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ABSTRACT: Ab initio microkinetic modeling, parameterized
using density functional theory (DFT) energies, is a common
tool to quantify reaction rates and analyze reaction mechanisms a
priori in heterogeneous catalysis. Such models, however, often have
large prediction errors even if they include plausible reaction steps
and correctly model the active sites; this is partially due to the
intrinsic inaccuracies of the chosen DFT functional. Borrowing
concepts from Bayesian calibration theory, we show that trans-
ferable data-driven corrections to DFT energies in the form of
Gaussian process models trained on single-crystal adsorption
calorimetry data can improve the accuracy of microkinetic models
substantially. Specifically, we demonstrate that such corrections improve the predictive accuracy of the microkinetic model of the
water-gas shift reaction on single-crystal Cu(111) surface by 3 orders of magnitude. We finally show that Gaussian process
corrections serve as informed priors in a Bayesian experimental design framework to learn an accurate a posteriori microkinetic
model from few kinetic experiments. We posit that these results suggest that even infusing small, related, high-fidelity
thermochemistry data, when available, can systematically and substantially improve the predictive accuracy of microkinetic models.

■ INTRODUCTION
Mean-field microkinetic modeling is a common tool to
quantify the time evolution of surface intermediates and
reaction fluxes in heterogeneous catalytic systems.1 When
parameterized by first-principles calculations, such as density
functional theory (DFT), microkinetic modeling provides a
predictive tool to link the atomistic information (energies,
activation barriers) with microscopic/macroscopic observables
(reaction rate, activity, and selectivity) of a catalytic reaction
system.2,3 However, the predictions of ab initio microkinetic
models often deviate from experimental observations in terms
of the turn over frequency (TOF); indeed, the error could be
several orders of magnitude.2,4,5 It is hard then to attribute the
discrepancy between microkinetic models and experimental
observations to an incorrectly assumed active site, or missing
elementary reactions in the mechanism, because the inputs to
the microkinetic model (especially DFT-derived kinetic and
thermochemical parameters) embed, within themselves,
certain level of error.2 A recent benchmarking study compares
the binding energy from experimental [single-crystal adsorp-
tion microcalorimetry and temperature-programmed desorp-
tion (TPD)] measurements to DFT predictions.6 It reports
that six common gradient generalized approximation (GGA)
functionals have 20−40 kJ/mol error on the binding energy of
small molecules or intermediates adsorbed on transition
metals. Such errors result in miscalculating kinetics or
thermodynamic parameters by 2−4 (two to four) orders of
magnitude at typical reaction temperatures of 500 K, which in

turn usually results in large predictive errors in a microkinetic
model that otherwise has captured the right site and chemistry.
Consequently, bridging the gap between the ab initio
microkinetic models and real kinetic experiments is still an
open question in computational catalysis.5,7

The quality of microkinetic models is largely improved in
two ways. First, the accuracy of kinetic parameters is improved
by employing a higher level of theory8,9 albeit at a greater
computational cost that can become prohibitive as the
complexity of the reaction system increases.10,11 Second, the
kinetic and thermochemical parameters can be refined in a
rigorous way to fit the microkinetic model to experimental
kinetic data.4,5,7,12 This is a postdictive correction, thereby
necessitating a certain, albeit modest, amount of experiments;
however, the resulting model is robust, often shows good
extrapolative power to new conditions, and can be used infer
the reaction mechanism and guide further experiments,
kinetics, or otherwise.
A third approach to address the inaccuracies in microkinetic

models is to rigorously evaluate and report the associated
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prediction uncertainties by ascertaining a statistical distribution
of the uncertainties on the kinetic and thermodynamic
parameters.13−15 Several techniques have been adopted to
this end. The first is the Bayesian error estimation functional
developed by the Nørskov group which is trained on surface
adsorption dataset using Bayesian inference.16 The resulting
estimates of energies are therefore fairly accurate, especially for
metal surfaces, and the functional also provides uncertainty
estimates that can then be propagated to get uncertainty bands
for the microkinetic model predictions.14 The second method,
proposed by the Heyden group, uses energies estimated from a
collection of theories/functionals to build a statistical
distribution which can also be propagated further to get the
variance of the microkinetic model predictions.15 The third
method is to use the uncertainties in the parameters of a data-
driven model that is trained on DFT energies as adopted by
the Vlachos group. Once these uncertainties are known, they
can serve as priors to further refine the parameters through a
Bayesian calibration process.5,17

