
Journal of Optimization Theory and Applications (2020) 186:806–825
https://doi.org/10.1007/s10957-020-01731-9

Two Relaxation Methods for Rank Minimization Problems

April Sagan1 · Xin Shen2 · John E. Mitchell1

Received: 8 May 2020 / Accepted: 24 July 2020 / Published online: 8 August 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
The problem of minimizing the rank of a symmetric positive semidefinite matrix
subject to constraints canbe lifted to give an equivalent semidefinite programwith com-
plementarity constraints. The formulation requires two positive semidefinite matrices
to be complementary. This is a continuous and nonconvex reformulation of the rank
minimization problem. We develop two relaxations and show that constraint quali-
fication holds at any stationary point of either relaxation of the rank minimization
problem, and we explore the structure of the local minimizers.

Keywords Constraint qualification · Optimality conditions · Rank minimization ·
Semidefinite programs with complementarity constraints

Mathematics Subject Classification 90C33 · 90C53

1 Introduction to RankMinimization Problems

Rank constrained optimization problems have received increasing interest because
of their wide application in many fields including statistics, communication and sig-
nal processing [1,2]. In this paper, we mainly consider one genre of the problems,
whose objective is to minimize the rank of a matrix subject to a given set of con-
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straints. This class of problems has been considered as computationally challenging
because of its nonconvex nature, particularly because the rank function is highly dis-
continuous. Many methods have been developed previously to solve the problem,
including nuclear norm approximation [1,3–5]. The lack of theoretical guarantee for
these convex approximations for general problems motivates us to turn to the exact
formulation of the rank function, which can be constructed as a mathematical program
with semidefinite cone complementarity constraints (SDCMPCC), as shown in Sect. 3.

Analogously to the LPCC formulation for �0 minimization problem [6], the advan-
tage of the SDCMPCC formulation is that it can be expressed as a smooth nonlinear
program; thus it can be solved by general nonlinear programming algorithms. The
purpose of this paper is to investigate the structure of the SDCMPCC formulation,
especially stationary points for two relaxations of it. In general, a local minimizer of
an SDCMPCC problem may not satisfy first order optimality conditions because of
the complementarity constraints. We have previously shown [7] that the first order
optimality conditions do indeed hold at local minimizers of the SDCMPCC lifting of
the rank minimization. In the current paper, we show in Sect. 4 that these first order
optimality conditions also hold at local minimizers of two different relaxations of the
SDCMPCC lifting. The structure of the KKT points is described in Sect. 5. We show
convergence of the sequence of KKT points as the relaxation parameter is reduced
in Sect. 6, where we also show that limit points have a minimal structure, which we
call nondominated.

2 PreviousWork on RankMinimization

The rank minimization problem we consider has the general form

minimize
X ∈Rm×n

rank(X) + φ(X)

subject to X ∈ C (1)

where R
m×n is the space of size m by n matrices, and C is the feasible region for

X. The function φ(X) is assumed to be convex and Lipschitz, with Lipschitz param-
eter L . The best-known class of rank minimization problems is matrix completion,
where the objective is to recover a low rank matrix from a sparse set of measurements
[8]; collaborative filtering problems fit within this framework. Another example of
matrix completion problems arises in security in power networks: multi-channel pha-
sor measurement units (PMUs) are located on many power lines and they provide
information about the status of links many times per second. This information is typ-
ically of low rank, and recovery from missing or corrupted data can be performed
through the solution of rank minimization problems [9,10]. There has been consid-
erable progress on algorithms for matrix completion, including recent work on fast
gradient methods [11,12]. However, it is not clear that these approaches will generalize
to other rank minimization problems.

Positive semidefinite rank minimization has been applied to the Euclidean distance
geometry problem [13]. Given an incomplete distance matrix between points in R

d ,
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where Di j is the distance squaredbetween twopoints i and j ,wewant to reconstruct the
location of each point. If the location of the points is given by the matrix P ∈ R

n×d ,
we hope to find a matrix B = P PT such that at each (i, j) where Di j is known,
Di j = Bii + B j j − 2Bi j . We also know that the rank of B is d, and so B can be
recovered by a rank minimization problem.

Further applications include the recovery of correlation matrices in statistics [14],
the solution of systems of quadratic equations [15], computing a sum of squares rep-
resentation of a polynomial function [16], minimum-order controller design in control
theory, and model order reduction in system identification [17]. For a description of
some other rank minimization problems in engineering applications, see the survey
article [17].

The convex relaxation to the rank is the nuclear norm, which is defined as the sum
of its singular values:

||X ||∗ =
min(m,n)∑

i=1

σi = trace(
√

X T X)

for amatrix X ∈ R
m×n . In the relaxed problem, the objective is to find amatrixwith the

minimal nuclear norm. The nuclear norm is convex and continuous. Many algorithms
have been developed previously to find the optimal solution to the nuclear norm min-
imization problem, including interior point methods [3], singular value thresholding
[5], Augmented Lagrangian method [18], proximal gradient method [19], subspace
selection method [20] and so on. These methods have been shown to be efficient and
robust in solving large scale nuclear normminimization problems in someapplications.
Previous works have provided an explanation for the good performance for convex
approximation by showing that nuclear normminimization and rank minimization are
equivalent under certain assumptions. Let M ∈ R

n×n be a rank r matrix. Consider the
matrix completion problem defined as

minimize
X ∈Rn×n

||X ||∗
subject to PΩ(X) = PΩ(M)

(2)

where Ω ⊆ {1, . . . , n} × {1, . . . , n} and the projection operator PΩ : Rn×n → R
n×n

is defined as

[PΩ(X)]i j =
{

Xi j , (i, j) ∈ Ω,

0, (i, j) /∈ Ω.

