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Abstract
This work extends the logical benders approach for solving linear programs with comple-
mentarity constraints proposed by Hu et al. (SIAM J Optim 19(1):445–471, 2008) and Bai
et al. (Comput Optim Appl 54(3):517–554, 2013). We develop a novel interpretation of the
logical Benders method as a reversed branch-and-bound search, where the whole explo-
ration procedure starts from the leaf nodes in an enumeration tree. This insight enables us
to provide a new framework over which we can combine master problem and cut genera-
tion in a single process. It also allows us to diversify the search, leading computationally to
stronger cuts. We also present an optimization-based sparsification process which makes the
cut generation more efficient. Numerical results are presented to show the effectiveness of
this enhanced method. Results are also extended to problems with more complementarity
constraints, exceeding those that can be handled by the originalmethod in the cited references.

Keywords Complementarity constraints · Logical benders · Branch-and-bound · Cut
generation

1 Introduction

This paper focuses on the global solution of Linear Programs with Complementarity Con-
straints (LPCCs) in its general form

The work of Jara-Moroni was partially funded by the CONICYT PFCHA/DOCTORADO BECAS
CHILE/2013-72140466 and the National Science Foundation under grant CMMI-1334639.
The work of Mitchell was funded by the National Science Foundation under grants CMMI-1334327 and
DMS-1736326. The work of Pang was based on research supported by the Air Force Office of Scientific
Research under grant FA9550-15-1-0126 and the National Science Foundation under grant CMMI-1402052.
The work of Wächter was funded by the National Science Foundation under grant CMMI-1334639.

B Francisco Jara-Moroni
francisco.jara.m@usach.cl

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-020-00905-z&domain=pdf
http://orcid.org/0000-0003-3381-3078


Journal of Global Optimization

minimize
x, y, w

gT x

subject to AI x + BI y + CIw ≤ bI
AE x + BE y + CEw = bE

0 ≤ y ⊥ w ≥ 0

(1)

where x ∈ R
nx , y, w ∈ R

nc , bI ∈ R
kI and bE ∈ R

kE . Dimensions for the matrices AI , BI ,
CI , AE , BE and CE are defined accordingly. Notice that the objective function only depends
on the variable x . This is not restrictive in the formulation since any dependence on y and/or
w can be taken into account within the equality constraints.

The LPCC has grown in importance in applications during the last forty years, beginning
with the early work in the integer programming community on what was known then as
the “complementary program” [22,23,25], and as a special case of a mathematical program
with equilibrium constraints (MPECs) [30] on which there is an extensive literature to date.
The reference [20] gathers the different applications of LPCCs arising from science and
engineering, as complementarity constraints can be used to model many logical, piecewise,
and nonconvex conditions [20], even discontinuous ones such as cardinality objective [9]
and constraints [7]. In addition, the LPCC provides an interesting framework for the study of
nonconvex quadratic programs [18]. In general, determining the global solution of LPCCs is
NP-hard [26]. By global solution of the LPCC we mean certifying the problem is in one of
its three possible states: infeasible, unbounded below or having a finite optimal solution.

While there have been significant advances on computationalmethods based on non-linear
programming (NLP) to solve M(athematical)PCCs, their main focus is to find some type of
stationary point in an efficientmanner. Solvers such as FILTER [13] andKNITRO [28], based
on sequential quadratic programming and interior point methods, respectively, are capable of
finding solutions very quickly, but have no guarantees on the quality of the computed solution.
Since anLPCCcan be interpreted as a disjunctive linear optimization problem, global solution
methods are mainly based on some form of enumeration schemes. Therefore, many integer
programming based approaches have been tested on LPCC, combining essentially branch-
and-bound and cutting plane methods (see [4,22,23,25,32,33]).

Based on the works of Hooker and Ottosson [17], a logical Benders approach was devel-
oped for LPCCs [19] and later extended to Q(uadratic)PCCs [3], where the complementarity
pieces are described by binary variables, and later discarded for exploration via a logical
Benders cut generation scheme. Although originally stated as an extension to these logi-
cal Benders based approaches, the method presented in this paper is also closely related to
branch-and-bound as it will be described in the next section.

There are three principal contributions of this paper. (a) A first intention of this paper
is to establish a relationship between logical Benders and branch-and-bound methods; in
particular, we show how the logical Benders method can be interpreted as a reversed branch-
and-bound search. (b) This insight enables us to develop a more efficient and robust way
of selecting and discarding pieces within the logical Benders framework. We also comple-
ment the Benders’ cut generation scheme with an optimization-based procedure in order
to strengthen these cuts. The method to select pieces can be regarded as a method of
search diversification. The upshot of these new techniques is a dramatic improvement in
the computational performance of an implementation of the logical Benders method. (c) The
links between branch-and-bound and logical Benders have the potential to lead to new and
improved branching rules, not just for the LPCC but for other global optimization problems
requiring enumeration, including binary programming.
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The paper is organized as follows. Section 2 introduces the baseline Benders method
in detail. Branch-and-bound methods are briefly discussed in Sect. 3. We describe the
relationship between Benders and branch-and-bound in this context in Sect. 4. In Sect. 5
the enhancements to logical Benders, from a branch-and-bound perspective, are described.
Finally, numerical results supporting the effectiveness of these enhancements are presented
in Sect. 6.

1.1 Notation

The following set is defined ΩP := {(x, y, w)|AI x + BI y + CIw ≤ bI ; AEx + BE y +
CEw = bE ; y, w ≥ 0}, which represents the feasible region of (1) without the complemen-
tarity constraint.

2 Logical benders decomposition

The general idea of the algorithm presented in this paper follows the one espoused by [19]. A
master problem selects different complementarity pieces which are solved to optimality and
the corresponding solution is stored as the incumbent if it is the best one found so far. Pieces
are discarded by means of a cut generation method in the master problem. The method ends
when all pieces have been explored or discarded.

Let N := {1, . . . , nc}. Given a pair of disjoint subsets (Iw, I y) of N , the relaxed sub-
problem for (1) defined by Iw and I y is the minimization of gT x over ΩP with the added
restrictions wi ≤ 0, i ∈ Iw and yi ≤ 0, i ∈ I y . That is,

φP (Iw, I y) = minimize
(x, y, w)∈ΩP

gT x

subject to wi ≤ 0 for i ∈ Iw (λw
i )

y j ≤ 0 for j ∈ I y (λ
y
j ).

(2)

where the λ’s in parentheses represent the respective dual variables. In the case that (Iw, I y)
is a partition of N , we have wT y = 0 for every feasible point of (2), and we refer to its
feasible region as a complementarity piece. In our setting, these partitions will be described
by a binary vector p ∈ {0, 1}nc in the following way:

φP (p) = minimize
(x, y, w)∈ΩP

gT x

subject to wi ≤ 0, i : pi = 0 (λw
i )

y j ≤ 0, j : p j = 1 (λ
y
j )

(3)

In this case Iw = Īw(p) := {i : pi = 0} and I y = Ī y(p) := {i : pi = 1}. It is clear that for
any vector (x, y, w) feasible in (1) there exists a binary vector p such that (x, y, w) is also
feasible in (3). By convention we assume that φP (p) = ∞ if (3) is infeasible. Therefore, (1)
is equivalent to

minimize
p∈{0,1}nc φP (p). (4)

Instead of exploring all 2nc possible pieces explicitly, we maintain a master problem that
keeps track of all the pieces that still need to be explored. We denote the state of the master
problem by a set C that consists of pairs (Iw, I y) of disjoint subsets Iw and I y of N . Then
the set of pieces p that still have to be explored is given by
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F =
{
p ∈ {0, 1}nc :

∑
i∈Iw

pi +
∑
i∈I y

(1 − pi ) ≥ 1 for all (Iw, I y) ∈ C
}

. (5)

We refer to an inequality in the above definition as a “cut” in the master problem, and use the
corresponding sets Iw and I y to denote the cut. For example, once (3) has been solved for a
given piece p, we could add the cut defined by Iw = Īw(p) and I y = Ī y(p) to C. In this way,
the piece p is no longer in the set of unexplored pieces F . If Iw ⊆ Īw(p) and I y ⊆ Ī y(p)
is not a partition of N , also other pieces will be removed by the corresponding cut. Clearly,
having fewer components in Iw and I y leads to fewer pieces in F . The processes in which
these components are removed from Iw or I y will be referred to as “sparsification”, and are
discussed in detail in Sect. 5.2.

2.1 Algorithm outline

In each iteration of the logical Benders algorithm, a pair ( Ĩw, Ĩ y) is chosen such that

Ĩw ∩ I y 	= ∅ or Ĩ y ∩ Iw 	= ∅, for all pairs (Iw, I y) ∈ C. (6)

Then the subproblem (2) corresponding to ( Ĩw, Ĩ y) is solved, and based on the outcome
a new cut (Iw, I y) is added to C. If ( Ĩw, Ĩ y) is a partition described by a binary vector p̃,
condition (6) is equivalent to p̃ being inF . The new cut must at least remove p̃ fromF . Also,
if (3) is feasible for p̃, we obtain a feasible point for the original problem. The algorithm
keeps the best feasible point encountered so far as the incumbent, together with its optimal
objective value U , which is an upper bound for the optimal objective value of (1).

Theorem 1 The Logical Benders method solves problem (1) in a finite number of iterations.

Since there are only finitely many pieces, F must eventually become empty. All pieces
have been (implicitly) explored and the algorithm terminates. The current incumbent is an
optimal solution for (1). If no incumbent has been found, the original problem is infeasible.
And if during any iteration the algorithm finds a piece such that (3) is unbounded below, then
(1) is unbounded.

