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a b s t r a c t 

Recent experimental and numerical studies of convection in confined layers of volatile binary liquids with 

a free surface subjected to a horizontal temperature gradient have observed a reversal in the direction of 

interfacial flow as the concentration of air in the vapor space above the liquid is decreased. These obser- 

vations suggest that transport in the gas phase has a significant effect on the balance between thermo- 

capillary and solutocapillary stresses, the competition between which determines the flow direction. In 

order to develop a quantitative description of the flow reversal, we use the two-sided (liquid/gas) trans- 

port model introduced previously to obtain approximate analytical solutions for the interfacial temper- 

ature and composition of the liquid, hence predict thermocapillary and solutocapillary stresses, and the 

flow direction. Therefore, our solutions provide useful guidelines for choosing the optimal binary coolants 

composition and operating conditions for thermal management applications. Despite the complex nature 

of this problem, we have found that the mass transport in the gas phase is effectively one-dimensional 

and independent of the flow in moderate to large aspect-ratio cavity for sufficiently low temperature 

gradients, which allows this problem to be simplified and solved analytically in a sequential manner. 

Our theoretical predictions agree well with the results of numerical simulations, which indicates that the 

analytical analysis captures the essential physics of the problem. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

It is well-known that surface tension effects play a dominant

ole in microscale fluid flows in terrestrial conditions and even at

acroscopic scales in microgravity. In particular, thermocapillary

tresses arise at the free surface of nonisothermal fluids due to

urface tension variation with temperature. For most simple fluids,

hermocapillary stresses cause the flow in the direction opposite

o the thermal gradient as surface tension decreases with increas-

ng temperature. In some practical applications, such as in thermal

anagement devices that rely on phase change, thermocapillarity

lays an adverse role, pulling the liquid away from the hot region

nd promoting dry-out. 

Dry-out can be reduced or eliminated using self-rewetting bi-

ary fluids [1] (mainly dilute aqueous solutions of long-chain

lcohols) characterized by surface tension which increases with

emperature [2] . Indeed, recent experimental investigations have

hown that thermal performance of evaporative cooling devices

ould be significantly improved using self-rewetting fluids, under
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oth terrestrial [3–6] and microgravity conditions [7–9] . The self-

ewetting effect, however, is only limited in certain binary fluids

ithin a range of temperatures [10] , and the direction of the flow

an be reversed over a much wider range of temperatures by us-

ng binary fluids with the more volatile component having a lower

urface tension (e.g., aqueous solutions of short-chain alcohols).

or such fluids, solutocapillary stresses which arise due to surface

ension variation with liquid composition oppose thermocapillary

tresses [11–14] , and flow reversal is observed when solutocapil-

ary stresses dominate [15] . 

While thermocapillary stresses arise for any fluids, simple or

inary, volatile or nonvolatile, solutocapillary stresses of compa-

able magnitude can only arise mostly in volatile binary liquids,

here differential phase change leads to concentration variation at

he free surface. The strength of solutocapillary stresses depends

n both the variation of surface tension with concentration and

he concentration gradient along the free surface. The former is

elated to the mean composition of the liquid, while the latter is

etermined by differential phase change, which is strongly affected

y the presence of noncondensable gases (such as air), which are

ell known to suppress phase change [16] . Recent experimental

15] and numerical [17,18] studies have investigated the depen-

ence of the flow in a layer of methanol-water mixture on the
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Fig. 1. The sketch of a test cell containing the liquid and air/vapor mixture. Gravity 

is pointing in the negative z direction. The inner dimensions are H = W = 10 mm, 

L = 48 . 5 mm, the walls are 1.25 mm thick, and the liquid (gas) layer has a thickness 

d l = 2 . 5 mm ( d g = 7 . 5 mm). 
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composition of the two phases characterized by the mean con-

centration (molar fraction) of methanol Ȳ m in the liquid and the

mean concentration of air X̄ a in the gas. It was determined that

the flow is most sensitive to the composition of the gas phase:

flow reversal requires X̄ a to be very low (a few percent or less).

The dependence on the composition of the liquid phase was found

to be much weaker, with the solutocapillary effect being somewhat

stronger at low values of Ȳ m . 

The resolution of those two studies, however, was too low to

determine the optimal values of X̄ a and Ȳ m which would gener-

ate the strongest flow in the direction of the applied temperature

gradient. More importantly, while there are significant numerical

and theoretical studies on Marangoni-driven flows in volatile bi-

nary fluids [17,19–24] , we still lack the intuition about the interplay

between transport of heat and mass across the liquid-vapor inter-

face and in the bulk of the two layers, which controls the relative

strength of thermo- and solutocapillary stresses. The main reason

is that the transport equations for the momentum, heat, and mass

are nonlinear and couple the flow, temperature, and concentration

fields in the two layers, making this problem extremely compli-

cated. 

Our recent investigations of a similar problem involving a

volatile simple fluid, on the other hand, came to an interesting and

unexpected conclusion. Numerical simulations [25] showed that

mass transport in the gas phase is effectively one-dimensional and

independent of the flow field even for relatively high mass Pé-

clet numbers. This result allowed decoupling the transport equa-

tions in the gas phase, leading to a dramatic simplification of the

problem and allowing substantial analytical progress [26] . In par-

ticular, it became possible to compute the interfacial temperature

and hence the Marangoni (thermocapillary) stresses that drive the

flow. Our recent numerical simulations [17] for volatile binary flu-

ids in the same geometry revealed that, while the gas phase be-

comes a ternary mixture, mass transport remains essentially one-

dimensional, which suggests that the analytical approach could be

extended to binary fluids. This paper shows that it is indeed possi-

ble to obtain approximate analytical solutions of the comprehen-

sive two-sided transport model introduced in Ref. [17] yielding

both the thermocapillary and solutocapillary stresses. The outline

of the present study is as follows. We describe the transport model

in Section 2 . Its analysis as well as the comparison of the analyti-

cal predictions with the numerical results are presented Section 3 .

Section 4 contains the summary and conclusions. 

