

1 Rapid response of New England rivers to shifting boundary
2 conditions: processes, timeframes, and pathways to post-flood
3 channel equilibrium

4 **Carl E. Renshaw¹, Francis J. Magilligan², Helen G. Doyle¹, Evan N. Dethier¹, and Keith K.
5 Kantack¹**

6 ¹*Department of Earth Sciences, Dartmouth College, Hanover, NH 03755*

7 ²*Department of Geography, Dartmouth College, Hanover, NH 03755*

8

9 ABSTRACT

10 The timescale of channel recovery from disturbances indicates fluvial resiliency.
11 Quantitative predictions of channel recovery are hampered by multiple possible recovery
12 pathways and stable states and limited long-term observations that provide benchmarks for
13 testing proposed metrics. We take advantage of annual channel change measurements following
14 Tropical Storm Irene's 2011 landfall in New England (USA) to document geomorphic recovery
15 processes and pathways towards equilibrium. A covariate metric demonstrates that channels can
16 adjust rapidly to on-going boundary condition shifts, but that they adjust along a continuum of
17 possible stable states. Moreover, the covariate equilibrium metric indicates sensitivity to warm-
18 season high discharges that, in this region, are increasing in frequency. These data also show that
19 the channels are resilient in that they are able to recover an equilibrium form within 1 to 2 years
20 of disturbances.

21

22 **INTRODUCTION**

23 The timescale of channel recovery from the acute disturbance of extreme floods provides
24 an important proxy for fluvial resiliency to projected climate-induced changes where the
25 frequency of extreme floods is expected to increase (Tabacchi et al., 2009; Frei et al., 2015;
26 Collins, 2019). Early channel-recovery research presumed that a channel's equilibrium form is
27 uniquely defined such that, given sufficient time, favorable climate, and stable boundary
28 conditions, the channel recovers its pre-disturbance morphology (Schumm and Lichy, 1963;
29 Costa, 1974). Recent work, however, recognizes that multiple possible paths and outcomes
30 characterize channel recovery (Phillips, 2009; Dade et al., 2011; Major et al., 2019). Yet little
31 agreement exists on how to quantify fluvial equilibrium given the multiple possible recovery
32 pathways and stable states. East et al. (2018) observed a shift in sediment flux after a series of
33 moderate flood events and Rathburn et al. (2018) proposed that equilibrium could be identified
34 by the return of sediment flux to pre-disturbance values rather than by channel adjustments.
35 However, since disturbances to sediment source fluxes may recover at rates that are faster than
36 the channel's recovery rate, a return to pre-disturbance sediment flux may not coincide with the
37 establishment of channel geomorphic equilibrium (Rathburn et al., 2018).

38 Few long-term datasets of coupled response and recovery observations are available to
39 test equilibrium metrics. To address this limitation, we take advantage of Tropical Storm Irene's
40 2011 landfall in New England. Irene (recurrence interval > 100 years) generated record floods
41 for most of Vermont, western New Hampshire and northern Massachusetts (Fig. 1) with a range
42 of geomorphic impacts (Buraas et al., 2014; Gartner et al., 2015; Magilligan et al., 2015). We
43 build on a pre- and post-Irene database of topographic transects and grain size measurements to
44 better explicate geomorphic recovery processes and pathways towards equilibrium with keen

45 attention to the covariate ways that channel morphologies and bed grain size adjust over time.
 46 We show that a covariate metric of channel equilibrium permits situating the recovery process in
 47 a broader relation to climate, especially to on-going regional climate shifts.

48

49 COVARIATE EQUILIBRIUM METRIC

50 Quantifying channel equilibrium necessitates coupling channel morphological
 51 adjustments to sediment transport (Dade and Friend, 1998; Dade et al., 2011). Our approach is
 52 rooted in conventional sediment transport equations that often define sediment flux Q_s as

$$53 \quad Q_s \propto b(\theta - \theta_{cr})^a \quad \theta \geq \theta_{cr}, \quad (1)$$

54 where the Shields parameter θ is a dimensionless ratio of bed shear stress to submerged particle
 55 weight with a critical value θ_{cr} corresponding to the onset of significant sediment motion, and
 56 the coefficients a and b are assumed constant for a given sediment transport mode (Dade et al.,
 57 2011). Assuming that the dominant sediment transport mode is constant, for a given discharge
 58 for which $\theta > \theta_{cr}$, the sediment flux ratio after and before a disturbance Q_{s*} is

$$59 \quad Q_{s*} \equiv \frac{Q_s^{post}}{Q_s^{pre}} = \left(\frac{\theta^{post} - \theta_{cr}}{\theta^{pre} - \theta_{cr}} \right)^a = \left(\frac{\theta_* - \theta_{cr*}}{1 - \theta_{cr*}} \right)^a, \quad (2)$$

