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A horizontal temperature gradient can cause a flow in a layer of liquid with a free surface via several
different mechanisms. The most universal one is due to thermocapillary stresses that arise due to the
temperature dependence of surface tension. For binary liquids, the flow can also be driven by solutocap-
illary stresses that arise due to the dependence of surface tension on the composition of the liquid. For
some binary liquids, such as water-alcohol mixtures, solutocapillary stresses are primarily due to phase
change (e.g., differential evaporation or condensation of the two components), and these two mecha-
nisms can counteract each other. A recent experimental study (Li and Yoda, 2016) has demonstrated that
the flow direction can be reversed by changing the amount of air present inside the experimental
apparatus. To understand how the presence of air affects the interfacial stresses, we have developed
and implemented numerically a comprehensive two-sided transport model, which accounts for transport
of heat, mass, and momentum in both phases and phase change across the interface and is able to repro-
duce the experimental results. The detailed analysis of these results shows that air tends to suppress
phase change and hence solutocapillary stresses. Removing the air enhances phase change, instead
suppressing the variation in the interfacial temperature and hence thermocapillary stresses.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Various types of convective flows can arise in layers of binary
liquid during evaporation [1–5] or condensation [6–10] driven by
the gradient in either vapor concentration or temperature normal
to the free surface. Perhaps the most famous example is ‘‘wine
tears” that form when a mixture of water and ethanol is allowed
to evaporate. This mixture is an example of a positive binary fluid
[11], where the more volatile component (ethanol) has lower sur-
face tension compared with the less volatile component (water).
Preferential evaporation of ethanol from a thin layer near a side
wall reduces surface tension of the mixture there and generates
solutocapillary forces that drive the liquid towards, and in some
instances up, the wall, which is a key physical mechanism behind
the formation of wine tears [12,13]. More recently it has been dis-
covered that thermocapillary stresses generated via evaporative
cooling of the liquid surface also play a role in this phenomenon
[14]. In this specific case, evaporation causes the temperature near
the edge of the film to decrease, further increasing surface tension,
so thermocapillary stresses enhance solutocapillary ones.

Under certain conditions, however, thermocapillary and
solutocapillary stresses can oppose each other. This property can
be usefully exploited when thermocapillarity has an adverse effect,
e.g., in thermal management devices, such as heat pipes, which
rely on evaporative cooling. Heat pipes are effectively sealed cavi-
ties partially filled with a volatile liquid, and it is the temperature
gradient tangential to the free surface that drives the system out of
equilibrium and generates the flow. For pure fluids, thermocapil-
lary stresses drive the flow away from the hot end of the heat pipe,
which can cause dry-out leading to a complete loss of evaporative
cooling and a dramatic increase in the temperature of the hot end.
The adverse effect of thermocapillarity can be ameliorated by using
a positive binary coolant [15], where the differential evaporation of
the two components causes solutocapillary stresses towards,
rather than away from, the hot end. Indeed, experimental studies
have shown that the direction of the flow can be reversed by using
a mixture of water with ethanol [16] or methanol [17]. Beneficial
effects of using a binary mixture on the performance of a heat pipe
in microgravity have also been demonstrated [18].
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There is a vast literature on convection in binary fluids driven
by a vertical [19–22] temperature gradient, but almost all of it is
devoted to nonvolatile liquids, where solutocapillary stresses arise
due to the Soret effect [23] rather than differential phase change.
We should also mention studies of the role of solutocapillary stres-
ses in nucleate boiling [24], droplet evaporation [25], and thin film
evaporation [26]. However, other than an earlier work [27], there
are no theoretical (either numerical or analytical) studies of con-
vection in volatile binary mixtures subjected to a horizontal tem-
perature gradient; the single relevant numerical study [28] did
not consider the effects of phase change. Consequently, there is a
lack of understanding of the effects of transport (of heat or mass)
in the gas phase or the effects of noncondensable gases such as
air. The present study addresses this gap in our understanding by
introducing a comprehensive two-sided model that provides a
quantitative description of transport of heat, mass, and momentum
in both the liquid and the gas phase as well as across the liquid-gas
interface.

The model is described in detail in Section 2. The results of the
numerical investigations of this model are presented, analyzed,
and compared with experimental observations reported by Li and
Yoda [17] in Section 3. Our summary and conclusions are
presented in Section 4.

