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ABSTRACT

Motivated by modern regression applications, in this paper, we study the convexification of quadratic
optimization problems with indicator variables and combinatorial constraints on the indicators. Un-
like most of the previous work on convexification of sparse regression problems, we simultaneously
consider the nonlinear objective, indicator variables, and combinatorial constraints. We prove that
for a separable quadratic objective function, the perspective reformulation is ideal independent from
the constraints of the problem. In contrast, while rank-one relaxations cannot be strengthened by ex-
ploiting information from k-sparsity constraint for & > 2, they can be improved for other constraints
arising in inference problems with hierarchical structure or multi-collinearity.

Keywords Convexification - Perspective formulation - Indicator variables - Quadratic optimization - Combinatorial
constraints.

1 Introduction

Given a data matrix X = [z1,...,2p] € R™*? of features and a response vector y € R”, we study constrained
regression problems of the form

min ly — XBI3 + Af(8) (1a)

subjectto B;(1 —2z;) =0 i € [p] (1b)

BERP, z€QC{0,1}7, (1)
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where [ is a vector of regression coefficients, z is a vector of indicator variables with z; = 1 if §; # 0 (through
indicator constraint (1b)), the set () in constraints (1¢) encodes combinatorial constraints on the indicator variables
and [p] = {1,2...,p}. The objective (1a) is to minimize the squared loss function plus a regularization term Af(3).
Typical choices of f include LO, L1 or L2 regularizations.

If Q is defined via a k-sparsity constraint, Q = {z € {0,1}? | >-¥_, z; < k}, then problem (1) reduces to the best
subset selection problem [36], a fundamental problem in statistics. Nonetheless, constraints other than the cardinality
constraint arise in several statistical problems. Bertsimas and King [9] suggest imposing constraints of the form
Zie g% < 1 for some S C [p] to prevent multicollinearity. Constraints of the form z; < zj can be used to impose
hierarchy constraints [11]. In group variable selection, indicator variables of regression coefficients of variables in the
same group are linked, see [32]. Manzour et al. [35] impose that the indicator variables, which correspond to edges in
an underlying graph, do not define cycles — a necessary constraint for inference problems with causal graphs. Cozad
et al. [16] suggest imposing a variety of constraints in both the continuous and discrete variables to enforce priors from
human experts.

Problem (1) is N'P-hard [38], and is often approximated with a convex surrogate such as lasso [29, 40]. Solutions
with better statistical properties than lasso can be obtained from non-convex continuous approximations [22, 46].
Alternatively, it is possible to solve (1) to optimality via branch-and-bound methods [10, 15]. In all cases, most of the
approaches for (1) have focused on the k-sparsity constraint (or its Lagrangian relaxation). For example, a standard
technique to improve the relaxations of (1) revolves around the use of the perspective reformulation [1, 14, 19, 20, 23,
24, 25, 26, 28, 31, 44, 47], an ideal formulation of a separable quadratic function with indicators (but no additional
constraints). Recent work on obtaining ideal formulations for non-separable quadratic functions [3, 4, 5, 20, 27, 33]
also ignores additional constraints in ().

There is a recent research thrust on studying constrained versions of (1). Dong et al. [18] study problem (1) from a
continuous optimization perspective (after projecting out the discrete variables), see also [17]. Hazimeh and Mazumder
[30] give specialized algorithms for the natural convex relaxation of (1) where () is defined via hierarchy constraints.
Several results exist concerning the convexification of nonlinear optimization problems with constraints [2, 7, 12, 13,
34,37, 39, 41, 42, 43], but such methods in general do not deliver ideal, compact or closed-form formulations for the
specific case of problem (1) with structured feasible regions. In a recent work closely related to the setting considered
here, Xie and Deng [45] proves that the perspective formulation is ideal if the objective is separable and () is defined
with a k-sparsity constraint. In a similar vein, Bacci et al. [6] show that the perspective reformulation is tight with unit
commitment constraints. However, similar results for more general (non-separable) objective functions or constraints
are currently not known.