It has been shown that unique minimizer of (2) is M with high probability, if |Ω| ≥
Cnr log(n), for an absolute constant C , under the assumption that the M is incoherent
and the entries in Ω are uniformly sampled from its domain {1, . . . , n} × {1, . . . , n}
[21].

While a very strong result, it should be noted the approach can fail, as in the
counterexample in [22] and as noted in [14]. Several different approaches have been
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proposed to solve the nuclear norm minimization problem, including [4,23,24]. A
generalization to non-negative rank can be found in [25].

In order to more closely approximate the rank of a matrix, Fazel et. al. proposed the
LogDet heuristic for positive semidefinite rank minimization [26]. Instead of a convex
function, the authors use the following smooth, concave function as a surrogate for
the rank function:

log(det(X + γ I )) =
n∑

i=1

log(λi (X) + γ )

where λi (X) denotes the i th largest eigenvalue of X , and γ is a fixed parameter. While
nonconvex, the authors put forwards a Majorize-Minimization (MM) algorithm to
find a local optimum. At each iteration, the first order Taylor expansion centered at the
previous iterate is solved as a surrogate function. The algorithm is simplified to solving
the following reweighted nuclear norm minimization problem at each iteration.

X (k+1) = argmin
X

{
〈W (k), X〉 : A(X) = b, X 
 0

}

where W (k) = (X (k−1) + δ I )−1. With this reweighting, smaller eigenvalues are
weighted more heavily than larger ones.

Nonconvex regularizers for rank minimization explored in recent years include the
truncated nuclear norm [27], the Schatten p norm [28], and the Minimax Concave
Penalty regularizer [29]. By minimizing functions closely estimating the rank, these
methods are more successful in obtaining a low rank matrix from noisy measurements
in many rank minimization applications.

Another popular technique is to constrain the rank of the matrix by using the low
rank factorization. If we are trying to find a low rank matrix X , we work with matrices
U and V and define X = U V T ; the number of columns ofU and rows of V are chosen
to be no greater than some parameter r , so the rank of X can then be no larger than r .
Alternatingminimization approaches to rankminimization problems include [30–33];
see also [34]. While the iteration complexity solving the nuclear norm relaxation can
be O(n3) for n × n matrices, alternating direction methods run in near linear time;
however, the overall complexity depends on the condition number of the matrix.

3 Semidefinite Cone Complementarity Formulations

3.1 Mathematical Programwith Semidefinite Cone Complementarity Constraints

Amathematical programwith semidefinite cone complementarity constraints (SDCM-
PCC) is a special case of a mathematical program with complementarity constraints
(MPCC). In SDCMPCC problems the constraints include complementarity between
matrices rather than vectors. When the complementarity between matrices is replaced
by the complementarity between vectors, the problem turns into a standard MPCC.
The general SDCMPCC program takes the following form:
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minimize
z ∈Rn

{
f (z) : g(z) ≤ 0, h(z) = 0, Sn+ � G(z) ⊥ H(z) ∈ S

n+
}

(3)

where S
+
n denotes the cone of n × n positive semidefinite matrices. The notation

G(z) ⊥ H(z) means the matrices G(z) and H(z) are perpendicular to each other.
For matrices G(z), H(z) ∈ S

+
n , this is equivalent to saying that the Frobenius inner

product of G(z) and H(z) is equal to 0, where the Frobenius inner product of two
matrices A ∈ R

m×n and B ∈ R
m×n is defined as:

〈A, B〉 = trace(AT B)

SDCMPCC can be written as a nonlinear semidefinite program. Nonlinear semidef-
inite programs recently received much attention because of their wide application.
Yamashita [35] surveyed numerical methods for solving nonlinear SDP programs,
including Augmented Lagrangian methods, sequential SDP methods and primal-dual
interior pointmethods. Thesemethods still havemuch room for research in both theory
and practice, especially when the size of problem goes large. SDCMPCC is special
case of a nonlinear SDP program. In addition to the difficulties in general nonlinear
semidefinite programming, the complementarity constraints pose challenges to finding
the local optimal solutions since the KKT condition may not hold at the local optima.
Previous works showed that optimality conditions in MPCC, such as M-stationary, C-
Stationary and Strong Stationary, can be generalized into SDCMPCC. Ding et al. [36]
discussed various kinds of first order optimality conditions of SDCMPCC and their
relationship with each other. Zhang [37] provided analysis on second order optimality
conditions of SDCMPCC.

Example 3.1 The KKT conditions do not hold at any local optimum for

minx∈R3 x3

subject to 0 �
[

x1 x3
x3 x2

]
⊥
[

x2 0
0 x1

]

 0

Optimal solutions are all points with x3 = 0 and either x1 = 0 or x2 = 0. Note that
the Slater constraint qualification holds if the orthogonality condition is not imposed.
There is no solution to the KKT conditions when x3 = 0.