2. Mathematical model

2.1. Governing equations

When the liquid is a binary mixture of two volatile components
(in this study we will focus on the special case of water-methanol
mixtures), the gas phase above the liquid layer is generally a multi-
component mixture of the vapors of the two components of the
liquid and various noncondensable gases (e.g., air) that tend to
be dissolved in the liquid. Under typical experimental conditions,
one tends to find a ternary mixture containing air whose concen-
tration depends on whether the liquid has been degassed and
whether the cavity (cf. Fig. 1) has been evacuated before being
filled with the binary liquid. The transport model describing a layer
of binary liquid in local thermodynamic equilibrium with the
ternary gas mixture can be constructed as a generalization of the
two-sided transport models [29–32] describing single-component
liquids. Both phases (liquid and gas) will be considered
incompressible

r � u ¼ 0 ð1Þ
with momentum transport in the bulk described by the Navier-
Stokes equation in the Boussinesq approximation

q @tuþ u � ruð Þ ¼ �rpþ lr2uþ qg; ð2Þ
where u is the velocity, p is the pressure, q and l are the density
and dynamic viscosity of the fluid, respectively, and g is the gravi-
Fig. 1. A sealed test cell containing the liquid and air/vapor mixture. Gravity is
pointing in the negative z direction.
tational acceleration. Heat transport in the bulk is described by
the advection-diffusion equation

@tT þ u � rT ¼ ar2T; ð3Þ
where T is the temperature and a ¼ k=qCp is the thermal diffusivity
of the fluid.

The density of the liquid mixture is

ql ¼ ql;m þ ql;w; ð4Þ
where ql;b is the density of component b in the mixture. Here and
below the subscript denotes the phase (l for the liquid, g for the
gas), and/or the component in the mixture (m for methanol, w for
water, a for air). We will use the subscript i to denote the values
at the liquid-gas interface. A linear dependence of the density of
each component on the temperature is assumed,

ql;b ¼ q0
l;b½1� bl;b T � T0ð Þ�; ð5Þ

where bl;b ¼ �q�1
l;b @ql;b=@T at T ¼ T0 is the coefficient of thermal

expansion, q0
l;b is the density of component b in the mixture at the

reference temperature T0, which is given by

q0
l;b ¼ nlYbm1

b ; ð6Þ
where nl is the total number density in the liquid, m1

b is the mass of
one molecule, and Yb ¼ nl;b=nl is the concentration (molar fraction)
of component b in the liquid phase.

The density and pressure of the gas mixture are

qg ¼ qg;m þ qg;w þ qg;a;

pg ¼ pg;m þ pg;w þ pg;a; ð7Þ

where all components are assumed to be ideal,

qg;b ¼
Xbpg

RbT
¼ ngXbm1

b ;

pg;b ¼ Xbpg ¼ ngXbkBT; ð8Þ

Xb ¼ ng;b=ng is the concentration, Rb ¼ R=Mb is the specific gas
constant, Mb ¼ m1

bNA is the molar mass of component b, and
R ¼ kBNa is the universal gas constant. According to the Boussinesq
approximation, the spatial average of ql and qg is used on the left-
hand-side (but not the right-hand-side) of the Navier-Stokes Eq. (2)
for the liquid and the gas phase.

To avoid the assumption of dilute mixtures used in formulating
the transport models for simple fluids [29,32], we will describe
mass transport in both phases using molar fractions rather than
mass densities. The local mass/number conservation for compo-
nent b (in either the liquid or the gas phase) can be described in
terms of the corresponding number density nb

@tnb þ u � rnb ¼ �r � jb; ð9Þ

where jb is the diffusive number flux of component bwith respect to
the bulk mixture that moves with velocity u. The liquid phase is a
binary mixture, so we can use Fick’s law

jb ¼ �nlDlrYb; ð10Þ
where Dl is the conventional binary mass diffusivity of the two
components. With the assumptions of incompressible flow and con-
stant total number density nl, the local mass/number conservation
Eq. (9) can be rewritten as an advection-diffusion equation for,
say, the water concentration in the liquid

@tYw þ u � rYw ¼ r � ðDlrYwÞ ð11Þ
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with the methanol concentration recovered from

Ym ¼ 1� Yw: ð12Þ
The gas phase is a ternary mixture of methanol, water, and air. For a
multi-component mixture with N components, the relation
between the diffusion fluxes and the concentration gradients is
given by the Maxwell-Stefan relation [33]

rXb ¼
XN
k¼1

Xbjk � Xkjb
ngDbk

; ð13Þ

where Dbk ¼ Dkb is the conventional binary mass diffusivity
between components b and k. The system (13) can be solved, yield-
ing the fluxes of the first N0 ¼ N � 1 components

j1
..
.

jN0

2
664

3
775 ¼ D

rX1

..

.

rXN0

2
664

3
775; ð14Þ

such that the flux of the Nth component is

jN ¼ �
XN0

k¼1

jk: ð15Þ

It should be noted that, unlike the binary mass diffusivities Dbk, the
elements of the matrix D depends on the concentrations, and in
general Dbk – Dkb.

