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Recent experimental and numerical studies of convection in confined layers of volatile binary liquids with
a free surface subjected to a horizontal temperature gradient have observed a reversal in the direction of
interfacial flow as the concentration of air in the vapor space above the liquid is decreased. These obser-
vations suggest that transport in the gas phase has a significant effect on the balance between thermo-
capillary and solutocapillary stresses, the competition between which determines the flow direction. In
order to develop a quantitative description of the flow reversal, we use the two-sided (liquid/gas) trans-
port model introduced previously to obtain approximate analytical solutions for the interfacial temper-
ature and composition of the liquid, hence predict thermocapillary and solutocapillary stresses, and the
flow direction. Therefore, our solutions provide useful guidelines for choosing the optimal binary coolants
composition and operating conditions for thermal management applications. Despite the complex nature
of this problem, we have found that the mass transport in the gas phase is effectively one-dimensional
and independent of the flow in moderate to large aspect-ratio cavity for sufficiently low temperature
gradients, which allows this problem to be simplified and solved analytically in a sequential manner.
Our theoretical predictions agree well with the results of numerical simulations, which indicates that the
analytical analysis captures the essential physics of the problem.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

It is well-known that surface tension effects play a dominant
role in microscale fluid flows in terrestrial conditions and even at
macroscopic scales in microgravity. In particular, thermocapillary
stresses arise at the free surface of nonisothermal fluids due to
surface tension variation with temperature. For most simple fluids,
thermocapillary stresses cause the flow in the direction opposite
to the thermal gradient as surface tension decreases with increas-
ing temperature. In some practical applications, such as in thermal
management devices that rely on phase change, thermocapillarity
plays an adverse role, pulling the liquid away from the hot region
and promoting dry-out.

Dry-out can be reduced or eliminated using self-rewetting bi-
nary fluids [1] (mainly dilute aqueous solutions of long-chain
alcohols) characterized by surface tension which increases with
temperature [2]. Indeed, recent experimental investigations have
shown that thermal performance of evaporative cooling devices
could be significantly improved using self-rewetting fluids, under
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both terrestrial [3-6] and microgravity conditions [7-9]. The self-
rewetting effect, however, is only limited in certain binary fluids
within a range of temperatures [10], and the direction of the flow
can be reversed over a much wider range of temperatures by us-
ing binary fluids with the more volatile component having a lower
surface tension (e.g., aqueous solutions of short-chain alcohols).
For such fluids, solutocapillary stresses which arise due to surface
tension variation with liquid composition oppose thermocapillary
stresses [11-14], and flow reversal is observed when solutocapil-
lary stresses dominate [15].

While thermocapillary stresses arise for any fluids, simple or
binary, volatile or nonvolatile, solutocapillary stresses of compa-
rable magnitude can only arise mostly in volatile binary liquids,
where differential phase change leads to concentration variation at
the free surface. The strength of solutocapillary stresses depends
on both the variation of surface tension with concentration and
the concentration gradient along the free surface. The former is
related to the mean composition of the liquid, while the latter is
determined by differential phase change, which is strongly affected
by the presence of noncondensable gases (such as air), which are
well known to suppress phase change [16]. Recent experimental
[15] and numerical [17,18] studies have investigated the depen-
dence of the flow in a layer of methanol-water mixture on the
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composition of the two phases characterized by the mean con-
centration (molar fraction) of methanol Y, in the liquid and the
mean concentration of air X; in the gas. It was determined that
the flow is most sensitive to the composition of the gas phase:
flow reversal requires X; to be very low (a few percent or less).
The dependence on the composition of the liquid phase was found
to be much weaker, with the solutocapillary effect being somewhat
stronger at low values of Y.

The resolution of those two studies, however, was too low to
determine the optimal values of X, and Y;; which would gener-
ate the strongest flow in the direction of the applied temperature
gradient. More importantly, while there are significant numerical
and theoretical studies on Marangoni-driven flows in volatile bi-
nary fluids [17,19-24], we still lack the intuition about the interplay
between transport of heat and mass across the liquid-vapor inter-
face and in the bulk of the two layers, which controls the relative
strength of thermo- and solutocapillary stresses. The main reason
is that the transport equations for the momentum, heat, and mass
are nonlinear and couple the flow, temperature, and concentration
fields in the two layers, making this problem extremely compli-
cated.

Our recent investigations of a similar problem involving a
volatile simple fluid, on the other hand, came to an interesting and
unexpected conclusion. Numerical simulations [25] showed that
mass transport in the gas phase is effectively one-dimensional and
independent of the flow field even for relatively high mass Pé-
clet numbers. This result allowed decoupling the transport equa-
tions in the gas phase, leading to a dramatic simplification of the
problem and allowing substantial analytical progress [26]. In par-
ticular, it became possible to compute the interfacial temperature
and hence the Marangoni (thermocapillary) stresses that drive the
flow. Our recent numerical simulations [17] for volatile binary flu-
ids in the same geometry revealed that, while the gas phase be-
comes a ternary mixture, mass transport remains essentially one-
dimensional, which suggests that the analytical approach could be
extended to binary fluids. This paper shows that it is indeed possi-
ble to obtain approximate analytical solutions of the comprehen-
sive two-sided transport model introduced in Ref. [17] yielding
both the thermocapillary and solutocapillary stresses. The outline
of the present study is as follows. We describe the transport model
in Section 2. Its analysis as well as the comparison of the analyti-
cal predictions with the numerical results are presented Section 3.
Section 4 contains the summary and conclusions.

