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Determination of Stresses in
Incrementally Deposited Films
From Wafer-Curvature
Measurements
We report closed-form formulas to calculate the incremental-deposition stress, the elastic
relaxation stress, and the residual stress in a finite-thickness film from a wafer-curvature
measurement. The calculation shows how the incremental deposition of a new stressed
layer to the film affects the amount of the film/wafer curvature and the stress state of the
previously deposited layers. The formulas allow the incremental-deposition stress and the
elastic relaxation to be correctly calculated from the slope of the measured curvature
versus thickness for arbitrary thicknesses and biaxial moduli of the film and the substrate.
Subtraction of the cumulative elastic relaxation from the incremental-deposition stress
history results in the residual stress left in the film after the whole deposition process.
The validities of the formulas are confirmed by curvature measurements of electrodeposited
Ni films on substrates with different thicknesses. [DOI: 10.1115/1.4047572]
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1 Introduction
Residual stress in thin films is a persistent and challenging

problem for many applications, motivating many studies of it [1–
3]. Wafer-curvature measurement during thin-film deposition is a
popular technique for determining the evolution of residual stress
in a film [4]. A schematic of an apparatus for such measurements
(multi-beam optical stress sensor (MOSS) [5]) is shown in
Fig. 1(a). It is a common practice that the stress in the layer
caused by incremental deposition is determined by measuring the
change in the curvature with film thickness [6,7]. However, the
evaluation of the stress in incrementally deposited films has been
based on a severely limited thin-film approximation on the elastic
deformation of the film/substrate system. Here, we derive a
general stress-evaluation formula for the growth of incrementally
deposited finite-thickness films and experimentally verify the accu-
racy of the formula.
When a solid film is grown on a substrate by incremental deposi-

tion of atoms, the incremental process of solid-film formation on the
surface of the growing film creates stress in the newly deposited
layer. From a mechanics point of view, the stress formation in the
incremental layer is regarded as if a thin elastic incremental layer
is pre-stretched and glued on the surface of the growing film, fol-
lowed by the release of the pre-stretching end forces. Here, the
incremental-deposition stress stands for the self-equilibrium stress
in the incremental layer after the release of the pre-stretching end
forces. In the rest of the paper, we abbreviate the incremental-
deposition stress as “ID stress.” The ID stress induces the increment
of wafer curvature, and the incremental change of curvature with
thickness is proportional to the ID stress unless microstructural
relaxation processes such as subsurface grain growth are occurring.

The curvature variation, then, elastically and cumulatively relaxes
the stress in the previously grown part of the film, in response to
successive incremental-deposition processes.
In previous treatments of wafer-curvature analysis, there were

two critical flaws in evaluating the residual stress distribution in
an incrementally deposited film of finite thickness [1–4]. One is
that stress relaxation in the underlying layers has been ignored or
assumed negligible when new layers are deposited. The other is
the thin-film approximation in which the effects of the thickness
and the modulus of the film are ignored, underestimating the
bending stiffness of the growing film/substrate composite structure.
The cumulative underestimation of the bending stiffness requires a
significant correction factor to obtain the ID stress from curvature
measurements. Besides, the overall distribution of the stress relax-
ation made during the film growth has to be subtracted from the
ID stress distribution to obtain the resultant residual stress in the
film. In this paper, we derive closed-form formulas for the correc-
tion factor of the ID stress and the cumulative relaxation stress to
get the resultant residual stress.
A schematic of the film growth and the stress distribution in the