2. Mathematical model 

2.1. Governing equations 

We will consider a flow in a layer of volatile binary liquid

(water-methanol mixture) with a free surface confined along with

its vapor and air in a rectangular test cell (cf. Fig. 1 ). The flow is

driven by a horizontal temperature gradient in the extended ( x ) di-

rection created by imposing a temperature difference �T = T h − T c 
between the outer surfaces of the two end walls. Previous exper-

imental and numerical studies of surface-tension-driven flows in

this geometry [27–29] showed that the liquid-vapor interface has

a low curvature and the flow is nearly two-dimensional. Hence we

will simplify the problem by considering the liquid layer to have

a uniform thickness and the flow to be strictly two-dimensional

and confined to the x − z plane. The former assumption is justi-

fied when the dimensions L and W are much larger than the capil-

lary length and the latter when the thickness of the layer is small

compared to W . 

The two-sided transport model [17] used for numerical simu-

lations is reproduced here in a slightly condensed form to make

the discussion self-contained. The flow in both phases is assumed
ncompressible 

 · u = 0 , (1)

nd the momentum transport in the bulk is described by the

avier-Stokes equation 

( ∂ t u + u · ∇u ) = −∇ p + μ∇ 
2 u + ρg , (2)

here u is the velocity, p is the pressure, ρ and μ are the density

nd dynamic viscosity of the fluid, respectively, and g = −g ̂ z is the

ravitational acceleration. Heat transport in the bulk is described

y the advection-diffusion equation 

 t T + u · ∇ T = α∇ 
2 T , (3)

here T is the temperature and α = k/ρC p is the thermal diffusiv-

ty of the fluid. 

The density of the liquid mixture is assumed to be 

l = ρl,m 
+ ρl,w , (4)

here ρ l,b is the density of component b . Here and below the sub-

cript denotes the phase ( l for the liquid, g for the gas), and/or the

omponent of the mixture ( m for methanol, w for water, a for air).

e will use the subscript i to denote the values at the liquid-gas

nterface. A linear dependence of the density of each component

n the temperature is assumed, 

l,b = ρ0 
l,b [1 − βl,b ( T − T 0 ) ] , (5)

here βl,b = −ρ−1 
l,b 

∂ ρl,b /∂ T is the coefficient of thermal expan-

ion and ρ0 
l,b 

is the density of component b in the mixture at

he reference temperature T 0 (here and below we will assume

 0 = (T c + T h ) / 2 ). We also have 

0 
l,b = n l Y b m 

1 
b , (6)

here n l is the total number density in the liquid, m 
1 
b 
is the mass

f one molecule, and Y b = n l,b /n l is the concentration (molar frac-

ion) of component b in the liquid phase. 

The density and pressure of the gas mixture are 

g = ρg,m + ρg,w + ρg,a , 

p g = p g,m + p g,w + p g,a , (7)

here all components are assumed to be ideal, 

g,b = 

X b p g 

R b T 
, 

p g,b = X b p g , (8)

 b = n g,b /n g is the concentration (molar fraction), n g is the to-

al number density in the gas, R b = R/M b is the specific gas con-

tant, and M b = m 
1 
b 
N A is the molar mass of component b of the gas

hase. We use the Boussinesq approximation, according to which



T. Qin and R.O. Grigoriev / International Journal of Heat and Mass Transfer 158 (2020) 119999 3 

t  

n  

a

n

a  

a  

c  

t  

m

 

n  

m  

w

∂  

w  

t

Y  

H  

u  

m  

n  

g

∂  

f  

i  

c

X  

T  

p

2

 

l  

c  

t  

g

 

l

l

w  

fi  

w  

l

l

w  

e  

d  

i

L

T  

(  

p

 

w  

c  

r  

(  

t  

s  

p  

r

t

 

e  

t  

c  

e  

fl  

fl  

w

w

u

i  

i

 

fl

w

T

L  

a

T

T  

a

 

w

n

 

s

x

i  

M  

s

�

i  

u

σ  

b

 

he spatial average of ρ l and ρg is used on the left-hand-side (but

ot the right-hand-side) of the Navier-Stokes Eq. (2) for the liquid

nd the gas phase. Furthermore, we treat n l and 

 g = 

p g 

k B T 0 
(9) 

s spatially constant, which is justified along with the Boussinesq

pproximation for �T � T 0 . The pressure p g is spatially nearly

onstant and is computed based on the incompressibility condi-

ion and mass conservation of the three components (air, water,

ethanol) [17] . 

With the assumptions of incompressible flow and constant total

umber density of the mixture, mass transport in the binary liquid

ixture is described by the advection-diffusion equation for, say,

ater concentration 

 t Y w + u · ∇Y w = ∇ · (D l ∇Y w ) , (10)

here D l is the binary mass diffusivity, and the methanol concen-

ration is recovered from 

 m = 1 − Y w . (11)

ere and below the subscript denotes the phase ( l for the liq-

id, g for the gas), and/or the component of the mixture ( m for

ethanol, w for water, a for air). We will use the subscript i to de-

ote the values at the liquid-gas interface. Similarly, in the ternary

as phase, mass transport is described using a pair of equations 

 t X b + u · ∇X b = ∇ · (D b ∇X b ) , (12)

or water and methanol, where D b are the effective mass diffusiv-

ties [30] , which are assumed to depend only on the average con-

entrations [17] . The concentration of air is hence given by 

 a = 1 − X m − X w . (13)

ogether, (12) and (13) describe mass transport in the ternary gas

hase with arbitrary composition. 

.2. Boundary conditions 

The system of coupled evolution Eqs. (1) –(3) and (10) for the

iquid phase (or (12) for the gas phase) has to be solved in a self-

onsistent manner, subject to the boundary conditions describing

he balance of momentum, heat, and number fluxes at the liquid-

as interface and at the inner surface of the walls of the cavity. 

For simple fluids, over a wide range of conditions, phase equi-

ibrium can be described by the Antoine equation 

n p b = A b −
B b 

C b + T 
, (14) 

here p b is the vapor pressure, and A b , B b , C b are empirical coef-

cients. In developing a simplified description of the problem, it

ill be more convenient to instead use the Clausius-Clapeyron re-

ation 

n 
p b 

p 0 
b 

= −L b 

R b 

(
1 

T 
− 1 

T 0 

)
, (15) 

here p 0 
b 
is the reference value of the vapor pressure at the ref-

rence temperature T 0 . The two relations are equivalent for small

eviations of T from T 0 , provided the latent heat is defined accord-

ng to 

 b = 

B b R b T 
2 
0 

(C b + T 0 ) 2 
. (16) 

his can be easily verified by evaluating the expressions (14) and

15) and their derivatives with respect to T at T 0 . For binary fluids,

hase equilibrium is determined by an extended Raoult’s law 

p g,b = γb p b Y b , (17)
here γ b is the activity coefficient of component b , which ac-

ounts for deviations from an ideal liquid mixture, p g,b is the cor-

esponding partial pressure of the vapor, and p b satisfies (14) (or

15) ). In the following, we will use (17) in combination with (14) in

he numerics, or in combination with (15) in the theoretical analy-

is, to define the saturation temperatures T s,b given the partial va-

or pressures p g,b . Note that T s,b does not correspond to the satu-

ation temperature of a pure component b and depends on both X b 
hrough (8) and Y b through (17) . 