2. Mathematical model
2.1. Governing equations

We will consider a flow in a layer of volatile binary liquid
(water-methanol mixture) with a free surface confined along with
its vapor and air in a rectangular test cell (cf. Fig. 1). The flow is
driven by a horizontal temperature gradient in the extended (x) di-
rection created by imposing a temperature difference AT =T, — T¢
between the outer surfaces of the two end walls. Previous exper-
imental and numerical studies of surface-tension-driven flows in
this geometry [27-29] showed that the liquid-vapor interface has
a low curvature and the flow is nearly two-dimensional. Hence we
will simplify the problem by considering the liquid layer to have
a uniform thickness and the flow to be strictly two-dimensional
and confined to the x — z plane. The former assumption is justi-
fied when the dimensions L and W are much larger than the capil-
lary length and the latter when the thickness of the layer is small
compared to W.

The two-sided transport model [17] used for numerical simu-
lations is reproduced here in a slightly condensed form to make
the discussion self-contained. The flow in both phases is assumed

x /W
L

Fig. 1. The sketch of a test cell containing the liquid and air/vapor mixture. Gravity
is pointing in the negative z direction. The inner dimensions are H=W = 10 mm,
L = 48.5 mm, the walls are 1.25 mm thick, and the liquid (gas) layer has a thickness
d;=2.5 mm (dg = 7.5 mm).

incompressible
V.u=0, M

and the momentum transport in the bulk is described by the
Navier-Stokes equation

p(du+u-Vu)=—-Vp+ uViu+ pg, (2)

where u is the velocity, p is the pressure, p and u are the density
and dynamic viscosity of the fluid, respectively, and g = —gZ is the
gravitational acceleration. Heat transport in the bulk is described
by the advection-diffusion equation

T +u-VT =aV?T, (3)

where T is the temperature and o = k/pCp is the thermal diffusiv-
ity of the fluid.
The density of the liquid mixture is assumed to be

P1= Pim+ PLws (4)

where p;, is the density of component b. Here and below the sub-
script denotes the phase (I for the liquid, g for the gas), and/or the
component of the mixture (m for methanol, w for water, a for air).
We will use the subscript i to denote the values at the liquid-gas
interface. A linear dependence of the density of each component
on the temperature is assumed,

oy = Pl = Bro(T = To)], (5)

where ), = —p;,}ap,_b/ar is the coefficient of thermal expan-
sion and p,ob is the density of component b in the mixture at

the reference temperature Ty (here and below we will assume
To = (Tc + T;)/2). We also have

pll?b = nlemllga (6)

where n; is the total number density in the liquid, m}, is the mass
of one molecule, and Y, = n;,/n; is the concentration (molar frac-
tion) of component b in the liquid phase.

The density and pressure of the gas mixture are

Pg = Pgm + Pgw + Pg.as

pg = pg,rn + pg,w + pg,aa (7)
where all components are assumed to be ideal,
XpDyg
Pgb = m,
Peb = XpDg, (8)

Xp =ngp/ng is the concentration (molar fraction), ng is the to-
tal number density in the gas, R, = R/M,, is the specific gas con-
stant, and M, = m;NA is the molar mass of component b of the gas
phase. We use the Boussinesq approximation, according to which
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the spatial average of p; and pg is used on the left-hand-side (but
not the right-hand-side) of the Navier-Stokes Eq. (2) for the liquid
and the gas phase. Furthermore, we treat n; and

Pg
Ng = kT 9)
as spatially constant, which is justified along with the Boussinesq
approximation for AT « Ty. The pressure pg is spatially nearly
constant and is computed based on the incompressibility condi-
tion and mass conservation of the three components (air, water,
methanol) [17].

With the assumptions of incompressible flow and constant total
number density of the mixture, mass transport in the binary liquid
mixture is described by the advection-diffusion equation for, say,
water concentration

Yy +u-VY, =V . (D,VYy), (10)

where D; is the binary mass diffusivity, and the methanol concen-
tration is recovered from

Y =1—Yy. (11)

Here and below the subscript denotes the phase (I for the lig-
uid, g for the gas), and/or the component of the mixture (m for
methanol, w for water, a for air). We will use the subscript i to de-
note the values at the liquid-gas interface. Similarly, in the ternary
gas phase, mass transport is described using a pair of equations

8tXb+u~VXb:V~ ®,VXy), (12)

for water and methanol, where ©, are the effective mass diffusiv-
ities [30], which are assumed to depend only on the average con-
centrations [17]. The concentration of air is hence given by

Xo=1—Xpn — Xy (13)

Together, (12) and (13) describe mass transport in the ternary gas
phase with arbitrary composition.

2.2. Boundary conditions

The system of coupled evolution Eqgs. (1)-(3) and (10) for the
liquid phase (or (12) for the gas phase) has to be solved in a self-
consistent manner, subject to the boundary conditions describing
the balance of momentum, heat, and number fluxes at the liquid-
gas interface and at the inner surface of the walls of the cavity.

For simple fluids, over a wide range of conditions, phase equi-
librium can be described by the Antoine equation

By
Cb +T ’
where pj, is the vapor pressure, and Ap, Bj, C, are empirical coef-
ficients. In developing a simplified description of the problem, it

will be more convenient to instead use the Clausius-Clapeyron re-
lation

Py _ Ly (1 1
1“;73"127(?’%)’ (15)

In Py = Ab — (14)

where pg is the reference value of the vapor pressure at the ref-
erence temperature Ty. The two relations are equivalent for small
deviations of T from Ty, provided the latent heat is defined accord-
ing to
ByR,T?