film are shown on an undeformed configuration in Fig. 1(b), where
σ(y; hf) represents the stress at a distance y from the interface for a
film thickness hf. Since a film is often grown over an interfacial
binding layer on the substrate, the effects of a binding layer of thick-
ness hb are included in the analysis in Appendix. Throughout the
paper, we denote normalized variables with a “hat,” for which the
substrate thickness hs normalizes position or length variables, and
the substrate biaxial modulus Ms normalizes stress variables;
σ̂(ŷ; ĥf ) = σ(y/hs; hf /hs)/Ms, ĥb = hb/hs, and M̂f =Mf /Ms. Here,
M represents the biaxial modulus, M=E/(1− ν), of Young’s
modulus E and Poisson’s ratio ν. The subscripts f, s, and b imply
film, substrate, and binding layer respectively. The deformation is
assumed to be within the limit of linear-elasticity analysis [8], and
hs much smaller than the lateral dimension of the substrate, so
that edge effects near the periphery of the substrate are negligible.
In Ref. [8], the validity limit of linear-elasticity analysis is provided,
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based on the large-deflection analysis of a thin bimaterial plate with
a misfit strain, but not for general incremental deposition.

2 Growth of a Finite-Thickness Film on a
Homogeneous Substrate
For a configuration of incremental solid-film deposition on a sub-

strate, we begin with a simple case with no binding layer, hb= 0. At
this point, we consider the substrate homogeneous and linear
elastic, and the stress distribution on the cross section, −hs≤ y≤
hf, is in self-equilibrium so that the net force and moment on the
cross section vanish

∫hf

−hs
σ(y; hf ) dy = 0 (1a)

∫hf

−hs
yσ(y; hf ) dy = 0 (1b)

Here, σ(y; hf) refers to the residual stress at y in a film with thick-
ness hf, for 0 < y≤ hf. Then, the residual stress σ(hf;hf) at y= hf is the
ID stress σID(hf) of the film with thickness hf. However, note that, in
general, the ID stress σID(y)(=σ(y; y)) is not the same as the residual
stress σ(y; hf) at y≠ hf in the film with thickness hf. Once the stress
distribution in the substrate is expressed in terms of the interface
curvature κ(i) and the interface-stretch strain ϵ(i) as

σ(y; hf ) =Ms(−κ(i)y + ϵ(i)) for − hs ≤ y ≤ 0 (2)

insertion of Eq. (2) into Eqs. (1a) and (1b), followed by non-
dimensionalization, yields

κ̂(i) = 6
∫ĥf

0
σ̂(ŷ; ĥf )dŷ + 12

∫ĥf

0
ŷσ̂(ŷ; ĥf )dŷ (3a)

for which κ̂(i) = hsκ(i), and

ϵ(i) = −4
∫ĥf

0
σ̂(ŷ; ĥf )dŷ − 6

∫ĥf

0
ŷσ̂(ŷ; ĥf ) dŷ (3b)

The second term on the right-hand side of Eq. (3a) is the
second-order term of ĥf , i.e., O(ĥ2f ), and is usually neglected for a
very thin film, ĥf ≪ 1. The first term of Eq. (3a) stands for the tra-
ditional Stoney formula [9] of wafer curvature caused by thin-film
deposition.

By taking derivatives of Eqs. (3a) and (3b) with respect to ĥf , we
obtain

dκ̂(i)
dĥf

= 6σ̂(ĥf ; ĥf ) + 6
∫ĥf

0

∂σ̂(ŷ; ĥf )
∂ĥf

dŷ

+ 12ĥf σ̂(ĥf ; ĥf ) + 12
∫ĥf

0
ŷ
∂σ̂(ŷ; ĥf )

∂ĥf
dŷ (4a)

and

dϵ(i)
dĥf

= −4σ̂(ĥf ; ĥf )

− 4
∫ĥf

0

∂σ̂(ŷ; ĥf )
∂ĥf

dŷ − 6ĥf σ̂(ĥf ; ĥf )

− 6
∫ĥf

0
ŷ
∂σ̂(ŷ; ĥf )

∂ĥf
dŷ (4b)

where σ̂(ĥf ; ĥf ) is the ID stress and the term ∂σ̂(ŷ; ĥf )/∂ĥf repre-
sents the rate of stress relaxation on the cross section of the film,
caused by the deposition-induced elastic and inelastic deformation
of the film.
Next, we consider the resultant residual stress distribution in the

growing film as the sum of the ID stress, σ̂(ŷ; ŷ), and the relaxation
stress, σ̂rel(ŷ; ĥf )