Our contributions and outline. In this paper, we provide a first study (from a convexification perspective) of the in-
terplay between convex quadratic objectives and combinatorial constraints on the indicator variables. Specifically, we
generalize the result in Xie and Deng [45] to arbitrary constraints on z. We also show that the rank-one strengthening
given in [4] is ideal for k-sparsity with & > 2. However, we show that the rank-one strengthening can be improved
if & = 1, or for hierarchy constraints [11, 30]. We conclude our work with a preliminary numerical study on prob-
lems with hierarchy constraints showing that the resulting formulations achieve strong relaxations with only a modest
increase in the computational effort required to solve the resulting convex formulations.

Notation. Throughout the paper, we adopt the convention that for a € R, % = 4o ifa # 0 and % = 0 when
a = 0. We let 1 be the vector of all ones, and let e; denote the ¢th unit vector of appropriate dimension with 1 in ith
component and 0’s elsewhere. For a set ), we denote by conv(() its convex hull and by cl conv(Q) the closure of its
convex hull.

2 Convex Hull Results
We present our convex hull results first for separable quadratic functions, followed by the non-separable case.

2.1 Separable Quadratic Function

Consider the mixed-integer epigraph of a separable quadratic function with arbitrary constraints, z € (), on the
indicator variables:

W=1¢(2,81)€QC{0,1}" xR xR| > B <t, Bi(1—2)=0Vic p|
i€[p]
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As Theorem 1 below shows, ideal formulations of W can be obtained by applying the perspective reformulation on the
separable quadratic term and, independently, strengthening the continuous relaxation of (). This generalizes the result
of Xie and Deng [45] for @ = {z € {0,1}? | >_¥_, z; < k} and the result of Bacci et al. [6] for unit commitment.

Let

2
Y =4 (28t) e RPN bi <t, z¢€conv(Q)
2
i€[p]

Theorem 1. Y is the closure of the convex hull of W: ¢l conv(W) =Y.

Proof. Note that inequality 2—2 < t; is precisely the perspective reformulation [24] of a single quadratic term ¢; = 32,
thus the validity of the corresponding inequality in Y follows immediately. For any (a,b,c) € R**! consider the
following two problems

min a'z+b B+ct subjectto  (z,8,t) € W, 2)
and
min a'z+b'B+ct subjectto  (z,53,t) € Y. 3)

It suffices to show that (2) and (3) are equivalent, i.e., there exists an optimal solution of (3) that is optimal for (2) with
the same objective value. If ¢ = 0,b = 0, then both (2) and (3) are equivalent to min.cq a' z. If either ¢ = 0 and
b # 0, or ¢ < 0, then (2) and (3) are unbounded. When ¢ > 0, without loss of generality, we may assume that ¢ = 1
by scaling. For any (z;, 8;) € [0,1] x R, 4 € [p]

) Bl ifz £0,
max—aifi — =40 ifz=p =0 4)
aieﬁé ;04 4 0 1 Zz—ﬂz— 5

+o0 otherwise.
Identity (4) can be proven by taking derivatives with respect to «; and setting to 0, see also [8]. Hence, for any o € RP

T a? 5.2
— — <& [k 2
P Z‘lzl_Zzi (5
i€[p] 1€[p]
In particular, consider the relaxation of (3) obtained by replacing the constraint that €lr] ij < t with —b' 8 —
Zie[p] %Zz < t (where we let « = bin (5)), i.e.,

min a' z+b'B+t (6a)
. 2
subjectto —b' 5 — Z Zzi <t (6b)
i€[p]
z € conv(Q). (6¢)

Due to constraint (6b), problem (6) is equivalent to

b2
min a'z— Z lez subjectto  z € conv(Q).
i€[p]
Since (6) is equivalent to a linear program (LP) over an integral polyhedron, it must have an integral optimal solution
z* € Q. Let 8* be such that
. 0 it 2 =0,

boifzr =1

Now if we let t* = 37, 1(87)% then (2%, 8*,¢*) € Wand bT f* +1* = 37, —gz;‘. Thus the optimal values of
(2) and (6) coincide. And since (6) is also a relaxation of (3), the optimal values of (2) and (3) coincide. O
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2.2 Rank-One Quadratic Function