Ly = Lﬂz- (16)

(G, +To)
This can be easily verified by evaluating the expressions (14) and
(15) and their derivatives with respect to T at Ty. For binary fluids,
phase equilibrium is determined by an extended Raoult’s law

Peb = VoDbYp: (17)

where y, is the activity coefficient of component b, which ac-
counts for deviations from an ideal liquid mixture, p,} is the cor-
responding partial pressure of the vapor, and p, satisfies (14) (or
(15)). In the following, we will use (17) in combination with (14) in
the numerics, or in combination with (15) in the theoretical analy-
sis, to define the saturation temperatures T}, given the partial va-
por pressures pgp,. Note that T does not correspond to the satu-
ration temperature of a pure component b and depends on both X,
through (8) and Y} through (17).

Phase change occurs locally where the thermodynamic free en-
ergy is different between the phases. The driving forces for mix-
tures include the temperature difference, pressure difference, and
concentration difference across the interface [31]. The latter two
effects are negligible in this study. Therefore, the number density
flux describing phase change for each component of the volatile
fluid can be described using the kinetic theory expression [32],
which only includes the temperature difference

j‘b= 2Xb ETI_TSI)
T2 T Ty

NgXpUr b, (18)
where T, = £, /Ry, X} is the accommodation coefficient, and

RyT;
Uy =[5 (19)

is the characteristic thermal velocity. The corresponding mass flux
is J;p = m} ji -

Since air is noncondensable, we can write the mass/number
flux balance on the gas side of the interface as
ji,b = ngXb Z- Ug — ngCDb asz,
Jia=0, (20)
while on the liquid side
Jip=mYyZ -, — D, 0;Yy. (21)
The heat flux balance requires
[:mm}n]'i,m + Ewm\lxvji,w = kg0, Tz — k;0,T) (22)
and the temperature is assumed continuous
T=T=T, (23)

The tangential components of the velocity across the interface are
also continuous

(I-22) - (w —u) =0, (24)
while the normal components are related by mass flux balance
MZ-W =ngZ Ug=jim+ Jiw (25)

Assuming flat interface and negligible effect of vapor recoil, the
stress balance at the interface

R (% - %) 2= 00, (26)

incorporates viscous drag between the two phases and the
Marangoni (thermo- and solutocapillary) stresses, where o is the
surface tension and

T = pu[Vu+ (Vu)'] - pI (27)

is the stress tensor. The surface tension of the methanol-water lig-
uid mixture is described by a relation [33]

0 = f(Yn)om +[1~ f(Ym)low (28)
based on the fits to experimental data, where

1+c(1-Y,
F (V) = Va1 L= V) (29)

1-c(1=Yn)
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Fig. 2. Surface tension of methanol-water mixture as a function of the methanol
concentration computed using (28).

with empirical parameters ¢; and ¢, (cf. Fig. 2). The surface ten-
sion of each component is assumed to be linear with respect to
the temperature of the interface

op =00 +0(T, - Tp), (30)

where ol? is the surface tension of the pure substance at the ref-
erence temperature Ty and o} = dop,/9T is the temperature coeffi-
cient of surface tension. With the help of relations (28)-(30), the
right-hand-side of (26) can be rewritten as

0x0 = f/(Ym)(O-m — 0w)0xYm (31)
+[f(Ym)om +[1 = f(Ym)]oy, | 0T,

where the first and the second term represent the soluto- and
thermocapillary stresses, respectively.

Since the walls of the test cell are thin, one-dimensional con-
duction inside these is assumed, yielding the following mixed
boundary conditions on the inside of the end walls:

h

T|x:0 = Tc + klk—saxT, (32)
s

h
T|x:L = Th + kt axT,

75
ks
where ¢ = g (¢t = 1) above (below) the contact line, hs is the thick-
ness and ks is the conductivity of the walls. In typical experiments,
the side walls are in contact with air, which is a poor conductor,
so heat flux through the top and bottom walls can be ignored

9T =0. (33)

Standard no-slip boundary conditions u =0 for the velocity and
no-flux boundary conditions for the concentrations

X, =0, (34)
3Y, =0

are imposed on all the walls, where 9, =fi-V, and ii is the unit
vector normal to the wall. Additional details of the mathematical
model and its numerical implementation as well as the relevant
material parameters can be found in Ref. [17].

3. Results

Although the transport equations for the momentum, heat, and
mass (1)-(13) show that the flow, temperature, and concentration
fields are all coupled via advection, buoyancy, or various boundary
conditions, as confirmed by our numerical simulations [17] and the
analysis presented next, even in a moderate-aspect-ratio cavity, the
mass transport in the gas phase is effectively one-dimensional and
independent of the flow field for sufficiently low AT. Therefore,

we follow an approach similar to that of Ref. [26] to obtain a sim-
plified description of this problem. The simplified description re-
lies on the governing equations listed in the previous section, with
certain reasonable assumptions that allow some variables to be de-
coupled, and hence the problem to be solved sequentially.

First, the concentration fields X;; and X,y in the gas phase can
be found based on mass transport in the gas phase. Then both
the interfacial temperature T; and the interfacial composition Yy,
can be obtained with the help of phase equilibrium relations.
These interfacial profiles determine the thermo- and solutocapil-
lary stresses and hence the flow in the liquid layer. In particular,
the direction of the flow along the interface can be determined
by comparing the strength of the thermocapillary stresses and the
(opposing) solutocapillary stresses. (While buoyancy is nonnegligi-
ble for a few-mm-thick layer of liquid considered in Refs[15,17].,
it mainly affects the stability of the flow [34].) Once the flow in
the liquid layer is found, the remaining undetermined fields can
be computed from the corresponding transport equations.