σ̂(ŷ; ĥf ) = σ̂(ŷ; ŷ) + σ̂rel(ŷ; ĥf ) (5a)

Unless inelastic deformation is taking place due to subsurface
microstructural rearrangement of materials in the film, the relaxa-
tion stress, σ̂rel(ŷ; ĥf ), is solely instigated by the elastic bending-
stretching relaxation, σ̂e(ŷ; ĥf ), as

σ̂rel(ŷ; ĥf ) = σ̂e(ŷ; ĥf )

= M̂f [−{κ̂(i)(ĥf ) − κ̂(i)(ŷ)}ŷ + {ε(i)(ĥf ) − ε(i)(ŷ)}]
(5b)

Fig. 1 (a) Schematic of MOSS for real-time curvature measurement used for Ni films electrodeposited onto a Si substrate and
(b) schematic of the deposition of an incremental film layer Δhf to the previously deposited film with thickness hf. The binding
layer with thickness hb is deposited to the substrate with thickness hs.
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Thereafter, taking derivatives of Eqs. (5a) and (5b) with respect
to ĥf leads to

∂σ̂(ŷ; ĥf )
∂ĥf

=
∂σ̂e(ŷ; ĥf )

∂ĥf

= M̂f −ŷ
dκ̂(i)(ĥf )

dĥf
+
dε(i)(ĥf )

dĥf

[ ]

(6)

Then, insertion of Eq. (6) into Eqs. (4a) and (4b) gives the ID stress
for the growth of a finite-thickness film in terms of the curvature
variation rate as

σ̂ID(ĥf ) = σ̂(ĥf ; ĥf )

=
1
6

1 + M̂f ĥf
4 − 2/M̂f + 5ĥf + 4ĥ

2
f + M̂f ĥ

3
f

1 + 2ĥf + M̂f ĥ
2
f

⎛

⎝

⎞

⎠

⎧
⎨

⎩

⎫
⎬

⎭
dκ̂(i)
dĥf

(7)

For a thin film, ĥf ≪ 1, Eq. (7) brings down to the first-order
formula with respect to ĥf as

σ̂(1)ID (ĥf ) =
1
6

1 + M̂f ĥf 4 −
2
M̂f

( ){ }
dκ̂(i)
dĥf

(7a)

Equation (7a) can be further reduced to the zeroth-order formula
of the traditional thin-film approximation

σ̂(0)ID (ĥf ) =
1
6
dκ̂(i)
dĥf

(7b)

Equation (7b) has been traditionally derived from the Stoney
formula [9] and widely used to evaluate the final residual stress in
the film with wafer-curvature measurements for the growth of
thin films [10,11] as σ̂(ŷ; ĥf ) ≈ σ̂(0)ID (ŷ), ignoring the stress-relaxation
term σ̂rel(ŷ; ĥf ) in Eq. (5a). However, the relaxation term is not neg-
ligible for growth of finite-thickness films. Furthermore, the con-
ventional evaluation with the zeroth-order term, σ̂(0)ID (ĥf ),
substantially underestimates the true ID stress σ̂ID(ĥf ) expressed
in Eq. (7), for film growth on a relatively thin substrate. In Sec. 3,
we show the significance of the correction factor of the ID stress
evaluation, the curly bracket term in Eq. (7), as well as of the
stress relaxation term, Eq. (5b), in real experiments.