2.2 Cut generation

For a given piece p, any pair (Iw, I y) such that Iw ⊆ Īw(p) and I y ⊆ Ī y(p) makes
subproblem (2) a relaxation of (3), and therefore we have φP (Iw, I y) ≤ φP (p). Again, we
define φP (Iw, I y) = ∞ if (2) is infeasible. Note that (2) is also a relaxation of (3) for any
other p̂ such that Iw ⊆ Īw( p̂) and I y ⊆ Ī y( p̂), and therefore φP (Iw, I y) ≤ φP ( p̂).

Now suppose thatU is the objective value for the current incumbent and therefore an upper
bound on the optimal objective function. In our search for a better incumbent (if possible),
we need to find a piece p̂ so that φP ( p̂) < U . Consequently, if φP (Iw, I y) ≥ U , all pieces
p̂ with Iw ⊆ Īw( p̂) and I y ⊆ Ī y( p̂) cannot contain a better incumbent, and we can exclude
them all from F . This is done by adding the cut (Iw, I y) to C. This baseline method in its
most general form is described in Algorithm 1.

In the setting of [19], step 3 always selects a partition of N , described by a vector p̄,
satisfying (6) which is equivalent to p̄ ∈ F . Steps 4 and 5 translate into comparing φP (p)
with U , where an update is performed every time that φP (p) < U . In order to find suitable
subsets Iw and I y in step 6, we consider the dual to (2):
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Algorithm 1 Logical Benders: baseline method
1: Let C = ∅, U = ∞.
2: while F 	= ∅ do
3: Select a pair ( Īw, Ī y) satisfying (6).
4: Evaluate φP ( Īw, Ī y).
5: Update U and store incumbent if any.
6: Find (Iw, I y) such that Īw ∩ I y = ∅, Ī y ∩ Iw = ∅ and φP (Iw, I y) ≥ U .
7: Add cut (Iw, I y) to C.
8: Return incumbent as optimal solution or output infeasible or unbounded.

φD(Iw, I y) = maximize
μI , μE , λw, λy

−bTI μI + bTEμE

subject to −AT
I μI + AT

EμE = g

−BT
I μI + BT

EμE − λy ≤ 0

−CT
I μI + CT

EμE − λw ≤ 0∑
i /∈Iw λw

i + ∑
i /∈I y λ

y
i = 0

μI , λw, λy ≥ 0,

(7)

In (2), there are constraints onwi for i ∈ Iw , and the dual should contain only the correspond-
ing multipliers λw

i . To simplify the notation, the multipliers for w ≤ 0 have been extended to
a full vector λw ∈ R

nc , and λy is similarly defined. The constraint
∑

i /∈Iw λw
i +∑

i /∈I y λ
y
i = 0

makes sure that the newly introduced components of λw and λy must be zero, so that (7) is
indeed the dual of (2).

Assuming (3) has a finite optimal solution, we have φP (Iw, I y) = φD(Iw, I y). It is then
clear that (Iw, I y) defines a valid cut if φD(Iw, I y) ≥ U , or, equivalently, the set

ΩD(Iw, I y) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(μI , μE , λw, λy) :

−bTI μI + bTEμE ≥ U

−AT
I μI + AT

EμE = g

−BT
I μI + BT

EμE − λy ≤ 0

−CT
I μI + CT

EμE − λw ≤ 0∑
i /∈Iw λw

i + ∑
i /∈I y λ

y
i = 0

μI , λw, λy ≥ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8)

is not empty.
The following procedure was suggested in [3] to obtain a valid cut: Given a piece p, solve

the primal (3). If it is feasible, let (μI , μE , λw, λy)be a dual optimal solution (withλw andλy

properly extended). Nowdefine Iw = {i ∈ Īw(p) : λw
i > 0} and I y = {i ∈ Ī y(p) : λ

y
i > 0}.

Then it is easy to see that (μI , μE , λw, λy) ∈ ΩD(Iw, I y) and therefore (Iw, I y) defines
a valid cut. If the optimal solution in (3) is not strictly complementary, then this procedure
produces a cut that removesmore than just p fromF . Note that this implies that the relaxation
φP (Iw, I y) ≥ U .

The reference [3] discusses a procedure to sparsify the cut further. In their paper, the
authors sort the sets {λw

i : i ∈ Iw} and {λy
i : i ∈ I y} in descending order and define Ĩw

and Ĩ y as the top half of each set, respectively. They then solve the relaxed primal (2) to get
φP ( Ĩw, Ĩ y). If φP ( Ĩw, Ĩ y) ≥ U , they set (Iw, I y) ← ( Ĩw, Ĩ y), which is also a valid cut.
This process is repeated until φP ( Ĩw, Ĩ y) < U .
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A similar procedure is used if the primal problem is infeasible. In this case, the dual must
have an unbounded ray that can be found by solving the homogeneous version of (7):

φD0(I
w, I y) = maximize

μI , μE , λw, λy
−bTI μI + bTEμE

subject to −AT
I μI + AT

EμE = 0

−BT
I μI + BT

EμE − λy ≤ 0

−CT
I μI + CT

EμE − λw ≤ 0∑
i /∈Iw λw

i + ∑
i /∈I y λ

y
i = 0

μI , λw, λy ≥ 0.

(9)

The set ΩD with g = 0 and the constraint −bTI μI + bTEμE ≥ U replaced by −bTI μI +
bTEμE = 1, will be denoted ΩD0 . As before, the generated cut (Iw, I y) guarantees that any
piece removed by it will also be infeasible.

If the constraints of φP (Iw, I y) (resp. φD(Iw, I y)) define an infeasible set then it will be
understood that φP (Iw, I y) = ∞ (resp. φD(Iw, I y) = −∞).

If at any iteration the algorithm finds a primal piece which is unbounded then (1) is also
unbounded, so there is no more exploration required.

Initially the master problem feasible set F is {0, 1}nc and the upper bound U = ∞.
A candidate complementarity piece p is selected (by solving a satisfiability problem). If
φD0(p) = ∞, a suitable cut is obtained from (9). Otherwise if φP (p) = −∞ then the
master problem is unbounded and the method stops. If φP (p) < U then the bound is updated
(U = φP (p)). Finally, a cut is obtained from (7). The obtained cut is then sparsified and
added to the set C. The process continues until F becomes infeasible. At that moment the
algorithm returns the current incumbent.

2.3 Contributions of this work

There are two key drivers of the performance of this method: The selection of the pair
(Iw, I y) and the strength (sparsity) of the generated cuts. Notice that both steps are linked,
the generated cut depends on the selected subsets, and this selection depends on cuts that
have already been generated.

In the methods that have been proposed in the past [3,19], the piece selection and the
sparsification procedures were independent of each other. In fact, the candidate piece was
chosen just as any p ∈ F , without giving any preferences of one over another.

The contribution of this paper is that we consider the logical Benders algorithm from a
different point of view, namely as a procedure that operates on a branch-and-bound tree (in
reverse order compared to regular branch-and-bound methods). This relationship provides a
justification for the selection of pairs (Iw, I y) and the subsequent sparsification procedure
proposed in this paper.We show in Sect. 5 how a judicious selection of pairs, by exploiting this
relationship, saves the logical Benders method a considerable amount of time and iterations.

3 Alternative branching schemes in the literature

If both y and w are bounded, then it is well known that (1) can be reformulated as a Mixed
Integer Linear Program (MILP), by setting diagonal matricesMy andMw and a binary vector
p ∈ {0, 1}nc representing the complementarity between the variables y and w;
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minimize
x, y, w, p

gT x

subject to AI x + BI y + CIw ≤ bI
AE x + BE y + CEw = bE
w ≤ Mw p
y ≤ My(1 − p)
y, w ≥ 0.

(10)

The main challenge with this formulation is the computation of valid bounds to obtain the
diagonal values of matrices My and Mw, if these bounds are not explicitly available. Fur-
thermore, if either y or w is not bounded then this reformulation cannot be applied.

Branch-and-bound approaches based on the big-M formulation (10) often run into numeri-
cal difficulties for two principal reasons: (i) the LP relaxations are weak, with small fractional
values of the variables p allowing both sides of the complementarity to be violated, and (ii)
if the integrality tolerance is not tight enough then a solution that is returned as integral
may violate both sides of the complementarity [5,6]. Recently, there has been interest in
using indicator constraints to represent disjunctions, and these are available in commercial
packages including CPLEX [24] and GuRoBi [16]. For example, the complementarity con-
straint 0 ≤ y ⊥ w ≥ 0 in the scalar variables y and w could be represented using indicator
constraints as

p = 0 �⇒ w = 0
p = 1 �⇒ y = 0

with p a scalar binary variable. Indicator constraints may be more numerically robust than
big-M formulations, but theymay lead toweaker LP relaxations. Formore detailed discussion
of indicator constraints and the difficulties with big-M formulations, see, for example, [5,6].
The paper [33] developed a branch-and-bound algorithm for LPCCs and compared it with
using indicator constraint and big-M formulations in CPLEX for various classes of LPCCs.
The implementation in [33] used preprocessing to tighten bounds on variables and add other
cutting planes, with the same preprocessed problems used in all branching algorithms. The
specialized branching rules developed in [33] led to strong computational results, significantly
outperforming the native CPLEX approaches with either indicator constraints or big-M
formulations. Thus, it appears there is a need to develop better branching rules for handling
complementarity constraints (see also the computational results in [5,10]). Logical Benders
decomposition gives an alternative method to generate branching rules for these problems. In
the current paper, we improve the state of the art in logical Benders decomposition, bringing
the computational performance closer to that in [33].