For a ternary gas mixture considered in this study, we find

jm ¼ �ngDmmrXm � ngDmwrXw;

jw ¼ �ngDwmrXm � ngDwwrXw;

ja ¼ �jw � jm; ð16Þ

where

Dmm ¼ D�1
g ½XmDmaðDwa � DmwÞ þ DmwDma�;

Dmw ¼ XmD
�1
g DwaðDma � DmwÞ;

Dwm ¼ XwD
�1
g DmaðDwa � DmwÞ;

Dww ¼ D�1
g ½XwDwaðDma � DmwÞ þ DmwDwa�; ð17Þ

and Dg ¼ XmDwa þ XwDma þ XaDmw.
Note that the diffusive fluxes in a multi-component mixture

generally depend on the concentration gradients of all compo-
nents, so the transport Eqs. (9) are coupled. Furthermore, the
dependence of the diffusion coefficients Dbk on the concentrations
Xb makes these equations nonlinear. In principle, this system of
equations can be solved numerically, but these two aspects make
numerical solutions rather cumbersome. Different approaches
have therefore been proposed [34] to decouple these differential
equations. For example, after linearization about the mean concen-
trations, the mass diffusivity matrix D can be diagonalized, yield-
ing a set of uncoupled differential equations for ‘‘pseudo-
concentrations” [35–37]. The disadvantage of this approach is that
the concentrations can differ substantially from the mean, with the
present problem providing a good example.

A widely used alternative approach is based on the concept of
effective mass diffusivity [38–42]. In particular, assuming that
the off-diagonal terms in (14) are negligible, we find

jb ¼ �ngDbrXb; ð18Þ
where the effective mass diffusivity Db is assumed to depend only
on the composition Xb and the binary mass diffusivities Dbk. For
the water-methanol-air mixture we are interested in, the conven-
tional binary mass diffusivities Dbk between all pairs of components
are of similar magnitude, and the differences between them are rel-
atively small. Hence the off-diagonal elements of matrix D can
indeed be neglected, such that Db � Dbb, and (16) reduces to

jm ¼ �ngDmmrXm;

jw ¼ �ngDwwrXw;

ja ¼ �j1 � j2: ð19Þ

With the assumptions of incompressible flow and constant total
number density ng , the relation (19) allows the system (9) to be
decoupled and simplified, yielding

@tXb þ u � rXb ¼ r � ðDbbrXbÞ ð20Þ
for b ¼ m and w and the concentration of air given by

Xa ¼ 1� Xm � Xw: ð21Þ
Together, (20) and (21) describe mass transport in the ternary gas
phase with arbitrary composition. Note that the number fluxes
due to thermodiffusion (the Soret effect) in both phases were found
to be negligible compared with those due to molecular diffusion,
and hence were neglected in (10) and (19).

Finally, inside a sealed cavity, global mass conservation should
be satisfied for each componentZ

liquid
YmnldV þ

Z
gas

XmngdV ¼ mm

m1
m
;

Z
liquid

YwnldV þ
Z
gas

XwngdV ¼ mw

m1
w
;

Z
gas

ð1� Xm � XwÞngdV ¼ ma

m1
a
; ð22Þ

where mb is the initial total mass of component b and

nl ¼
q0

l;m

m1
m
þ q0

l;w

m1
w
;

ng ¼
pg

kBT
: ð23Þ

An external temperature gradient will cause evaporation near the
hot end and condensation near the cold end, which will not neces-
sarily balance, so the volumes of the liquid and gas phase can
change. In a numerical implementation of the model, the change
in the liquid volume associated with the motion of the interface
would not satisfy the mass flux balance at the interface exactly,
and tiny numerical errors will eventually accumulate. A small inac-
curacy in evaluating the volume of the liquid phase can result in a
large relative error for the mass of vapor due to the large ratio of
the densities. Hence, a (spatially uniform) pressure offset po, metha-
nol concentration correction DXm, and water concentration correc-
tion DXw are computed at each time step to enforce the three
conservation laws (22) evaluated with

pg ¼ pþ po;

Xm ¼ X 0
m þ DXm;

Xw ¼ X 0
w þ DXw; ð24Þ

where p is the dynamic pressure in the gas phase obtained by solving
Eqs. (1) and (2), and X0

m and X0
w are the concentrations of methanol

and water, respectively, obtained by solving the transport Eq. (20).

2.2. Boundary conditions

The system of coupled evolution Eqs. 1,2,3 and (11) for the
liquid phase (or (20) for the gas phase) has to be solved in a
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self-consistent manner, subject to the boundary conditions
describing the balance of momentum, heat, and number fluxes at
the liquid-gas interface and at the inner surface of the walls of
the cavity. In particular, local phase equilibrium is described using
Raoult’s law

pg;b ¼ cbps;bYb; ð25Þ
where cb is the activity coefficient of component b, which accounts
for deviations from an ideal liquid mixture, and ps;b is the saturation
vapor pressure of pure component b, which can be related to the
interfacial temperature Ti through the Antoine equation

ln ps;b ¼ Ab � Bb

Cb þ Ti
; ð26Þ

where Ab;Bb, and Cb are empirical coefficients (see Appendix A).
Phase change occurs locally where the thermodynamic free

energy is different between the phases. The driving forces for mix-
tures include the temperature difference, pressure difference, and
concentration difference across the interface [43]. We find that
the effect due to the latter two are negligible in this study. There-
fore, phase change for each component of the volatile fluid can be
described using the kinetic theory expression [44], which only
includes the temperature difference

jb;i ¼
2vb

2� vb
ngXb

ffiffiffiffiffiffiffiffiffi
RbTi

2p

r
Lb

RbTi

Ti � Ts;b

Ts;b
; ð27Þ

where jb;i is the number flux of component b across the interface, vb

is the accommodation coefficient, Lb is the latent heat of phase
change, and Ts;b is the saturation temperature of component b at a
given partial pressure pg;b ¼ pgXb, which can again be computed
using (25) and (26).