3.2 Complementarity Formulation

In this section, we will present an exact reformulation of rank minimization problem
using semidefinite cone constraints. This variational formulation was due to Li and
Qi [38], with important work on optimality conditions derived by Ding et al. [36].
Other recent work on this formulation includes [7,39,40]. We begin with a special
case of (1), in which the matrix variable X ∈ R

n×n is restricted to be symmetric and
positive semidefinite. The special case takes the form:

minimize
X ∈Sn

rank(X) + φ(X)

subject to X ∈ C̃, X 
 0.
(4)
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Assumption 1 Assume C̃ = {X | 〈Ai , X〉 = bi , ∀i = 1, . . . , m2} where each
gi (x), i = 1, . . . , m1 is convex. We assume the Slater CQ holds for C̃ ∩ S

n+, so there
exists a point Xc ∈ S

n++ satisfying 〈Ai , X〉 = bi for i = 1, . . . , m2.

From now on, when we discuss problem (4), we assume the feasible region satisfies
Assumption 1.

By introducing an auxiliary variable U ∈ R
n×n , we can model Problem (4) as an

SDCMPCC:
minimize

X ∈Sn
φ(X) + n − 〈I , U 〉

subject to X ∈ C̃, X 
 0
0 � X ⊥ U 
 0
0 � U � I

(5)

The equivalence between Problem (4) and Problem (5) can be verified by a proper
assignment of U for given feasible X . Suppose X has the eigenvalue decomposition
X = PT Σ P. Let P0 be the matrix composed of columns in P corresponding to zero
eigenvalues. We can set:

U = P0 PT
0 (6)

We proved the following results regarding the SDCMPCC (5) in [7]:

Proposition 3.1 [7] Assume φ(X) ≡ 0. Each (X , U ) with X feasible and U given by
(6) is a local optimal solution in Problem (5).

The KKT conditions for problem (5) are:

0 � U ⊥ −I + μ X + Y 
 0
0 � X ⊥ ∇φ(X) +∑ λi Ai + μ U 
 0
0 � Y ⊥ I − U 
 0

(7)

where λ,μ and Y are Lagrangian multipliers corresponding to the constraints A(X) =
b, 〈X , U 〉 = 0 and I − U 
 0 respectively.

Proposition 3.2 [7] The KKT conditions hold at local optima of Problem (5).

Proposition 3.3 [7] Assume φ(X) ≡ 0. Any feasible pair (X , U ) with U given by (6)
is a KKT stationary point of problem (5).

The above results shows that when φ(X) ≡ 0, similar to the problem of �0 min-
imization [6], there are too many KKT stationary points in the exact SDCMPCC
Formulation, and it is very likely that algorithms will terminate at a stationary point
that might be far from a global optimal. As we have shown in the complementarity
formulation for the �0 minimization problem, a possible approach to overcome this
drawback is to relax the complementarity constraints. In the following sections we
would like to investigate whether this approach works for the SDCMPCC formula-
tion. We investigated a penalty method for Problem (5) in [7].

The complementarity formulation can be extended to cases where the matrix vari-
able X ∈ R

m×n is neither positive semidefinite nor symmetric. One way to deal with
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nonsymmetric X is to embed it in a (m + n) × (m + n) symmetric psd matrix of
the same rank [3]. Alternatively, we can minimize the rank of the matrix X T X [28].
The n × n matrix X T X is both symmetric and positive semidefinite and we have the
following modified complementarity constraint: 〈U , X T X〉 = 0 where U ∈ S

n×n .

4 Relaxation Schemes for SDCMPCC Formulation

In this section and following sections, we present two kinds of relaxation schemes for
the original SDCMPCC formulation. The first relaxation scheme has the following
form:

minimize
X ∈Sn

φ(X) + n − 〈I , U 〉
subject to X ∈ C̃, X 
 0

〈X , U 〉 ≤ ε

0 � U � I

(8)

We denote the above problem as SDC N L P(ε). In the relaxed problem, instead of
restricting the Frobenius product of X and U to be 0, we allow it to take a value no
greater than ε. Since it bounds the trace, or the sum of eigenvalues of X T U , we call
this the aggregate relaxation scheme.

When thematrices X andU are both positive semidefinite, 〈X , U 〉 = 0 is equivalent
to XU + U X = 0. In the other relaxation scheme, we don’t force the matrix product
of X and U to be the zero matrix. Instead, we require the maximum eigenvalue of
their product to be no larger than a positive parameter δ:

minimize
X ∈Sn

φ(X) + n − 〈I , U 〉
subject to X ∈ C̃, X 
 0

(X + γ I ) U + U (X + γ I ) � 2δ I
0 � U � I

(9)

Here, the parameter γ satisfies 0 ≤ γ ≤ δ. The terms in γ I serve to tighten the
relaxation. We denote the above problem as SDC N L P1(γ, δ). Since we allow the
matrix product to have maximum eigenvalue δ, we call this relaxation scheme the
matrix relaxation of the original SDCMPCC formulation.

4.1 Global Convergence of Relaxed Formulations

We can establish global convergence results for both formulations. The proofs are
straightforward and left to the reader.