In this work, we propose a data-driven method that enables
learning from thermochemistry data initially, and kinetic
experiments subsequently, to improve microkinetic modeling
predictions. The main illustrative catalytic system we consider
here is the water-gas shift (WGS) reaction (CO(g) + H2O(g)
→ CO2(g) + H2(g)) catalyzed by Cu(111), for which we show
that mean-field microkinetic model parameterized with DFT
energies substantially underpredicts single-crystal kinetic
experiments; we argue that the origin of this inaccuracy largely
ought to arise from errors in DFT. We first show that it is
possible to substantially improve microkinetic model pre-
dictions by simply correcting the DFT energies with a
Gaussian process (GP) model18 trained on the mismatch
between single-crystal adsorption calorimetry data and its
analogous DFT-computed binding energies of small adsor-
bates. As GP is a Bayesian nonparametric data-driven model
that also quantifies the uncertainties in the response values, we
then show that this information can be used as the prior to
systematically identify the necessary additional kinetic evidence
to further improve the model via Bayesian experimental design.
We begin with a presentation of the different computational
techniques used here and subsequently discuss the results of
our proposed method.

■ COMPUTATIONAL METHODS

Mean-Field Microkinetic Modeling. A dynamic gas−
solid heterogeneous continuous stirred tank reactor (CSTR)
microkinetic model was developed to simulate the differential
flow reactor and low conversion batch reactor. A high flow rate
was maintained, so that the conversion predicted by the model
is always less than 1%. The general form of a dynamic CSTR is
given below
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where i and j are the subscripts over the species set I and
reaction set J. Fi, Fin,i are the outlet and inlet flow rate of gas
species i, and τ is the space time of the CSTR. θi is the
fractional coverage of surface species i, Pi is the partial pressure
of gas species i, and νij is the stoichiometric coefficient of
species i in reaction j. kfor,j and krev,j are forward and reverse
reaction rate constants of a given elementary reaction j.
Superscript G and S refer to the gas and surface species, and
superscript R and P refer to the reactants and products. Ptot is
the total reactor pressure. The CSTR model captures the
dynamics of the partial pressure of gaseous species (eq 1), the
dynamic of the fractional coverage of surface species (eq 2),
and the site balance (eq 3). The forward and reverse reaction
rate of each elementary reaction follows the law of mass action
(eq 4).
The reaction rate constant (kfor and krev) is calculated by the

Arrhenius expression

= −k A ej j
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for,
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(6)

=k K kj j jfor, rev, (7)
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(8)

∑ νΔ =H Hj
j

ij i
(9)

where Aj and Eaj is the pre-exponential factor and activation
barrier of reaction j, which were calculated by the DFT and
transition state (TS) theory. Kj is the equilibrium constant.

Gaussian Process. GP is a supervised non-parametric
learning algorithm used for classification and regression, which
models the underlying function of the data with a multivariate
Gaussian distribution.18 Gaussian process regression has been
used in chemical engineering to calibrate the prediction error
of the computational model,19,20 exploring the reaction
networks with uncertainty,10,21 and modeling the potential
energy surface for facilitating the structure optimization and
TS search.22,23 Its non-probabilistic version, namely kernel
ridged regression, is used for material screening by predicting
the molecular properties24

The multivariate Gaussian distribution of GP is defined by
the mean and covariance function. The mean function is
usually assumed to be zero, and the covariance function
estimates the correlation/similarity among the data. Supposing
there are n data points, with inputs X = (X1, X2, ..., Xn) and
output y = (y1, y2, ..., yn), given a covariance function k =
k(x,x′), its prediction y* on an unseen data point with input
X* follows a joint Gaussian distribution,18 such as

*| ∼ * * − * *
−

*
−y K K K K K Ky y( , )1 1 T

(10)

where · ·( , ) stands for multivariate normal distribution
giving a mean vector and a covariance matrix. K, K*, and K**
are the kernel matrices, obtained from applying the kernel
function on (1) each pair of the inputs (X), (2) the new data
and the inputs (X*, X), and (3) the new data point itself (X*).
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The mean of the prediction is a weighted sum of the training
data (K*K