3 Experiment
The experimental studies were based on previous measurements

of stress in a Ni film electrodeposited over a Cu layer on a silicon
wafer [12]. Although the grain size changed with film thickness,
it did not change after the growth was stopped. Multiple studies
showed that the stress evolution was very reproducible for multiple
runs during deposition under identical conditions. Therefore, we
could expect that the ID stress distribution would be the same for
films grown on different substrate thicknesses if the same growth
conditions were used.
The samples were initially prepared by evaporating 10 nm Ti fol-

lowed by 150 nm Cu onto (100) Si substrates. The Ti layer was
deposited to improve the adhesion with the substrate, and the Cu
layer was deposited for conduction. Ni films were subsequently
electrodeposited at room temperature under galvanostatic control
using a saturated calomel electrode (SCE) reference. The Ni was
continuously deposited to a maximum thickness of 19.4 µm at a
growth rate of 3.30 nm/s with an electrolyte concentration of
0.36 mol/l nickel sulfamate and 0.65 mol/l boric acid.
Curvature measurements were done using the MOSS technique

[5]. This method monitors the changes in spacing between parallel
laser beams which are reflected from the side of the substrate that is

not deposited on during the deposition. The curvature resolution of
the MOSS system is 1.6× 10−4 m−1, providing a sensitivity of
0.1 N/m for a Si wafer substrate with a thickness of 155 μm. The
growth was made on substrates with thicknesses of 460 μm and
155 μm. The lateral dimension of both samples is 33 mm×
10 mm. The sample was clamped at one end, but finite element
method (FEM) calculations confirm that the curvature deviates
from an unclamped sample by less than 1%.
X-ray diffraction measurements showed that the Ni samples had

a strong <111> fiber texture, i.e., the grains in the film have their
<111> axis normal to the surface, while the orientation in the
plane of the film is random. In this case, the biaxial modulus for
the Ni is calculated to be 389.3 GPa [13]. The substrate is single
crystal Si with a (100) orientation, so its biaxial modulus is
180.3 GPa [14].

4 Results and Discussion
Curvature measurements for the films grown on the two different

substrate thicknesses (155 µm and 460 µm) are presented in
Fig. 2(a). The curvature measured on the thin substrate is seen to
be much larger than that from the thick substrate because of the
dependence of the curvature on 1/h2s in the leading order of
Eq. (3a). In Fig. 2(b), this curvature data are normalized by
Msh2s/6 to obtain the Stoney estimate of the stress-thickness. Surpris-
ingly, the Stoney stress-thickness curves are distinctively different
between the two. Because the films were prepared in the same
way, the ID stress distribution should be the same in both. Therefore,
we attribute the difference to the effect of the different substrate
thicknesses, not well contemplated in the conversion factor,
Msh2s/6, derived from the Stoney formula of thin-film approxima-
tion. In the following discussion, for detailed comparison, we
perform stress calculations using the values of the substrate thick-
nesses and the biaxial moduli from the experimental studies. Equa-
tion (A3) reveals that error made by neglecting the copper
interlayer is less than 0.2% for the thin substrate and less than
0.03% for the thick substrate. Therefore, Eq. (7) is used to evaluate
the ID stress for the following discussion, neglecting the effect of
the copper interlayer.
The correction factor overMsh2s/6 of Eq. (7b), F(ĥf ) which is the

term in the curly bracket of Eq. (7), is shown as a function of the
film thickness for the two different substrates in Fig. 2(c). When
the film is thin, the ratio is close to 1, as F(0)= 1, so that the ID
stress approaches the value obtained from the Stoney equation.
As long as the substrate is much thicker than the surface or the inter-
face stress layer of the substrate, the Stoney limit of Eq. (7), F(0)=
1, is valid. The Stoney formula’s validity can break down for an
early stage inhomogeneous coverage of atomic deposition on the
substrate surface, but the limit thickness in which the validity of
using the Stoney formula breaks down is very small and could
not be determined with the experimental resolution in Figs. 2(a)
and 2(b).
Beyond the limit thickness, the correction increases with the film