Proposition 4.1 Let {εk} be a sequence that converges to 0 and (Xk, Uk) be a global
optimal solution to SDC N L P(ε). If C̃ is closed, then any limit point of the sequence
{(Xk, Uk)} is a global optimal solution to the exact SDCMPCC formulation (5).

Proposition 4.2 Let {γk, δk} be a sequence that converges to (0, 0) and (Xk, Uk) be a
global optimal solution to SDC N L P1(γk, δk). If C is closed, then any limit point of
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the sequence {(Xk, Uk)} is a global optimal solution to the exact SDCMPCC formu-
lation (5).

4.2 Constraint Qualification of Relaxed Formulations

The relaxed formulations for Rank Minimization problem are nonlinear semidefinite
programs. As with the exact SDCMPCC Formulation, we would like to investigate
whether algorithms for general nonlinear semidefinite programming problems can
be applied to solve the relaxed formulations. As far as we know, most algorithms in
nonlinear semidefinite programming use first order KKT stationary conditions as the
criteria for terminilation.

Our relaxations (8) and (9) of (5) are examples of nonlinear conic optimization
problems of the form

min
z∈Q⊆Rn

{ f (z) : G(z) ∈ K } (10)

where Q is a closed convex set, K ⊆ Rm is a closed convex cone, f : Rn → R, and
G : Rn → Rm , and f and G are differentiable. The first order necessary conditions
for (10) at a point z0 ∈ Q can be written

G(z0) ∈ K , λ ∈ K +, 〈λ, z0〉 = 0 (11)

where K + is the dual cone to K . Robinson’s constraint qualification [41] for problem
(10) can be written

0 ∈ int{G(z0) + DG(z0)(Q − z0) − K } (12)

where DG(z0) denotes theGateaux derivative ofG(z) evaluated at z0.Very informally,
Robinson’s CQ holds if there exists a direction Q − z0 leading to a point that strictly
satisfies the linearization of the constraints. As shown inBonnans and Shapiro [42], the
first order necessary conditions must hold at a local minimizer z0 of (10) if Robinson’s
constraint qualification (12) holds.

We show below that, if Assumption 1 holds, then the feasible regions of both (8)
and (9) satisfy the Robinson CQ (12), so any local minimizer must satisfy the first
order optimality conditions.

4.2.1 Robinson’s CQ for the Aggregate Relaxation

Let (X̄ , Ū ) be a feasible solution to (8). Robinson’s CQ holds at this point if we can
find symmetric matrices (Xd , U d) satisfying
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X̄ + Xd ∈ S
n++ (13a)

〈Ai , Xd〉 = 0, i = 1, . . . , m2 (13b)

gi (X̄ + Xd) < 0, i = 1, . . . , m1 (13c)

0 ≺ Ū + U d ≺ I (13d)

〈X̄ , Ū 〉 + 〈Xd , Ū 〉 + 〈X̄ , U d〉 < ε (13e)

From Assumption 1, there exists Xc satisfying Slater for C̃ ∩ S
n+, so (13a)–(13c) hold

for Xd = αX (Xc − X̄) for 0 < αX ≤ 1. Since Ū ∈ S
n+, it has an eigendecomposition

Ū = Q DQT := [
Q0 Q1 Q2

]
⎡

⎣
0 0 0
0 I 0
0 0 Λ

⎤

⎦

⎡

⎢⎣
QT

0

QT
1

QT
2

⎤

⎥⎦ (14)

where Λ is a diagonal matrix, with entries strictly between 0 and 1. Our direction
U d is obtained by modifying the diagonal blocks of D. In particular, we construct
symmetric matrices U0, U1, and U2 so that

U d = [
Q0 Q1 Q2

]
⎡

⎣
U0 0 0
0 U1 0
0 0 U2

⎤

⎦

⎡

⎢⎣
QT

0

QT
1

QT
2

⎤

⎥⎦ . (15)

The matrix U0 must be positive definite and U1 must be negative definite. The con-
struction first requires a factorization of X̄ :

let M := QT X̄ Q, so X̄ = [
Q0 Q1 Q2

]
⎡

⎣
M0 . .

. M1 .

. . M2

⎤

⎦

⎡

⎢⎣
QT

0

QT
1

QT
2

⎤

⎥⎦ (16)

where M0, M1, and M2 are the diagonal blocks of M .

Proposition 4.3 Robinson’s CQ holds for the aggregate relaxation (8) for any ε > 0
at any feasible point (X̄ , Ū ).

Proof We choose

U0 = αU
0 I , U1 = −αU

1 I , U2 = −αU
2 M2

with αU
0 , αU

1 , αU
2 > 0. Note that

〈Xd , Ū 〉 + 〈X̄ , U d〉 = αX 〈Xc − X̄ , Ū 〉 + 〈M0, U0〉 + 〈M1, U1〉 + 〈M2, U2〉
= αX 〈Xc − X̄ , Ū 〉 + αU

0 trace(M0)

−αU
1 trace(M1) − αU

2 〈M2, M2〉.
We have three cases.
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1. 〈M2, M2〉 > 0: In this case, we first select αU
2 > 0 while ensuring that Λ−αU

2 M2

is positive definite. It is then straightforward to select α with 0 < αX , αU
0 , αU

1 < 1
so that 〈Xd , Ū 〉 + 〈X̄ , U d〉 < 0 and so (13) is satisfied.