−1y), and the weights depend on the similarity
among the data points, calculated by the kernel matrix.
The covariance function, also known as the kernel function,

is the central part of a GP, which defines the correlation
between the data points.18 The choice of kernel function
represents prior knowledge on the underlying function, such as
the smoothness, periodicity, and so forth. The squared
exponential (SE) kernel, also known as the radial basis
function, was chosen as the covariance function here for its
smoothness and simplicity in implementation. The SE kernel is
expressed as

i
k
jjjjj

y
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zzzzzσ σ′ = −
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+k x x

x x
l

( , ) exp
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2 2
2
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2

(11)

where l is the characteristic length scale of the input, σf
2 and

σnoise
2 are the variance of the kernel and white noise,

respectively. Assuming that the likelihood function follows a
normal distribution, the analytical expression of the marginal-
ized likelihood is18
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where θ is the vector of hyperparameters, calculated via
minimizing the negative marginalization likelihood. In this
work, we use automatic relevance determination (ARD) SE
kernel for each input. The ARD kernel assigns different weights
over the features in the input (each dimension in the
representation), which automatically determines the relative
importance of each feature with hyperparameter optimization.
Bayesian Inference and Experimental Design. Baye-

sian inference is a statistical framework to update the
parameters of a model in accounting for the information
from different resources, that is the prior and the evidence.25

The prior represents the initial belief or guess regarding the
parameters, which could come from high level theories,
experimental measurements, or expert knowledge. The
evidence is a set of new observations of the system. Equation
13 is the mathematical foundation of Bayesian inference, which
computes the probability density of the parameters con-
ditioned on the observation.

⃗ | =
| ⃗ ⃗

p m D
p D m p m

p D
( )

( ) ( )
( ) (13)

m⃗ is the parameters of the model, and D is the collected data.
p(m⃗|D) is the posterior distribution of parameters which fuses
the information of the prior, p(m⃗) and evidence, p(m⃗) through
the likelihood function, p(D|m⃗).
In this study, we use Markov Chain Monte Carlo, a

numerical sampling algorithm, to solve this Bayesian inference
problem.25 The Metropolis−Hasting algorithm samples the
target distribution by reshaping the proposal distribution to the
posterior distribution based on an accept-reject step. In our
setting, we run a sufficiently long sampling (more than 100,000
steps) to ensure the convergence of the distribution, which we
check by monitoring the mean of the parameters.
The Bayesian experimental design is the probabilistic

framework to design/select the most “informative” experi-
ments to refine the model. In this work, we are interested in
reducing the prediction uncertainty of the kinetic model, so the

experimental data with the largest prediction variance is used
to sequentially improve the microkinetic model.

■ RESULTS AND DISCUSSION
DFT-Based Microkinetic Model Prediction for WGS.

The reaction network of the WGS system is shown in Figure 1;

the redox pathway (CO* + O* → CO2* + *) and an
associative pathway involving the carboxyl intermediate (via.
CO* → COOH* → CO2*) were included. The temperature-
dependent kinetics and thermodynamic parameters are taken
from a subset of DFT calculations reported by Grabow and
Mavrikakis on Cu(111) using the PW91 functional.4 Kinetic
data reported by Campbell and co-workers on a single-crystal
Cu(111) system at 563−683 K, 0.013 atm H2O, and 0.034 atm
CO were used as experimental evidence.26 Figure 2 shows the
comparison of the experimental data with model predictions.
The ab initio microkinetic model parameterized with PW91
energies substantially underpredicts the turnover frequencies
by 1−4 orders of magnitude, overpredicts the apparent
activation barriers by more than 100 kJ/mol, and incorrectly
predicts a negative order dependence for CO. Given that (i)
both computations and experiments focus on single-crystal
facets,26 (ii) we have covered the most commonly observed
pathways reported for the WGS reaction on transition metals,
(iii) the coverage of adsorbates predicted by the model was
low (≤0.1 ML), so that the mean-field approximation is largely
valid, and (iv) most of the surface intermediates (especially, all
kinetically relevant ones, i.e., the intermediates and TSs
corresponding to steps with a high degree of rate control,
see Figures S1 and S2) are strongly bound so that harmonic
approximation used by Grabow and Mavrikakis4 is sufficient to
compute their entropies, we argue that this direct comparison
between the model and the experiment can be made and the
origin of the mismatch largely arises from the inaccuracies in
DFT. We note that we implicitly assume that the ZPE energies
and entropies calculated by the harmonic oscillator are
accurate; in principle, data-driven corrections can also be
applied to these terms separately.