Phase change occurs locally where the thermodynamic free en-

rgy is different between the phases. The driving forces for mix-

ures include the temperature difference, pressure difference, and

oncentration difference across the interface [31] . The latter two

ffects are negligible in this study. Therefore, the number density

ux describing phase change for each component of the volatile

uid can be described using the kinetic theory expression [32] ,

hich only includes the temperature difference 

j i,b = 

2 χb 

2 − χb 

T b 
T i 

T i − T s,b 
T s,b 

n g X b u t,b , (18) 

here T b = L b /R b , χb is the accommodation coefficient, and 

 t,b = 

√ 

R b T i 
2 π

(19) 

s the characteristic thermal velocity. The corresponding mass flux

s J i,b = m 
1 
b 
j i,b . 

Since air is noncondensable, we can write the mass/number

ux balance on the gas side of the interface as 

j i,b = n g X b ̂  z · u g − n g D b ∂ z X b , 

j i,a = 0 , (20) 

hile on the liquid side 

j i,b = n l Y b ̂  z · u l − n l D l ∂ z Y b . (21) 

he heat flux balance requires 

 m m 
1 
m 
j i,m 

+ L w m 
1 
w j i,w = k g ∂ z T g − k l ∂ z T l (22)

nd the temperature is assumed continuous 

 l = T i = T g . (23) 

he tangential components of the velocity across the interface are

lso continuous 

(I − ˆ z ̂ z ) · (u l − u g ) = 0 , (24)

hile the normal components are related by mass flux balance 

 l ̂  z · u l = n g ̂  z · u g = j i,m 
+ j i,w . (25) 

Assuming flat interface and negligible effect of vapor recoil, the

tress balance at the interface 

ˆ  · (�l − �g ) · ˆ z = ∂ x σ, (26) 

ncorporates viscous drag between the two phases and the

arangoni (thermo- and solutocapillary) stresses, where σ is the

urface tension and 

= μ
[∇u + (∇u ) 

T 
]

− pI (27) 

s the stress tensor. The surface tension of the methanol-water liq-

id mixture is described by a relation [33] 

= f (Y m ) σm + [1 − f (Y m )] σw (28)

ased on the fits to experimental data, where 

f (Y m ) = Y m 

1 + c 1 (1 − Y m ) 

1 − c (1 − Y m ) 
, (29)
2 
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Fig. 2. Surface tension of methanol-water mixture as a function of the methanol 

concentration computed using (28) . 
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with empirical parameters c 1 and c 2 (cf. Fig. 2 ). The surface ten-

sion of each component is assumed to be linear with respect to

the temperature of the interface 

σb = σ 0 
b + σ ′ 

b (T i − T 0 ) , (30)

where σ 0 
b 

is the surface tension of the pure substance at the ref-

erence temperature T 0 and σ
′ 
b 

= ∂ σb /∂ T is the temperature coeffi-

cient of surface tension. With the help of relations (28) –(30) , the

right-hand-side of (26) can be rewritten as 

∂ x σ = f ′ (Y m )(σm − σw ) ∂ x Y m (31)

+ 

[
f (Y m ) σ

′ 
m 

+ [1 − f (Y m )] σ
′ 
w 

]
∂ x T i , 

where the first and the second term represent the soluto- and

thermocapillary stresses, respectively. 

Since the walls of the test cell are thin, one-dimensional con-

duction inside these is assumed, yielding the following mixed

boundary conditions on the inside of the end walls: 

T | x =0 = T c + k ι
h s 

k s 
∂ x T , (32)

T | x = L = T h + k ι
h s 

k s 
∂ x T , 

where ι = g ( ι = l) above (below) the contact line, h s is the thick-

ness and k s is the conductivity of the walls. In typical experiments,

the side walls are in contact with air, which is a poor conductor,

so heat flux through the top and bottom walls can be ignored 

∂ z T = 0 . (33)

Standard no-slip boundary conditions u = 0 for the velocity and

no-flux boundary conditions for the concentrations 

∂ n X b = 0 , (34)

∂ n Y b = 0 

are imposed on all the walls, where ∂ n = ˆ n · ∇, and ˆ n is the unit

vector normal to the wall. Additional details of the mathematical

model and its numerical implementation as well as the relevant

material parameters can be found in Ref. [17] . 

3. Results 

Although the transport equations for the momentum, heat, and

mass (1) –(13) show that the flow, temperature, and concentration

fields are all coupled via advection, buoyancy, or various boundary

conditions, as confirmed by our numerical simulations [17] and the

analysis presented next, even in a moderate-aspect-ratio cavity, the

mass transport in the gas phase is effectively one-dimensional and

independent of the flow field for sufficiently low �T . Therefore,
e follow an approach similar to that of Ref. [26] to obtain a sim-

lified description of this problem. The simplified description re-

ies on the governing equations listed in the previous section, with

ertain reasonable assumptions that allow some variables to be de-

oupled, and hence the problem to be solved sequentially. 

First, the concentration fields X m and X w in the gas phase can

e found based on mass transport in the gas phase. Then both

he interfacial temperature T i and the interfacial composition Y m 

an be obtained with the help of phase equilibrium relations.

hese interfacial profiles determine the thermo- and solutocapil-

ary stresses and hence the flow in the liquid layer. In particular,

he direction of the flow along the interface can be determined

y comparing the strength of the thermocapillary stresses and the

opposing) solutocapillary stresses. (While buoyancy is nonnegligi-

le for a few-mm-thick layer of liquid considered in Refs [15,17] .,

t mainly affects the stability of the flow [34] .) Once the flow in

he liquid layer is found, the remaining undetermined fields can

e computed from the corresponding transport equations. 