2. 〈M2, M2〉 = 0, trace(M1) > 0: We take αU
2 = 0 and choose 0 < αU

1 < 1. It is
then straightforward to select 0 < αX , αU

0 < 1 and the result follows as in the first
case.

3. 〈M2, M2〉 = 0, trace(M1) = 0: In this case, M1 = 0 and M2 = 0 so 〈X̄ , Ū 〉 =
0 < ε. Thus, we can pick αU

2 = 0 and small positive values for αX , αU
0 , and αU

1
so that (13) is satisfied. ��

4.2.2 Robinson’s CQ for the Matrix Relaxation

Let (X̄ , Ū ) be a feasible solution to (9). Robinson’s CQ holds at this point if we can
find symmetric matrices (Xd , U d) satisfying

X̄ + Xd ∈ S
n++ (17a)

〈Ai , Xd〉 = 0, i = 1, . . . , m2 (17b)

gi (X̄ + Xd) < 0, i = 1, . . . , m1 (17c)

0 ≺ Ū + U d ≺ I (17d)
(
X̄ + γ I

)
Ū + Ū

(
X̄ + γ I

)+ XdŪ

+ Ū Xd + (X̄ + γ I
)

U d + U d (X̄ + γ I
) ≺ 2δ I (17e)

Note that (X̄ , νŪ ) is feasible in (9) for 0 ≤ ν ≤ 1. We can exploit this in construction
of a feasible solution to (17).

Proposition 4.4 Robinson’s CQ holds for the matrix relaxation (9) for any δ > 0 at
any feasible point (X̄ , Ū ).

Proof In the notation of (14) and (15), we construct the direction U d by taking

U0 = αU
0 I , U1 = −0.5I , U2 = −0.5Λ,

for an appropriate small positive constant αU
0 . Note that from (14), we have

U d = αU
0 Q0QT

0 − 0.5Ū .

We take the X -direction as Xd = αX (Xc− X̄) for someαX . Requirements (17a)–(17d)
are satisfied provided 0 < αX ≤ 1 and 0 < αU

0 < 1. Note that
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(
X̄ + γ I

)
Ū + Ū

(
X̄ + γ I

)+ XdŪ + Ū Xd + (X̄ + γ I
)

U d + U d (X̄ + γ I
)

= (X̄ + γ I
)

Ū + Ū
(
X̄ + γ I

)+ αX ((Xc − X̄)Ū + Ū (Xc − X̄)
)

+αU
0

((
X̄ + γ I

)
Q0QT

0 + Q0QT
0

(
X̄ + γ I

))

− 0.5
(
X̄ + γ I

)
Ū + Ū

(
X̄ + γ I

)

= 0.5
((

X̄ + γ I
)

Ū + Ū
(
X̄ + γ I

))+ αX ((Xc − X̄)Ū + Ū (Xc − X̄)
)

+αU
0

((
X̄ + γ I

)
Q0QT

0 + Q0QT
0

(
X̄ + γ I

))

� δ I + αX ((Xc − X̄)Ū + Ū (Xc − X̄)
)

+αU
0

((
X̄ + γ I

)
Q0QT

0 + Q0QT
0

(
X̄ + γ I

))

from the feasibility of (X̄ , Ū )in (9)

≺ 2δ I

for sufficiently small positive values for αX and αU
0 . ��

5 Local Optimality Condition of Relaxed Formulations

Bonnans and Shapiro [42] gave a description of first order optimality condition in
semidefinite programming. Since Robinson’s CQ holds at any feasible solution of
problem (8) under Assumption 1, the first order KKT conditions must hold at any
local optimum. Let (X̄ , Ū ) be a local minimizer to either of the relaxations. We show
in this section that either the matrices X̄ and Ū are simultaneously diagonalizable,
or there exists another feasible solution that is at least as good as (X̄ , Ū ) which is
simultaneously diagonalizable. Further, we explore the structure of the KKT points
arising in each relaxation.

5.1 The Aggregate Relaxation

Proposition 5.1 Let (X̄ , Ū ) be a local minimizer of the aggregate relaxation (8). If
X̄ and Ū are not simultaneously diagonalizable then there exists another matrix Û
satisfying

1. (X̄ , Û ) is feasible in (8).
2. X̄ and Û are simultaneously diagonalizable.
3. 〈I , Û 〉 = 〈I , Ū 〉.

Proof The matrix Ū must be a global minimizer to the convex SDP

minU −〈I , U 〉
subject to 〈X̄ , U 〉 ≤ ε

0 � U � I
(18)
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Since X̄ ∈ S
n+, we can diagonalize it, so X̄ = P D PT for a diagonal matrix D and an

orthogonal matrix P . Note that 〈X̄ , U 〉 = 〈D, PT U P〉 so problem (18) is equivalent
to the problem

minV −〈I , V 〉
subject to 〈D, V 〉 ≤ ε

0 � V � I
(19)

with the correspondence V ↔ PT U P , and exploiting the orthogonality of P . Since
I and D are both diagonal matrices, there exists an optimal solution V̂ to (19) that is
diagonal. The matrix Û := PV̂ PT is then optimal to (18) and satisfies the three listed
criteria. ��

The KKT condition in the aggregate relaxed formulation (8) works in a similar
way with some thresholding methods. The objective function not only counts the
number of 0 eigenvalues, but also the number of eigenvalues whose sum is below a
certain threshold. Let X ∈ C be feasible in the aggregate relaxation problem, with
eigendecompostion

X =
n∑

i=1

σ X
i viv

T
i with σ X

1 ≤ . . . ≤ σ X
n . (20)

Let l be the index such that
∑l

i=1 σ X
i ≤ ε, and

∑l+1
i=1 σ X

i > ε. An optimal solution U
to problem (18) has the same eigenvectors as X and eigenvalues given by

σU
j =

⎧
⎪⎪⎨

⎪⎪⎩

1, j ≤ l,
ε−∑l

i=1 σi

σ X
l+1

, j = l + 1,

0, j > l + 1.