The previous numerical simulations [17] were performed for
the temperature difference AT = 6 K used in the experiments of Li
and Yoda [15]. At this relatively high AT, in both studies the flow
was found to be unsteady for intermediate values of the mean air
concentration X;. The present study uses two-dimensional numer-
ical simulations at a lower AT =2 K, Yi» = 0.6 (i.e., 60% methanol
and 40% water), and a fixed contact angle of 90 degrees, un-
less noted otherwise. At this AT the flow (cf. Fig. 3) is essen-
tially steady over the entire range of X;, so numerical results can
be used to both motivate and validate the analytical predictions.
At X; = 0.7 phase change is suppressed, thermocapillary stresses
dominate, and the interfacial flow is in the direction opposite the
imposed temperature gradient. Decreasing the concentration of air
to X; = 0.015 enhances phase change, solutocapillary stresses be-
come dominant, and the direction of the flow reverses.

3.1. Mass transport and concentration profile in the gas phase

Let us start by deriving the analytical solutions for the concen-
tration profiles, following the analysis in Ref. [26]. With a fixed
contact angle of 90 degrees, the liquid-gas interface is essentially
flat, and we can introduce the rescaled coordinates x = x/d; and
¢ =z/dg, such that the gas phase corresponds to 0 < ¢ < 1 and
0 < x < I'g, where I'g = L/dg is the aspect ratio of the gas layer.
In the present problem, I'g ~ 6.5 is relatively large, and our analyt-
ical analysis focuses on the central region of the cavity. Since phase
change is small in the central region, the vertical component of the
flow there is small (u; = O(Fgl)), while the horizontal component
can be decomposed

Uy =+ 0(¢) +0(T; ") (35)

into the mean flow # and zero-mean recirculation flow . Using
this decomposition, the mass transport Eq. (12) in steady state can
be solved [26] to leading order in Fg], yielding

Xp = Cp o+ Cp e mX[1 4 g, ({)], (36)
where

_ l]d; / v 10l 2
8(6) =5 [ 4’ [ dcae”) o), (37)

€p = Pey, yPey, . is the product of a pair of Peclet numbers, one cor-
responding to the mean flow

Pey = (38)

and another corresponding to the recirculation flow

Pe,, = max —'ngljg. (39)
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Fig. 3. Numerical solution for the fluid flow with (a) X, = 0.7, (b) X, = 0.1, (c) X, = 0.015. The cold end wall is on the left._Solid lines represent the stream lines of the
flow; color correspon_ds to the values of stream function v, where darker (lighter) indicates higher _(lower) values of . At X, = 0.7, convection rolls in the liquid are all
counterclockwise, at X, = 0.1, two convection rolls next to both end walls become clockwise, and at X, = 0.015, all convection rolls become clockwise. Accordingly, the flow

direction along the interface reverses as X, decreases, as shown in Fig. 13.

Fig. 4. Nuglerical solution for the concentration of methanol at (a) X, = 0.7, Yy = 0.6 +1.89 x 1074, X, = 0.26 +0.010, (b) X, = 0.1, Y = 0.6 +1.25 x 103, X = 0.78 +
0.013, (c) X; = 0.015, Y, = 0.6 &+ 1.42 x 103, X;;, = 0.86 + 0.003. Solid lines represent equispaced level sets of the concentration fields (15 in the liquid and 20 in the gas). In

both phases, the lighter (darker) color indicates lower (higher) concentration.

The solution (36) depends on both the horizontal coordinate x
and the vertical coordinate ¢, where the ¢-dependence is weak
for small €y, since g,(¢) = O(€p). In the limit €, — 0, the ¢-
dependence disappears:

Xy = Cpo + Cp e 0mX. (40)

Indeed, €, ~ €y « 1 regardless of the concentration X, of air, as
long as AT is sufficiently small, so the concentration field should
be weakly dependent on the vertical coordinate, and the solution
(40) should remain a good approximation even when Pe, is not
small. This is consistent with the results of our numerical sim-

ulations: as Fig. 4 shows, in the central region of the cavity, the
variation of the concentration in the vertical direction is negligible
compared with that in the horizontal direction.

The constants Cpo and Cp,; can be found in explicit analytical
form for sufficiently small AT. Let the temperature at inner sur-
faces of the end walls be Tl.i =To &+ AT’/2, where the superscript -
( + ) refers to the value at x=0 (x =L). Eq. (18) implies that the
interfacial temperature is essentially equal to the saturation tem-
perature, T; ~ Ts, m ~ Ts w, due to the large values of the ratio
T,/T; (for water and methanol, T,y = 4.9 x 10% K and T, = 2.8 x 103
K) and low values of ugfu), [35]. Furthermore, numerical results
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show that the variation of Y, along the interface is very small, so
both Y, and y, can be considered fixed at their average values,
such that (15) and (17) yield

+
I _ —Tb[; - 1] (41)
X9 To£AT 2 Tl

where XL? is the reference (equilibrium) value of the concentration
at T = Ty. The variation (X, le?) /Xl? in the vapor concentrations is
more pronounced, but still small, so the left-hand-side of (41) can
be Taylor-expanded. Since AT < AT « T02 /Ty, we can also Taylor-
expand the right-hand-side. Keeping only the leading-order terms,
we find

(42)

T, AT’
X =xl9[1 + }

217

Finally, substituting these boundary conditions into (40) we find

!
Goo :Xl?[l + LAT coth bi}

2T¢
T,AT 1
olb

Cor ==X 2 e 43)
where we have defined «, = Pey, ,,I'g, and
- T,AT K 2

— X0 b Zh_ 2
X, = X [1 o (coth ) Kb)]. (44)

3.2. Net heat and mass flux

In order to compare the analytical and numerical results of the
concentration profiles in the gas phase quantitatively, we next de-
termine the mean mass flux and the mean gas velocity. The mean
(z-averaged) mass flux across the vertical plane at horizontal loca-
tion x

_ L
M@=éﬂmwmm (45)

can be obtained by integrating the local mass flux J;, for phase
change. Since evaporation (condensation) takes place mainly near
the hot (cold) end wall (cf. Fig. 5), the function becomes essentially

constant J,(x) ~ J; in the central region of the cavity (cf. Fig. 6),
where

Jy = maxj (). (46)

We will therefore use the values given by (46) to describe the nu-
merical results and drop the superscript ¢ in the subsequent dis-
cussion.