In this section, we study the epigraph of a (non-separable) rank-one quadratic function with constraints
Zo=1{(26,1) €Q xR’ xR| (1"8)> <t,8;(1 —z)=0,Vi € [p]}

for some ( C {0, 1}”. We note that ideal formulations for the unconstrained case Zy( 1y» were provided in [4]:

Proposition 1 (Atamtiirk and Gomez [4]). The closure of the convex hull of Z 1 1yv is

11T 212 (175)?
cl COHV(Z{O,I}p) = (Za Ba t) € [Ov 1]]3 X Rp+ |(1 /B) < ta = <t,.
Diclp) %

2.2.1 Fk-sparsity constraint

We first study sets defined by the k-sparsity constraint,

Q1=12€{0,1}": Zzigk ,
i€[p]
and prove that, under mild conditions, a generalization of the result of Xie and Deng [45] also holds in this case, that
is, ideal formulations are achieved by focusing only on the nonlinear objective and indicator constraints.
Theorem 2. Ifk > 2 and integer, then

cleonv(Zg,) = (2,8,t) € [0, 1P x RPTL | (178)? <, ( <t, Z 2z <k
Zze[p] i

Proof. First, note that the validity of the new inequality defining cl conv (Zg, ) follows from Proposition 1. For
a,b € RP and ¢ € R, let’s consider the following two optimization problems:

min a'z+b' B +ct subjectto  (z,5,t) € Zg,. (7
and
min a'z+b'B+ct (8a)
subjectto  (178)2 <t (8b)
ﬂ <t (8c)
2iclp) %
> z<k (8d)
i€[p]
z €10,1). (8e)
The analysis for cases where ¢ = 0 and ¢ < 0 is similar to the proof of Theorem 1, and we can proceed with assuming
¢ = 1and b € RP. First suppose that b is not a multiple of all-ones vector, then 3b; < b; for some i,j € [p],i # j.

Letz = e; +¢;, B = 7(e; — e;) for some scalar 7, and ¢ = 0. Note that (Z, B, t)is fea51ble for both (7) and (8), and if
we let 7 go to infinity the objective value goes to minus infinity. So (7) and (8) are unbounded.

Now suppose that b = x1T for some x € R and ¢ = 1; in this case both (7) and (8) have finite optimal value. It
suffices to show that there exists an optimal solution (z*, 5*,¢*) of (8) that is integral in z*. If Zie[p] z7 = 0, then

we know zf = BF = 0,Vi € [p] for both (7) and (8), and we are done. If 0 < Zle[p z§ < 1 and the corresponding

optimal objective value is O (or positive), then by letting z* = 0, 5* = 0 and t* = 0, we get a feasible solution with

the same objectlve value (or better). If 0 < . e % < 1and (z*, B*, t*) attains a negative objective value, then

lety = vz*,vB*,yt*) is also a feasible solution of (8) with a strictly smaller objective value, which is a
7= YT y )
e€lp

contradlctlon

Finally, let’s consider the case where > z; > 1. In this case, the constraint (1T 6)2 < t is active and the optimal

i€p]
value is attained when 17 5* = 5and t* = (1T *)2, and (8) has the same optimal value as the LP:
2
min a'z— % subjectto 1< Z zi < k,z€[0,1]7.
i€(p]
The constraint set of this LP is an interval matrix, so the LP has an integral optimal solution, z*, hence, so does (8). [J
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The assumption that £ > 2 in Theorem 2 is necessary. As we show next, if k = 1, then it is possible to strengthen the
formulation with a valid inequality that uses the information from the cardinality constraint, which was not possible
for £ > 1. Note that the case £k = 1 is also of practical interest, as set (); with k¥ = 1 arises for example when
preventing multi-collinearity, see [9].