(21)

The optimal solution V to (19) corresponding to this solution U is to take Vj j = σU
j

for 1 ≤ j ≤ n. Note that 0 ≤ σU
l+1 < 1 and that 0 ≤ l ≤ n − 1.

Note that we must have if Vjk = 0 for all 1 ≤ j < k ≤ l + 1, since otherwise
the largest eigenvalue of V would be strictly larger than one. If either j > l + 1 or
k > l +1 then we must have Vjk = 0 from the requirement that V 
 0. It follows that
when the eigenvalue σ X

l+1 has multiplicity 1, this choice of V is the unique solution to
(19). In particular, it is clear from linear programming that the diagonal entries of V
must be as specified.

When the eigenvalue σ X
l+1 has multiplicity> 1, there are multiple optimal solutions

to (19) and (18). However, they all correspond to taking different eigenbases for the
eigenspace corresponding to σ X

l+1, so again X and U are simultaneously diagonaliz-
able. Hence we have the following theorem.

Theorem 5.1 If (X̄ , Ū ) is a local minimizer to (8) then X̄ and Ū are simultaneously
diagonalizable.
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The KKT local optimality conditions take the following form for the aggregate
relaxed formulation:

0 � U ⊥ −I + μ X + Y 
 0
0 � X ⊥ ∇φ(X) +∑ λi Ai + μ U 
 0
0 � Y ⊥ I − U 
 0
0 ≤ μ ⊥ ε − 〈U , X〉 ≥ 0

(22)

for X ∈ C̃, where λ,μ and Y are Lagrangian multipliers corresponding to the con-
straints A(X) = b, 〈X , U 〉 ≤ ε and I − U 
 0 respectively. If V is not an optimal
solution to (19) then there exists a feasible direction in the U variables which strictly
improves the linear part of the objective function for (8). The following proposition
then follows.

Proposition 5.2 If (X̄ , Ū ) is a stationary point to (8) then X̄ and Ū are simultaneously
diagonalizable. Further, if the eigenvalue σU

l+1 > 0 then the KKT multiplier in (22) is
μ = 1/σ X

l+1.

Proof The complementarity in KKT condition (22) implies that vT
l+1Yvl+1 = 0 and

(since σU
l+1 > 0) also vT

l+1(−I + μX̄ + Y )vl+1 = 0. It follows that vT
l+1 X̄vl+1 = 1

μ
,

which is to say that μ = 1
σ X

l+1
. ��

5.2 TheMatrix Relaxation

Proposition 5.3 Let (X̄ , Ū ) be a local minimizer of the matrix relaxation (9). If X̄ and
Ū are not simultaneously diagonalizable then there exists another matrix Û satisfying

1. (X̄ , Û ) is feasible in (9).
2. X̄ and Û are simultaneously diagonalizable.
3. 〈I , Û 〉 = 〈I , Ū 〉.
Proof The matrix Ū must be a global minimizer to the convex SDP

minU −〈I , U 〉
subject to

(
X̄ + γ I

)
U + U

(
X̄ + γ I

) � 2δ I
0 � U � I

(23)

Since X̄ ∈ S
n+, we can diagonalize it, so X̄ = P D PT for a diagonal matrix D and

an orthogonal matrix P . Let
D̃ := D + γ I , (24)

so for γ > 0 we have the diagonal entries D̃ii > 0 for i = 1, . . . , n, and D̃ is
invertible. Note that problem (23) is equivalent to the problem

minV −〈I , V 〉
subject to D̃V + V D̃ � 2δ I

0 � V � I
(25)
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with the correspondence V ↔ PT U P , and exploiting the orthogonality of P . The
diagonal entries of the matrix product D̃V + V D̃ are

(
D̃V + V D̃

)

i i
= 2D̃ii Vii for i = 1, . . . , n.

Hence any feasible solution to (25) must satisfy

Vii ≤ min

{
1,

δ

D̃ii

}
, for i = 1, . . . , n,

so the optimal value of (23) and (25) is bounded below by

−〈I , V 〉 ≥ −
n∑

i=1

min

{
1,

δ

D̃ii

}
.

This value is achieved by the diagonal matrix V̂ , where

V̂ii = min

{
1,

δ

D̃ii

}
, for i = 1, . . . , n. (26)

Hence problem (23) is solved by the matrix

Û := PV̂ PT (27)

which satisfies the requirements of the proposition. ��
We can eliminate U from the matrix relaxation (9) when γ = δ > 0. In particular,

we can set U = δ (X + δ I )−1:

Corollary 5.1 Let (X̄ , Ū ) be a feasible solution to (9) with γ = δ > 0. Then(
X̄ , δ

(
X̄ + δ I

)−1
)

is also feasible in (9) and 〈I , Ū 〉 ≤ 〈I , δ
(
X̄ + δ I

)−1〉.