It is recognized that the early branching decisions are crucial in branch-and-bound
approaches to mixed-integer programs. Strong branching is often used, but it requires the
solution of many linear programs for each branching decision. Branching choices deeper in
the tree are based on cheaper approaches such as inference branching or pseudocosts or a
blend such as hybrid branching; see, for example, [1]. Restarting the search has been utilized
in the attempt to improve the early branching decisions, exploiting preliminary computations
in the construction of branching rules. Such methods have been discussed for integer pro-
gramming problems by Kılınç-Karzan et al. [27] and Fischetti and Monaci [11,12]. These
approaches all execute truncated branch-and-bound searches and then use the information
gathered in these runs to set up branching rules for the final complete search.

The method in [27] performs one initial incomplete branch-and-bound run until 200
nodes are fathomed. Sparse fathomed ancestors of these nodes are found by solving mixed
integer programs. Each fathomed ancestor is represented by a valid satisfiability inequality
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of the same structure as the constraints in (5). Branch-and-bound is then restarted, where
the branching is guided by the set of sparse ancestors: given a particular node in the tree,
the process is more likely to branch on a variable that appears in many violated satisfiability
constraints. For the experiments in [27], the choice of branching node is determined by
CPLEX.

Fischetti andMonaci [12] execute five runs of branch-and-bound, with each run exploring
at most five nodes. These runs all solve the initial LP relaxation, and then branch beginning
from different optimal solutions to the relaxation. One of these preliminary runs is then
continued to completion. Fischetti and Monaci [11] try to identify a small set of important
branching variables (a “backdoor”), with the property that certain values of these variables
would force many other variables to take particular values. The set of important variables is
found by looking at good fractional solutions and ensuring that at least one of the fractional
components appears in the backdoor. The branch-and-bound search is then restarted with
branching priority given to the backdoor.

There has also been recent work on using machine learning techniques to determine
branching rules, for example to derive a branching rule that can replicate strong branching
at lower computational cost by Alvarez et al. [2]. Machine learning and related approaches
to branching are surveyed by Lodi and Zarpellon [29].

Restarting branching algorithms for SAT has a longer history than for integer program-
ming, dating back to Gomes et al. [15]. The DPLL algorithm for SAT fixes literals in a
branching scheme and derives additional valid clauses using logical schemes such as reso-
lution [14]. By restarting the process with these additional clauses, the branching decisions
near the top of the tree are modified. It was observed in [15] that this improves computational
performance, in part because the algorithm does not invest too much time in a single branch-
ing ordering whose solution timemight be an outlier. As noted by Huang [21], restarting with
clause learning can be interpreted as a general resolution scheme and is now incorporated
into most successful SAT algorithms. Backdoor branching was also originally proposed for
SAT problems by Williams et al. [31].

Restarting is employed to improve the branching decisions high in the tree. Information
from the results of prior branching decisions is used to guide the branching process after
restarting. Our algorithm can be interpreted as restarting branch and bound at every iteration
(see Sect. 4.3). The cited references perform a restart far less frequently, at most a handful
of times; [11,12,27]. An additional contrast between our approach and those of [11,12,27]
is that we use restarting as a method to develop criteria for selecting the next node, whereas
the cited references delegate node selection to CPLEX and instead focus on modifying the
branching decisions employed at any given node of the tree to choose the branching variable.

4 Interpretation within branch-and-bound framework

One well-known approach for solving MPCCs is based on branch-and-bound (B&B), intro-
duced by [4]. Efficient implementations of this framework include many enhancements, such
as cutting planes andpseudo-cost branching [32,33].Here,wedescribe the basicB&Bmethod
with the purpose of interpreting the logical Benders algorithm as one that operates on a B&B
tree. This will allow us to derive new piece selection and cut sparsification methods. The
B&B method for LPCCs solves a collection of subproblems of the form (2), where Iw and
I y are disjoint subsets ofN . These subproblems correspond to nodes, denoted as [Iw, I y], in
a binary enumeration tree (In our notation, we distinguish between cuts (Iw, I y) and nodes
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[Iw, I y] by their parentheses). The root node of such a tree corresponds to the subproblem
described by Iw = I y = ∅, i.e., none of the components of y and w are required to be
complementary. Each node [Iw, I y] with Iw ∪ I y 	= N has two children. They are obtained
by choosing a complementarity j ∈ N\(Iw ∪ I y) that has not yet been fixed and by making
[Iw ∪{ j}, I y] and [Iw, I y ∪{ j}] the index sets defining the children. We call j the branching
complementarity. Different trees are obtained by choosing different branching complemen-
tarities at the nodes. Overall, there are Π

nc
i=0(nc − i)2

i
possible trees T corresponding to (1).

(Although, in the regular B&Bmethod, the full tree never needs to be completely constructed,
since subtrees are eliminated from the search once it is clear that they cannot contain the
optimal solution). The nodes on the last level with Iw ∪ I y = N are called leaves. Here, all
complementarity constraints have been fixed at one of the two sides. If a leaf is feasible, its
optimal solutions are feasible for the original problem (1). Therefore, each leaf corresponds
to a piece p in (1) and vice versa, with Iw = Īw(p) and I y = Ī y(p).

Since a child node [ Ĩw, Ĩ y] is obtained by fixing a complementarity constraint to one
of the two sides, its feasible region cannot be larger than that of its parent [Iw, I y]. As a
consequence, φP ( Ĩw, Ĩ y) ≥ φP (Iw, I y). This includes the case in which subproblems are
infeasible and a quantity in that relationship is ∞.

Given a node [Iw
a , I ya ] and one of its descendants [Iw

d , I yd ] in a particular tree, we denote
the path P from [Iw

d , I yd ] to [Iw
a , I ya ] by j1 ← j2 ← j3 ← . . . ← jL , where jl are the

branching complementarities that were added to obtain a child node from its parent. The
indices are listed in order from the descendant to the ancestor; for example, jL represents the
branching from node [Iw

a , I ya ].

4.1 Branch-and-bound algorithm

The B&B method constructs a tree during the course of the algorithm. It maintains a list of
open nodes that have yet to be explored. At the beginning, this list is initialized with the root
node. The root node corresponds to the subproblem described by Iw = I y = ∅, i.e., none
of the components of y and w are required to be complementary. Its optimal value φP (∅,∅)

provides a lower bound on the optimal objective of the original problem (1). The method also
stores an incumbent, which is a point that is feasible for the original problem (1) with the
lowest objective value, call it U , found so far. Clearly, U is an upper bound for the optimal
objective value of (1). At the beginning, no incumbent is available, and we set U ← ∞.

In each iteration of the rudimentary B&B algorithm, an open node [Iw, I y] is chosen and
the corresponding subproblem (2) is solved. There are four possible outcomes that determine
the next step of the algorithm:

1. If (2) is feasible and φP (Iw, I y) ≥ U , all descendants [Iw
d , I yd ] of this node must also

have φP (Iw
d , I yd ) ≥ U . Consequently, no feasible point for (1) can be found among the

descendants of [Iw, I y] with a better objective value than U .
2. If [Iw, I y] is infeasible, also all its descendants must be infeasible, and again no better

incumbent for (1) can be found below [Iw, I y].
3. If (2) is feasible and its computed optimal solution is feasible for the original problem (1)

and φP (Iw, I y) < U , then the optimal solution of the subproblem, if it is finite, provides
a new incumbent. The incumbent and the corresponding upper bound U are updated.

4. If (2) is feasible but its computed optimal solution is not feasible for the original problem
(1), then the set of complementarities that has not been fixed, N\(Iw ∪ I y), must be
non-empty. The algorithm then chooses a branching complementarity j ∈ N\(Iw ∪ I y)
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and adds the corresponding children [Iw ∪ { j}, I y] and [Iw, I y ∪ { j}] to the list of open
nodes.

In the cases 1–3, there is no need to explore descendants of the current node, since no feasible
solution better than the incumbent can be found in that part of the tree. In that case, we call
the current node a fathomed node. The B&B algorithm does not explicitly construct the part
of the tree below a fathomed node.

The algorithm terminates once the list of open nodes becomes empty. The current incum-
bent is the optimal solution of (1). If no incumbent was found during the search, the original
problem is infeasible. Since there is only a finite number of possible open nodes and no node
can become an open node twice, the algorithm is guaranteed to terminate in a finite number
of iterations.

4.2 Proving optimality

For simplicity wewill assume in the following that the optimal point is available as incumbent
and that the purpose of the algorithm is to confirm its optimality. This is reasonable in a
practical setting if we first solve a big-M formulation of (1), namely

minimize
(x, y, w)∈ΩP , p∈{0,1}nc gT x

subject to w j ≤ Mpj for j ∈ N
y j ≤ M(1 − p j ) for j ∈ N ,

(11)

for a finite M > 0 with anMILP algorithm. In this manner, we can use powerful off-the-shelf
MILP solver implementations. Ideally, we would like to choose M large enough so that the
optimal solution for (1) is not excluded. However, often such a value is not known a priori,
and choosing a very large value for M renders the MILP formulation more difficult to solve,
since its integer relaxation becomes weak.

Often, the optimal solution of (11) is optimal for the original problem (1), and what
remains is to prove that it is indeed optimal. To this end, we follow the approach proposed
by [3] and define an “outer problem” that consists of the original problem (1) with the added
linear constraint ∑

j∈N
w j +

∑
j∈N

y j ≥ M . (12)

The union of the feasible set of the outer problem and that of the big-M MILP (11) (projected
onto the (x, y, w) space) includes the feasible set of the original problem (1). Therefore, the
best among the optimal solutions of the two problems is guaranteed to be the optimal solution
of (1).

Solving the outer problem is the context in which the logical Benders algorithm can be
applied. For the remainder of this section we assume that the optimal objective function
value U for (1) is known. In case U is not optimal, the algorithm is still able to determine
the optimal solution.