60 where $\theta_* \equiv \theta^{post} / \theta^{pre}$ and $\theta_{cr*} \equiv \theta_{cr} / \theta^{pre}$. This equation can be rearranged as

$$61 \quad \theta_* = (1 - \theta_{cr*})Q_{s*}^{1/a} + \theta_{cr*}. \quad (3)$$

62 In bed-load dominated rivers, bankfull discharge has been observed to exhibit just the
 63 necessary competence to move sediment, i.e., $\theta_{bankfull} \approx \theta_{cr}$ (Dade and Friend, 1998). This
 64 observation assumes the grain size used to define the Shields parameter equals the median grain
 65 size (D_{50}) and is limited to systems lacking localized flow complexity due to, for example, large
 66 woody debris. With this caveat, assuming the channel is in equilibrium prior to a disturbance, at

67 bankfull discharge $\theta_{cr*} \approx 1$. It follows from Eq. (3) and the assumption that θ_{cr} is a constant that
68 for an equilibrium channel at bankfull discharge (Dade et al., 2011)

69
$$\theta_* \approx \theta_{cr*} \approx 1. \quad (4)$$

70 Dade et al. (2011) showed that by expressing θ as a function of a dimensionless friction
71 coefficient (see supplemental material), Eq. (4) can be equivalently expressed as

72
$$W_* D_*^{3/2} S_*^{-1} \approx Q_* , \quad (5)$$

73 where the subscript (*) indicates dimensionless ratios of bankfull width W , bed grain size D ,
74 slope S , and discharge Q before and after the disturbance. Assuming the disturbance does not
75 significantly change the bankfull discharge ($Q_* \approx 1$), Eq. (5) shows that, for example, a channel
76 widened during an extreme discharge can return to equilibrium through a corresponding change
77 in S_* and/or D_* even if the width does not return to its pre-disturbance dimension. Thus Eq. (5)
78 explicitly allows for multiple stable channel states. Post-Irene field observations revealed few
79 significant channel course changes, with no avulsions or significant meandering near the
80 transects discussed here (Magilligan et al., 2015). Hence slopes near the transects have been
81 preserved ($S_* \approx 1$), and the covariate equilibrium condition can be simplified as

82
$$W_* D_*^{3/2} \approx 1 . \quad (6)$$

83

84 **EXAMPLE APPLICATION: SITES AND METHODS**

85 To demonstrate the covariate equilibrium metric, we take advantage of monumented
86 topographic cross-sections impacted by Irene ($n = 15$, Figure 1 and supplemental material),
87 surveyed before Irene, within three months after, and then once per year until 2017. Because of
88 logistical constraints, not all sites were surveyed yearly. The channels are all gravel-bedded with

89 slopes ranging from 0.001 to 0.027. Transect drainage areas range from 30 to 320 km². Large
90 woody debris is generally absent from all transects. At each cross-section, pebble counts
91 (Wolman, 1954) were used to determine D_{50} (Supplemental Table S1). Two-year recurrence
92 annual peak discharges at the transects estimated using StreamStats (Ries et al., 2017) and
93 assumed to approximate bankfull discharges (Andrews, 1980; Emmett and Wolman, 2001),
94 range from 12.5 to 144 m³s⁻¹. Regional discharge measurements were obtained from five U.S.
95 Geological Survey (USGS) stream gages in the study region (Fig. 1).

96 Cross sections were used to determine bankfull width and depth. The bankfull stage
97 elevation (using same datum as the transects) was determined in the field prior to Irene. Flow
98 models using the measured changes in channel morphology revealed that channel width and
99 depth changes were generally sufficiently small that the bankfull stage could be assumed
100 approximately constant. Bankfull widths were determined by the intersection of the topographic
101 cross-section and the bankfull stage, and bankfull depth as the quotient of bankfull cross-
102 sectional area and width. In each sampling year, all metrics were normalized by their pre-Irene
103 values, and the normalized values averaged over all transects measured that year to calculate W_*
104 and D_* and their standard errors. Standard significance tests determined the probability p that the
105 average normalized values differed from pre-Irene values.

106

107 **RESULTS**

108 **Channel Width, Depth, and Area**

109 Morphologic responses to Irene floods varied broadly. For example, five sites widened,
110 three narrowed, and width changes at the remaining seven sites were within the measurement
111 uncertainty (~2%). Channel widening was spatially infrequent and limited in magnitude,

112 exceeding 10% at only two sites, likely due to Irene's short duration and stabilizing bank
113 vegetation (Magilligan et al., 2015). Similarly variable channel depth and D_{50} changes occurred.
114 On average, measured channels slightly widened (3%), deepened (6%), and coarsened (4%), but
115 none of these changes are statistically significant ($p > 0.05$; Fig. 2).