Proof Note that from (24) we have D̄ii ≥ δ, so from (26) we have V̂ii = δ/D̄ii for
i = 1, . . . , n, so V̂ = δ D̄−1. From (27), we then obtain

Û = PV̂ PT = δP D̄−1PT = δ
(
X̄ + δ I

)−1
,

as required. ��
It follows from this corollary that we can eliminate the variable U from the matrix

relaxation (9) when γ = δ > 0, obtaining the equivalent nonlinear nonconvex SDP:

minimize
X ∈Sn

φ(X) + n − 〈I , δ (X + δ I )−1〉
subject to X ∈ C̃, X 
 0.

(28)
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Corollary 5.2 Assume γ = δ > 0. If there exists an optimal solution (X̄ , Ū ) to (9)
then there exists an optimal solution to the problem

minimize
X ∈Sn

φ(X) + n − 〈I , U 〉
subject to X ∈ C̃, X 
 0

(X + γ I ) U + U (X + γ I ) � 2δ I
0 � U

(29)

that satisfies U � I .

Proof When γ = δ > 0, the proof of Proposition 2 does not require the con-

straintU � I . Hence the solution
(

X̄ , δ
(
X̄ + δ I

)−1
)
also solves the problemwithout

the constraint U � I . ��
It is straightforward to construct examples, where there exist optimal solutions to

the matrix relaxation that are not simultaneously diagonalizable.

Example 5.1 Let

C̃ ∩ S
3+ =

⎧
⎨

⎩

⎡

⎣
3 0 0
0 1 0
0 0 0

⎤

⎦

⎫
⎬

⎭ and Ū =
⎡

⎣
1
4 Ū12 0

Ū12
1
2 0

0 0 1

⎤

⎦ , with Ū12 unspecified.

Let γ = δ = 1. The set of optimal solutions U to (9) includes all symmetric matrices
of the form Ū satisfying 0 � Ū � I . Note that this example shows that the constraint
U � I is not redundant even if δ = γ . For example, taking U12 = 2

3 satisfies
(X + I )U + U (X + I ) � 2I , X 
 0, and U 
 0, but does not satisfy U � I .
From Corollary 5.2, there exists an optimal solution to (29) where U and X are
simultaneously diagonalizable (namely, set all the off-diagonal entries to zero), and
for that solution we do obtain U � I .

WenowconsiderKKTstationarypoints of thematrix relaxation (9).UnderAssump-
tion 1, any local optimum to the matrix relaxation (9) must satisfy the following KKT
conditions:

0 � U ⊥ −I + Ω (X + γ I ) + (X + γ I ) Ω + Y 
 0
0 � X ⊥ ∇φ(X) +∑ λi Ai + Ω U + U Ω 
 0
0 � Y ⊥ I − U 
 0
0 � Ω ⊥ 2δ I − U (X + γ I ) − (X + γ I ) U 
 0

(30)

for X ∈ C̃, where λ andY corresponds to the same constraints as in the formulation (8)
and Ω represents the multiplier corresponding to the constraint 2δ I − U (X + γ I ) −
(X + γ I ) U 
 0. Given X̄ ∈ C̃ ∩ S

n+ with eigenvalue decomposition

X̄ =
∑

σ X
i vi vT

i , (31)
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it follows from Proposition 5.3 that we can construct a feasible U = ∑
σU

i viv
T
i

where σU takes the value:

σU
i =

⎧
⎪⎨

⎪⎩

δ

σ X
i + γ

, if σ X
i + γ ≥ δ

1, if σ X
i + γ < δ

(32)

Further, this choice of U is a global optimal solution to the problem (23), where X̄ is
fixed.

6 Local Convergence of KKT Stationary Points

In this section, we show that limit points of KKT stationary points of the relaxation
scheme are KKT stationary points of the SDCMPCC formulation. We first consider
the aggregate relaxation (8). Given a sequence of relaxation parameters εk → 0, we
obtain a sequence of KKT points (Xk, Uk) with KKT multpliers μk . As we show
below in Proposition 6.1, any limit point of the sequence where the multipliers do not
diverge is a KKT point of (5). However, Proposition 5.2 opens up the possibility that
the KKT multipliers might diverge while the iterates (Xk, Uk) converge.

Proposition 6.1 Let (Xk, Uk) be a local optimum of the relaxed formulation (8) with
relaxation parameter {εk} and with KKT multipliers (Yk, μk) in the conditions (22).
Any limit point of a subsequence {(Xk, Uk, Yk, μk)} as εk → 0 is a KKT stationary
point of the exact SDCMPCC formulation (5).

Proof Since the multipliers converge, the KKT conditions (7) are satisfied in the limit.
��

Convergence of KKT stationary point can be established for the matrix relaxation
formulation (9).

Proposition 6.2 Let (Xk, Uk) be a local optimum of the relaxed formulation (9) with
relaxation parameter {δk}, and (λk,Ωk, Yk) be the corresponding Lagrangian multi-
pliers. As δk → 0, any limit point (X̄ , Ū , λ̄) of the sequence {(Xk, Uk, λk)} is a KKT
stationary point of the exact SDCMPCC Formulation.