4.3 Logical benders within branch-and-bound tree

Weprovide an interpretation of our logicalBenders algorithmas amethod to repeatedly restart
a B&B algorithm. The algorithm chooses a leaf of the tree, solves that leaf, and searches for a
sparse ancestor of that leaf that can also be fathomed. The tree is then reordered heuristically
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with the aim of placing fathomed nodes high in the tree. The next leaf is chosen to try to ensure
it has a sparse ancestor with few fathomed descendants that shares as few fixed variables with
the set of sparse fathomed nodes as possible.

Let T be a fixed B&B tree as defined in Sect. 4, that is, all branching decisions are
predetermined all the way to all leaves, and let U be the optimal objective value of (1). We
assume that the root node relaxation has a value worse than the upper bound, i.e., φP (∅,∅) <

U . Otherwise, we can terminate the procedure immediately, since φP (∅,∅) is always a lower
bound on the optimal objective value. If φP (∅,∅) ≥ U , we can immediately conclude that
U is optimal.

Inspired by the terminology of the basic B&B algorithm described in Sect. 4.1, we call a
node [Iw, I y] in T a fathomed node if φP (Iw, I y) ≥ U and φP ( Ĩw, Ĩ y) < U for its parent
[ Ĩw, Ĩ y]. A fathomed node is one for which the basic B&B algorithm would encounter one
of the cases 1 or 2. The B&B algorithm would not explore the subtree below a fathomed
node. On the other hand, the B&B algorithm would create children for any node [ Îw, Î y]
above a fathomed node since no definite conclusion about the subtree below [ Îw, Î y] can be
drawn based on the optimal solution of [ Îw, Î y] alone. Therefore, the fathomed nodes in a
fixed tree T is the minimal set of nodes that must be solved at some point in order to prove
that U is indeed the optimal objective value. Note that fathomed nodes depend exclusively
on the structure of the tree T , and are independent of any algorithm.

Note that case 3 cannot occur since we assume that U is the optimal objective value.
Also, the tree T with predetermined branching might not correspond to one that would be
generated by the B&B algorithm. This is the case, for example, when child nodes are obtained
by branching on a complementarity j for which the optimal solution of the parent is already
complementary. To avoid unnecessary work, the B&B algorithm only chooses branching
complementarities for which the corresponding optimal values of the current node are not
complementary, see case 4. In our context of interpreting the logical Benders method using
a B&B tree, however, we permit this situation.

As described next, while the B&B algorithm is finding the fathomed nodes “from above”
by branching from the root node to the fathomed nodes, we can interpret the logical Benders
algorithm as a method that finds the fathomed nodes “from below”.

Consider a fixed tree T . The logical Benders algorithm starts with an empty set of cuts
C = ∅, and therefore F = {0, 1}nc . It then chooses a piece p̄ ∈ F , which corresponds to a
leaf in the B&B tree. We now want to generate a cut (Iw, I y) so that∑

i∈Iw

pi +
∑
i∈I y

(1 − pi ) ≥ 1 (13)

excludes p̄ as well as many other pieces, if possible. In our set notation, (13) is satisfied and
the leaf [Jw, J y] = [Iw( p̄), I y( p̄)] corresponding to piece p̄ is removed from F by the cut
(Iw, I y) if and only if

Iw ⊆ Jw and I y ⊆ J y . (14)

One way to generate a cut consistent with the tree T is presented in Algorithm 2.
Starting from the leaf corresponding to the piece p, this procedure works itself upwards

in the tree. It continues along the path to the root until the parent [ Ĩw, Ĩ y] of the current
node [Iw, I y] has a value φP ( Ĩw, Ĩ y) < U . In that case, [Iw, I y] must be a fathomed
node. To express the fact that no solution better than U can be found in any of the leafs (or
pieces) below [Iw, I y], we add the corresponding cut (Iw, I y) to the master problem, so
C ← C ∪ {(Iw, I y)}.
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Algorithm 2 Find Fathomed Node
1: Input: Piece p ∈ {0, 1}nc , path P from the leaf [Iw(p), I y(p)] to the root node.
2: Let j1 ← j2 ← . . . ← jnc be the nodes along path P .
3: Set [Iw, I y ] = [Iw(p), I y(p)]
4: for l = 1, 2, 3, . . . , nc − 1 do
5: Set [ Ĩw, Ĩ y ] = [Iw\{ jl }, I y\{ jl }]. ([ Ĩw, Ĩ y ] is the parent of [Iw, I y ])
6: Solve (2) for [ Ĩw, Ĩ y ]
7: if φP ( Ĩw, Ĩ y) < U then
8: Break (leave for loop)
9: Set [Iw, I y ] ← [ Ĩw, Ĩ y ]
10: end for
11: Return (Iw, I y) as cut that identifies a fathomed node.

Algorithm 3 Cut Sparsification
1: Input: Piece p ∈ {0, 1}nc , path P from the leaf [Iw(p), I y(p)] to the root node.
2: Let j1 ← j2 ← . . . ← jnc be the nodes along path P .
3: Set [Iw, I y ] = [Iw(p), Iw(p)]
4: for l = 1, 2, 3, . . . , nc do
5: Set [ Ĩw, Ĩ y ] = [Iw\{ jl }, I y\{ jl }]. ([ Ĩw, Ĩ y ] is the parent of [Iw, I y ])
6: Solve (2) for [ Ĩw, Ĩ y ]
7: if φP ( Ĩw, Ĩ y) ≥ U then
8: Set [Iw, I y ] ← [ Ĩw, Ĩ y ]
9: end for
10: Return (Iw, I y) as minimal cut.

We now repeat this for the next iteration of the logical Benders decomposition, starting
from any piece p ∈ F that has not yet been discarded by a cut. In the tree, this corresponds
to any leaf that is not below a fathomed node. The algorithm above will again produce a new
fathomed node that is added as a cut to the master problem. In this way, we will eventually
discover all fathomed nodes in the tree. At that point, the feasible setF of the master problem
will become empty, and the method concludes.

4.4 Minimal cuts

In Sect. 2.2 we discussed the idea of sparsification. Given a valid cut (Iw, I y), i.e.,
φP (Iw, I y) ≥ U , it might be possible to find smaller sets Ĩw ⊆ Iw and Ĩ y ⊆ I y with
φP ( Ĩw, Ĩ y) ≥ U , so that ( Ĩw, Ĩ y) still defines a valid cut. Such a sparser cut is preferable,
since it excludes more pieces from F , as can be seen from (13).

The hierarchy of cut sparsification defines a partial order, and we call the induced minimal
elements minimal cuts. Within the algorithm described in the previous section, we can aug-
ment Algorithm 2 so that the procedure continues after the fathomed node has been found,
see Algorithm 3. Whenever it turns out that removing a complementarity from the cut results
in an invalid cut, it is simply added back, after which the search continues further along the
path.

Clearly this procedure results in a minimal cut. It is important to note that the order in
which the complementarities are released, i.e., the path (or tree), determines which particular
minimal cut is found.

The set of minimal cuts does not depend on the choice of a particular tree, it is defined by
the problem statement together with the upper bound U . Consider a minimal cut (Iw, I y).
We can now construct a tree in which [Iw, I y] is a fathomed node, simply by choosing the
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complementarities in Iw ∪ I y as the branching decisions from the root node to [Iw, I y]. On
the other hand, given the index sets Iw and I y from the minimal cut, in a different given tree
T̃ , there might not be a node [Iw, I y] with the same index sets. In that case, the cut given
by (Iw, I y) might correspond to more than one fathomed node in T̃ , each one has a path to
the root that includes all of the complementarities Iw ∪ I y . In fact, given a set of minimal
cuts {Iw

k , I yk }Kk=1, there might not exist a tree T in which those cuts correspond to nodes of
the form [Iw

k , I yk ]. We illustrate these observations with an example:

Example 1 Consider the following LPCC:

minimize −2x1 − x2 − x3
subject to xi ≤ 4 i = 1, 2, 3

xi = yi i = 1, 2, 3∑
k 	=i xk − 3xi + 6 = wi i = 1, 2, 3

0 ≤ y ⊥ w ≥ 0

(15)

and the set of cuts (Iw
1 , I y1 ) = (∅, {1}), (Iw

2 , I y2 ) = (∅, {2}) and (Iw
3 , I y3 ) = ({1, 2, 3},∅).

One solution to this problem is x1 = x2 = y1 = y2 = 3 and w3 = 12 with all other
variables set to zero. The optimal value of the LPCC is U = −9 and that of the relaxation
is φP (∅,∅) = −16. We have φP (Iw

1 , I y1 ) = −6 and φP (Iw
2 , I y2 ) = −9, hence (Iw

1 , I y1 ) and
(Iw

2 , I y2 ) are minimal cuts. We also have φP (Iw
3 , I y3 ) = ∞ (infeasible) and φP ({1, 2},∅) =

−14, φP ({1, 3},∅) = −14 and φP ({2, 3},∅) = −12, so (Iw
3 , I y3 ) is also minimal.

Let T be any B&B tree for this problem. If the first branching complementarity was
component 1, then the node [∅, {2}] corresponding to cut (Iw

2 , I y2 ) does not exist. We can
follow the same reasoning for any other first branching complementarity. Therefore, for every
tree there exists at least one of these minimal cuts which does not correspond to a node.

4.5 Nodes in a branch-and-bound tree

Let T be a fixed tree, and C = {(Iw
k , I yk ) : k = 1, . . . , K } be a set of cuts. We can subdivide

the nodes of T into three different classes. Let [Jw, J y] be a node in T .