The previous numerical simulations [17] were performed for

he temperature difference �T = 6 K used in the experiments of Li

nd Yoda [15] . At this relatively high �T , in both studies the flow

as found to be unsteady for intermediate values of the mean air

oncentration X̄ a . The present study uses two-dimensional numer-

cal simulations at a lower �T = 2 K, Ȳ m = 0 . 6 (i.e., 60% methanol

nd 40% water), and a fixed contact angle of 90 degrees, un-

ess noted otherwise. At this �T the flow (cf. Fig. 3 ) is essen-

ially steady over the entire range of X̄ a , so numerical results can

e used to both motivate and validate the analytical predictions.

t X̄ a = 0 . 7 phase change is suppressed, thermocapillary stresses

ominate, and the interfacial flow is in the direction opposite the

mposed temperature gradient. Decreasing the concentration of air

o X̄ a = 0 . 015 enhances phase change, solutocapillary stresses be-

ome dominant, and the direction of the flow reverses. 

.1. Mass transport and concentration profile in the gas phase 

Let us start by deriving the analytical solutions for the concen-

ration profiles, following the analysis in Ref. [26] . With a fixed

ontact angle of 90 degrees, the liquid-gas interface is essentially

at, and we can introduce the rescaled coordinates χ = x/d g and

= z/d g , such that the gas phase corresponds to 0 < ζ < 1 and

 < χ < 
g , where 
g = L/d g is the aspect ratio of the gas layer.

n the present problem, 
g ≈ 6.5 is relatively large, and our analyt-

cal analysis focuses on the central region of the cavity. Since phase

hange is small in the central region, the vertical component of the

ow there is small ( u z = O (
−1 
g ) ), while the horizontal component

an be decomposed 

 x = ū + ˜ u (ζ ) + O (
−1 
g ) (35)

nto the mean flow ū and zero-mean recirculation flow ˜ u . Using

his decomposition, the mass transport Eq. (12) in steady state can

e solved [26] to leading order in 
−1 
g , yielding 

 b = C b, 0 + C b, 1 e 
−Pe b,m χ [1 + g b (ζ )] , (36)

here 

 b (ζ ) = 

ū d 2 g 

D 
2 
b 

∫ 
dζ ′ 

∫ ζ ′ 

0 

dζ ′′ ˜ u (ζ ′′ ) + O (ε2 
b ) , (37)

b = P e b,m 
P e b,r is the product of a pair of Peclet numbers, one cor-

esponding to the mean flow 

 e b,m 
= 

| ̄u | d g 
D b 

(38)

nd another corresponding to the recirculation flow 

 e b,r = max 
ζ

| ̃  u | d g 
D b 

. (39)
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Fig. 3. Numerical solution for the fluid flow with (a) X̄ a = 0 . 7 , (b) X̄ a = 0 . 1 , (c) X̄ a = 0 . 015 . The cold end wall is on the left. Solid lines represent the stream lines of the 

flow; color corresponds to the values of stream function ψ , where darker (lighter) indicates higher (lower) values of ψ . At X̄ a = 0 . 7 , convection rolls in the liquid are all 

counterclockwise, at X̄ a = 0 . 1 , two convection rolls next to both end walls become clockwise, and at X̄ a = 0 . 015 , all convection rolls become clockwise. Accordingly, the flow 

direction along the interface reverses as X̄ a decreases, as shown in Fig. 13 . 

Fig. 4. Numerical solution for the concentration of methanol at (a) X̄ a = 0 . 7 , Y m = 0 . 6 ± 1 . 89 × 10 −4 , X m = 0 . 26 ± 0 . 010 , (b) X̄ a = 0 . 1 , Y m = 0 . 6 ± 1 . 25 × 10 −3 , X m = 0 . 78 ±
0 . 013 , (c) X̄ a = 0 . 015 , Y m = 0 . 6 ± 1 . 42 × 10 −3 , X m = 0 . 86 ± 0 . 003 . Solid lines represent equispaced level sets of the concentration fields (15 in the liquid and 20 in the gas). In 

both phases, the lighter (darker) color indicates lower (higher) concentration. 
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The solution (36) depends on both the horizontal coordinate χ
nd the vertical coordinate ζ , where the ζ -dependence is weak

or small εb , since g b (ζ ) = O (εb ) . In the limit εb → 0, the ζ -
ependence disappears: 

 b = C b, 0 + C b, 1 e 
−Pe b,m χ . (40) 

ndeed, εw ≈ εm � 1 regardless of the concentration X̄ a of air, as

ong as �T is sufficiently small, so the concentration field should

e weakly dependent on the vertical coordinate, and the solution

40) should remain a good approximation even when Pe b,r is not

mall. This is consistent with the results of our numerical sim-
lations: as Fig. 4 shows, in the central region of the cavity, the

ariation of the concentration in the vertical direction is negligible

ompared with that in the horizontal direction. 

The constants C b ,0 and C b ,1 can be found in explicit analytical

orm for sufficiently small �T . Let the temperature at inner sur-

aces of the end walls be T ±
i 

= T 0 ± �T ′ / 2 , where the superscript -

 + ) refers to the value at x = 0 ( x = L ). Eq. (18) implies that the

nterfacial temperature is essentially equal to the saturation tem-

erature, T i ≈ T s, m ≈ T s, w , due to the large values of the ratio

 b / T i (for water and methanol, T w = 4 . 9 × 10 3 K and T m = 2 . 8 × 10 3 

) and low values of u g / u t,b [35] . Furthermore, numerical results
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Fig. 5. Mass flux J i,b ( = m 
1 
b 
j i,b ) associated with phase change calculated numerically 

for (a) methanol and (b) water at three different concentrations of air: X̄ a = 0 . 015 

(solid line), X̄ a = 0 . 1 (dashed line) and X̄ a = 0 . 7 (dash dot line). To highlight the 

variation of the mass flux in the central region of the cavity, the y -axis is truncated 

in (a) and (b). 
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show that the variation of Y b along the interface is very small, so

both Y b and γ b can be considered fixed at their average values,

such that (15) and (17) yield 

ln 
X ±
b 

X 0 
b 

= −T b 

[ 
1 

T 0 ± �T ′ / 2 −
1 

T 0 

] 
, (41)

where X 0 
b 
is the reference (equilibrium) value of the concentration

at T = T 0 . The variation (X b − X 0 
b 
) /X 0 

b 
in the vapor concentrations is

more pronounced, but still small, so the left-hand-side of (41) can

be Taylor-expanded. Since �T ′ < �T � T 2 
0 

/T b , we can also Taylor-

expand the right-hand-side. Keeping only the leading-order terms,

we find 

X ±
b 

= X 0 b 

[
1 ± T b �T ′ 

2 T 2 
0 

]
. (42)