thickness, which means that the slope of the stress-thickness is
lower for the same value of the ID stress as the film gets thicker.
This can be understood by thinking of the effect of the previously
deposited layers on the bending stiffness of the underlying film/sub-
strate combination as the film thickness increases. The thicker the
underlying structure becomes, the less curvature is induced for addi-
tional layers of the stressed film. The correction is larger for the
thinner substrate since it increasingly depends on the ratio of film
thickness to substrate thickness. For the thinner substrate, the ID
stress differs by 5% from the amount estimated by the Stoney
when the thickness is only 1.1 µm. The same 5% deviation occurs
for the thicker substrate when the film is 3.4 µm. For the
maximum film thickness (19.4 μm) on the 155-µm substrate, the
ID stress determined from the slope of the stress-thickness is
almost a factor of 2 different from the value that would be incor-
rectly obtained without the thickness correction.
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For the measured curvature, we cannot assume a priori that the ID
stress is constant with thickness. In this case, the correct
stress-thickness is obtained by inserting the curvature versus film
thickness data of Fig. 2(a) into the integrated form of Eq. (7);

∫ĥf

0
σ̂ID(ŷ)dŷ =

1
6

∫ĥf

0
F(ŷ)

dκ̂(i)
dŷ

dŷ

=
1
6
F(ĥf )κ̂(i)(ĥf ) −

1
6

∫ĥf

0
κ̂(i)(ŷ)

dF
dŷ

dŷ

(8)

The integrated ID stress for the two substrate thicknesses after
this correction is shown in Fig. 2(d ).
In contrast to the Stoney stress-thickness curves shown in

Fig. 2(b), the two sets of the integrated ID stress data shown in
Fig. 2(d ) are very similar, consistent with our expectation that the
ID stress is the same in both sets of deposition.
Next, to understand how the residual stresses are distributed in

the two different films, at first, the ID stresses in the films are calcu-
lated and plotted in Figs. 3(a) and 3(b). We evaluate the ID stresses
in the films with Eq. (7) in which the curvature rates, dκ̂/dĥf , are
calculated by differentiating the cubic-polynomial best-fits of the

Fig. 2 (a) Measured curvature evolution of Ni films deposited onto two different Si substrates with thicknesses,
155 μm and 460 μm. The dashed lines represent the curves fitted by cubic equations. (b) Estimated stress-thickness
by normalizing the curvature data with Msh2

s/6 for Stoney’s calculation. (c) Correction factor for two different sub-
strate thicknesses hs, 155 μm and 460 μm. (d ) Integrated ID stress versus thickness for two different substrate thick-
nesses hs,155 μm and 460 μm.

Fig. 3 The ID stress, relaxation stress, and residual stress distribution for (a) hs=155 μm and (b) hs=
460 μm

101006-4 / Vol. 87, OCTOBER 2020 Transactions of the ASME



experimental curvature versus film thickness data in Fig. 2(a). The
two ID stresses exhibited in Figs. 3(a) and 3(b) are indeed very
close, decreasing with film thickness. The observed decrease of
the ID stress with thickness [15] is consistent with a measured
increase in the grain size at the surface, which decreases the
tensile contribution from the coalescence of grains [6]. When a
stress-loaded film is grown, the grain size coarsens [15], or the
surface roughness grows [16], effectively reducing the deposition
stress as the film grows thicker.
The ID stresses are, then, subtracted by relaxation stresses,

Eq. (5b), to get the residual stress distributions in the films, also
shown in Figs. 3(a) and 3(b). The stress relaxations in the films
grown on the substrates of two different thicknesses are very differ-
ent, and in turn, the resultant residual stresses are distinctive as well.
The residual stress in the film deposited on the 155 µm-thick sub-
strate has a noticeable gradient across the film thickness, while
that on the 460 µm-thick substrate is almost constant. The greater
degree of relaxation stress as the thickness increases has implica-
tions for applications such as Ni microelectromechanical system
(MEMS) [17]. Even if the ID stress is constant with thickness,
our results predict that the residual stress will have a larger gradient
in the film grown on a thinner substrate. A large stress gradient can
lead to significant curvature in the film when it is removed from the
substrate and hence deformation in the desired device [17]. It is also
noted here that if the film is grown under intense ion beam bom-
bardment in a sputtering deposition, the effects of subsurface micro-
structural rearrangement [18] have to be taken into account in
evaluating the residual stress in Eq. (5b).