Proof The feasibility of the limit point can be verified by the continuity of the function
XU + U X . Since the limit point of {(Xk, Uk, λk)} is bounded, it can be shown that
Ωk and Yk are also bounded and there is a convergent subsequence with the limit point
(Ω̄, Ȳ ). By the closedness of the semidefinite cone we have:

∑
λ̄i Ai + Ω̄ Ū + Ū Ω̄ 
 0

By continuity the complementarity constraints in KKT condition holds. Thus
(X̄ , Ū , λ̄) is a KKT stationary point of the SDCMPCC formulation. ��
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We further investigate the property of the limit points of local optima of the positive
semidefinite relaxation. In the complementarity formulation for �0 minimization, we
showed in [6] that any limit point of local optimal solutions of the complementarity for-
mulation has to be nondominated. We defined a feasible point x∗ to be nondominated
if there is no other feasible point x̄ with

|x̄i | ≤ |x∗
i | ∀i, with strict inequality for at least one component.

Equivalently, there is no other vector x̄ with the same support as x∗ with |x̄ | smaller
than |x∗|. Note that the convergence proof does not require an assumption of the
restricted isometry property.

We extend this concept to the semidefinite case byworkingwith eigenvalues instead
of components. In semidefinite programming, we define nondominated points as:

Definition 6.1 Given a polyhedral subset of the cone of semidefinite matrices C =
{X ∈ S

n+|〈Ai , X〉 ≥ bi , i = 1, . . . , m}, a matrix X ∈ C is called nondominated in
C if there does not exist Y ∈ C such that Y � X and Y �= X .

We show that the sequence of solutions to the matrix relaxation converges to a
nondominated solution to the original complementarity formulation (5).

Proposition 6.3 Assume the feasible region of X is the intersection of a polyhedron and
the cone of positive semidefinite matrices. Assume φ(X) = 0 ∀X ∈ C̃. Let γ = δ in (9).
The limit point (X̄ , Ū ) of local optimal solutions (Xk, Uk) to the matrix relaxation
formulation (9) as δ → 0 must be nondominated.

Proof The proposition can be validated by contradiction. Assume that the limit point
is dominated, then there exists a nontrivial direction d X 
 0 such that X̄ − d X is
feasible. We can start with showing that when k is large enough, Xk is dominated.

Suppose X̄ has the eigenvalue decomposition:

X̄ = PT

⎡

⎣
D 0 0
0 0 0
0 0 0

⎤

⎦ P

where D is a diagonal matrix with strictly positive diagonal entries. Since X̄ −d X 
 0
and d X 
 0, there exists a positive semidefinite matrix M with

X̄ − d X = PT

⎡

⎣
M 0 0
0 0 0
0 0 0

⎤

⎦ P

where 0 � M � D. By scaling d X , we can assume M is positive definite and for any
constraint with 〈Ai , X̄〉 > bi we have 〈Ai , X̄ − d X〉 > bi . Let βkΔXk = Xk − X̄ ,
with ||ΔXk || = 1 and βk → 0. The matrix ΔXk can be written as:

ΔXk = PT

⎡

⎣
Gk Hk 0
H T

k Λk 0
0 0 0

⎤

⎦ P
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where Λk is positive definite. The matrix X̄ − d X + βkΔXk can be written as:

X̄ − d X + βkΔXk = PT

⎡

⎣
M + βk Gk βk Hk 0

βk H T
k βkΛk 0

0 0 0

⎤

⎦ P

which is p.s.d since the Schur complement βkΛk − β2
k H T

k (M + βk Gk)
−1Hk is p.s.d

when k is large enough. It can also be easily verified that all the linear constraints hold
at X̄ − d X + βkΔXk when k is large enough.

Note that Xk − d X = X̄ − d X + βkΔXk 
 0, so Xk is dominated by Xk − d X .
From (32), the eigenvalues of the auxiliary matrix Ũk corresponding to the feasible
matrix Xk − d X are

σ
Ũk
i = δ

σ
Xk−d X

i + γ
≥ δ

σ
Xk

i + γ
= σ

Uk
i ,

with strict inequality for
at least one eigenvalue.

Given the assignment of Ũk , the objective value in (5) corresponding to Xk − d X
must be strictly less than that given by Xk , which contradicts the local optimality of
(Xk, Uk). ��

Note that we cannot extend the nondominated results to the aggregate relaxed
formulation. The limit point of the local optima of the aggregate formulation might
be dominated.

7 Conclusions

We have investigated two relaxations of the SDCMPCC approach to rank minimiza-
tion problems. The first relaxation imposes a positive upper bound on the Frobenius
inner product of two matrices required to be complementary in the exact solution. The
second relaxation exploits the PSD structure more fully through a matrix inequality,
which ties together the eigenspaces of the matrices. We showed that Robinson’s con-
straint qualification holds for both relaxations, and hence any local minimizer satisfies
the first order necessary conditions. Limit points to the second relaxation have a non-
dominated structure. The matrix relaxation also allows an equivalent reformulation
(28) without the complementarity variables, and computational results with a variant
of this reformulation are contained in a forthcoming paper [43].
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