116 Relative to pre-Irene values, no significant channel width or depth changes ($p > 0.05$)
117 occurred in the six years after Irene. The greatest change occurred in year two when average
118 channel depth decreased 10% relative to pre-Irene depths, yet even this change was not
119 significant ($p = 0.1$). The only significant change in individual channel properties over the period
120 of record was significant fining of D_{50} in years two ($p < 0.01$) and six ($p = 0.01$). Overall, no
121 consistent pattern emerges in individual metric variation following Irene nor in channel cross-
122 sectional area, which could potentially compensate for variations in the singular channel
123 morphology metrics.

124

125 ***Covariate Equilibrium***

126 To represent covariate changes in channel properties over time, in Figure 3 we plot width
127 change versus grain size change along with the equilibrium condition $W*D_*^{3/2} = 1$ (Eq. 6). Only in
128 years two ($p < 0.01$) and six ($p = 0.01$) are the covariate changes in the channel properties
129 significantly different from the equilibrium configuration. In both cases the disequilibrium
130 results mostly from channel bed fining. This same plot for transects with complete annual data
131 shows similar patterns.

132 Bed fining raises the possibility that the dominant mode of sediment transport changed
133 from bedload to mixed load, invalidating the assumption that coefficients a and b are constant.

134 However, most systems are bed-load dominated when $D_{50} \geq \sim 1$ cm (Dade et al., 2011) and
135 although we observe significant fining at some sites, $D_{50} \geq 1$ cm at all sites.

136 Figure 3 also indicates that the marginally significant increase in average channel width
137 in year five ($p = 0.09$) is accompanied by a reduction in average grain size – consistent with the
138 predictions of the covariate equilibrium condition (Eq. 6). Accordingly, although the channels
139 widened in year five, they maintained an equilibrium form, demonstrating the multiple stable
140 channel form states. Finally, Figure 3 also shows the rapid channel recovery following deviation
141 from the equilibrium line, such as after Irene and after year two. In both cases, the channel
142 adjusts back toward the equilibrium line in the subsequent years. After the smaller disequilibrium
143 due to Irene, the channels reached equilibrium after one year, while after the larger year two
144 disequilibrium, it required two years.

145

146 **Discussion**

147 Although Irene locally induced large changes in channel geometry and bed grain size
148 (Buraas et al., 2014; Gartner et al., 2015; Magilligan et al., 2015), and initiated or reactivated
149 nearly one thousand channel-proximal landslides (Dethier et al., 2016), when the geomorphic
150 changes in normalized channel width, depth, cross-sectional area, and D_{50} are averaged over the
151 impacted region (Fig. 1), little net change occurred. That is, average channel incision, widening,
152 and coarsening were nearly balanced by average channel aggradation, narrowing, and fining,
153 respectively (Gartner et al., 2015).

154 The limited impact of Irene flooding on average channel morphology makes the
155 significant disequilibrium apparent in years two and six (Fig. 3) surprising given the modest peak
156 discharges in post-Irene years. Average peak Irene discharge was nearly five times the 2-year

157 recurrence interval instantaneous peak discharge Q_2 (Fig. 1 inset). Since Irene, the ratio of annual
158 instantaneous peak discharges Q_{peak} to Q_2 exceeded two only once at one site.

159 To further explore the linkage between hydrologic shifts and channel disequilibrium, we
160 analyzed the timing and magnitude of the five highest daily mean discharges Q_{daily} for each year
161 on each gaged river (Fig. 4). To compare across watersheds, Q_{daily} was normalized by Q_2 .
162 Relatively high discharges ($Q_{daily}/Q_2 > \sim 0.5$) occurred not only in the two years with significant
163 disequilibrium, years two (2013) and six (2017), but also in years three (2014) and five (2016).
164 However, the high discharge timing in the equilibrium years (three and five) differs from the
165 disequilibrium years (two and six); significant disequilibrium occurred only when high
166 discharges occurred in summer months (shaded regions in Fig. 4). That is, both the magnitude
167 and timing of high discharges regulate their impact on the channel, with warm season events
168 impacting the channel more than cold season ones. This is noteworthy in that warm season high
169 discharges have become more frequent in New England since 1996 (Frei et al., 2015; Collins,
170 2019). That is, the more frequent high discharge types (i.e., warm season high discharges) are
171 those that generate the greatest impact on channel properties, most notably channel bed fining.
172 Channel bed fining is widely recognized to negatively impact aquatic ecosystems (Kemp et al.,
173 2011). The consistency of the fining across multiple, dispersed sites argues against a localized
174 sediment source due to, for example, logging, plowing, or road construction. Instead, fining
175 likely occurs because of finer sediment delivered from new and reactivated landslides that
176 occurred during Irene. (Grain size distributions and a photo of typical landslide are given in
177 supplemental material.) Dethier et al. (2016) showed that landslide scars continue to provide
178 elevated sediment inputs years after Irene. Because the landslides are frozen or snow-covered in
179 the winter and early spring, cold season high discharges are less effective at mobilizing sediment

180 from these landslides. In total, these results suggest that regional climate shifts currently
181 underway (Frei et al., 2015; Collins, 2019) are beginning to manifest geomorphologically.