On the gas side of the interface, with the help of (19) and taking
into account the fact that air is noncondensable, we can write the
mass/number flux balance as

jm;i ¼ ngXm n̂ � ðug � uiÞ � ngDmm @nXm;

jw;i ¼ ngXw n̂ � ðug � uiÞ � ngDww @nXw;

ja;i ¼ 0: ð28Þ

Here and beyond n̂ denotes the unit vector normal to the interface.
On the liquid side

jm;i ¼ nlYm n̂ � ðul � uiÞ � nlDl @nYm;

jw;i ¼ nlYw n̂ � ðul � uiÞ � nlDl @nYw: ð29Þ

The heat flux balance gives

Lmm1
mjm;i þ Lwm1

wjw;i ¼ kg@nTg � kl@nTl; ð30Þ
where @n ¼ n̂ � r, and the temperature is assumed continuous

Tl ¼ Tg ¼ Ti: ð31Þ
The tangential components of the velocity across the interface are
also continuous

ðI� n̂n̂Þ � ðul � ugÞ ¼ 0; ð32Þ
while the normal components are related by the kinematic
condition

nln̂ � ðul � uiÞ ¼ ngn̂ � ðug � uiÞ ¼ jm;i þ jw;i: ð33Þ
The stress balance incorporates the viscous drag between the

two phases, thermocapillary and solutocapillary stresses, and
vapor recoil [45]
ðRl � RgÞ � n̂ ¼ n̂jrþrsrþ
X
b

j2b;iðq�1
l;b � q�1

g;bÞn̂; ð34Þ

where

R ¼ l ruþ ðruÞT
h i

� pI ð35Þ

is the stress tensor, r is the surface tension, j ¼ r � n̂ is the interfa-
cial curvature, and rs ¼ I� n̂n̂ð Þ � r is the surface gradient. Vapor
recoil (the last term on the right-hand side of (34)) is negligible
under conditions of interest and can be neglected.

The surface tension of the methanol-water liquid mixture is not
a simple linear combination of the surface tensions of the two pure
substances. Instead, it is predicted using an empirical expression
[46] based on the fits to experimental data

r ¼ f ðYmÞrm þ ½1� f ðYmÞ�rw; ð36Þ
where

f ðYmÞ ¼ Ym
1þ c1ð1� YmÞ
1� c2ð1� YmÞ ; ð37Þ

with empirical parameters c1 and c2 (see Appendix A). The surface
tension of each component is assumed linear with respect to the
temperature

rb ¼ r0
b þ r0

bðT � T0Þ; ð38Þ
where r0

b is the surface tension of the pure substance at the refer-
ence temperature T0 and r0

b ¼ @rb=@T is the temperature coefficient
of surface tension. With the help of (36)–(38) the term rsr on the
right-hand-side of (34) can be rewritten as

rsr ¼ f 0ðYmÞðrm � rwÞrsYm

þ f ðYmÞr0
m þ ½1� f ðYmÞ�r0

w

� �rsTi; ð39Þ
where the first and the second term represent the soluto- and ther-
mocapillary stresses, respectively.

Following Li and Yoda [17] we will assume that the fluid is con-
tained in a rectangular cavity with inner dimensions L�W � H (cf.
Fig. 1) and thin walls of thickness hs and conductivity ks. The left
end wall is cooled with a constant temperature Tc imposed on
the outside, while the right end wall is heated with a constant tem-
perature Th ¼ Tc þ DT imposed on the outside. Since the walls are
thin, one-dimensional conduction inside these is assumed, yielding
the following mixed boundary conditions on the inside of the end
walls:

Tjx¼0 ¼ Tc þ ki
hs

ks
@nT; ð40Þ

Tjx¼L ¼ Th þ ki
hs

ks
@nT;

where i ¼ g (i ¼ l) above (below) the contact line.
Since in most experiments side walls are nearly adiabatic, heat

flux through the top, bottom, front, and back walls is ignored

@nT ¼ 0: ð41Þ
Standard no-slip boundary conditions u ¼ 0 for the velocity and no-
flux boundary conditions for the concentrations

@nXb ¼ 0; ð42Þ
@nYb ¼ 0

are imposed on all the walls. The pressure boundary condition fol-
lows from (2) with inertial and viscous stresses neglected:

@np ¼ q n̂ � g; ð43Þ
where the density q is a function of the local concentration and
temperature.



Table 1
Types of boundary conditions imposed on various internal boundaries in the numerical implementation of the model. Periodic boundary conditions on the side walls are used in
2D, while in 3D the boundary conditions at the side walls are the same as those at the top and bottom of the cavity.