5 Summary
In conclusion, we have derived closed-form formulas to calculate

the ID stress, the elastic relaxation, and the residual stress in an
incrementally deposited film of finite thickness, from wafer-
curvature measurements. The thin-film approximation employed
in the conventional Stoney formula was relaxed in the derivation.
In the derivation, we considered the curvature change induced by
adding a stressed incremental layer to the film under the assumption
that the stress in the previously deposited layer is only relaxed by
elastic bending and stretching due to the curvature change in subse-
quent deposition processes. Calculations and experimental mea-
surements show that the same stressed layer induces a smaller
change in the curvature as the film grows thicker, and the variation
and its consequence on the residual stress become significant as the
relative film thickness to the substrate thickness gets larger. The for-
mulas have been experimentally validated and made the accuracy of
the residual stress measurement substantially improved to precisely
assess stress-driven microstructural evolution in film growth by
incremental deposition.
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Appendix: Growth of a Finite-Thickness Film
on a Bilayer Substrate
The wafer-curvature experiment is often used to measure the

stress in the film deposited over a binding-layer, which is pre-
deposited between the film and the substrate. A configuration of
the double-layer deposition is depicted in Fig. 1(b). The self-
equilibrium equations of force and moment balance over the entire
cross section are, respectively, derived as for Eqs. (2a) and (2b):

κ̂(i)(1 + 2ĥb + M̂bĥ2b)

2(1 + M̂bĥb)
+ ϵ(i) +

1

(1 + M̂bĥb)

∫ĥf

0
σ̂(ŷ; ĥf )dŷ = 0

(A1a)

and

−
2κ̂(i)(1 + 3ĥb + 3ĥ2b + M̂bĥ3b)

3(1 + 2ĥb + M̂bĥ2b)
− ϵ(i)

+
2

(1 + 2ĥb + M̂bĥ2b)

∫ĥf

0
ŷσ̂(ŷ; ĥf ) dŷ = 0

(A1b)

Thereafter, the curvature of the interface between the film and the
binding layer is obtained as

κ̂(i) = 6C1

∫ĥf

0
σ̂(ŷ; ĥf )dŷ + 12C2

∫ĥf

0
ŷσ̂(ŷ; ĥf )dŷ (A2)

where the binding layer constants are C1 = (1 + 2ĥb + M̂bĥ2b)/D
and C2 = (1 + M̂bĥb)/D for which D = 1 + 4M̂bĥb + 6M̂bĥ2b+
4M̂bĥ3b +M2

b ĥ
4
b.

Following the same procedure as for finite-thickness film deposi-
tion on a homogeneous substrate from Eqs. (3a)–(7), we get the
ID stress for the growth of a finite-thickness film on a bilayer
substrate as

σ̂(b)ID (ĥf ) =
D1

6D2

dκ̂(i)
dĥf

(A3)

where

D1 = (1 + M̂bĥb) + M̂f {1 + 3C1(1 + 2ĥb + M̂bĥ2b)}ĥf

+ 3M̂f {C1(1 + M̂bĥb) + C2(1 + 2ĥb + M̂bĥ2b)}ĥ
2
f

+ 4C2M̂f (1 + M̂bĥb)ĥ3f + C2M̂2
f ĥ

4
f (A3a)

and

D2 = C1(1 + M̂bĥb) + 2C2ĥf (1 + M̂bĥb) + C2M̂f ĥ2f (A3b)

When the binding layer thickness vanishes, ĥb " 0, both constants
C1 and C2 become unity, and Eq. (A3) merges to the formula Eq. (7)
for finite-thickness film deposition on a homogeneous substrate.
Order analysis of Eqs. (A3a) and (A3b) reveals that if M̂bĥb ≪ 1,
we can safely use Eq. (7) to evaluate the film stress. Here, it is
noted that stress distribution in the binding layer and the substrate
is the superposition of the stress caused by the binding layer deposi-
tion and that by the subsequent film deposition.
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