182 Although the covariate equilibrium metric record indicates enhanced sensitivity to warm
183 season high discharges, the same record also shows that the channels are resilient in that they
184 recover to an equilibrium form within 1 to 2 years after major geomorphic events. The rapid
185 channel recovery is supported by the region's humid climate (Wolman and Gerson, 1978) and
186 abundant supply of sediment (Brierley et al., 2005) from glacial deposits. However, the
187 recovered channel forms differ from pre-Irene forms; they are, on average, slightly wider,
188 deeper, and finer. This shift in equilibrium form highlights the advantage of the covariate
189 equilibrium metric. For example, in year five the channels were, on average, 9% wider than pre-
190 Irene, a marginally significant change ($p = 0.09$). Considering width alone, we might conclude
191 that the channels had not recovered. However, that same year the covariate equilibrium
192 parameter $W*D_*^{3/2}$ only differs from its pre-Irene value by 2%, a non-significant change ($p =$
193 0.44). In fact, the covariate equilibrium parameter indicates that by year five, channels had
194 recovered an equilibrium form twice, first from the marginally significant disequilibrium induced
195 by Irene and then from the disequilibrium induced by the year 2 warm season high discharges.
196 The covariate metric demonstrates that channels can adjust rapidly to on-going boundary
197 condition shifts, but that they adjust along a continuum of possible stable states. With the
198 manifold complexity of geomorphic systems, it may never be possible to specifically predict
199 geomorphic recovery's timing and pathways, but these results provide a template to capture
200 channel evolution following a disturbance.

201

202 **ACKNOWLEDGMENTS**

203 This research was supported in part by the National Science Foundation (BCS-1636415). We
204 thank Jon Major, Sara Rathburn, and an anonymous reviewer for their thoughtful comments and
205 suggestions that greatly improved the manuscript.

206

207 **REFERENCES CITED**

208 Andrews, E. D., 1980, Effective and Bankfull Discharges of Streams in the Yampa River Basin,
209 Colorado and Wyoming: *Journal of Hydrology*, v. 46, no. 3-4, p. 311-330.

210 Brierley, G. J., Brooks, A. P., Fryirs, K., and Taylor, M. P., 2005, Did humid-temperate rivers in
211 the Old and New Worlds respond differently to clearance of riparian vegetation and
212 removal of woody debris?: *Progress in Physical Geography*, v. 29, no. 1, p. 27-49.

213 Buraas, E. M., Renshaw, C. E., Magilligan, F. J., and Dade, W. B., 2014, Impact of reach
214 geometry on stream channel sensitivity to extreme floods: *Earth Surface Processes and
215 Landforms*, v. 39, no. 13, p. 1778-1789.

216 Collins, M. J., 2019, River flood seasonality in the Northeast United States: Characterization
217 and trends: *Hydrological Processes*, v. 33, p. 687-698.

218 Costa, J. E., 1974, Response and recovery of a piedmont watershed from tropical storm Agnes,
219 June 1972: *Water Resources Research*, v. 10, no. 1, p. 106-112.

220 Dade, W. B., and Friend, P. F., 1998, Grain size, sediment-transport regime and channel slope in
221 alluvial rivers: *J. Geol.*, v. 106, p. 661-675.

222 Dade, W. B., Renshaw, C. E., and Magilligan, F. J., 2011, Sediment transport constraints on river
223 response to regulation: *Geomorphology*, v. 126, no. 1-2, p. 245-251.

224 Dethier, E., Magilligan, F. J., Renshaw, C. E., and Nislow, K. H., 2016, The role of chronic and
225 episodic disturbances on channel-hillslope coupling: the persistence and legacy of
226 extreme floods: *Earth Surface Processes and Landforms*, v. 41, no. 10, p. 1437-1447.

227 East, A. E., Stevens, A. W., Ritchie, A. C., Barnard, P. L., Campbell-Swarzenski, P., Collins, B.
228 D., and Conaway, C. H., 2018, A regime shift in sediment export from a coastal
229 watershed during a record wet winter, California: Implications for landscape response to

230 hydroclimatic extremes: *Earth Surface Processes and Landforms*, v. 43, no. 12, p. 2562-
231 2577.

232 Emmett, W. W., and Wolman, M. G., 2001, Effective discharge and gravel-bed rivers: *Earth*
233 *Surface Processes and Landforms*, v. 26, no. 13, p. 1369-1380.