Field Types of boundary conditions

Interface, Interface, Hot/cold Top/bottom
gas side liquid side wall wall

u Dirichlet Neumann Dirichlet Dirichlet
p Neumann Dirichlet Neumann Neumann
T Dirichlet Neumann mixed Neumann
Xm Neumann – Neumann Neumann
Xw Neumann – Neumann Neumann
Ym – Neumann Neumann Neumann

Fig. 2. The flow regimes observed at DT ¼ 6 K for different Ym and Xa . Dashed lines
show transition boundaries between different flow regimes observed in the
experiments of Li and Yoda [17] and symbols correspond to the numerical results.
The three distinct flow regimes observed in the numerical simulations are:
thermocapillarity dominated flow, TDF (�), unsteady flow, UF (N), and solutocap-
illarity dominated flow, SDF (j). A fourth flow regime, reversed flow (RF), was only
observed in the experiments.
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2.3. Implementation

The two-sided transport model described above has been
implemented numerically within the open-source CFD package
OpenFOAM [47], where the surface-tracking method [48] is used
for describing the moving interface and the moving mesh. The
details can be found in Refs. [49,50]. At the liquid-gas interface,
the number fluxes due to phase change jb;i, the interfacial temper-
ature Ti, the saturation temperatures Ts;b, the normal component of
the gas velocity ug and liquid velocity ul, the vapor pressures pb

and ps;b, and the normal components of the gradients of the con-
centration fields @nXb and @nYw satisfy a set of boundary condi-
tions, most of which are nonlinear. These interfacial fields were
therefore computed simultaneously using the Newton method.
The types of boundary conditions imposed at different boundaries
are summarized in Table 1.

3. Results and discussion

The model described in the previous section was used to inves-
tigate the two-phase flow of a binary mixture of methanol and
water under the conditions matching the experimental study of
Li and Yoda [17], which used a layer of liquid of average thickness
dl ¼ 2:5 mm confined in the test cell with the inner dimensions
L� H �W ¼ 48:5 mm �10 mm �10 mm (material parameters
are provided in the Appendix A). For a liquid layer of this thickness,
gravitational effects are substantial in terrestrial conditions. First of
all, the thickness dl is comparable to the capillary length for water,
so the liquid spreads along the bottom of the cavity in a layer of
reasonably uniform thickness. Since both methanol and water
are volatile, the gas layer at the top of the cavity contains a mixture
of methanol vapor, water vapor, and air. Furthermore, the dynamic
Bond number

BoD ¼ blqlgd
2
l

r0 ð44Þ

ranges from 0.08 for pure water (Ym ¼ 0) to 0.41 for pure methanol
(Ym ¼ 1), so that buoyancy effects could be comparable to the ther-
mocapillary stresses [51].

While the model and its numerical implementation can
describe the flows in both 2D and 3D systems, the results pre-
sented here are obtained exclusively for 2D flows (ignoring varia-
tion in the y-direction), since 3D simulations require significant
computational resources and time. 2D simulations describe the
central vertical (x-z) plane of the experimental test cell. Further-
more, we fixed the contact angle at 90 degrees following a previous
study of this geometry [29] that showed the flow patterns in both
phases to be quite insensitive to the value of the contact angle.

All simulations were initialized with the fluid being stationary
and temperature being uniform, T ¼ T0 (where
T0 ¼ ðTc þ ThÞ=2 ¼ 293 K in all cases), the liquid layer having uni-
form thickness dl and composition Ym ¼ Ym. The partial pressure
pg;b of the vapors is initially set equal to the equilibrium value at

Ym and T0, calculated using (25) and (26), and the partial pressure
of air is chosen such that Xa ¼ Xa, i.e.,
pg;a ¼ ðpg;m þ pg;wÞXa=ð1� XaÞ. The temperature difference
DT ¼ Th � Tc ¼ 6 K between the outer surfaces of the hot and cold
end walls was set as in the experimental study, and the systemwas
allowed to evolve until it reached an asymptotic state, either
steady or time-dependent.
3.1. Dynamical regimes

The experimental study used particle image velocimetry to
investigate convective patterns in the liquid layer as a function of
the two concentrations, Xa and Ym. It was found that the flow pat-
tern is most sensitive to the changes in the composition of the gas
phase, which unambiguously points to the transport in the gas
phase playing a key role in this problem. The dependence on the
composition of the liquid phase is much weaker and was conjec-
tured to be associated with the variation in the concentration coef-
ficient of surface tension j@r=@Ymj, which controls the strength of
solutocapillary stresses (cf. Fig. 4 of Ref. [17]). The results are sum-
marized in Fig. 2, with the dashed line separating different flow
regimes from each other in the (Xa;Ym) parameter plane. Specifi-
cally, at high Xa one finds a steady thermocapillary dominated flow
(TDF), with the flow along the entire interface directed away from
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the hot end wall (opposite the applied temperature gradient). At
low Xa one finds a steady solutocapillary dominated flow (SDF),
with the flow along the entire interface directed towards the hot
end wall (in the direction of the applied temperature gradient).
At intermediate values of Xa, an unsteady flow (UF) is found with
a complicated convection pattern extending over the entire thick-
ness of the liquid layer and a substantial fraction of its horizontal
extent.