Finally, substituting these boundary conditions into (40) we find 

 b, 0 = X 0 b 

[
1 + 

T b �T ′ 

2 T 2 
0 

coth 
κb 

2 

]
, 

 b, 1 = −X 0 b 
T b �T ′ 

T 2 
0 

1 

1 − e −κb 
, (43)

where we have defined κb = Pe b,m 

g , and 

X̄ b = X 0 b 

[
1 + 

T b �T ′ 
2 T 2 

0 

(
coth 

κb 

2 
− 2 

κb 

)]
. (44)

3.2. Net heat and mass flux 

In order to compare the analytical and numerical results of the

concentration profiles in the gas phase quantitatively, we next de-

termine the mean mass flux and the mean gas velocity. The mean

( z -averaged) mass flux across the vertical plane at horizontal loca-

tion x 

J̄ b (x ) = 

1 

d g 

∫ L 
x 

J i,b (x 
′ ) dx ′ , (45)

can be obtained by integrating the local mass flux J i,b for phase

change. Since evaporation (condensation) takes place mainly near

the hot (cold) end wall (cf. Fig. 5 ), the function becomes essentially

constant J̄ b (x ) ≈ J̄ c 
b 
in the central region of the cavity (cf. Fig. 6 ),

where 

J̄ c b = max 
x 

J̄ b (x ) . (46)

We will therefore use the values given by (46) to describe the nu-

merical results and drop the superscript c in the subsequent dis-

cussion. 

Next, let us estimate the mean mass fluxes J̄ b analytically and

consider their dependence on the concentration of air X̄ a . For suffi-

ciently low �T and highly volatile fluids, the overall heat transport

between the end walls is dominated by the latent heat associated

with phase change, and the heat flux balance gives 

∑ 

b 

J̄ b L b = 

�T 

Z T 
, (47)

where Z T is the total net thermal resistance 

Z T = Z o + Z d , (48)

Z o is the thermal resistance due to conduction through the liquid

layer and the end walls and Z d is the diffusive resistance of the

gas layer [36] . While Z o can be considered independent of the air

concentration X̄ a , Z d is an increasing function of X̄ a . 

Since heat flows though the walls and the liquid wedges be-

tween the wall and the interface “in series,” Z o is a sum of the
onduction resistances of the end walls Z w = h s /k s and the con-

uction resistances of the liquid wedges Z l ≈ 0.5 d l / k l , where 

 o = 2(Z w + Z l ) ≈ 2 
h s 

k s 
+ 

d l 
k l 

. (49)

he heat flux associated with the mass flux of the two vapors is

in parallel,” so that 

 
−1 
d 

= 

∑ 

b 

Z −1 
d,b 

, (50)

here Z d,b is the diffusive resistance associated with component b .

urthermore, the latent heat associated with the phase change of

wo components is related to their diffusive resistances 

J̄ m L m 

J̄ w L w 

= 

Z d,w 

Z d,m 

. (51)

The diffusive resistance for each component Z d,b can be com-

uted from (47) in the limit X̄ a → 1 . In this limit, the temperature

rop across the end walls can be neglected, so that �T ′ = �T ,

 o � Z d , and Z T = Z d . According to numerical simulations, mass

ransport is essentially one-dimensional in the central portion of

he cavity and, in steady state, the horizontal components of the

umber flux of each component vapor and air satisfy 

j̄ m = n g D m ∂ x X m − n g ̄u X m , 

j̄ w = n g D w ∂ x X w − n g ̄u X w , 

0 = n g D a ∂ x X a − n g ̄u X a , (52)

here j̄ b is the mean ( z -averaged) value of the number flux of the

apor of component b and j̄ a = 0 because it is noncondensable.
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Fig. 6. Mean mass flux J̄ b ( = m 
1 
b 
j̄ b ) across the vertical cross-section of the cavity 

computed numerically for (a) methanol and (b) water vapor with three different 

concentrations of air: X̄ a = 0 . 015 (solid line), X̄ a = 0 . 1 (dashed line) and X̄ a = 0 . 7 

(dash dot line). 
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Fig. 7. The characteristic mass fluxes J̄ b ( = m 
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j̄ b ) in the gas phase. The results for 

methanol (water) are shown in black (grey). Solid line represents the analytical es- 

timate based on (58) , symbols – the numerical results obtained using (46) . 
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umming these equations yields 

j̄ m + j̄ w = −n g ̄u , (53) 

here we used the fact that the total diffusive flux vanishes [17] 

 

ι

n g D ι∂ x X ι = 0 . (54) 

olving the system of Eq. (52) together with (53) for j̄ m and j̄ w and

ntegrating the resulting relations from x = 0 to x = L yields 

j̄ m = 

n g 

X̄ a L 

[
D m (1 − X̄ w )�X m + D w ̄X m �X w 

]
, 

j̄ w = 

n g 

X̄ a L 

[
D w (1 − X̄ m )�X w + D m ̄X w �X m 

]
, (55) 

here, according to (42) , 

X b = X b | x = L − X b | x =0 = X 0 b 
T b �T 

T 2 
0 

� X̄ b . (56) 

rom (47), (50), (55) , and (56) we find 

 d,m 
= 

X̄ a T 
3 
0 L 

p g ̄X m T m 

[
D m (1 − X̄ w ) T m + D w ̄X w T w 

] , 

Z d,w = 

X̄ a T 
3 
0 L 

p g ̄X w T w 
[
D w (1 − X̄ m ) T w + D m ̄X m T m 

] . (57) 

ote that, in the limit X̄ w → 0 ( ̄X m → 0 ), the diffusive resistance

 d,m 
( Z d, w ) reduces to the expression Z d = L/k c , where k c is the ef-

ective condensation thermal conductivity derived for a binary (va-

or/air) mixture by Peterson et al. [37] . 
Finally, solving (47) and (51) we find 

 ̄b = 

[ 

1 + Z o 
∑ 

b 

Z −1 
d,b 

] −1 

�T 

L b 

. (58) 

ig. 7 shows that the analytical and numerical results are in rea-

onable agreement, suggesting that the one-dimensional descrip-

ion of transport in the gas phase is reasonably accurate. An in-

rease in X̄ a leads to an increase in the diffusive resistance for both

omponent vapors and, correspondingly, a decrease in both fluxes.

he minor discrepancy between the numerical and analytical re-

ults is likely due to the contribution of heat conduction and ad-

ection in the liquid layer that have been ignored in our analysis.

hese contributions are negligible for low X̄ a , but would become

rogressively more important at higher X̄ a , when phase change is

uppressed, and our estimates of j̄ b are expected to overestimate

he numerical results, consistent with Fig. 7 . In practical applica-

ions ( e.g. , for heat pipes) the liquid layer will be substantially thin-

er, so convective heat flux would be negligible and the prediction

f our simplified transport model would be even more accurate. 