234 Frei, A., Kunkel, K. E., and Matonse, A., 2015, The seasonal nature of extreme hydrological
235 events in the Northeastern United States: *Journal of Hydrometeorology*, v. 16, no. 5, p.
236 2065-2085.

237 Gartner, J. D., Magilligan, F. J., and Renshaw, C. E., 2015, Predicting the type, location and
238 magnitude of geomorphic responses to dam removal: Role of hydrologic and geomorphic
239 constraints: *Geomorphology*, v. 251, p. 20-30.

240 Kemp, P., Sear, D., Collins, A., Naden, P., and Jones, I., 2011, The impacts of fine sediment on
241 riverine fish: *Hydrological Processes*, v. 25, no. 11, p. 1800-1821.

242 Magilligan, F. J., Buraas, E. M., and Renshaw, C. E., 2015, The efficacy of stream power and
243 flow duration on geomorphic responses to catastrophic flooding: *Geomorphology*, v. 228,
244 p. 175-188.

245 Major, J. J., Zheng, S., Mosbrucker, A. R., Spicer, K. R., Christianson, T., and Thorne, C. R.,
246 2019, Multidecadal geomorphic evolution of a profoundly disturbed gravel bed river
247 system—A complex, nonlinear response and Its Impact on sediment delivery: *Journal of*
248 *Geophysical Research*, v. 124, p. 1281–1309.

249 Phillips, J. D., 2009, Changes, perturbations, and responses in geomorphic systems: *Progress in*
250 *Physical Geography*, v. 33, no. 1, p. 17-30.

251 Rathburn, S. L., Shahverdian, S. M., and Ryan, S. E., 2018, Post-disturbance sediment recovery:
252 Implications for watershed resilience: *Geomorphology*, v. 305, p. 61-75.

253 Ries, K. G., III, J.K., N., Smith, M. J., Guthrie, J. D., Steeves, P. A., Haluska, T. L., Kolb, K. R.,

254 Thompson, R. F., Santoro, R. D., and Vraga, H. W., 2017, StreamStats, version 4: U.S.

255 Geological Survey Fact Sheet, v. 2017-3046.

256 Schumm, S. A., and Lichy, R. W., 1963, Channel widening and floodplain construction along

257 Cimarron River in Southern Kansas: U.S. Geological Survey Professional Paper, v. 352-

258 D, p. 71-88.

259 Tabacchi, E., Steiger, J., Corenblit, D., Monaghan, M. T., and Planty-Tabacchi, A. M., 2009,

260 Implications of biological and physical diversity for resilience and resistance patterns

261 within Highly Dynamic River Systems: Aquatic Sciences, v. 71, no. 3, p. 279-289.

262 USGS, 1982, Guidelines for determining flood flow frequency, Reston, Virginia, United States

263 Geological Survey.

264 Wohl, E. E., Anthony, D. J., Madsen, S. W., and Thompson, D. M., 1996, A comparison of

265 surface sampling methods for coarse fluvial sediments: Water Resources Research, v. 32,

266 no. 10, p. 3219-3226.

267 Wolman, M. G., 1954, A method of sampling coarse river-bed material: Trans Amer Geophy

268 Union, v. 35, no. 6, p. 951-956.

269 Wolman, M. G., and Gerson, R., 1978, Relative scales of time and effectiveness of climate in

270 watershed geomorphology: Earth Surface Processes and Landforms, v. 3, no. 2, p. 189-

271 208.

272

273 **FIGURE CAPTIONS**

274 Figure 1. Locations of measured transects and USGS gaging stations. Transect names in italics.
275 Photos of all site are available in the supplemental material. At most sites paired (upstream and
276 downstream) transects were measured. Inset shows magnitude and timing of annual (water year)
277 peak instantaneous discharge at each gage between the years 2011-2017. For clarity, timing of
278 2014 peaks for AB and DR are offset by plus and minus one month, respectively. Peak
279 discharges are normalized by the 2-year recurrence interval discharge as determined from log
280 Pearson analysis of annual peak instantaneous discharges recorded at each gage. Gage names
281 (USGS number): AB = Ayers Brook (01142500), MR = Mad River (04288000), DR = Dog
282 River (04287000), PR = Pemigewasset River (01076500), WR = Walloomsac River (01334000).

283
284 Figure 2. Average changes in bankfull cross-sectional width, depth, and median grain size (D_{50})
285 since Tropical Storm Irene. Following Wohl et al. (1996), uncertainty associated with grain
286 measurements was assumed to be $\pm 12\%$. Error bars indicate \pm one standard error. Times for the
287 depth and grain size are offset by ± 0.1 year to increase legibility. Topographic transects are
288 given in the supplemental material.