– We say that node [Jw, J y] is discarded if there exists a cut (Iw
k , I yk ) ∈ C so that Iw

k ⊆ Jw

and I yk ⊆ J y with at least one of the two inclusions being strict. In this case, the node
[Jw, J y] lies below a fathomed node identified by (Iw

k , I yk ). All the leaves in the subtree
below [Jw, J y] correspond to pieces that are already excluded in F .

– We say that node [Jw, J y] is explored if there exists a fathomed node corresponding to
some cut (Iw

k , I yk ) ∈ C so that [Jw, J y] is on the path from the fathomed node to the root
node. In particular, fathomed nodes are explored.

– We say that node [Jw, J y] is unexplored if it is not discarded or explored. In this case,
[Jw, J y] does not lie below a fathomed node or on the path to a fathomed node identified
by any of the cuts. All the leaves in the subtree below an unexplored node correspond to
pieces that are still in the set F . An unexplored node has the potential to be a fathomed
node, and finding a minimal cut identifying it would remove all such pieces from F .

Furthermore, we will call an unexplored node an open node, if its parent is explored. Among
the unexplored nodes, open nodes have the potential to generate cuts that remove the most
pieces (leaves) in that part of the tree if they turn out to be fathomed nodes.

Let us demonstrate this in an example.
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Fig. 1 Classes of nodes in a B&B tree

Fig. 2 Classes of nodes in a B&B tree

Example 2 Using the same problem as in Example 1, consider the tree in Fig. 1 with the cuts
(Iw

1 , I y1 ) and (Iw
2 , I y2 ). The fathomed nodes corresponding to these cuts are 3 and 5, which

correspond to [Jw
1 , J y

1 ] = [∅, {1}] and [Jw
2 , J y

2 ] = [{1}, {2}], respectively, according to our
notation. Notice that [Jw

1 , J y
1 ] = [Iw

1 , I y1 ], but node [Iw
2 , I y2 ] does not exist in this tree.

Nodes 8, 9,…,15 are discarded nodes, while nodes 1, 2, 3 and 5 are explored nodes. Node
4, 6 and 7 are unexplored nodes and therefore 4 is the only open node.

Now, if we consider the tree in Fig. 2 the fathomed nodes correspond to 5, 7, 9 and 13 and
the open nodes are 6 and 12.

4.6 Constructing a tree

The initial version of the B&B-based logical Benders algorithm described in Sect. 4.3
assumed that the tree T was given and fixed throughout the procedure. Clearly, the amount of
work, when measured in the number of (master problem) iterations, depends on the choice of
the tree, and in particular on the number of fathomed nodes in that tree, since the algorithm
can only terminate when they have all been identified.

We are usually not given a tree a priori that results in good performance for a given problem.
The algorithmwepropose here is related to the idea of information-based branching presented
by [27]. Our approach follows the same spirit, but in a dynamic way. It constructs a “working
tree” as a preliminary choice of the final tree in each iteration, taking into account the cuts
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that have been generated so far. It picks a new piece p, and then executes the cut sparsification
Algorithm 3 to generate a new cut. It is important to note that this tree is never assembled
explicitly, it is only a conceptual device that helps us to identify the input for Algorithm 3,
i.e., the piece p and the path P .

Algorithm 4 Procedure for generating working tree

T = Tree formation({(Iwk , I yk )}Kk=1, [Jw, J y ])
INPUT: Cuts {(Iwk , I yk )}Kk=1. Root node [Jw, J y ] of subtree to be constructed.
1: if K = 0 then
2: Label [Jw, J y ] as open node. return.
3: if Iwk ⊆ Jw and I yk ⊆ J y for some k then � A cut is violated
4: Label [Jw, J y ] as fathomed node. return.
5: Label [Jw, J y ] as explored node.
6: Ñ = {i ∈ N : i ∈ (Iwk ∪ I yk )\(Jw ∪ J y) for some k = 1, . . . , K }.
7: if (Strategy 1) then
8: vi := #{(Iwk , I yk ) : i ∈ Iwk ∪ I yk for some k = 1, . . . , K } for all i ∈ Ñ
9: Select j ∈ argmaxi∈Ñ

{vi }.
10: else (Strategy 2)
11: Let sk = #{(Iwk ∪ I yk )\(Jw ∪ J y)} for all k.
12: Let s̄ = mink {sk }.
13: vi := #{(Iwk , I yk ) : i ∈ Iwk ∪ I yk and sk = s̄ for some k = 1, . . . , K } for all i ∈ Ñ
14: Select j ∈ argmaxi∈Ñ

{vi }.
15: Iw := {(Iwk , I yk ) : j ∈ I yk , k = 1, . . . , K }.
16: I y := {(Iwk , I yk ) : j ∈ Iwk , k = 1, . . . , K }.
17: if #Iw < #I y then
18: Construct subtree for w-child: Call Tree formation(Iw , [Jw ∪ { j}, J y ]).
19: Construct subtree for y-child: Call Tree formation(I y , [Jw, J y ∪ { j}]).
20: else
21: Construct subtree for y-child: Call Tree formation(I y , [Jw, J y ∪ { j}]).
22: Construct subtree for w-child: Call Tree formation(Iw , [Jw ∪ { j}, J y ]).
23: return.

Our algorithm for choosing p and P has two steps. It first (virtually) constructs a working
tree and finds an open node in that tree, and then chooses a piece (or leaf) under the open
node. For this, the working tree only needs to be defined up to the open and fathomed
nodes. Algorithm 4 gives the framework for recursively defining a working tree. It proceeds
recursively from the root node, calling itself for the generation of the subtrees after branching
on a complementarity. At the beginning it is called with the root node and all available cuts,
i.e., Tree formation({(Iw

k , I yk )}Kk=1, [∅,∅]). The recursion is set up in a way so that only
cuts are passed to the next level that are still relevant for the generation of the subtree rooted
at the incoming node, in the sense that they could lead to a fathomed node. If no such cuts
are available, the current node is marked as open in Step 2. On the other hand, if there is a
cut that is violated by the incoming node (see also (14)), then the incoming node is marked
as fathomed. If neither of those conditions are met, a branching complementarity needs to
be chosen among those that have not yet been branched on (in the set Ñ ). The choice of the
branching variable j is guided by the following observations.

1. An open node [Jw, J y] has the potential to become a fathomed node, namely when
φP (Jw, J y) ≥ U . In that case, a single iteration of the algorithm suffices to generate a
cut to remove all leafs under [J y, Jw]. So, in the most optimistic outcome, the remaining
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number of iterations is equal to the number of open nodes in the current B&B tree.
Therefore, we aim at constructing a working tree with a small number of open nodes.

2. For every open node there is a fathomed node at the same or lower level since its parent
is explored. We therefore would like to generate a tree in which the fathomed nodes are
high up in the tree. This way, if the open node can be immediately fathomed, the higher
in the tree, the sparser it will be.

3. The fathomed nodes that are identified by a given cut of cardinality l are at least l levels
down. Therefore, in the best case possible, all fathomed nodes should be on the same
level as the cardinality of the cut they are represented with.

4. A complementarity that appears in no cut should not be chosen for branching. Otherwise,
all fathomed and open nodes would be pushed down by one level, counteracting the goal
described in observation (2) above.

We explore two different branching strategies. Strategy 1 chooses a complementarity that
appears in most of the cuts that are still relevant. In this way, we hope to keep the level of the
deepest fathomed node small, see observation 4 above.

The second strategy is based on the following observation: Suppose that there is a cut that
includes only one complementarity that has not yet been branched on. Choosing this com-
plementarity for branching would create one child node that can immediately be fathomed,
and we effectively reduced the complexity of the remaining subtree by one complementarity
in one shot. This observation motivates us to give priority to the sparsest cuts, i.e., those that
include the smallest number s̄ of remaining complementarities. Steps 11–12 choose one of
the complementarities that appears most often in the sparsest cuts. In both strategies, if more
than one complementarity satisfies the criteria above, then we choose the one that appears
first in a fixed priority list. In our implementation, this list starts as the components, sorted in
a descending order according to their complementarity violation, obtained from solving the
root node. The list is updated as the tree becomes constructed along the path from the root
to last chosen leaf.

Before calling the algorithm recursively to generate the subtree corresponding to the new
child nodes, Steps 15 and 16 remove the cuts that are irrelevant in the respective subtree.
Finally, the subtrees are generated.

4.7 Choosing an open node

Now that we specified how we define the working tree based on the cuts in a given iteration,
we need to choose one of its open nodes in order to generate a new cut. We do this by
executing a variation of the tree generation algorithm in the previous section.

In Algorithm 4, we set up the recursion in steps 17–22 so that the subtree with the fewest
remaining cuts is generated first. While this makes no difference for the final working tree
that is formed, it determines the order in which we encounter the open nodes. Since fewer
cuts typically lead to subtrees in which the fathomed and open nodes are closer to its root,
we are likely to find an open node quickly that is high up in the tree and has the potential
to result in a sparse cut. The search procedure executes Algorithm (4) and returns the first
open node that it encounters. Since the order of exploration prioritizes smaller subtrees, this
depth-first search is likely to find an open node quickly, close to the root.
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4.8 Choosing a piece

Once an open node [Jw, J y] has been determined, the algorithm requires a piece p and a
path P as input for the cut generation procedure in Algorithm 3. To be consistent with the
current working tree, the path between [Jw, J y] and the root node is chosen according to the
working tree determined by Algorithm 4. It remains to choose a leaf corresponding to p that
lies below [Jw, J y], and the path between that leaf and [Jw, J y].

Our choice is guided by the observation that Algorithm 3 removes a complementarity
whenever φP ( Ĩw, Ĩ y) ≥ U , where ( Ĩw, Ĩ y) is the current trial cut in Algorithm 3. This
suggests that it is beneficial to choose a leaf p that has a large value of φP or is infeasible.