Once the mean vapor fluxes and the mean flow velocity have

een determined from (47) and (53) , we can finally compare the

nalytical prediction (40) for the concentration profiles with the

umerical results. As Fig. 8 shows, we find good agreement (mi-

or deviations will be discussed in the next Section). In general,

he concentrations of all components in the ternary gas mixture

ary exponentially with x , which is consistent with the findings for

imple fluids with binary (vapor/air) gas mixtures [25] . The expo-

ential concentration profiles become approximately linear when

e b,m 
� 
−1 

g . This limit corresponds to low values of the mean flow

elocity ū and hence low values of �T and/or high values of X̄ a . In

articular, at �T = 2 K, the concentration profiles are nearly linear

or all X̄ a . 

.3. Interfacial temperature and concentration profiles 

As we argued in the previous section, the concentration fields

re determined, to leading order, by the net mass flux of the va-

ors, which is determined by the temperature gradient or, more

recisely, by the temperature difference between the end walls,

ut not the concentration gradient. However, the concentration

elds in the gas phase determine both the temperature and liq-

id concentration at the interface via (17) and (15) . With the help

f (17) we can write 

p b 

p 0 
b 

= 

X b γ
0 
b 
Y 0 
b 

X 0 
b 
γb Y b 

, (59) 

here the superscript 0 denotes the reference values correspond-

ng to the global thermodynamic equilibrium at T = T . We can
0 
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Fig. 8. Normalized concentration profiles in the gas phase for methanol (a), water 

(b), and air (c) for different X̄ a . Numerical and analytical results are represented by 

gray and black lines, respectively. Numerical results correspond to the horizontal 

midplane of the gas layer. To highlight the variation in the central region of the 

cavity, the y -axis is truncated in (a) and (b). 
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Fig. 9. Interfacial temperature for different X̄ a . The variation δT i = T i − T 0 about the 

mean is plotted. Numerical and analytical results are represented by gray and black 

lines, respectively. To highlight the variation of the interfacial temperatude in the 

central region of the cavity, the y -axis is truncated. 
replace the reference values of all the concentrations with the

mean values, Y 0 
b 

= Ȳ b , γ 0 
b 

= γ̄b = γb ( ̄Y b ) , and X 
0 
b 

= X̄ b . One the

other hand, the phase equilibrium condition (15) requires 

p b 

p 0 
b 

= e T b /θ , (60)

where we have defined a new variable θ according to 

1 

θ
= 

1 

T 0 
− 1 

T i 
≈ δT i 

T 2 
0 

, (61)

where δT i = T i − T 0 . Equating the right-hand-sides of (59) and (60) ,

we find 

 b = 

X b ̄γb ̄Y b 

γ X̄ 
e −T b /θ . (62)
b b 
ince Y b is very close to Ȳ b , the dependence of the activity coef-

cient on the concentration is described with very good accuracy

y a linear relationship 

b (Y b ) = γ̄b + γ ′ 
b (Y b − Ȳ b ) , (63)

here γ ′ 
b 

= ∂ γb /∂ Y b at Y b = Ȳ b . The liquid is a binary mixture, so

 m + Y w = Ȳ m + Ȳ w = 1 , which yields a transcendental equation for

 

b 

h b 
[
1 − a b e 

−T b /θ
]

= 0 , (64)

here the sum is over b = m, w and 

 b = 

Ȳ b 

1 + γ ′ 
b 
Ȳ b 

, a b = 

X b 

X̄ b 
. (65)

This equation can be solved approximately for small deviations

f the interfacial temperature from T 0 , i.e., for | θ | � max ( T m , T w )

y Taylor-expanding both exponential terms. Indeed it is easy to

ee that | θ | ≥ O (T 2 
0 

/ �T ) = O (10 4 K) for �T as large as 10 K. The

ctual temperature variation along the interface is typically a frac-

ion of �T , leading to an even higher | θ | (e.g., | θ | ~ O (10 5 K) at

T = 2 K), so that reasonably accurate results can be obtained in

nalytic form by truncating the Taylor series at linear terms, which

ields 

1 

θ
= 

∑ 

b h b (a b − 1) ∑ 

b h b a b T b 
. (66)

he corresponding interfacial temperature can now be found from

61) and the interfacial concentrations of water and methanol in

he liquid phase from (62) . 

The analytical predictions for the interfacial temperature are in

easonable agreement with the numerical results in the central re-

ion (cf. Fig. 9 ). Based on (15) , the temperature gradient is related

o the vapor pressure gradient and hence the gas concentration

radient, so the nearly linear concentration profiles at �T = 2 K

hould imply nearly linear interfacial temperature profiles for all
¯ a . Note that this is not a reflection of the thermal boundary condi-

ions at the top/bottom wall, but rather a result of mass transport

n the gas phase. 

The theoretical interfacial concentration profiles predict the

verall variation correctly, but exhibit noticeable local deviations

rom the concentration profiles found in the numerical simulations,

s Fig. 10 illustrates. This is due to the insufficient accuracy in our

escription of the concentration fields X b in the gas phase. While

he analytical and numerical results of X b appear to agree quite

ell (cf. Fig. 8 ), even relatively small discrepancies (they are most
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Fig. 10. The interfacial concentration of methanol in the liquid for different X̄ a . The 

variation δY m = Y m − Ȳ m about the mean is plotted. Black lines represent the analyt- 

ical estimate (62) based on the analytical solution for X m and T i , dark gray lines –

the numerical results, and light gray lines – the analytical estimate (62) based on 

the numerical results for X m and T i . To highlight the variation of the interfacial con- 

centration in the central region of the cavity, the y -axis is truncated. 
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Fig. 11. Numerical solution for X̄ a = 0 . 1 , Ȳ m = 0 . 6 . The panels shows (from top to 

bottom) the flow field, the normalized mass flux associated with the condensa- 

tion/evaporation of methanol, the concentration of methanol in both phases, and 

the variation δY m of the methanol concentration in the liquid about the mean. 
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oticeable for X w ) are greatly amplified because of the exponential

ependence of Y b on the ratio T b / θ in (62) . To illustrate this, we

omputed the interfacial profile of Y m by substituting numerical,

ather than analytical, results for the concentration fields X m and

 w into Eq. (62) . As Fig. 10 shows, the resulting estimate accurately

eproduces even the fine details of the numerical solution for Y m 

n the central region of the cavity, confirming that it is indeed the

ccuracy of the estimate (40) that is the culprit. (The remaining

iscrepancy near the end walls is mainly due to the difference be-

ween T i and T s,b .) 

