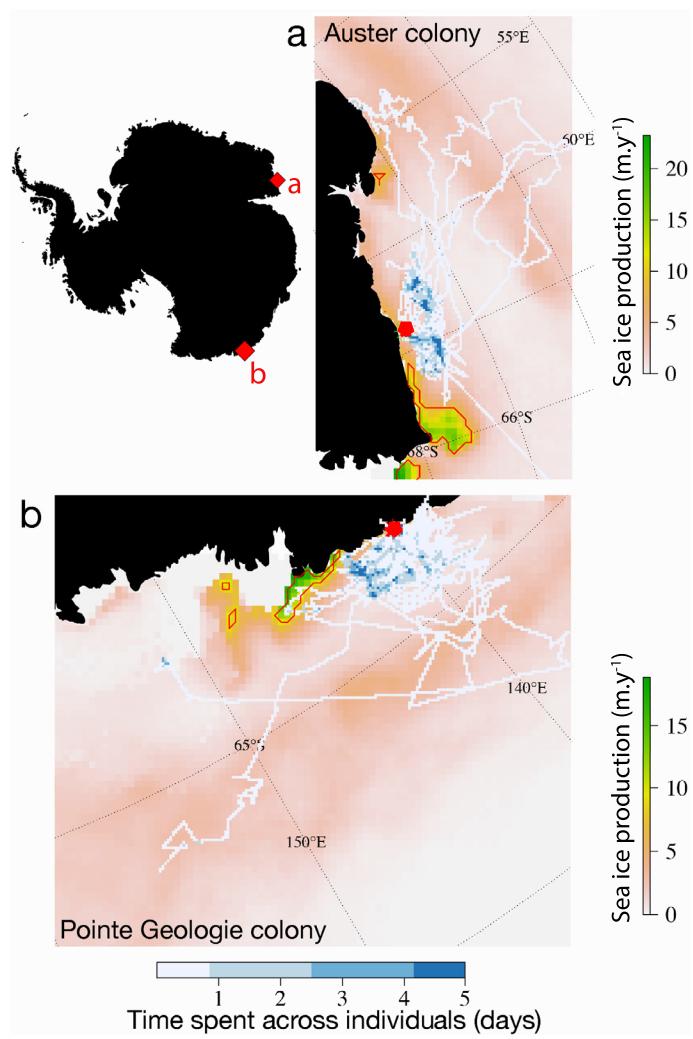
727 Williams, G. D., Hindell, M., Houssais, M.-N., Tamura, T., & Field, I. C. (2011). Upper ocean
728 stratification and sea ice growth rates during the summer-fall transition, as revealed by
729 Elephant seal foraging in the Adélie Depression, East Antarctica. *Ocean Science*, 7(2), 185–
730 202. <https://doi.org/10.5194/os-7-185-2011>

731 Worby, A. P., Massom, R. A., Allison, I., Lytle, V. I., & Heil, P. (2013). East Antarctic Sea Ice: A
732 Review of Its Structure, Properties and Drift. In M. O. Jeffries (Ed.), *Antarctic Research*
733 Series (pp. 41–67). Washington, D. C.: American Geophysical Union.
734 <https://doi.org/10.1029/AR074p0041>

735 Zimmer, I., Wilson, R. P., Gilbert, C., Beaulieu, M., Ancel, A., & Plötz, J. (2007). Foraging
736 movements of emperor penguins at Pointe Géologie, Antarctica. *Polar Biology*, 31(2), 229–
737 243. <https://doi.org/10.1007/s00300-007-0352-5>

738 Zwally, H. J. (2002). Variability of Antarctic sea ice 1979–1998. *Journal of Geophysical Research*,
739 107(C5). <https://doi.org/10.1029/2000JC000733>