Next, let us estimate the mean mass fluxes J, analytically and
consider their dependence on the concentration of air X,. For suffi-
ciently low AT and highly volatile fluids, the overall heat transport
between the end walls is dominated by the latent heat associated
with phase change, and the heat flux balance gives

_ AT
;]bﬁb =7z (47)

where Zr is the total net thermal resistance
Zr =Zy+ Zy, (48)

Z, is the thermal resistance due to conduction through the liquid
layer and the end walls and Z; is the diffusive resistance of the
gas layer [36]. While Z, can be considered independent of the air
concentration X,, Zg is an increasing function of X;.

Since heat flows though the walls and the liquid wedges be-
tween the wall and the interface “in series,” Z, is a sum of the

0.04

0.02

Ji,m (g/mZ_s)
o

-0.02
— 15% -=10% —-—70%
-0.04
0 10 20 30 40
X (mm)
(a)
0.01
0.005
0 iy
K i
g 0 I
B0 ]
2 ]
~ oo 1
-0.005 |
— 5% ==10% —-—70%
-0.01
0 10 20 30 40
X (mm)

(b)

Fig. 5. Mass flux J;, (= m}7 Jjip) associated with phase change calculated nqmerically
for (a) methanol and (b) water at three different concentrations of air: X, = 0.015
(solid line), X, = 0.1 (dashed line) and X, = 0.7 (dash dot line). To highlight the
variation of the mass flux in the central region of the cavity, the y-axis is truncated
in (a) and (b).

conduction resistances of the end walls Z,, = hs/ks; and the con-
duction resistances of the liquid wedges Z; ~ 0.5d,/k;, where
hy d
Zo=2Zw+2Z) ~2 + . (49)
ks K
The heat flux associated with the mass flux of the two vapors is
“in parallel,” so that

7' =7, (50)
b

where Zg), is the diffusive resistance associated with component b.
Furthermore, the latent heat associated with the phase change of
two components is related to their diffusive resistances

JmEm _ ZdJ
];v[:w Zd.m .

The diffusive resistance for each component Z;; can be com-
puted from (47) in the limit X; — 1. In this limit, the temperature
drop across the end walls can be neglected, so that AT’ = AT,
Zy < Zg, and Zr = Z,. According to numerical simulations, mass
transport is essentially one-dimensional in the central portion of
the cavity and, in steady state, the horizontal components of the
number flux of each component vapor and air satisfy

(51)

Jm = NgDmdxXim — NgliXom,
Jw = gDy 0x Xy — NgliXey,
0 = Ng40xXa — NgiiXa, (52)

where j, is the mean (z-averaged) value of the number flux of the
vapor of component b and j, =0 because it is noncondensable.
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Summing these equations yields

Jm + Jw = —ngll, (53)

where we used the fact that the total diffusive flux vanishes [17]

> ng®,8,X, =0. (54)
P

Solving the system of Eq. (52) together with (53) for jn and j,, and
integrating the resulting relations from x = 0 to x = L yields

n - -
Jm = —i[gm(l _XW)AXm +©meAXw],
a
Ng = =
Jw = )—< [:DW(‘1 *Xm)AXw +®meAXm]y (55)
a

where, according to (42),

T, AT
AXy = Xplxet — Xplxo = X0 2

b < Xp. (56)
0

From (47), (50), (55), and (56) we find

X T5L
Zym=—3 = =
PXin T [ Dm (1 = Xuw) T + DwXon T |
X, T3L
Zow =2 (57)

X Tu[Dw (1 = Xn) Ty + DX T |

Note that, in the limit X, — 0 (Xm — 0), the diffusive resistance
Zgm (Z4 ) reduces to the expression Z; = L/k., where k¢ is the ef-
fective condensation thermal conductivity derived for a binary (va-
por/air) mixture by Peterson et al. [37].

5E-1

o
m
w
T

5E-5 | L

0.01 01 _ 1
Xq

Fig. 7. The characteristic mass fluxes J, (= m;fb) in the gas phase. The results for
methanol (water) are shown in black (grey). Solid line represents the analytical es-
timate based on (58), symbols - the numerical results obtained using (46).

Finally, solving (47) and (51) we find
-1

- AT
h= |12y
b

oy (58)
Fig. 7 shows that the analytical and numerical results are in rea-
sonable agreement, suggesting that the one-dimensional descrip-
tion of transport in the gas phase is reasonably accurate. An in-
crease in X, leads to an increase in the diffusive resistance for both
component vapors and, correspondingly, a decrease in both fluxes.
The minor discrepancy between the numerical and analytical re-
sults is likely due to the contribution of heat conduction and ad-
vection in the liquid layer that have been ignored in our analysis.
These contributions are negligible for low X, but would become
progressively more important at higher X, when phase change is
suppressed, and our estimates of fb are expected to overestimate
the numerical results, consistent with Fig. 7. In practical applica-
tions (e.g., for heat pipes) the liquid layer will be substantially thin-
ner, so convective heat flux would be negligible and the prediction
of our simplified transport model would be even more accurate.