Proposition 2. If k = 1, then the following inequality is valid for Z¢,

2
2oLt )

Zi
i€lp]

Proof. If k = 1 then for any (2, 8,1) € Zq,,if 3, 2 =

0= Zle[p} - = (17B)? < t. Otherwise, z; = 1 for some j € [p], and z; = B; = 0,Vi € [p],i # j. Hence
2

Zie[p] % = ﬁJQ = (1Tﬁ) <t O

=0, then z; = 8; = 0, Vi € [p]. Hence, by our convention

Observe that inequality (9) is not valid if k > 2, as for example (3; + ;) < 57 + 3 < Z—f + f—j whenever 3;3; < 0.
As we now show, the addition of (9) leads to an ideal formulation of Zg, if k = 1.
Theorem 3. Ifk = 1, then

cleonv(Zg,) =} (z,8,t) € [0,1]7 x RFF! | Z BZ <t, Z z; <1

iel) - i€lp]

Proof. First, let’s consider another mixed integer epigraph:

Wo, =< (2,8,t) € {0,1}? x RP xR | Y7 <t, Bi(1—2z)=0Vie[p], Y z<1
i€[p] i€[p]
For V(z,3,t) € Zg,, there exists at most one 3; i € [p] such that 3; # 0. Hence, (17 3)? = Zie[p] 3% and the result
follows from Theorem 1. O

2.2.2 Hierarchy constraints

We now consider the hierarchy constraints given by
Q2={2€{0,1}? | 2z, <z, Vie [p—1]}.
In other words, if z € Q2 with z, = 1, then z; = 1 for all ¢ € [p]. First, we give a valid inequality for the set Zg,,

and then show that it is sufficient to describe cl conv(Zg, ), when added to the continuous relaxation of the original
formulation.

Proposition 3. The following inequality is valid for Z g,

e
Zze[p 1] - (p 2) .
e _ ; (1TB)2 — (1T 32
Proof. For any (z,0,t) € Zg,, if z, = 1, then z; = 1,Vi € [p]. In this case, S o sy A'p)y <t If
ie[p—1] P
z, = 0, then gy — ' < t. If z; = 0,Vi, then 8 = 0, and by our convention 0 = a's?
P 2iclp-1 %~ (P=2)zp T Dy 2 R ’ y 2ielp) 2
(17B)2 <t.If 2z = 1 for some i € [p], thenZ ’8) <@1'p)? <t O
i€ [p Zi

To establish the convex hull of Zg,, we first give a lemma whose proof is in the Appendix.
Lemma 1. The extreme points of the polyhedron

Qg=42€0,17| Z zi—(p—2)zp > 1, 2z, <z Vie [p—1]

i€[p—1]

are integral.
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Now we are ready to give an ideal formulation for Zg, .

Theorem 4. The closure of the convex hull of Zq,, is given by

clconv(Zg,) = {(z,ﬁ,t) € 0,1P x RPFL | (178)2 <t, 2, < z,Vi € [p— 1],

(17p)
Zie[p—l] zi —(p—2)zp = t}'

Proof. For a,b € RP and ¢ € R, consider the optimization problems:

min a' z+b'B+ct subjectto  (z,8,1) € Zg,. (10)
and
min a'z+b"8+ct (11a)
subjectto  (174)2 <t (11b)
(175)?

<t (11c)

Zie[p—l] zi— (P —2)%
2y <z, Vi€p—1] (11d)
z e [0,1]P. (11e)

Following similar arguments to those in the beginning of the proof of Theorem 2 (with the exception of letting Z = 1 in
the corresponding case), we can assume that c = 1 and b = x1 " for some x € R; in this case, (10) and (11) have finite
optimal value. Suppose (z*, 5*,t*) is an optimal solution of (11), then it suffices to show that (z*, 3*, ¢*) is integral
inz" I0=73c, 2 —(p—2)z =2+ Zpﬁl(z;‘ — z;;), then by the constraint z; > 2, and non-negativity of
z;’s we must have 2§ = 0 and 2} = z; fori = 2,...,p — 1. Furthermore, since 27 > z,, we find that z; = 0 and
zF=0,Yiep—1].