GP Calibration on DFT Binding Energies. If indeed the
mismatch originates from inaccuracies in DFT, one question
that emerges is if these errors of the functional can be learned
from related prior thermochemical data, that is not from
specific kinetic evidence shown in Figure 2. A more general
version of this problem has been considered in the field of
Bayesian statistics,19 viz. if a computer code (or its underlying
model/theory) is inadequate to capture the real world, can a
correction be applied using related high-fidelity data? One
common strategy is to build an external correction around the
code (or the model) that is learned from calibration data.

Figure 1. Detailed reaction network of WGS.

The Journal of Physical Chemistry C pubs.acs.org/JPCC Article

https://dx.doi.org/10.1021/acs.jpcc.0c00491
J. Phys. Chem. C 2020, 124, 5740−5748

5742

http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.0c00491/suppl_file/jp0c00491_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c00491?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c00491?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c00491?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c00491?fig=fig1&ref=pdf
pubs.acs.org/JPCC?ref=pdf
https://dx.doi.org/10.1021/acs.jpcc.0c00491?ref=pdf


Inspired by this approach, we developed an external calibration
model, f(.) to correct the errors in DFT binding energies,
ΔEExp

DFT (see eq 14) with experimental data as

Δ = − =E fBE BE (. )Exp
DFT DFT Exp

(14)

where BEDFT, BEExp, and ΔEExp
DFT are the binding energies from

DFT calculations and experimental measurements and their
difference. Specifically, we used as our data source (i) a subset
(∼35 points) of the repository of experimental adsorption
enthalpies carefully compiled by the Campbell group6 to get
BEExp and (ii) the consistent and homogeneous set of
computed binding energies of small adsorbates on a variety
of transition metals compiled by the Mavrikakis group using
the same software and settings as used earlier (specifically the
GGA-PW91 functional) to get BEDFT=PW91. The dataset is
given in the Supporting Information, Section S2; we note here
that we subtract computed zero-point energy change values
from experimental adsorption enthalpies and treat this as
equivalent to the DFT binding energies as a first approx-
imation in view of the low temperatures in many of the
experiments.6

A GP18 is trained as an external calibration model ( f(.)) on
ΔEExpPW91. We have previously shown that GP models can be
trained to estimate the binding energies of surface adsorbates
using simple information about the structure of the adsorbate,
the substrate, and the bonding.27 We use a similar formalism
here to predict the error in the DFT estimate of the binding
energy given a surface intermediate; furthermore, the GP
formalism naturally allows us to calculate a corrected
uncertainty estimate of this prediction. The GP installation
and the representation of the surface intermediate are shown in
the Supporting Information, Section S1.
Figure 3A shows the parity between the GP prediction and

the mismatch between the PW91 binding energies and
experimental data; the standard deviation of the GP prediction
is also given. The model performance is quantified by
calculating the root mean squared error (RMSE) and the
mean predicted standard deviation (MpSD), which are defined
as

∑= −
=N

y yRMSE
1

( )
i

N
i i

1
pred actual

2

(15)

∑ σ=
=N

yMPSd
1

( )
i

N
i

1
pred

(16)

where σ(ypred) is the predicted standard deviation. Given the
paucity of experimental data (35 data points), we train the GP

Figure 2. Comparison between experimental26 and microkinetic model predictions for WGS on Cu(111). (Left) activation barrier is measured at
0.013 atm H2O and 0.034 atm CO, with temperature from 563 to 683 K; (right) partial pressure of CO is measured at 612 K, 0.013 atm H2O,
varying and the partial pressure of H2O is measured at 612 K, 0.034 atm CO.

Figure 3. (A) GP prediction vs ΔEExp
PW91 (see eq 14 with DFT: PW91).