Once the mean vapor fluxes and the mean flow velocity have
been determined from (47) and (53), we can finally compare the
analytical prediction (40) for the concentration profiles with the
numerical results. As Fig. 8 shows, we find good agreement (mi-
nor deviations will be discussed in the next Section). In general,
the concentrations of all components in the ternary gas mixture
vary exponentially with x, which is consistent with the findings for
simple fluids with binary (vapor/air) gas mixtures [25]. The expo-
nential concentration profiles become approximately linear when
Pey < Iy 1. This limit corresponds to low values of the mean flow
velocity i and hence low values of AT and/or high values of X,. In
particular, at AT =2 K, the concentration profiles are nearly linear
for all X,.

3.3. Interfacial temperature and concentration profiles

As we argued in the previous section, the concentration fields
are determined, to leading order, by the net mass flux of the va-
pors, which is determined by the temperature gradient or, more
precisely, by the temperature difference between the end walls,
but not the concentration gradient. However, the concentration
fields in the gas phase determine both the temperature and lig-
uid concentration at the interface via (17) and (15). With the help
of (17) we can write

p)  XPwYy
where the superscript 0 denotes the reference values correspond-
ing to the global thermodynamic equilibrium at T = T,. We can

(59)
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Fig. 8. Normalized concentration profiles in the gas phase for methanol (a), water
(b), and air (c) for different X,. Numerical and analytical results are represented by
gray and black lines, respectively. Numerical results correspond to the horizontal
midplane of the gas layer. To highlight the variation in the central region of the
cavity, the y-axis is truncated in (a) and (b).

replace the reference values of all the concentrations with the
mean values, Y =Y,, ¥2=,=,(¥,). and X?=X,. One the

b
other hand, the phase equilibrium condition (15) requires
L (60)
by
where we have defined a new variable € according to
1 1 1 T
- -~ (61)

0 T T T
where 8T; = T; — Ty. Equating the right-hand-sides of (59) and (60),
we find

y, = %ot oo, (62)
YoXb

Since Y}, is very close to Y,, the dependence of the activity coef-
ficient on the concentration is described with very good accuracy
by a linear relationship

YY) = 7 + vy (Y — V). (63)

where y; = 0y,/dY, at Y, = Y. The liquid is a binary mixture, so
Y + Yy = ¥ + Yy = 1, which yields a transcendental equation for
0

Z hb[1 - abe‘Tb/g] =0, (64)
b
where the sum is over b =m, w and
hy=—Y0 g =% (65)
1+ ]/b/Yb Xy

This equation can be solved approximately for small deviations
of the interfacial temperature from Ty, i.e., for |6| > max(Tm, Tw)
by Taylor-expanding both exponential terms. Indeed it is easy to
see that |6 > O(TZ/AT) = 0(10* K) for AT as large as 10 K. The
actual temperature variation along the interface is typically a frac-
tion of AT, leading to an even higher |0| (e.g., |6] ~ 0(10°K) at
AT = 2 K), so that reasonably accurate results can be obtained in
analytic form by truncating the Taylor series at linear terms, which
yields

1T _ Yph(@-1)
O Ypyhaply (86)

The corresponding interfacial temperature can now be found from
(61) and the interfacial concentrations of water and methanol in
the liquid phase from (62).

The analytical predictions for the interfacial temperature are in
reasonable agreement with the numerical results in the central re-
gion (cf. Fig. 9). Based on (15), the temperature gradient is related
to the vapor pressure gradient and hence the gas concentration
gradient, so the nearly linear concentration profiles at AT =2 K
should imply nearly linear interfacial temperature profiles for all
X,. Note that this is not a reflection of the thermal boundary condi-
tions at the top/bottom wall, but rather a result of mass transport
in the gas phase.

The theoretical interfacial concentration profiles predict the
overall variation correctly, but exhibit noticeable local deviations
from the concentration profiles found in the numerical simulations,
as Fig. 10 illustrates. This is due to the insufficient accuracy in our
description of the concentration fields X, in the gas phase. While
the analytical and numerical results of X, appear to agree quite
well (cf. Fig. 8), even relatively small discrepancies (they are most

0.6 5
1—15% =-=-10% =—-

0.3 | P

OT, (K)
X
‘.

\

-0.3

L
0.6 F——
0

10 20 30 40
X (mm)

Fig. 9. Interfacial temperature for different X,. The variation 8T, = T; — Ty about the
mean is plotted. Numerical and analytical results are represented by gray and black
lines, respectively. To highlight the variation of the interfacial temperatude in the
central region of the cavity, the y-axis is truncated.
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variation 8Yy; = Y — Yin about the mean is plotted. Black lines represent the analyt-
ical estimate (62) based on the analytical solution for X; and T;, dark gray lines -
the numerical results, and light gray lines - the analytical estimate (62) based on
the numerical results for X, and T;. To highlight the variation of the interfacial con-
centration in the central region of the cavity, the y-axis is truncated.

noticeable for X,y) are greatly amplified because of the exponential
dependence of Y, on the ratio T,/0 in (62). To illustrate this, we
computed the interfacial profile of Y, by substituting numerical,
rather than analytical, results for the concentration fields X and
Xy into Eq. (62). As Fig. 10 shows, the resulting estimate accurately
reproduces even the fine details of the numerical solution for Yy,
in the central region of the cavity, confirming that it is indeed the
accuracy of the estimate (40) that is the culprit. (The remaining
discrepancy near the end walls is mainly due to the difference be-
tween T; and Tgj.)