To determine such a piece, we solve the relaxation (2) corresponding to φP (Jw, J y). If
φP (Jw, J y) ≥ U , then the open node [Jw, J y] is actually a fathomed node, and we can
generate a cut corresponding to it. Formally, we choose any piece p below [Jw, J y] and
any path from that piece to [Jw, J y]. The first iterations of Algorithm 3 will then remove
all complementarities jl that are not in Jw ∪ J y . In practice, we start Algorithm 3 from
(Iw, I y) = (Jw, J y) and avoid the unnecessary steps.

If φP (Jw, J y) < U , then the relaxation for [Jw, J y] must be feasible and has an optimal
solution (x̃, w̃, ỹ). We set, for all i ∈ N\(Jw ∪ J y) (i.e., all complementarities that have not
yet been branched on) ri = min{w̃i , ỹi } and order them in decreasing order. We now choose
the complementarities in that order, pick the w-branch toward the leaf if wi > yi and the
y-branch otherwise. If there is a tie and wi = yi > 0, we pick from the pre-chosen order,
and if there is a tie with wi = yi = 0, we choose the side with the larger multiplier. This
gives us the path and the leaf p.

5 Enhancements of the logical benders algorithm

Recall that the logical Benders algorithm consists of two basic steps: Choose a piece p ∈ F ,
and generate a cut (Iw, I y) that excludes p from F . For each of them, we consider different
options, and we will compare their numerical performance in Sect. 6.

5.1 Piece selection

In [3], the authors find the new piece to explore using a black-box satisfiability problem
(SAT) solver, part of the SIMULINK packages available in MATLAB. This approach has the
disadvantage that it blindly selects a piece satisfying all cuts without considering the implicit
information embedded in these cuts. The methods described in Sects. 4.7 and 4.8 offer an
alternative. Because it is based on a working tree it can choose a piece (or an open node)
that has the potential to lead to a cut that is quite sparse. More importantly, this procedure
generates cuts that are consistent with the existing cuts in the sense that it removes potentially
many additional pieces from F instead of being redundant. Furthermore, if the open node is
fathomable it saves any additional exploration on the subtree emerging from it as the original
method would do. This advantage of discarding open nodes instead of leaves is demonstrated
in the numerical results section. We will refer to the piece selection procedure described in
Sect. 4.8 as the “tree-guided piece selection”.
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5.2 Generation of sparse cuts

In this section we describe and discuss three different approaches to obtain sparse cuts which
allow us to remove pieces that need not be explored. Cuts are constructed in a way such
that any piece p removed by it is guaranteed to satisfy φP (p) ≥ U . Recall that a cut is an
inequality determined by two disjoint subsets Iw, I y ⊆ {1, . . . , nc} of the form∑

i∈Iw

pi +
∑
i∈I y

(1 − pi ) ≥ 1, (16)

hence sparsifying a cut translates into finding smaller sets Īw and Ī y with a certificate that
the primal relaxation φP ( Īw, Ī y) ≥ U .

Thefirst approach, already introduced inSect. 4.7, evaluates primal relaxations in a sequen-
tial order given by a “virtual” B&B tree. The second one, formulates an �1-normminimization
problem over the dual feasible region of the explored piece. Finally, we propose a third alter-
native that combines the advantages of the first two options. A detailed description of the
methods follows.

5.2.1 Path-based procedure

The general steps for the second sparsification method have been described in Algorithm
3. Given a piece p and a predefined order of indices j1 ← j2 ← j3 ← . . . ← jnc , we
sequentially solve relaxations of this piece following the order. Let us illustrate this procedure
through an example.

Example 3 Using the same problem as in example (1)

minimize −2x1 − x2 − x3
subject to xi ≤ 4 i = 1, 2, 3

xi = yi i = 1, 2, 3∑
k 	=i xk − 3xi + 6 = wi i = 1, 2, 3

0 ≤ y ⊥ w ≥ 0,

(17)

suppose we are given piece p = (1, 0, 0), that is Iw = {2, 3} and I y = {1}, and the path from
leaf to root is given by 3 → 2 → 1. We are also given the optimal upper bound U = −9.
Notice that φP (p) = −6, so the piece could be immediately removed with the cut (Iw, I y),
but this cut will remove only p and no other piece. The sequential sparsification procedure
checks if we can do better. It first tries the relaxation φP ({2}, {1}), which has a value of
−6, so now we found a better cut. It then continues with φP (∅, {1}), again with a value of
−6, so the cut has been sparsified even further. It ends by trying out φP (∅,∅) (i.e., the full
relaxation) with a value of −16. This means that complementarity y1 = 0 cannot be relaxed
so index i = 1 remains on I y . The final cut is therefore (∅, {1}). If we were given the piece
p = (0, 0, 1), with same path 3 → 2 → 1, the obtained cut will be (∅, {3}) due to symmetry
of this example problem. This example is depicted in Fig. 3. Dashed and bold lines represent
accepted and rejected relaxations of complementarities, respectively. Bold circles correspond
to fathomed nodes. Everything grayed out are nodes and branches not observed yet.

Clearly, by construction, every cut (Iw, I y) obtained from this procedure is minimal.
This method can take advantage of a situation in which the tree-guided piece selection

finds an open node [Iw, I y] with φP (Iw, I y) ≥ U . It is clear that Algorithm 3 removes
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Fig. 3 Sequential sparsification in a B&B tree

all indices along the path from the leaf to [Iw, I y], and so we save iterations by running
Algorithm 3 with an abbreviated path that starts at [Iw, I y] instead of the leaf.

As mentioned earlier, this method guarantees that the resulting cut (Iw, I y) is minimal.
It could happen that node [Iw, I y] does not exist in the current working tree, which can be
interpreted as if some branching decisions in the tree were not necessary, and hence some
fathomed nodes appear in levels lower than desired. This motivates the procedure for the
tree to be updated in every iteration, so that fathomed nodes (and consequently open nodes)
might be moved higher in the tree.

5.2.2 Optimization-based procedure

Let us first assume that a feasible piece p has been selected from F by the piece selection
procedure. As mentioned in Sect. 2.2, cuts are closely related to the dual variables λw and
λy in (7). A valid cut is obtained with Iw = {i : λw

i > 0} and I y = {i : λ
y
i > 0}. Hence, an

alternative to find sparse cuts is to solve the following linear program:

minimize
(μI , μE , λw, λy)∈ΩD( Īw, Ī y)

∑
i∈ Īw

λw
i +

∑
i∈ Ī y

λ
y
i , (18)

where Īw = Īw(p) and Ī y = Ī y(p). A solution (λ̂y, λ̂w) of this problem provides a valid cut
( Îw, Î y) with I y := {i : λ̂

y
i > 0} and Iw := {i : λ̂w

i > 0}, and its corresponding relaxation
has a value greater or equal than U . This condition is forced in the −bTI μI + bTEμE ≥ U
constraint, in the description of ΩD(Iw, I y). The objective function is interpreted as the �1-
norm of variables λw and λy which intends to steer their components towards zero. In a strict
sense, to find a sparsest solution we should be using the �0-norm instead in the objective,
but then problem (18) becomes highly non-convex. Following [8], we enhance the solution
of (18) with an iterative re-weighting scheme. Given a set of initial weights ω0 ∈ R

|Iw |
+ and

γ 0 ∈ R
|I y |
+ , we set the iteration counter k = 0 and solve the problem

minimize
(μI , μE , λw, λy)∈ΩD(Iw,I y)

∑
i∈Iw

ωk
i λ

w
i +

∑
i∈I y

γ k
i λ

y
i , (19)

and with the optimal solution (μ̂k
I , μ̂

k
E , (λ̂w)k, (λ̂y)k) of (19) we update the weights ωk+1

i =
1

max{ε,(λ̂w)ki }
and γ k+1

i = 1
max{ε,(λ̂y)ki }

, set k = k + 1 and resolve. The ε parameter serves

to ensure the weights are well defined in the circumstance that λ becomes zero. In our
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implementations, ε was set to 10−6. This iterative procedure gives a variable which was
close to zero in one iteration a larger weight in the next one and therefore it is more likely to
be pushed to zero. The method ends when two consecutive iterates are equal. This procedure
can be interpreted, as explained in [8], as sequentiallyminimizing linearizations of

∑
i log(λi )

over ΩD and, hence, the closer to zero a variable is, the steepest its slope becomes. In our
experiments, this procedure converges very quickly, requiring no more than 6 iterations even
in the largest instances. We set the initial weights to 1 for every component of λw and λy .

Under the circumstance that the tree-guided piece selection finds an open node [Iw, I y]
with φP (Iw, I y) ≥ U , we start the procedure directly with the index sets Iw and I y , provided
the corresponding relaxation ΩD(Iw, I y) is feasible.

Now consider the case in which the primal of the selected piece p ∈ F is infeasible. In
case the dual problem (7) is feasible, we can still follow the procedure above. However,
if (7) is infeasible, we formulate the �1-norm minimization problem over the homoge-
nized set ΩD0(I

w, I y). Once the weighted iterative heuristic finishes in an unbounded ray
(μ̂I , μ̂E , λ̂w, λ̂y), we check whether the corresponding primal relaxation became feasible.
If not we set I y = {i : λ̂

y
i > 0} and Iw = {i : λ̂w

i > 0} as the index sets of the newly found
sparse cut. Otherwise, we continue the �1-norm minimization on the corresponding dual of
the relaxed primal.

Although this method has the nice feature that it requires the solutions of just a few LPs,
it has no guarantee that it will produce a minimal cut. Consider the following very simple
example:

minλ λ1 + λ2
subject to λ1 + 2λ2 ≥ 3

2λ1 + λ2 ≥ 3
λ ≥ 0.