289
290 Figure 3. Changes in average normalized width W_* plotted against changes in median grain size
291 D_* over time. Here “Pre” refers to the survey completed before Irene and “Post” refers to the
292 survey completed within three months after Irene. Values of averaged over all transects. Dashed
293 line indicates states of equilibrium as defined by Eqn. (6). Error bars represent one standard
294 error.

295

296 Figure 4. Five highest daily mean discharges on each gaged river for each year since Irene.
297 Discharges are normalized by the two-year instantaneous peak discharge as determined from a
298 log-Pearson analysis of annual peak discharges recorded at each gage (USGS, 1982). Shaded
299 regions indicate summer season for each year.

300

301 ¹GSA Data Repository item 201Xxxx, Table of measured bankfull widths, depths, and grain
302 sizes, photographs and topographic cross-sections of each transect, aggregate grain size
303 distributions, and photograph of typical channel-adjacent landslide, is available online at
304 www.geosociety.org/pubs/ft20XX.htm, or on request from editing@geosociety.org or
305 Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.

306

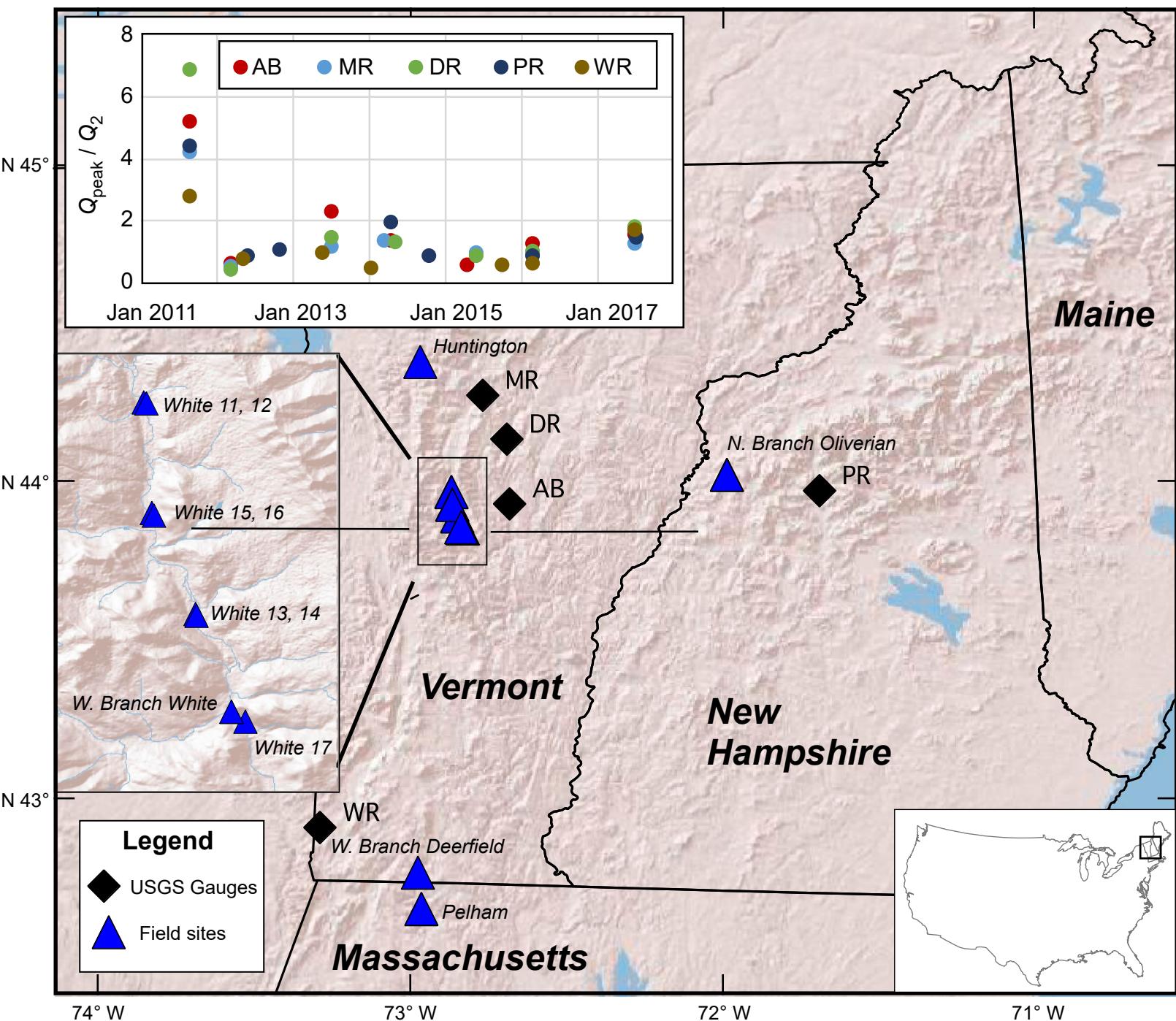


Figure 1. Locations of measured transects and USGS gaging stations. Transect names in italics. Photos of all site are available in the supplemental material. At most sites paired (upstream and downstream) transects were measured. Inset graph shows magnitude and timing of annual instantaneous peak discharge at each gage between the years 2011-2017. For clarity, timing of 2014 peaks for AB and DR are offset by plus and minus one month, respectively. Peak discharges are normalized by the 2-year recurrence interval discharge as determined from log Pearson analysis of annual peak instantaneous discharges recorded at each gage. Gage names (USGS number): AB = Ayers Brook (01142500), MR = Mad River (04288000), DR = Dog River (04287000), PR = Pemigewasset River (01076500), WR = Walloomsac River (01334000).

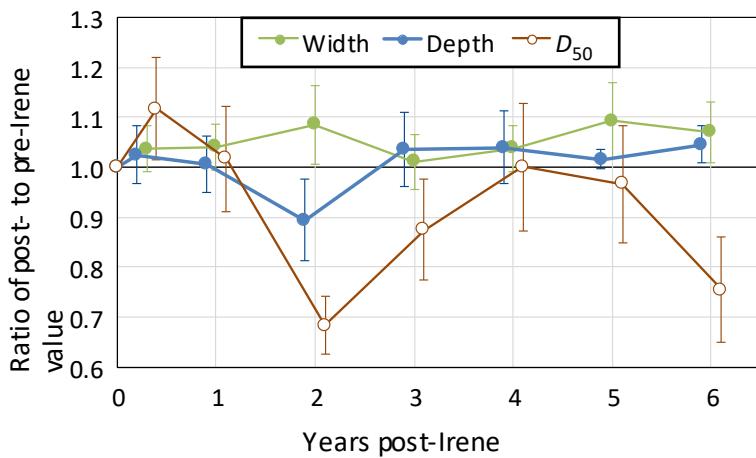


Figure 2. Average changes in bankfull cross-sectional width, depth, and median grain size (D_{50}) since Tropical Storm Irene. Following Wohl et al. [1996 #2066], uncertainty associated with grain measurements was assumed to be $\pm 12\%$. Error bars indicate \pm one standard error. Times for the depth and grain size are offset by ± 0.1 year to increase legibility.