The origin of the local deviation of the analytical solution
(40) from the numerical one at the two lower values of X, can be
easily identified by inspecting the flow field (cf. Fig. 3), methanol
concentration in the liquid (cf. Fig. 4), and the phase change flux
at the interface (cf. Fig. 5). The flow at the intermediate value of
X, shown in Fig. 11 features several convection rolls in the liquid
layer. The composition of the liquid layer is controlled by advec-
tion, which dominates over diffusion due to a very low value of D,
(and a correspondingly large mass Péclet number). Convection rolls
effectively convert the horizontal gradient of Yy, driving the mean
flow into the vertical gradient.

The analysis presented in Section 3.1 completely ignored phase
change in the central region of the cavity. However, even though
it is far less intense than near the end walls, phase change also
occurs in the central region (cf. Fig. 5). The vertical mass flux in
the liquid layer causes evaporation of methanol at the left edge of
each counter-rotating convection roll and condensation at the right
edge, as demonstrated by the phase change flux J;,,. This phase
change acts as a perturbation on the flow field in the gas layer
(the clearly visible modulation of the stream lines in the top panel
of Fig. 11). As the relation (37) illustrates, a perturbation in the
flow field generates a corresponding perturbation in the concen-
tration fields X, described by (36) and it is this perturbation that
is responsible for the deviation of the predicted composition of the
liquid at the interface from the actual composition that is observed
(bottom panel of Fig. 11). The deviation of the predicted interfacial
concentration profile at X; = 0.7 is also due to the nonnegligible
phase change in the central region of the interface (cf. Fig. 5), even
though in this case there is no convection pattern.

The spatial variation in the temperature and composition of the
liquid at the interface generates thermocapillary and solutocapil-
lary stresses, respectively. These stresses will be discussed in more
detail next, but we conclude this Section by noting that our anal-
ysis points to the perturbation in Yy, shown in the bottom panel
of Fig. 11, causing both the phase change in the central region of

35
0.3 -
0.15 -
N 1
%0
3 q 20 30 40
-0.15 - X (mm)

4,
2 ]
. ]
[} i
‘;‘ ]
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= ( 10
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4]

Fig. 11. Numerical solution for X, = 0.1, ¥,; = 0.6. The panels shows (from top to
bottom) the flow field, the normalized mass flux associated with the condensa-
tion/evaporation of methanol, the concentration of methanol in both phases, and
the variation §Yp, of the methanol concentration in the liquid about the mean.

the cavity and the modulation of solutocapillary stresses that give
rise to the convection rolls. The detailed stability analysis of this
problem that couples the perturbations in the flow and composi-
tion of both layers is outside the scope of this paper, although the
mechanism of the instability appears to be clear.

3.4. The Marangoni stresses and interfacial flow

With the solutions for the interfacial temperature and con-
centration profiles in hand, we can immediately determine the
thermocapillary and solutocapillary stresses. The net surface stress
0x0 = X+ X7 is the sum of the solutocapillary stress

Y5 = F0oxYm (67)
and thermocapillary stress

X1 = FoT,, (68)
where, according to (31), we have defined

E = f'(Yn)(om —ow) <0, (69)
and

Fr = ~f(Ym)op — (1 = f(Ym))oy, <O, (70)
Taking the derivative of (62) we obtain

B,Y) ~ 2[3;5’3 - T”%Ti], (71)
where

sp=1 +L”/?b. (72)

Vb
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Fig. 12. The ratio of solutocapillary and thermocapillary stresses for different X,
evaluated using (73) with mean values of 9,X, and d,T;. The dashed line represents
the exact balance between the mean solutocapillary and thermocapillary stresses,
r=1.

Therefore the ratio of solutocapillary and thermocapillary stresses
can be estimated as
X,
aX mi|, (73)

s EYn [XaTn
Zr o smFrXm T,'2 0xT;

where the minus sign reflects their (typically) opposite direction.
When both concentration and temperature profiles are nearly lin-
ear, the derivatives dxXm and 0xT; are nearly constant, so r does
not vary significantly along the interface. At lower air concentra-
tions, however, 0xY;; can vary considerably and can even change
sign, as shown in Fig. 11. Hence it will be convenient to quantify
the relative strength of the two stresses using the ratio of their
mean values, 7, shown in Fig. 12, which corresponds to the mean
values of 0xXm; and 0xT; in (73).

In the limit X; — 1 (e.g., at ambient conditions), the differential
phase change responsible for generating solutocapillary stresses is
greatly suppressed, such that Y, — ¥, and consequently s — 0,
which means that the flow is controlled entirely by thermocapil-
lary stresses. The numerical results (cf. Fig. 13) show that the flow
at the interface is indeed towards the cold end (u; < 0) along the
entire interface, with a nearly constant velocity in the central re-
gion of the cavity, which is consistent with a nearly constant tem-
perature gradient.

As X, decreases, the ratio 7 increases, reflecting the increase
of solutocapillarity stresses associated with increased differential
phase change. The mean soluto- and thermocapillary stresses be-
come comparable, 7 =1, around X; = 0.1, at which point we find
the flow reversing its direction at multiple locations along the in-
terface (cf. Fig. 13), depending on whether the local value of r is
above or below unity. This is consistent with the pattern of convec-
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Fig. 13. Interfacial velocity (numerical) for different X,. To highlight the variation
of interfacial velocity in the central region of the cavity, the y-axis is truncated.
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Fig. 14. The ratio of the coefficients Fs/Fy (solid line) and the gradients |0yYp,/0xT;|
(dashed line) at X, = 0.

tion rolls shown in Fig. 11. As the concentration of air is reduced
even further, 7 increases above unity (e.g., ¥ ~ 5 at X, = 0.015), re-
flecting the dominant role of solutocapillary stresses. Correspond-
ingly, the flow towards the hot end wall along almost the entire
interface is found.