(20)

If the initial weights are set to one, the procedure will converge in the second iteration to
(1, 1), although the sparsest solutions are (3, 0) and (0, 3).

This gives way for a third procedure to generate sparse cuts: the Hybrid method.

5.2.3 Hybrid procedure

Both presented sparsification procedures have their own advantages and downsides. The
�1-norm minimization approach finds cuts quickly by iteratively solving linear programs,
which can even be hot-started in a primal simplex algorithm since the feasible region does
not change. But there is no guarantee that the resulting cuts are minimal. On the other hand,
the sequential procedure finds minimal cuts, but it requires nc LP solves, making it too costly
as the dimension of the complementarities increases, even if solved with the dual simplex
method to use hot starts as we did in our implementation.

We can exploit the advantages of both methods in a hybrid sparsification procedure. The
approach consists of two steps: (1) the �1-norm minimization sparsification routine is called
to compute a cut (Iw, I y) given by Iw := {i : λ̂w

i > 0} and I y := {i : λ̂
y
i > 0}, where λ̂w and

λ̂y are the outputs of the iterative re-weighting scheme, and (2) the sequential sparsification
steps along the path P are executed, assuming that the complementarities in Iw ∪ I y can be
directly removed in Algorithm 3 without computations.

The underlying idea is that the �1-norm minimization already removes many comple-
mentarities from the cut, so that the sequential procedure does not need to go through all
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Algorithm 5 Hybrid Sparsification
1: Input: Piece p ∈ {0, 1}nc , a path P .
2: Set (Iw, I y) = (Iw(p), Iw(p))
3: Solve problem (19) to obtain solution (λ̂w, λ̂y).
4: Set Iw := {i : λ̂w

i > 0} and I y := {i : λ̂
y
i > 0}.

5: Let j1 ← j2 ← . . . ← jL be the subset of the path P , such that { ji }Li=1 = Iw ∪ I y .
6: for l = 1, 2, 3, . . . , L do
7: Set ( Ĩw, Ĩ y) = (Iw\{ jl }, I y\{ jl }). (( Ĩw, Ĩ y) is the parent of (Iw, I y))
8: Solve (2) for ( Ĩw, Ĩ y)
9: if φP ( Ĩw, Ĩ y) ≥ U then
10: Set (Iw, I y) ← ( Ĩw, Ĩ y)
11: end for
12: Return (Iw, I y) as minimal cut.

components from the leaf to the root. A formal outline of the procedure is described in
Algorithm 5

5.3 Remarks

Wefinish this section by highlighting some observations regarding the power of the presented
cut sparsification procedures.

– Throughout much of this paper, as stated in Sect. 4.2, we assumed we are given the
optimal value U of the LPCC and that the logical Benders algorithm is used to certify
optimality. It is only in this setting where we can claim that the cuts generated by the
sequential or hybrid methods are actually minimal cuts, where minimality is considered
with respect to the actual optimal value of (1). This is clear by how these methods were
designed. Under the circumstance that the provided incumbent is not the optimal solution,
the methods described in the previous sections can be adopted. The only difference is
that the upper bound needs to be updated whenever a piece p ∈ F is selected such that
φP (p) < U . Whenever these updates occur the cuts generated so far could potentially
be sparsified further, by replacing the newly found incumbent as value to be comparing
against, in ΩD and Algorithm 3. Keep in mind, though, that if resparsification of a cut
is called, for example, in the sequential or hybrid method, the path from leaf to root (or
subset of the path, to be more precise) to be considered will be from the most recent
“virtual” tree and not the one used when the corresponding cut was generated. In this
paper, we do not consider resparsification and its effectiveness remains to be investigated
later.

– If the tree T is fixed throughout the whole algorithm, that is, the sequences of branching
decisions from every leaf to the root do not change, then the order in which the pieces
(leaves) are selected in the procedure is irrelevant. The set of cuts at the end of the method
is independent of this selection.

6 Numerical results

This section contains various numerical experiments in order to demonstrate the effective-
ness and robustness of the proposed method. We solved instances with complementarity
dimension nc ranging from 100 to 1000 and compared four different variants of the log-
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ical Benders methods: (1) Base, (2) Splitting (“Spl”), (3) Optimization-based (“�1”), and
(4) hybrid between Optimization and Path-based (“Hyb”). Variant (1) refers to the baseline
logical Benders method. That is, pieces are selected via a black-box SAT solver and cuts
are strengthened with the Splitting sparsification. All remaining variants use the Tree-guided
node selection.

By Splitting sparsification we refer to the method described by the end of Sect. 2.1. An
initial cut (Iw, I y) is obtained from the optimal solution of the dual piece (7), as described
in Sect. 2.2. The dual vectors, λy and λw , are sorted in descending order and the top half
of the non-zero components of each vector are selected to form two sets Ĩw and Ĩ y . If
φP ( Ĩw, Ĩ y) ≥ U , then Iw := Ĩw and I y := Ĩ y and the sparsification method continues.
Otherwise, the returned cut is (Iw, I y).

As for the tree guided node selection, it is set up so that if the open node [Iw, I y] is
“fathomable”, meaning that its primal value lies above U , we follow Algorithm 2. That is,
we keep the cut (Iw, I y) as is. This can be interpreted as if we accept the tree that has been
constructed so far, and prefer to explore other nodes instead of trying to restructure it.

The tested instances were generated following the steps described in [19]. This reference
used a slightly different structured LPCC, namely

minimize
x≥0,y

cT x + dT y

subject to Ax + By ≥ f
0 ≤ y ⊥ q + Nx + My ≥ 0.

(21)

The procedure to generate instances is described below. After generating instances of this
type, converting to the structure of (1) is straightforward.1

Instance Generator1

INPUT: Dimensions n, m and k, for x , y and f , respectively. Density value s.
OUTPUT: Matrices c, d , A, B, f , M , N and q .

1: Generate x ∼ Nn(0, 1). Set x = |x |.
2: Generate y ∼ Nm(0, 1). Set yi = 0 if yi < 0.
3: Generate c ∼ Un(0, 1) and d ∼ Um(1, 3)
4: Generate A ∼ Uk×n(0, 1) and B ∼ Uk×m(0, 1) with density s.
5: Generate r ∼ DU ({0, 1, . . . ,m})
6: Let sM = 2000−m

m2

7: Generate E ∼ Ur×(m−r)(−1, 1) with density sM .
8: Generate d1 ∼ Ur (0, 2) and d2 ∼ Um−r (0, 2).
9: Let D1 = diag(d1) and D2 = diag(d2).

10: Let M =
(
D1 E
−E D2

)
11: Generate N ∼ Um×n(−1, 1).
12: Generate q ∼ Um(−20,−10)
13: Let f = Ax + By − |ε|, with ε ∼ Nk(0, 1).

The dimensions of our test instances follow similar relations as in [19]: [n,m, k] =
[100, 100, 90], [300, 300, 200] and [500, 500, 450]. For the largest test set we chose
[n,m, k] = [1000, 1000, 400].
1 Notation: Nn(0, 1), refers to n i.i.d. draws from a standard normal distribution; Un(a, b), n draws from a
uniform distribution in the (a, b) interval, and DU ({a1, . . . , am }), a uniform draw from the set {a1, . . . , am }.
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During our experiments we noticed some patterns which seemed tomake a problem harder
or easier. For example, if coupling constraints were present (i.e. B 	= 0), the method required
more iterations on average to be solved, for a fixed dimension. Therefore, as part of our
examination, we consider both the cases with and without coupling constraints (by either
setting B ∼ Uk×m(0, 1) or B = 0 in the Instance Generator).

As explained in Sect. 4.2, we obtain a candidate optimal solution by solving problem (11)
first and then attempt to provide a certificate of optimality by solving the “outer problem”. In
this setting, we can immediately terminate if the objective value is lower than the relaxation
of the outer problem (that is, (1) with the constraint (12)). Therefore, we chose the big-M
parameter in a way such that this outer relaxation still provides a strict lower bound to the
optimal solution of (11). Every instance where the solution of (11) was not optimal for (1) is
marked by a “*”.

The algorithms were coded in MATLAB R2016a, with calls to CPLEX 12.6 to solve all
MILP and LP problems. Experiments were run on a Linux Cluster with five 20-core 2.4GHz
Intel Xeon processors and 4 x 256GB RAM. For a fair comparison, all experiments were run
with a single thread.

We compare the number of main iterations (number of times some node [Iw, I y] is
selected) and total CPU time required by the different variants of the logical Benders method.
It is important to point out that CPU time must not be taken too seriously, since it is not clear
if hot-starts, in the MATLAB/CPLEX interface, works as efficiently as it could. Regardless
of it, we set a time limit of 3600 s not considering the time it takes to solve problem (11).
Furthermore, we are not reporting the CPU time it takes to solve the big-M formulation
(11) described in Sect. 4.2, since that time is the same for every method. Additionally,
since no sparsification is executed if the obtained node is “fathomable”, the total number of
sparsification calls is also provided. We do not report the number of sparsification calls for
variant (1) since it is called in every iteration. We consider the number of main iterations
as a reflection of the quality of both the node selected and the cut generated, so it is our
main metric to observe. Still, generating strong cuts and finding strong new pieces to explore
comes at the expense of CPU time. We complement some tables with charts to give a visual
representation of the trade-offs between runtime and number of iterations. We analyze the
experiments from smallest to largest. Unless otherwise noted, the instances include coupling
constraints.

The first two instances (sizes nc = 100 and nc = 300), had a big-M parameter set to 100.
We can extract two main observations: (1) there is a significant decrease on the number of
main iterations when switching from the SAT solver piece selection to the Tree guided node
selection. This is illustrated by the gray and yellow lines from the graphs on Fig. 4, where
the latter lies strictly below the former in all but 1 instance for nc = 100. (2) �1 and hybrid
sparsifications dominate Splitting in all instances.