At low Ym (YmK0:2), the experiments identified the forth
regime, reversed flow (RF). It is similar to the SDF over most of
the liquid layer except very near the hot end, where the fluid at
the interface moves away from the hot wall (as in TDF), forming
a tiny counterclockwise recirculation zone separated from the rest
of the flow. It was conjectured that, at low Ym, strong evaporation
could completely remove methanol from the region inside the
recirculation zone, with the liquid effectively becoming a simple
fluid (pure water). This would lead to solutocapillary stresses effec-
tively disappearing and the fluid driven away from the hot wall by
a combination of thermocapillarity and buoyancy [32].

To validate our model, we performed numerical simulations
over a range of methanol concentrations Ym in the liquid and air
concentrations Xa in the gas, with the results summarized as sym-
bols in Fig. 2. A quick comparison shows that numerical results
agree well with experimental observations over most of the
parameter space: the same dynamical regimes are found, and the
transition boundaries are overall in good agreement, even though
the numerical simulations are 2D, while the flow in experiments
exhibits clear 3D effects. We have not found flows consistent with
RF, which could be due to the fact that the numerical simulations
are 2D or that the contact angle is notably different from experi-
ment. The big advantage of the numerical simulations is that they
provide substantially more detailed information about the flow,
compared with experiments. In particular, they not only resolve
the fluid flow in both phases, but also describe the temperature
and concentration fields in the bulk and at the interface and there-
fore allow a direct comparison of thermo- and solutocapillary stres-
ses that control the flow. We describe these numerical results next.

3.2. Flow field

Since the dependence of the flow on the methanol concentra-
tion in the liquid is weak, we fix Ym ¼ 0:6 and explore the changes
in the flow associated with the variation in the air concentration
Xa. The flow fields at five different values of Xa are shown in
Fig. 3 and the associated (time-averaged) interfacial velocity in
Fig. 4. We find that the flow regimes vary from TDF at Xa ¼ 0:91
and 0.7 to UF at Xa ¼ 0:5 and 0.1 to SDF at Xa ¼ 0:015, just as in
the experiment. The structure of the flow fields in the liquid layer
is also found to be similar to that found in the experiment. This
gradual transition from TDF to SDF associated with the decrease
in Xa can be easily understood qualitatively with the help of the
model described in Section 2.

At atmospheric conditions Xa ¼ 0:91, so the gas phase is domi-
nated by air, while at the lowest concentration we considered here
(Xa ¼ 0:015) the gas is dominated by the vapors. Similar studies of
volatile simple fluids (e.g., 0.65 cSt silicone oil in Ref. [32]) have
shown that the concentration of air (or other noncondensable
gases) has a significant effect on the phase change and, as a result,
the interfacial temperature distribution. Thermocapillary effects
were found to be the strongest at atmospheric conditions, with
phase change suppressed due to the diffusion of vapors through
air. As the concentration of air is reduced, phase change is
enhanced and the latent heat associated with phase change
reduces the variation of the interfacial temperature along the inter-
face. In the absence of noncondensables, the gas pressure, and
hence vapor pressure and saturation temperature, all become
effectively constant [30]. Since the interfacial temperature is very
close to the saturation temperature [30], the interfacial tempera-
ture gradient, and hence thermocapillary stresses, also disappear.

Whether the same conclusion should necessarily apply to bin-
ary fluids is not immediately obvious. Indeed, in the absence of
noncondensables, differential phase change of the two components
could lead to spatial variation of the concentrations Xw and Xm, and
hence the saturation temperature Ts;w and Ts;m, of the two vapors.
Although, in principle, this allows the interfacial temperature to
vary spatially, it is easy to show that Ti should in fact be constant
when the gas pressure pg is constant. Since pg;b ¼ Xbpg , according to
(26) we can write Ts;b ¼ gbðXbÞ, where gm and gw are some func-
tions. Furthermore, since the saturation temperature of each vapor
is very close to Ti, we should have Xb ¼ g�1

b ðTiÞ and, since Xa ¼ 0,

Xm þ Xw ¼ g�1
m ðTiÞ þ g�1

w ðTiÞ ¼ 1: ð45Þ

For generic functions gm and gw, this equation can only be satisfied
over the entire interface for a fixed constant Ti.

In contrast, solutocapillary stresses are expected to be the weak-
est at atmospheric conditions when phase change that drives the
variation in the liquid composition at the interface is strongly sup-
pressed. As the concentration of air is reduced, phase change
becomes stronger, with the more volatile component (methanol)
accounting for the bulk of the molecules that evaporate near the
hot end and condense near the cold end. This corresponds to a
decrease in Ym near the hot end and an increase in Ym near the cold
end, establishing a concentration gradient and associated soluto-
capillary stresses that drive the flow along the interface towards
the hot end of the cavity. These stresses should bemaximizedwhen
the air is removed completely and the phase change is unimpeded.