The limit X; — 0 is the most interesting from the perspective of
evaporative cooling, where solutocapillarity can ameliorate the ad-
verse effect of thermocapillary stresses leading to dry-out. In this
limit X, +Xw = 1, so that

0Xim = —0xX, (74)

which allows us to make further progress. Combining the relation
(71) for both water and methanol with (74), we find

-\ -1
_sWXW> ’ (75)

B X T + XwTw { Sm¥Xm
Yin Yo

Fo1

since in this limit X;; and Xy, almost coincide with their average
values. This result predicts that the ratio of solutocapillary and
thermocapillary stresses becomes constant in the limit X; — 0, so
the flow should become strictly unidirectional, just like in the op-
posite limit X, — 1, but with the opposite direction.

As Fig. 14 illustrates, for water-methanol mixture, the ratio
Fg/Fr is a monotonically decreasing function of Yy, while the ratio
|3xYin/0xT;| is a monotonically increasing function, so predicting the
trend for r is not straightforward. Evaluating the product of these
two ratios shows that r has a peak value around 15 at Ym ~ 0.15
(cf. Fig. 15), which represents the optimal composition of the lig-
uid that maximizes the favorable solutocapillary stresses. Indeed,
the numerical simulations in the same geometry for AT = 6 K and
X, = 0.015 reported in Ref. [17] illustrate the same nonmonotonic

16

12

4 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Fig._15. D_ependence of the ratio of the solutocapillary and thermocapillary stresses
on Yy at X; = 0.
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Fig. 16. Dependence of the interfacial velocity (numerical) on ¥,, at X, = 0.015 and
AT =6 K.

dependence on the composition of the liquid. As Fig. 16 shows,
the interfacial velocity is the largest at relatively small but nonzero
concentrations of methanol (e.g., ¥ = 0.09) and decreases at both
lower concentrations (e.g., Y, = 0.01) and higher concentrations
(e.g., Ym = 0.4 and Yy, = 0.7). While these numerical velocity pro-
files are only available for a discrete set of Yy, they are completely
consistent with the theoretical prediction based on our simplified
analysis.

As discussed in Section 3.3, although the analytical solution for
the interfacial concentration profile that ignores phase change in
the central region of the cavity does not give an accurate local pre-
diction for solutocapillary stresses in the presence of a short wave
length convection pattern, the mean ratio 7 correctly predicts the
dominant contribution to the Marangoni stress and hence the di-
rection of the flow along the interface for different X,. The varia-
tion of r about the mean value 7 is due to convection in the liquid
layer, which should be suppressed for thin liquid films, since the
Marangoni number scales with the square of the layer thickness d,
and the Rayleigh number scales as d;‘ [28]. Hence, for sufficiently
thin films, we should expect r ~ 7 and the interfacial flow velocity
to be nearly uniform for all X,.

4. Conclusions

By analyzing the comprehensive two-sided transport model for
a volatile binary liquid driven by an externally applied temper-
ature gradient [17] and its numerical solutions we demonstrated
that, despite its complexity, the problem can be described analyt-
ically in certain useful limits. Not surprisingly, the analytical de-
scription approximates the numerical results well when the flow
is relatively simple, with no spatially or temporally complicated
convection pattern. In the presence of convection rolls, our anal-
ysis can predict the mean flow and the mean gradients of various
quantities with reasonable accuracy, but not the spatial/temporal
modulation describing the convective pattern.

In modeling two-phase flows, it is a common practice to ei-
ther ignore the transport in the gas phase or describe it through
effective boundary conditions at the free surface. For volatile bi-
nary liquids, this approach fails in a rather spectacular manner.
Our analysis shows that, for fluid layers with sufficiently high as-
pect ratio, the transport equations for mass, heat, and momentum
can be solved sequentially, starting with the bulk concentration
fields in the gas phase. These concentration fields determine the
temperature and composition of the liquid layer at the interface
and, consequently, the Marangoni (thermocapillary and solutocap-
illary) stresses. The Marangoni stresses, in turn, control the flow
in the liquid layer, which eventually determines the bulk tempera-
ture and concentration field in the liquid and the flow in the gas
layer, yielding a complete solution of the problem. This result gen-

eralizes a similar conclusion for two-phase flows of volatile simple
fluids [25,26].

We derived explicit analytical expressions for the mean solu-
tocapillary and thermocapillary stresses which correctly predict
when the direction of the interfacial flow reverses. In particular,
when the gas is predominantly air (X, — 1), such as under ambi-
ent conditions, as phase change is greatly suppressed, solutocap-
illary stresses were found to vanish, and thermocapillary stresses
drive the interfacial flow in the direction opposite to the temper-
ature gradient. In the opposite limit, when the air is removed al-
most completely (X, — 0), phase change is enhanced and soluto-
capillary stresses dominate, driving the flow in the direction of the
temperature gradient. Interestingly, the thermocapillary stresses do
not vanish in this limit for volatile binary liquids, unlike volatile
simple liquids for which thermocapillary stresses completely dis-
appear [25,35].

Our results also provide useful guidelines for choosing the com-
position of binary coolants and the optimal operating conditions
for thermal management applications. In particular, the concentra-
tion of air in a sealed cavity needs to be below 10% or so for the
solutocapillarity to balance the adverse effect of thermocapillary
stresses. Solutocapillary effect plays a beneficial role in general,
helping drive the liquid coolant towards the hot spots. Due to the
monotonic dependence of r on X; (below X, < 0.3), it is beneficial
to reduce the air concentration as much as possible. The optimal
composition of the binary coolant, on the other hand, corresponds
to a small, but finite value of the concentration of the more volatile
component, e.g., ¥;; ~ 0.15 for a water-methanol mixture.
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