740


741

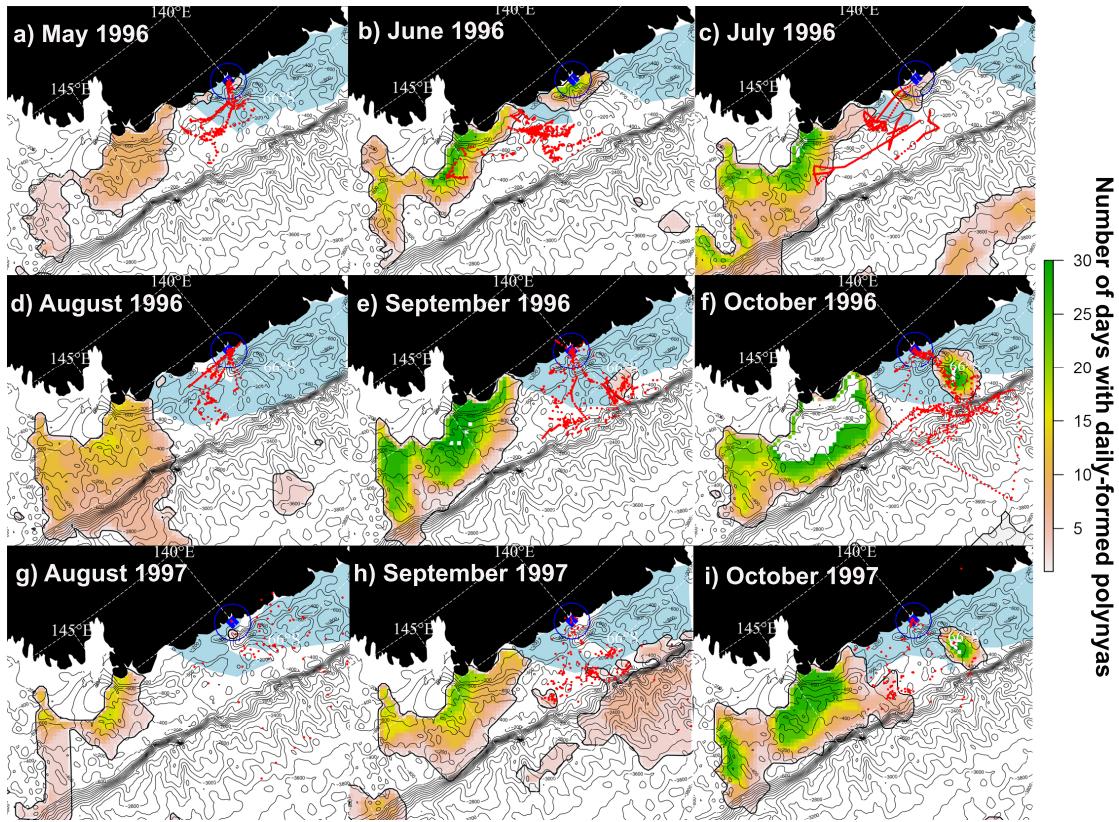
742

743

744

745

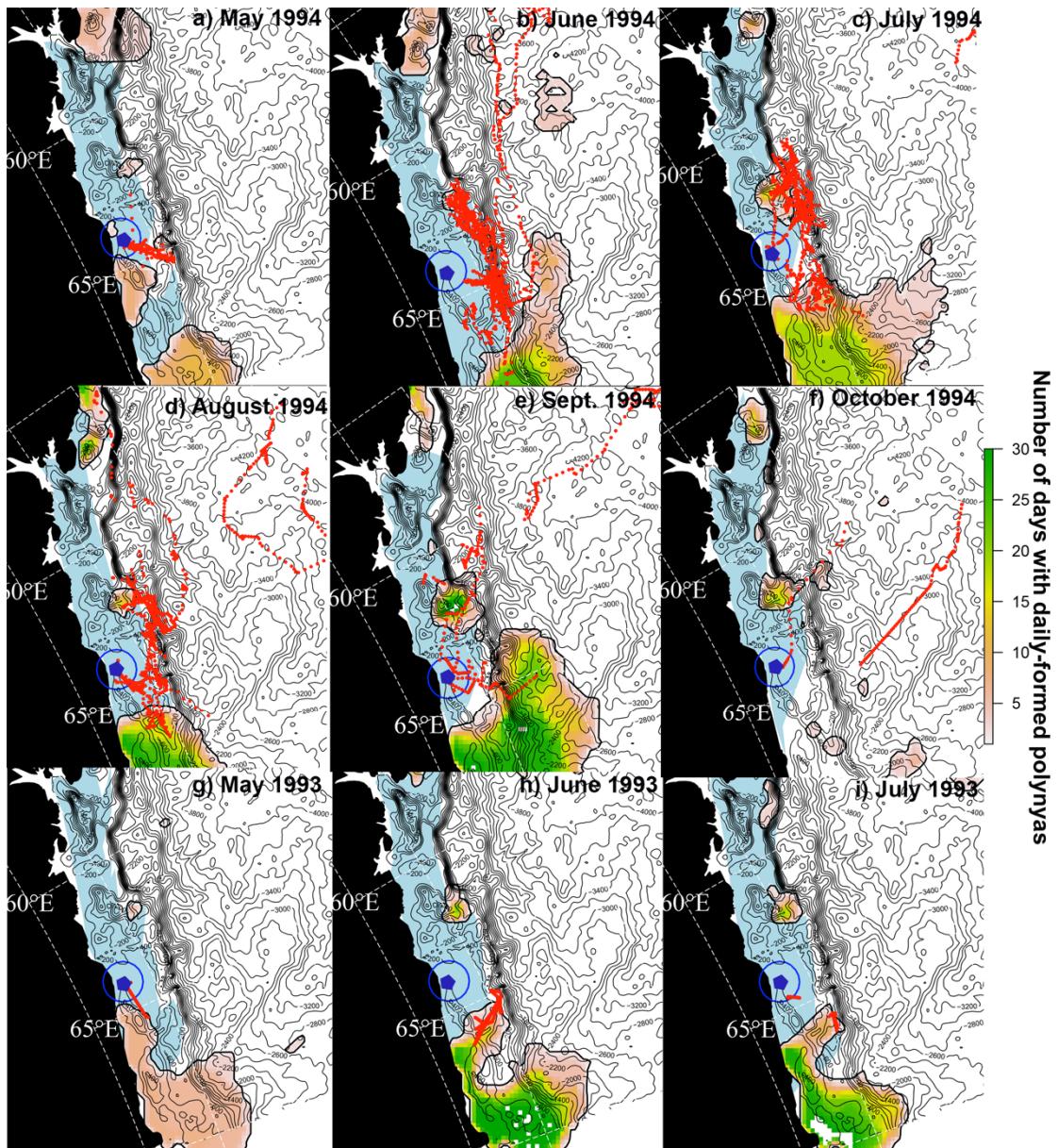
746 **Figures**


747

748

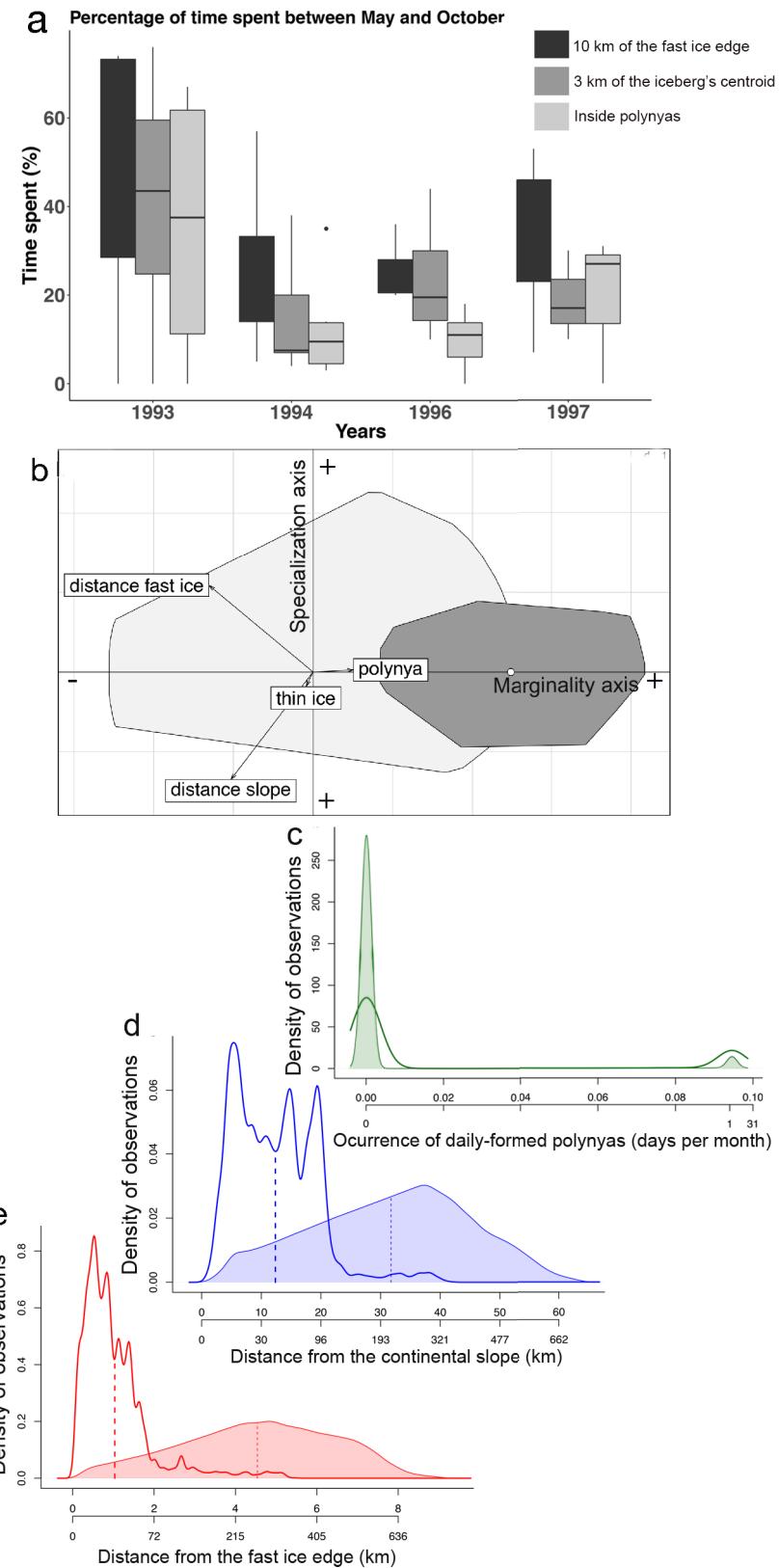
749 **Figure 1.** Habitat usage (hours spent by all individuals per 5 km² grid cell) of 47
750 breeding emperor penguins equipped at (a) Auster (1993, 1994) and (b) Pointe
751 Géologie (1996, 1997) colonies relative to the presence of recurrent yearly coastal
752 polynyas (green indicates greatest open water). For each colony, annual sea-ice
753 production (determined from March through October) was averaged between the two
754 years and the polynya definition (delineated in red) was determined using a threshold
755 of 8 m.y⁻¹ of sea-ice production. The colony locations are represented by red
756 polygons.