At a first glance, switching the piece selection method should not make any difference, but
it actually does. The main advantage the tree-guided method has over SAT is that it checks
whether the recently found open node can be fathomed immediately. In that case, no piece is
selected and a cut is immediately generated, removing every single leaf under this node from
subsequent piece selections. In the SAT selection case, a piece must be chosen every time,
and the sparsification method (any sparsification method whatsoever) might fail to identify
the same cut, and could therefore not remove all leaves as in the tree-guided case. This way,
the overall algorithm will require more iterations to explore the full set of complementarity
pieces. We can observe that the number of sparsification calls as compared to number of
main iterations is below 50% on all Tree-guided variants.
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Fig. 4 Main iterations and CPU times: nc = 100

Table 1 Metrics for nc = 100, M = 100

Instance Main iterations (sparsification calls) CPU times (s)

Base Spl �1 Hyb Base Spl �1 Hyb

2 27 10(6) 8(4) 8(4) 2.3 2.02 0.61 0.62

3* 40 6(2) 6(2) 5(2) 1.17 0.52 0.43 0.47

4* 33 2(1) 2(1) 2(1) 2.54 0.28 0.33 0.28

5* 25 16(7) 8(5) 8(5) 1.07 0.17 0.17 0.13

6 28 6(2) 6(2) 5(2) 1.53 0.74 0.55 0.55

1 37 4(1) 4(1) 4(1) 1.54 0.38 0.34 0.29

7 22 7(2) 7(2) 7(2) 2.33 0.33 0.23 0.28

8 46 22(4) 11(3) 11(3) 0.94 0.4 0.37 0.36

9* 44 6(4) 6(4) 6(4) 4.19 0.98 0.51 0.57

10* 34 42(6) 12(4) 12(4) 2.59 0.33 0.39 0.39

Geom. 32.7 8.42(2.82) 6.32(2.45) 6.1(2.45) 1.83 0.48 0.37 0.36

Mean

One of the characteristics of the instanceswhere Splittingwas ineffective is that the starting
incumbent was not the global optimum (Instances 8 and 10 for nc = 100 and instances 4 and
6 for nc = 300). An intuitive reason is that Hybrid and �1 are more capable of dealing with
non-optimal incumbents, since it treats each complementarity component individually. Even
more, if we see �1 as an effective surrogate for the �0-norm formulation, both Hybrid and
�1 provide the sparsest possible cut, for the corresponding incumbent. Splitting, on the other
hand, since it takes a more aggressive stance by rejecting a split if the value of the relaxation
lies below the incumbent (so the higher the incumbent, the more likely the rejection is), it
could therefore fail to find a cut with a sparsity level that lies between the current and the
one obtained by accepting the split. We also see that Hybrid does not seem to provide any
extra benefit compared to �1 in terms of iterations as they differ by at most one. This could
mean that �1 already found a sparsest cut and, hence, calling the path-based procedure was
unnecessary. We verified the generated cuts on each iteration and saw that the difference on
sparsity level between Hybrid and �1 was no larger than 2. With respect to CPU times, on the
instances where all methods perform on par (in terms of iterations), Splitting is always the
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Table 2 Metrics for nc = 300, M = 100

Instance Main iterations (sparsification calls) CPU times (s)

Base Spl �1 Hyb Base Spl �1 Hyb

1 71 11(5) 8(4) 8(4) 27.18 1.36 1.56 1.76

2* 75 33(9) 15(5) 14(5) 38.74 3.56 2.66 3.05

3 87 11(7) 10(7) 9(6) 40.82 1.87 2.63 2.75

4* 108 86(9) 32(10) 32(10) 67.6 12.78 4.92 5.7

5 126 5(3) 5(3) 5(3) 62.19 0.81 1.12 1.13

6* 89 106(19) 31(11) 31(11) 53.65 13.32 4.92 5.94

7 106 5(3) 5(3) 5(3) 34.65 0.8 1.04 1.11

8 136 6(3) 6(3) 6(3) 87.94 0.88 1.13 1.23

9 94 12(5) 11(4) 11(4) 46.04 1.32 1.8 1.87

10* 85 13(6) 9(5) 9(5) 44.17 1.76 1.88 2.16

Geom. 95.73 15.6(5.81) 10.59(4.92) 10.4(4.85) 47.63 2.14 2.03 2.23

Mean

Table 3 Metrics for nc = 500, M = 1000

Instance Main iterations (sparsification calls) CPU times (s)

Base Spl �1 Hyb Base Spl �1 Hyb

1 161 2(2) 2(2) 2(2) 275.21 1.63 3 2.87

2* 96 107(7) 31(12) 31(12) 217.04 31.61 21.2 25.91

3* 155 17(8) 14(7) 14(7) 326.9 8.04 12.63 14.67

4 126 4(3) 4(3) 4(3) 296.14 3.11 4.85 5.9

5 138 9(3) 9(3) 9(3) 270.18 2.81 5.18 5.99

6* 132 87(7) 17(7) 17(7) 270.32 20.07 11.22 13.28

7 126 3(3) 3(3) 3(3) 257.07 2.4 4.73 5.12

8* 130 101(19) 26(14) 26(14) 275.12 30.75 23.22 27.74

9 186 4(2) 4(2) 4(2) 303.26 1.87 3.12 3.03

10 164 10(4) 8(4) 8(4) 313.12 4 6.84 7.71

Geom. 139.28 13(4.47) 8.17(4.52) 8.17(4.52) 278.79 5.76 7.46 8.38

Mean

fastest among all three. This is expected, since in the “worst” case it only requires O(log(nc))
LP solves, per iteration (Tables 1 and 2). 2

Moving to size nc = 500, with a big-M value set to 1000, we compare the methods on
instanceswith andwithout coupling constraints, displayed onTables 3 and 4, respectively.We
can observe an interesting phenomenon: All Tree-guided variants decrease both in iterations
and CPU times, where as the Base method seems to do the exact opposite. We also see the
same pattern as before, on the instances where the MILP did not find the optimal solution
Splitting showed to be quite ineffective.

2 We write “worst” within quotes because if this case happens, the cut would have sparsity at most 2, i.e.,
very sparse.
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Table 4 Metrics for nc = 500, M = 1000

Instance Main iterations (sparsification calls) CPU times (s)

Base Spl �1 Hyb Base Spl �1 Hyb

1 202 3(2) 3(2) 3(2) 444.87 2.37 3.55 4.16

2 184 4(4) 4(4) 4(4) 467.73 3.79 6.86 7.55

3 211 7(4) 7(4) 7(4) 600.85 3.95 6.75 7.19

4 210 3(3) 3(3) 3(3) 458.73 2.95 5.25 5.3

5 190 20(4) 20(4) 20(4) 481.77 5.22 8.01 9.14

6 139 20(6) 19(5) 19(5) 334.23 6.66 9.96 10.95

7 124 7(4) 5(3) 6(4) 324.33 4.74 5.76 8.04

8* 180 20(6) 10(5) 9(5) 452.65 7.67 9.77 10.56

9 205 2(2) 2(2) 2(2) 434.34 1.53 2.62 2.87

10 125 5(3) 5(3) 5(3) 262.49 3.01 4.86 5.06

Geom. 173.61 6.53(3.57) 5.86(3.34) 5.91(3.44) 415.83 3.79 5.88 6.56

Mean

No coupling constraints

Table 5 Metrics for nc = 1000, M = 1000

Instance Main iterations (Sparsification calls) CPU times (s)

Spl �1 Hyb Spl �1 Hyb

1 5(3) 5(3) 5(3) 24.29 51.06 58.9

2 5(3) 5(3) 5(3) 30.88 52.3 63.28

3 5(3) 5(3) 5(3) 24.15 51.95 49.52

4 7(3) 7(3) 7(3) 33.48 61.97 60.21

5 5(2) 5(2) 5(2) 23.4 40.41 50.07

6 6(4) 6(4) 6(4) 35.73 70.38 68.46

7 3(1) 3(1) 3(1) 10.59 21.48 25.14

8 5(2) 6(2) 5(2) 24.58 36.16 39.97

9 16(6) 8(3) 8(3) 48.87 61.44 65.05

10 7(3) 7(3) 7(3) 28.21 53.2 61.99

Geom. 5.69(2.71) 5.38(2.51) 5.27(2.51) 26.5 47.22 51.37

Mean

No coupling constraints

In the last set of instances, with nc = 1000, theMILPmanaged to find the optimal solution
on all tested instances. We can see that in all, except instance 9, the number of iterations was
pretty stable among the three tree-guided variants. This situation benefits the splittingmethod
since it dominates all instances in terms of CPU time. Similar to most of the instances from
nc = 100 going up, Hybrid does not seem to provide any benefit over �1, and both still have
the least number of iterations. The Base method failed to certify optimality within the 3600 s
limit on all instances. Its reporting was therefore withdrawn from the table (Table 5).
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7 Conclusions and future research

We introduced a new interpretation to the logical Benders approach for solving LPCCs from
the perspective of branch-and-bound methods and exploited this relationship to provide a
new way to select pieces and generate cuts. Numerical results showed that this method is
more robust in the sense of keeping a consistent number of iterations along instances of the
same size, even when the optimal solution is not provided, but at the expense of more time
spent in the sparsification process. We also showed that the tree-guided approach for the
piece selection outperforms the black-box SAT solver, which indicates that piece selection
is indeed an important driver for the performance of the logical Benders procedure.

Future researchmay consider the extension of this branch-and-bound framework toBinary
Constrained Quadratic Programs with Linear Complementarity Constraints (BCQPCCs).
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