To sum up, at conditions close to atmospheric (high Xa), soluto-
capillarity can be neglected, thermocapillary stresses dominate,
and the binary fluid should behave just like a simple fluid. In par-
ticular, this explains why the stationary convection rolls observed
in the liquid layer at Xa ¼ 0:91 (cf. Fig. 3(a)) almost completely dis-
appear when Xa is decreased to 0.7 (cf. Fig. 3(b)). The linear stabil-
ity analysis [51] attributes this to a decrease in the modulation of
thermocapillary stresses about the (nearly constant) average asso-
ciated with enhanced mass transport in the gas phase.

As the concentration of air is decreased, convection pattern
reappears at around Xa ¼ 0:5, where a time-periodic pattern
emerges (cf. Fig. 3(c)). It features multiple counterclockwise con-
vection rolls in the liquid layer traveling towards the cold end of
the cavity. This traveling wave is different from hydrothermal
waves in simple fluids [52]: it travels in the opposite direction,
as in the case of simple flows driven by a combination of thermo-
capillarity and buoyancy [29]. However, unlike the case of simple
fluids, the instability that gives rise to this convection pattern can-
not rely solely on thermocapillarity and buoyancy [51], and thus
has to be due to the solutocapillary effect. Note that, away from
the end walls, the time-averaged interfacial velocity, and hence
thermocapillary stresses, at this Xa are nearly the same as those
at Xa ¼ 0:91 (cf. Fig. 4). This is consistent with the results obtained
for the interfacial temperature gradient in simple volatile fluids in
the presence noncondensables [32].

Flows towards the hot wall (even locally) do not appear in the
central region until Xa is reduced much further, when convection
pattern becomes aperiodic in space and time. In particular, at
Xa ¼ 0:1 (cf. Fig. 3(d)) we find both counterclockwise and clock-
wise convection rolls, with the corresponding portions of the inter-
face featuring flow towards the cold and hot wall, respectively. It is
only when almost no air remains in the system (e.g., Xa ¼ 0:015, cf.



Fig. 3. Fluid flow in both phases at DT ¼ 6 K, Ym ¼ 0:6 with (a) Xa ¼ 0:91, (b) Xa ¼ 0:7, (c) Xa ¼ 0:5, (d) Xa ¼ 0:1, (e) Xa ¼ 0:015. The cold end wall is on the left. Solid lines
represent the streamlines of the flow. Here and below, the background represents the value of the stream function w, where darker (lighter) indicates higher (lower) values of
w. High-resolution movies of the flow field are included as supplemental material; their duration corresponds to two periods for periodic flow at Xa ¼ 0:5, and two oscillation
cycles of the convection roll next to the cold end for aperiodic flow at Xa ¼ 0:1.
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Fig. 3(e)), that counterclockwise convection rolls disappear and
convection pattern becomes steady again, that the flow towards
the hot wall is established over the entire length of the interface.
In this limit, thermocapillarity becomes negligible, and the flow
is driven primarily by solutocapillary stresses (and, for sufficiently
thick layers, buoyancy).

To make the comparison of solutocapillary and thermocapillary
stresses more quantitative, in the next few sections we will con-
sider the concentration and temperature fields.

3.3. Concentration field and solutocapillary stresses

Solutocapillary stresses are determined by the local composi-
tion of the liquid phase, which is strongly influenced by the advec-
tive transport. As Fig. 5 shows, the concentration field Ym in the
liquid layer reflects even the most insignificant details of the
underlying flow. Unlike Ym, the concentration field Xm in the gas
layer is effectively independent of the flow pattern and remains
qualitatively the same for all Xa. This contrast is due to the large
difference in the mass Péclet numbers

Pem ¼ uid
D

; ð46Þ

where d is the thickness of the layer, ui is the characteristic magni-
tude of the interfacial velocity, and D is the relevant diffusion con-
stant (Dl for the liquid, Dmm for the gas). Specifically, Pem � Oð103Þ
for the liquid layer, such that mass transport is dominated by



Fig. 4. Interfacial velocity at DT ¼ 6 K, Ym ¼ 0:6 with different Xa. For unsteady flow
(Xa ¼ 0:5; 0:1), the value is averaged over a time period corresponding to the
oscillation cycle of the convection roll next to the cold end.

Fig. 5. Concentration of methanol in the liquid and in the gas at DT ¼ 6 K and Ym

Xa ¼ 0:5; Ym ¼ 0:6	 9:31� 10�4;Xm ¼ 0:43	 0:037, (c) Xa ¼ 0:1; Ym ¼ 0:6	 6:95� 10�3;

lines represent equispaced level sets of the concentration fields (15 in the liquid and
concentration. (For interpretation of the references to color in this figure legend, the rea
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advection, while Pem � Oð10�1Þ for the gas layer, such that it is dif-
fusion that becomes the dominant transport mechanism.