757


758

759

760 **Figure 2.** Polynya usage of 29 breeding emperor penguins equipped at Pointe
 761 Géologie in 1996 and 1997 (locations = 4373). Each map represents the number of
 762 days of presence within each month of daily-formed polynya based on a sea-ice
 763 production threshold of 0.002 m.d^{-1} (grid cell of $6.25 \text{ km} \times 6.25 \text{ km}$). Penguin
 764 locations are represented by red dots. The monthly fast ice extent is represented by a
 765 blue polygon and was obtained from the fast ice images from the AVHRR Coastal
 766 Atlas of East Antarctica with a 1.1 km resolution. Sometimes the polynya delineation
 767 overlapped the fast ice extent as one is at a daily-scale while the other is at the
 768 monthly scale. The colony location is represented by a blue polygon and a radius of
 769 30 km around the colony is represented by a blue circle. The bathymetry contours are
 770 from ETOPO1 (1 arc-minute). For illustration purposes, November 1996 and 1997
 771 were not represented due to insufficient data.


772

773

774 **Figure 3.** Polynya usage of 18 breeding emperor penguins equipped at Auster in 1993
 775 and 1994 (locations = 5289). Refer to Figure 2 for the legend description. For
 776 illustration purposes, August 1993 and November 1994 were not represented due to
 777 insufficient data.

778

779

780 **Figure 4.** Time spent between sea-ice habitats and ecological niche modelling for the
 781 47 breeding emperor penguins tracked in 1993, 1994, 1996, 1997 at the Auster and
 782 Pointe Géologie colonies. Panel (a) shows the time spent among years by adult
 783 emperor penguins within 10 km of the fast ice edge on top of ice or in the water,

784 within 3 km of the icebergs' centroid and daily-identified polynyas. The time spent
785 (expressed in %) represented by a boxplot was computed per month between May and
786 October for each year. Panel (b) shows the main result of the Ecological Niche Factor
787 Analysis with the four variables considered: distance from the fast ice and continental
788 slope edges, the occurrence of daily formed-polynyas and thin ice patches. The
789 abscissa axis represents the marginality axis (the direction and the magnitude, positive
790 or negative, from which the distribution of habitat use - displayed by a dot - differs
791 from the distribution of the habitat available – the origin of the axes). The ordinate
792 axis is the specialization axis (represented by absolute values, it shows which
793 proportion of the habitat available is used; large values represent a narrow and
794 specialized used, while small value represent a larger used of the habitat available and
795 less specialized). The dark grey polygon shows the position of the distribution of the
796 habitat used, whereas the light grey polygon displays the position of the distribution
797 of the habitat available. Panels (c), (d) and (e) represent the probability density
798 distribution of the habitat available (thinner colour-filled curves) versus the habitat
799 used (thicker non-filled curves) for the transformed variables used in the Ecological
800 Niche Factor Analysis: the occurrence of daily formed-polynyas (expressed in days
801 per month), the distance from the fast-ice edge and the continental slope (expressed in
802 km) respectively. The x-axis displays both the transformed and observed values.