The error bar corresponds to ±1 standard deviation. (B) Error
distribution of GP-corrected energies. The histogram is fitted with a
normal distribution. (C) GP prediction on the surface species not
seen in the training set. The red bar corresponds to ±1 standard
deviation. In (A,B), blue corresponds to GP prediction with full
dataset as the training set; red corresponds to GP prediction evaluated
with leave-one-out cross validation.
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on all data points, and the RMSE is 5.9 kJ/mol. We performed
a leave-one-out cross validation (LOO-CV) to evaluate the
generalization error. The root mean square error of this
exercise (LOO-RMSE) is 13 kJ/mol, which is higher than the
previous case, indicating that GP overfits this limited dataset.
Nevertheless, as long as we do not extrapolate far beyond the
current chemical space, the GP prediction should be reliable.
As shown in Figure 3B, the distribution of the errors of the GP-
corrected energies is narrower than that of PW91 (whose
standard deviation is 26 kJ/mol); GP-corrected energies are
therefore more reliable. In Figure 3C, to verify the perform-
ance of the GP, we compared the GP prediction with a set of
additional experimental data (outside the training set), and it
shows that GP can capture the trends in the intrinsic error in
DFT estimates, and the predicted variance provides a good
estimation of the model error (see Table S2 for the testing
data). Furthermore, Figure S3 in the Supporting Information,
which shows a heat map of the covariance matrix obtained
from the GP model, reveals physically meaningful similarities
between adsorbate−surface combinations. For instance, the
model correctly identifies that the binding of OH* and CH3O*
on Pt(111) is similar relative to, say, OH* and bidentate
HCOO*. We note here that there are potential uncertainties
associated with the coverage of adsorbates in experimental
single-crystal studies and that we have not explicitly taken this
into account in our model; however, as the coverages in both
the experiments and the reference DFT calculations are low
(<0.25 ML) for the cases considered here, we expect them to
not play a significant role. Despite the caveats, the qualitative

and quantitative performance of the GP corrections to original
DFT predictions allow us to employ this model with
confidence in subsequent analyses.

Applying the GP Corrections to the Microkinetic
Model.We checked the performance of the GP corrections on
the mean-field microkinetic model for the WGS reaction. The
GP model corrects the DFT binding energies and provides an
uncertainty distribution associated with it (Supporting
Information, Section S3.1). The corrections for TS energies
of each elementary reaction were estimated by the proximity
method adopted by Grabow and Mavrikakis,4,28 where the
deviation of the TS energy from DFT is taken to be linearly
dependent on the deviation of initial and final state energies
(details of the implementation are given in the Supporting
Information, Section S1.3). Upon correcting the DFT energies
with the GP model, shown in red in Figure 4A−D, the
resulting model can, a priori, capture the experimental trends
(turnover frequency, apparent barriers, and reaction orders)
significantly more accurately than the original model.
Furthermore, the distribution of the GP was sampled and
propagated through the microkinetic model to get an
uncertainty band on the predictions. As shown in the figure,
the predicted distribution of the GP-corrected microkinetic
model spans 2 orders of magnitude because the predicted
variance of GP calibration model is around 10−20 kJ/mol.
Clearly, augmenting the DFT energies with GP corrections
largely “fixes” the mismatch between experiments and the
original model, thereby lending credence to our argument that

Figure 4. Comparison between experimental data26 and kinetic models for water-gas shift on Cu(111). (A) Arrhenius plot; (B) distribution of
apparent activation energy; (C) TOF vs partial pressure of CO; and (D) TOF vs partial pressure of H2O. Blue: kinetic experiments; black: kinetic
model prediction with original PW91 energies; red: kinetic model prediction with GP-corrected PW91 energies, the red line: median (50%) of the
prediction, the shaded region corresponds to 16−84 percentile prediction.
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the mismatch arises from errors in the PW91 functional in this
case.
Application of the Method to Other Catalytic

Systems. We also employed GP-corrected microkinetic
modeling for other catalytic systems on single-crystal
Cu(111) surface, specifically, TPD of H2(g) and H2O(g),
methanol synthesis, and reverse WGS reactions. In methanol
synthesis and reverse WGS reaction, the microkinetic model
parameterized with PW91 energies underestimates the TOF of
CH3OH(g) and CO(g) by 6−8 orders of magnitude and
overestimates the selectivity of CH3OH(g) over CO(g)
( >S 1CO

CH OH3 ). After augmenting GP correction, the predic-
tions improve by 1−3 orders of magnitude, although still
underpredicting the experimentally observed rates. The
prediction of the selectivity is improved ( <S 0.01CO