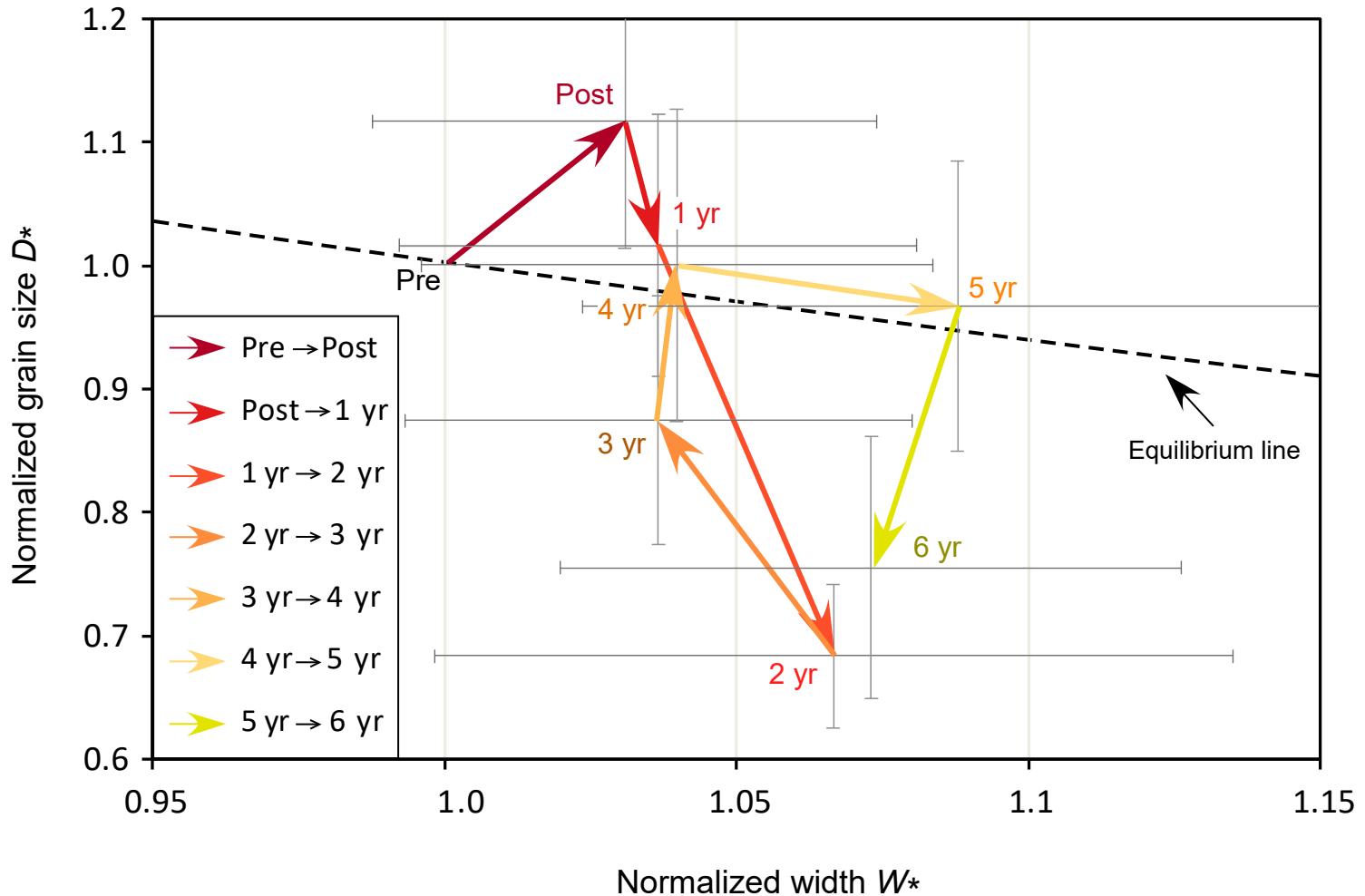


Figure 3. Changes in average width and median grain size over time normalized by their pre-Irene values. Here “Pre” refers to the survey completed before Tropical Storm Irene and “Post” refers to the survey completed within three months after Irene. Values are averaged over all transects. Dashed line indicates states of equilibrium as defined by Equation 6 in text. Error bars represent one standard error.