Ifo < Zz‘e[pq] 28— (p—2)z z, < 1 and the corresponding optimal objective value is O (or positive), then by
letting z* = 0, f* = 0 and t* = 0, we obtain a feasible solution with the same (or better) objectlve value and
integral in z*. Now suppose (z*, 5*,t*) attains a negative objective value in (11); let v = = > 1,
(a'p)?

g 2iep-11 % —(P—=2)7;

z; % * . * * *
TS e ) < 1,and vz, < vz} < 1. Furthermore, the solution (y2*,v3*, vt*)

has a strictly smaller objective value than the solution (z*, 8*,t*), which is a contradiction.

iclp—1] z*(P 2)z;

then (yz*,v3*,vt*) is also a feasible solution of (11) because y2(173*)? = v < ~t*, for each

i € [p—1] wehave vz =

Finally, let’s consider the case where } ., ;27 — (p — 2)z; > 1. In this case, because the constraint (17p*)2 <t

is active, the optimal value is attained when 17 * = —zandt* = (17 3%)2 and (11) has the same optimal value as
2
. T,k
min a'z- -
subject to Z zi—(p—2)zp >1
i€[p—1]
zp <z, Vie[p-—1]
e [0, 1)*.
From Lemma 1, the extreme points of this problem are integral, which completes the proof. O

3 Computations

We provide preliminary computations of the proposed strengthening derived in §2.2 with hierarchy constraints [11].
Specifically, there is a set of 3-tuples H, such that if (¢, j, k) € H then y;, # 0 implies y; # 0 and y; # 0, resulting in
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the optimization problem [30]

1 .
Imnyw—Xm@+AZ;% (12a)
st Bi(1—2) =0 Vi € [p] (12b)
2p < 24y 2 < 7 Y(i,5,k) € H (12¢)
z € {0,1}7, (124d)

with LO regularization with parameter A > 0. We consider the following strong (and big-M free) semi-definite
relaxations of (12):

eDynamic perspective relaxation (persp) The dynamic perspective reformulation was proposed in [19] and involves
the introduction of additional variables B = 33" :

1 1 P
min o[yl —y" X5+ S (X7 X, B) +A;zl- (13a)
stz < 2, 2 < 74 V(i,j, k)€ H (13b)
87 < zBii Vi € [p] (13¢)
1 BT
(ﬂ B>t0 (13d)
z €[0,1]". (13e)

It corresponds to the best perspective reformulation that can be attained by decomposing the matrix X ' X = D + R
with D, R > 0 and D diagonal, and using the perspective reformulation to strengthen the term 3" D 3. This relaxation,
depending on the diagonal dominance of matrix X " X, can be substantially stronger than the natural convex relaxation
of (12). In light of Theorem 1 — and since the constraints (12c) are totally unimodular —, this formulation cannot be
strengthened unless non-separable quadratic terms are accounted for.

eTwo-dimensional rank-one relaxation (R1) The rank-one relaxation, proposed in [4], is a strengthening of the
perspective reformulation by optimally decomposing X " X = T+ R where T is a sum of low-dimensional rank-one
matrices, and using perspective and rank-one strengthening to strengthen the term 37 T3. If all rank-one matrices are
two-dimensional, then the resulting formulation involves the addition of constraints

zitz B B

Bi By Bij | =0
Bi  Bij Bijj

for all i < j. Observe that this formulation requires adding O(p?) constraints.

eHierarchical strengthening (Hier) Corresponds to strengthening the rank-one formulation by exploiting constraints
(Theorem 4). Suppose that (¢, ¢, j) € H; then using the same techniques used in [4], we obtain three valid inequalities

z B B ze Be B s ;Z “ 5?, gf g?,
<5i Bi; Bij) >0, ([32 By, BZj) > 0 and BL B?Z thz BU- = 0. (14)
B Bij Bjj Bj Bej  Bijj ’ ot BY
' ' ‘ B; Bij Bij B
The hierarchical strengthening corresponds to adding constraints (14) for every element in H to formulation (13); it
requires adding only O(p) constraints.

oFull strengthening (Hier+R1) Corresponds to adding all constraints from the rank-one relaxation and the hierarchi-
cal strengthening.