CH OH3 ).
This result suggests that GP captures the relative errors
between the selectivity determining steps and underestimates
the error in the overall rate limiting step. For the TPD of
H2(g) and H2O(g), we focus on the peak position of the
temperature, which is a quantity directly related to the binding
energy of the surface intermediate (BEH and BEH2O). In TPD
of H2(g), the microkinetic model with PW91 energies
underestimates the peak temperature by around 100 K,
whereas post corrections, the predictions improved by 50 K.
For the TPD of H2O(g), the microkinetic model initially
underpredicts by over 120 K; with GP correction, the model
prediction was within 20 K of the experiments.
All three cases show improvements compared to DFT-based

microkinetic model predictions; the extent of improvements,
we can note, varies from one system to another and depends
on the extent to which the GP corrections for kinetically
relevant intermediates and TSs were accurate. The readers are
referred to the Supporting Information, Section S3.3 for more
details.
Posterior Inference with Experimental Evidence. We

note that our GP-corrected microkinetic model is an a priori
kinetic model in that no kinetic evidence pertaining to the
WGS reaction has been used yet. Nevertheless, the correlated
uncertainty distributions offered by GP could be used as an
informed prior to identify most informative kinetic experi-
ments that can be used as evidence to further refine the model,
to improve its predictive power, and to shrink its uncertainty
bands. Once refined with the appropriate kinetic data, the
model is postdictive, but can be substantially more robust. We
use Bayesian inference and design of experiments to this end,
which allows us to incorporate information from new data
sources to update the existing knowledge about a reaction
system. Previously, we have shown that the parameters of a
kinetic model can be re-estimated using rigorous nonlinear
optimization.7 The solution of such problems is a point
estimate of the parameters in the solution space (correspond-
ing to a local minimum of a least squares objective), although
simple multistart strategies can be deployed in an embarrass-
ingly parallel mode to obtain a slew of alternative solutions.
Bayesian inference, on the other hand, provides a correlated
posterior probability distribution of the parameters.25 The
distribution then reflects an intrinsic uncertainty in the
parameter value and every sample represents an alternative
solution with a finite probability. The advantage of this
procedure is that one can then use “posterior” distribution of
the parameters and the model prediction (i.e., after modifying
the prior knowledge of the parameters with new evidence) to

identify where to collect more evidence (i.e., new experimental
data). One approach is to consider a collection of potential
experimental conditions and evaluate where the model has the
largest prediction variance, pick that condition for the next
experiment, and then feed this new evidence to retrain the
model. In our illustration here, as the data are already available
and this modeling exercise is conducted after the fact, we
demonstrate how this approach could generally work in real
time to further refine a microkinetic model.
Figure 5 demonstrates that as we refine the kinetic model

using Bayesian experimental design, the model quickly

converges. Specifically, the microkinetic model reproduces all
experimental data with only two/three experimental data
points. Additionally, the systematic reduction in the prediction
variance indicates that the posterior distribution captures the
information from the prior (GP calibration model) and new
evidence (WGS kinetic data). There is a clear trend that the
predicted variance of all unseen (or unused) kinetic data is
progressively decreasing as well. In addition, the decrease in
the predicted variances of unknown reaction conditions is not
uniform; the uncertainty bands are larger at points away from
the fitted data.
Figure 6A compares the potential energy surfaces (PES)

corresponding to three versions of the microkinetic models
presented thus farone based on original DFT energies, one
after GP corrections, and the third being the posterior model.
Augmenting the DFT energies with the GP model (GP-PW91,
red) shifts the PES downward by binding all surface
intermediates more strongly. After inferring from three kinetic
data points, the distribution of the PES (green) marginally
shifts from that of GP-PW91, and the variance of the PES
decreases. Figure 6B shows the net reaction rates of two