The origin of the local deviation of the analytical solution

40) from the numerical one at the two lower values of X̄ a can be

asily identified by inspecting the flow field (cf. Fig. 3 ), methanol

oncentration in the liquid (cf. Fig. 4 ), and the phase change flux

t the interface (cf. Fig. 5 ). The flow at the intermediate value of
¯ a shown in Fig. 11 features several convection rolls in the liquid

ayer. The composition of the liquid layer is controlled by advec-

ion, which dominates over diffusion due to a very low value of D l 

and a correspondingly large mass Péclet number). Convection rolls

ffectively convert the horizontal gradient of Y m driving the mean

ow into the vertical gradient. 

The analysis presented in Section 3.1 completely ignored phase

hange in the central region of the cavity. However, even though

t is far less intense than near the end walls, phase change also

ccurs in the central region (cf. Fig. 5 ). The vertical mass flux in

he liquid layer causes evaporation of methanol at the left edge of

ach counter-rotating convection roll and condensation at the right

dge, as demonstrated by the phase change flux J i,m 
. This phase

hange acts as a perturbation on the flow field in the gas layer

the clearly visible modulation of the stream lines in the top panel

f Fig. 11 ). As the relation (37) illustrates, a perturbation in the

ow field generates a corresponding perturbation in the concen-

ration fields X b described by (36) and it is this perturbation that

s responsible for the deviation of the predicted composition of the

iquid at the interface from the actual composition that is observed

bottom panel of Fig. 11 ). The deviation of the predicted interfacial

oncentration profile at X̄ a = 0 . 7 is also due to the nonnegligible

hase change in the central region of the interface (cf. Fig. 5 ), even

hough in this case there is no convection pattern. 

The spatial variation in the temperature and composition of the

iquid at the interface generates thermocapillary and solutocapil-

ary stresses, respectively. These stresses will be discussed in more

etail next, but we conclude this Section by noting that our anal-

sis points to the perturbation in Y m , shown in the bottom panel

f Fig. 11 , causing both the phase change in the central region of
he cavity and the modulation of solutocapillary stresses that give

ise to the convection rolls. The detailed stability analysis of this

roblem that couples the perturbations in the flow and composi-

ion of both layers is outside the scope of this paper, although the

echanism of the instability appears to be clear. 

.4. The Marangoni stresses and interfacial flow 

With the solutions for the interfacial temperature and con-

entration profiles in hand, we can immediately determine the

hermocapillary and solutocapillary stresses. The net surface stress

 x σ = �S + �T is the sum of the solutocapillary stress 

S = F S ∂ x Y m (67) 

nd thermocapillary stress 

T = F T ∂ x T i , (68) 

here, according to (31) , we have defined 

 S = f ′ (Y m )(σm − σw ) < 0 , (69) 

nd 

 T = − f (Y m ) σ
′ 
m 

− (1 − f (Y m )) σ
′ 
w < 0 . (70) 

aking the derivative of (62) we obtain 

 x Y b ≈
Ȳ b 
s b 

[
∂ x X b 
X b 

− T b ∂ x T i 
T 2 
i 

]
, (71) 

here 

 b = 1 + 

γ ′ 
b 

γ̄
Ȳ b . (72) 
b 
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Fig. 12. The ratio of solutocapillary and thermocapillary stresses for different X̄ a 
evaluated using (73) with mean values of ∂ x X m and ∂ x T i . The dashed line represents 

the exact balance between the mean solutocapillary and thermocapillary stresses, 

r̄ = 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. The ratio of the coefficients F S / F T (solid line) and the gradients | ∂ x Y m / ∂ x T i | 

(dashed line) at X̄ a = 0 . 
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Therefore the ratio of solutocapillary and thermocapillary stresses

can be estimated as 

r ≡ − �S 

�T 

≈ F S ̄Y m 

s m F T X̄ m 

[
X m T m 

T 2 
i 

− ∂ x X m 

∂ x T i 

]
, (73)

where the minus sign reflects their (typically) opposite direction.

When both concentration and temperature profiles are nearly lin-

ear, the derivatives ∂ x X m and ∂ x T i are nearly constant, so r does
not vary significantly along the interface. At lower air concentra-

tions, however, ∂ x Y m can vary considerably and can even change

sign, as shown in Fig. 11 . Hence it will be convenient to quantify

the relative strength of the two stresses using the ratio of their

mean values, r̄ , shown in Fig. 12 , which corresponds to the mean

values of ∂ x X m and ∂ x T i in (73) . 
In the limit X̄ a → 1 (e.g., at ambient conditions), the differential

phase change responsible for generating solutocapillary stresses is

greatly suppressed, such that Y m → Ȳ m and consequently �S → 0,

which means that the flow is controlled entirely by thermocapil-

lary stresses. The numerical results (cf. Fig. 13 ) show that the flow

at the interface is indeed towards the cold end ( u i < 0) along the

entire interface, with a nearly constant velocity in the central re-

gion of the cavity, which is consistent with a nearly constant tem-

perature gradient. 

As X̄ a decreases, the ratio r̄ increases, reflecting the increase

of solutocapillarity stresses associated with increased differential

phase change. The mean soluto- and thermocapillary stresses be-

come comparable, r̄ = 1 , around X̄ a = 0 . 1 , at which point we find

the flow reversing its direction at multiple locations along the in-

terface (cf. Fig. 13 ), depending on whether the local value of r is

above or below unity. This is consistent with the pattern of convec-
Fig. 13. Interfacial velocity (numerical) for different X̄ a . To highlight the variation 

of interfacial velocity in the central region of the cavity, the y -axis is truncated. 