Results We compare the strength of the formulations as well as the time required to solve the SDP relaxations on
the Diabetes dataset [4, 10, 21] which involves second order interactions between variables (p = 64). Figure 1 depicts
the result. Figure 1(a) shows the optimal objective values of the different convex relaxations of (12) as a function
of )\, thus larger values indicate stronger (and better) relaxations. Figure 1(b) depicts the time required to solve the
relaxations; we did not observe any correlation between the value of A and the time required, so we report aggregated
times across all values of A tested.

We observe that just using the hierarchical strengthening (Hier) achieves almost the same improvement in terms of
the lower bound as that using the rank-one strengthening, despite only requiring O(p) additional constraints instead
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Figure 1: Lower bounds obtained from the convex relaxation and time required to solve the relaxation. In (a) the
values were scaled so that the objective value obtained from the perspective relaxation [19] is 100.

of O(p?). Indeed we observe from Figure 1(b) that the Hierarchical strengthening results in only a modest increase
in the computational time with respect to the perspective relaxation, while the rank-one strengthening requires almost
double that time. In addition, if the Hierarchical strengthening is used on top of the rank-one strengthening (Hier+R1),
then we notice a small but noticeable improvement in the quality of the lower bound across all values of A, with no
apparent increase in the computational time. These preliminary results suggest that by exploiting the constraints of the
optimization problems, it is possible to achieve stronger relaxations without substantially increasing the difficulty of

solving the convex problems.
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Appendix

Lemma 1. Suppose z* is an extreme point of ()4 and z* has a fractional entry. If Zie[p—l] 2z —(p—2)z; > 1, let
us consider the two cases where z; = 0 and z;, > 0. When z; = 0 and there exists a fractional coordinate z; where
i € [p — 1], we can perturb z} by a sufficient small quantity e such that z* + ee; and z* — ee; are in ()4. Then,

1

z* = 3(2* + ee;) + 2 (2" — ee;) which contradicts the fact that z* is an extreme point of Q,. When 1 > 2% > 0 we
can perturb z; and all other z;’s with 27 = z; by a sufficiently small quantity € and stay in (). Similarly, we will
reach a contradiction.

Now suppose Zie[p—l] z; — (p —2)z, = 1, and let us consider again the two cases where 2, = 0 and 2, > 0. When
z; =0,2"=z2fe1 +---+ Z?p,l)e(pq), which is a contradiction since we can write z* as a convex combination of
points e; € Qy,i € [p — 1] and there exists at least two indices 7, j € [p — 1],i # j such that 1 > 27,27 > 0 by the
fact that z* has a fractional entry and Zie[p—l] zi =1,0 <zf <1,Vi. When1 > z; > 0, we first show that there
exists at most one 1 in 27, 23, ... ,zZ‘p_l). Suppose we have z = 1 and z; = 1fori,j € [p — 1] with ¢ # j, then
Diep-1% — 0= 2)zp =27 + 3o i(F — 7)) 2 20 + (2] — 25) > 2] = 1, which is a contradiction. We
now show that we can perturb 2 and the p — 2 smallest elements in 2,7 € [p — 1] by a small quantity € and remain in
Qg- The equality >, clp—1] % — (p — 2)zp = 1 clearly holds after the perturbation. And, adding a small quantity € to
z, and the p — 2 smallest elements in 27,4 € [p — 1] will not violate the hierarchy constraint since the largest element
in 27, € [p— 1] has to be strictly greater than z;. (Note that if 2} = 23, Vi € [p], 3,1 2] —(p—2)z, = 25 < 1)
Since 2] > 2z, > 0,Vi € [p — 1] subtracting a small quantity e will not violate the non-negativity constraint. Thus, we
can write z* as a convex combination of two points in (), which is a contradiction. O
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