Figure 5. Bayesian experimental design of WGS kinetic with GP as
prior. First row: varying temperature. Second row: varying partial
pressure of CO(g), third row: varying partial pressure of H2O(g).
Blue dot: unseen (unused) experimental data. Green triangle: fitted
data. Red shade: prediction on unseen data.
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reaction pathways predicted by these three microkinetic model
versions. The microkinetic model with PW91 energies initially
predicts that the redox pathway is dominant. After including
the GP-based corrections, the resulting model predicts that the
carboxyl pathway is the dominant one, which is consistent with
previous predictions;12 further incorporation of kinetic
evidence does not alter this. The predicted variance of two
pathways decreases after inferring from kinetic data. In
addition, the variance of the predicted flux through the

carboxyl pathway in the posterior model is a lot smaller than
that of the redox pathway indicating that some elementary
reactions (in the main pathway) are tightly connected to the
overall kinetics (TOF) than others. The uncertainty corre-
sponding to those reactions reduce upon including more
kinetic data. However, the reaction fluxes of side reactions are
not directly inferred from the overall TOFs, so the
uncertainties within those reactions are not significantly
reduced. The detailed predictions of reaction fluxes, the
value of the degree of rate control of each step, and surface
coverage are given in the Supporting Information, Section
S3.1. The microkinetic model based on PW91 energies
predicted a large positive degree of rate control (∼2.0) for
OH* dissociation and CO* oxidation (of the redox pathway),
whereas the GP-PW91 and the final posterior model predict
OH* dissociation to be rate determining. All models indicate
that the surface is largely clean under reaction conditions.
Figures 7 and 8 compare the distribution of the activation

barriers of reactions and binding energies of intermediates
across different models. The predicted standard deviation of
the GP is wide. Upon inferring from kinetic experimental data,
the width of the distribution shrinks. Comparing GP-PW91
with the posterior model (inferred from three kinetic data), we
can note that the individual distributions shift by 0−15 kJ/mol.
The two posterior distributions, inferred with three and fifteen
experimental data values, are quite close in most cases (except
for the reaction COOH* + OH* → CO2* + H2O*). These
two observations further confirm that the GP-corrected model
had sufficiently correctly captured the chemistry and that three
additional kinetic data points are sufficient to refine the model
to an acceptable level of accuracy. We can therefore verify our
original supposition that the chemistry and active sites were
correctly captured in our model and the original model-
experiment mismatch shown in Figure 2 is entirely due to
intrinsic errors in the chosen functional.

■ CONCLUSIONS

In summary, we present a method to systematically improve
microkinetic models of catalytic systems. We train a GP model
as external correction to DFT binding energies using, albeit
sparingly, available experimental single-crystal adsorption

Figure 6. (A) Potential energy surface of WGS on copper (111).
Black: origin PW91. Red shade: GP-PW91. Green shade: posterior
with three kinetic experimental data. The uncertainty corresponds to
±1 standard deviation. H* is omitted from labels. (B) Comparison of
the net reaction rate of two pathways predicted by PW91, GP
augmented PW91, and posterior distribution with three kinetic
evidences. C/R stands for the ratio of the reaction fluxes of carboxyl
and redox pathway.

Figure 7. Distribution of the deviation on Ea of all elementary reactions in WGS chemistry (units in kJ/mol). Red: prior distribution from GP;
green: posterior distribution inferred with three kinetic data; Blue: posterior distribution inferred with fifteen kinetic data.
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enthalpies. We show that the inclusion of this statistical
correction to the kinetic and thermodynamic parameters of an
illustrative microkinetic model of the WGS chemistry on
Cu(111) (and many more) substantially improves prediction
accuracy. The correlated uncertainties resulting from the GP
model can be propagated forward to obtain the variance of the
prediction of the microkinetic model, and also serve as an
informative prior for subsequent Bayesian experimental design
to iteratively refine the model. A pertinent challenge in
adopting this method is that adequate and relevant
experimental thermochemical data may not be available for
many classes of catalytic materials or chemistries to train a GP
model on. We offer the concept of multifidelity modeling as a
partial remedy to this problem. Specifically, we have shown
that a data-driven binding energy model can be simultaneously
trained on “large” amounts of (relatively) low-fidelity (such as
GGA functionals) and relatively small amount of high-fidelity
data (such as the random phase approximation).27 The
resulting model has a higher accuracy than a model trained
on either sets of data alone. One could then build a corrective
model to DFT by training a GP model on the difference
between high- and low-fidelity energies or build a multifidelity
model to estimate the binding energies directly; the resulting
model could then be used to parameterize a microkinetic
model. Nevertheless, for metal catalysis chemistries involving
small to medium intermediates, for which there is sufficient
thermochemistry data,29 this is a simple and viable strategy to
correct microkinetic models in the absence of any kinetic
evidence.
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