X  

F

o

ion rolls shown in Fig. 11 . As the concentration of air is reduced

ven further, r̄ increases above unity (e.g., r̄ ≈ 5 at X̄ a = 0 . 015 ), re-

ecting the dominant role of solutocapillary stresses. Correspond-

ngly, the flow towards the hot end wall along almost the entire

nterface is found. 

The limit X̄ a → 0 is the most interesting from the perspective of

vaporative cooling, where solutocapillarity can ameliorate the ad-

erse effect of thermocapillary stresses leading to dry-out. In this

imit X m + X w = 1 , so that 

 x X m = −∂ x X w , (74)

hich allows us to make further progress. Combining the relation

71) for both water and methanol with (74) , we find 

 = 

F S 
F T 

X̄ m T m + X̄ w T w 

T 2 
0 

(
s m ̄X m 

Ȳ m 

− s w ̄X w 

Ȳ w 

)−1 

, (75)

ince in this limit X m and X w almost coincide with their average

alues. This result predicts that the ratio of solutocapillary and

hermocapillary stresses becomes constant in the limit X̄ a → 0 , so

he flow should become strictly unidirectional, just like in the op-

osite limit X̄ a → 1 , but with the opposite direction. 

As Fig. 14 illustrates, for water-methanol mixture, the ratio

 S / F T is a monotonically decreasing function of Ȳ m , while the ratio

 ∂ x ̄Y m /∂ x ̄T i | is a monotonically increasing function, so predicting the

rend for r is not straightforward. Evaluating the product of these

wo ratios shows that r has a peak value around 15 at Ȳ m ≈ 0 . 15

cf. Fig. 15 ), which represents the optimal composition of the liq-

id that maximizes the favorable solutocapillary stresses. Indeed,

he numerical simulations in the same geometry for �T = 6 K and
¯ a = 0 . 015 reported in Ref. [17] illustrate the same nonmonotonic
ig. 15. Dependence of the ratio of the solutocapillary and thermocapillary stresses 

n Ȳ m at X̄ a = 0 . 
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Fig. 16. Dependence of the interfacial velocity (numerical) on Ȳ m at X̄ a = 0 . 015 and 

�T = 6 K. 
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u

ependence on the composition of the liquid. As Fig. 16 shows,

he interfacial velocity is the largest at relatively small but nonzero

oncentrations of methanol (e.g., Ȳ m = 0 . 09 ) and decreases at both

ower concentrations (e.g., Ȳ m = 0 . 01 ) and higher concentrations

e.g., Ȳ m = 0 . 4 and Ȳ m = 0 . 7 ). While these numerical velocity pro-

les are only available for a discrete set of Ȳ m , they are completely

onsistent with the theoretical prediction based on our simplified

nalysis. 

As discussed in Section 3.3 , although the analytical solution for

he interfacial concentration profile that ignores phase change in

he central region of the cavity does not give an accurate local pre-

iction for solutocapillary stresses in the presence of a short wave

ength convection pattern, the mean ratio r̄ correctly predicts the

ominant contribution to the Marangoni stress and hence the di-

ection of the flow along the interface for different X̄ a . The varia-

ion of r about the mean value r̄ is due to convection in the liquid

ayer, which should be suppressed for thin liquid films, since the

arangoni number scales with the square of the layer thickness d l 
nd the Rayleigh number scales as d 4 

l 
[28] . Hence, for sufficiently

hin films, we should expect r ≈ r̄ and the interfacial flow velocity

o be nearly uniform for all X̄ a . 

. Conclusions 

By analyzing the comprehensive two-sided transport model for

 volatile binary liquid driven by an externally applied temper-

ture gradient [17] and its numerical solutions we demonstrated

hat, despite its complexity, the problem can be described analyt-

cally in certain useful limits. Not surprisingly, the analytical de-

cription approximates the numerical results well when the flow

s relatively simple, with no spatially or temporally complicated

onvection pattern. In the presence of convection rolls, our anal-

sis can predict the mean flow and the mean gradients of various

uantities with reasonable accuracy, but not the spatial/temporal

odulation describing the convective pattern. 

In modeling two-phase flows, it is a common practice to ei-

her ignore the transport in the gas phase or describe it through

ffective boundary conditions at the free surface. For volatile bi-

ary liquids, this approach fails in a rather spectacular manner.

ur analysis shows that, for fluid layers with sufficiently high as-

ect ratio, the transport equations for mass, heat, and momentum

an be solved sequentially, starting with the bulk concentration

elds in the gas phase. These concentration fields determine the

emperature and composition of the liquid layer at the interface

nd, consequently, the Marangoni (thermocapillary and solutocap-

llary) stresses. The Marangoni stresses, in turn, control the flow

n the liquid layer, which eventually determines the bulk tempera-

ure and concentration field in the liquid and the flow in the gas

ayer, yielding a complete solution of the problem. This result gen-
ralizes a similar conclusion for two-phase flows of volatile simple

uids [25,26] . 

We derived explicit analytical expressions for the mean solu-

ocapillary and thermocapillary stresses which correctly predict

hen the direction of the interfacial flow reverses. In particular,

hen the gas is predominantly air ( ̄X a → 1 ), such as under ambi-

nt conditions, as phase change is greatly suppressed, solutocap-

llary stresses were found to vanish, and thermocapillary stresses

rive the interfacial flow in the direction opposite to the temper-

ture gradient. In the opposite limit, when the air is removed al-

ost completely ( ̄X a → 0 ), phase change is enhanced and soluto-

apillary stresses dominate, driving the flow in the direction of the

emperature gradient. Interestingly, the thermocapillary stresses do

ot vanish in this limit for volatile binary liquids, unlike volatile

imple liquids for which thermocapillary stresses completely dis-

ppear [25,35] . 

Our results also provide useful guidelines for choosing the com-

osition of binary coolants and the optimal operating conditions

or thermal management applications. In particular, the concentra-

ion of air in a sealed cavity needs to be below 10% or so for the

olutocapillarity to balance the adverse effect of thermocapillary

tresses. Solutocapillary effect plays a beneficial role in general,

elping drive the liquid coolant towards the hot spots. Due to the

onotonic dependence of r on X̄ a (below X̄ a � 0 . 3 ), it is beneficial

o reduce the air concentration as much as possible. The optimal

omposition of the binary coolant, on the other hand, corresponds

o a small, but finite value of the concentration of the more volatile

omponent, e.g., Ȳ m ≈ 0 . 15 for a water-methanol mixture. 
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