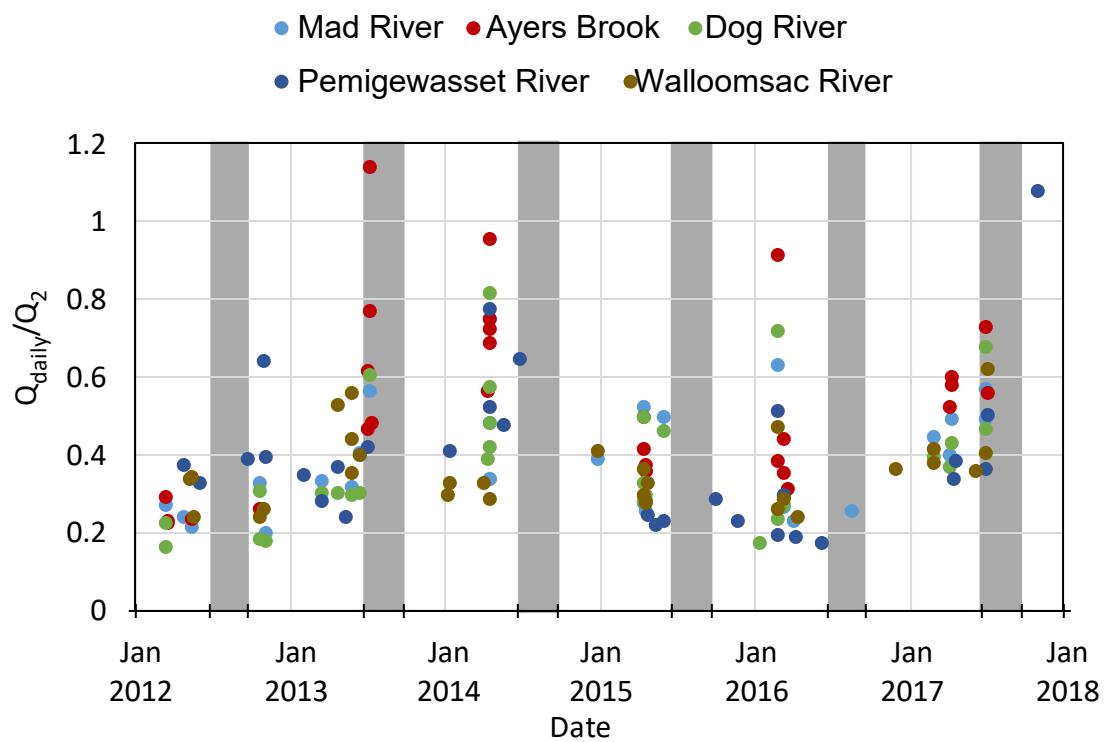


Figure 4. Five highest daily mean discharge Q_{daily} on each gaged river for each year since Irene. Discharges are normalized by the two-year instantaneous peak discharge Q_2 as determined from a log-Pearson analysis of annual peak discharged recorded at each gage (England et al., 2019). Shaded regions indicate summer season for each year.