Since advection controls mass transport in the liquid layer, very
thin concentration boundary layers tend to form in the liquid layer
just below the interface, which has two important consequences.
First of all, this requires the use of meshes with high spatial reso-
lution to properly resolve the variation in Ym in the bulk and, con-
sequently, along the interface. Second, while the interfacial
composition, and hence solutocapillary stresses, depend sensi-
tively on the flow in the liquid layer, they are only weakly depen-
dent of the composition of the gas phase on the other side of the
interface. As a result, when thermocapillary stresses dominate
(XaJ0:5), driving the fluid along the entire interface towards the
cold end wall, advection makes the interfacial concentration Ym

essentially uniform (cf. Fig. 6), thereby effectively eliminating solu-
tocapillary stresses
¼ 0:6 for different Xa. (a) Xa ¼ 0:7;Ym ¼ 0:6	 2:88� 10�4;Xm ¼ 0:26	 0:023, (b)
Xm ¼ 0:78	 0:039, (d) Xa ¼ 0:015;Ym ¼ 0:6	 3:35� 10�3;Xm ¼ 0:86	 0:014. Solid
20 in the gas). In both phases, the lighter (darker) color indicates lower (higher)
der is referred to the web version of this article.)



Fig. 6. Concentration of methanol (in the liquid) along the interface at DT ¼ 6 K,
Ym ¼ 0:6 with different Xa . The vertical axis is truncated to highlight the variation
dYm;i ¼ Ym;i � hYm;iix about the mean value in the central region of the cavity. For
unsteady flows (Xa ¼ 0:5;0:1), the values are averaged over a time period
corresponding to the oscillation cycle of the convection roll next to the cold end.
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RS ¼ f 0ðYmÞðrm � rwÞ@xYm; ð47Þ
as illustrated by Fig. 7.
Note that the magnitude of the derivative f 0ðYmÞ in (47)

increases as Ym decreases, according to (37), leading to an increase
in the solutocapillary stresses at the same concentration gradient
@xYm. This is the origin of the weak dependence on Ym in the
regime diagram shown in Fig. 2.

For Ym ¼ 0:6, a significant concentration gradient @xYm only
appears when Xa is decreased to around 0.1, at which point the
adverse effect of air on phase change is reduced substantially
and the differential phase change becomes strong enough to com-
pete with the advective transport in the liquid. At this value of Xa,
the flow is unsteady and features convection rolls rotating in oppo-
site directions, which causes the interfacial concentration gradient
to be nonmonotonic and even change sign (cf. Fig. 6), which is
reflected in the spatial profile of the solutocapillary stresses (cf.
Fig. 7). Note that the concentration gradient is first established
near the end walls, where phase change is the most intense. A con-
centration gradient of the same sign is established across the entire
interface only at very low Xa (e.g., Xa ¼ 0:015), when, on the one
hand, phase change is essentially unimpeded by the presence of
air and, on the other hand, thermocapillary stresses become suffi-
ciently weak. In this limit, solutocapillary stresses exceed thermo-
capillary stresses, driving the fluid along the entire interface
Fig. 7. Solutocapillary stresses RS at DT ¼ 6 K, Ym ¼ 0:6 with different Xa. The
vertical axis is truncated to highlight the variation of RS in the central region of the
cavity. For unsteady flow (Xa ¼ 0:5; 0:1), the value is averaged over a time period
corresponding to the oscillation cycle of the convection roll next to the cold end.
towards the hot end wall, with advection in the liquid layer
smoothing out the interfacial concentration gradients (cf. Fig. 6).

While the concentration fields in the liquid layer are very com-
plicated, the concentration fields in the gas layer are quite simple
and very smooth, since mass transport there is controlled by diffu-
sion and is therefore essentially independent of the flow field. As
Fig. 5 shows, away from the end walls, the gradient of methanol
concentration Xm in the vertical direction is negligible compared
with the gradient in the horizontal direction, suggesting that mass
transport in gas phase is effectively one-dimensional. A similar
conclusion has been made for two-phase flow of a simple fluid
[32], which allowed a simplified transport model to explain the
observed concentration profiles and interfacial temperature pro-
files, which are both exponential in x. As Fig. 8 illustrates, the con-
centration profile in the ternary gas mixture in the present
problem is also exponential in the central portion of the cavity,
with the characteristic length scale that increases with Xa. At high
Xa, when phase change is suppressed, the characteristic length
becomes larger than the length L of the cavity, and the concentra-
tion profile becomes essentially linear.

3.4. Temperature field and thermocapillary stresses

Just like the concentration fields, the temperature fields in the
two layers (shown in Fig. 9) have a distinctly different character.
Once again, we find that the temperature field in the liquid layer
has a lot of fine structure reflecting the details of the underlying
flow, while the temperature field in the gas layer is effectively
independent of the flow and remains qualitatively the same over
the entire range of Xa, with the difference due almost entirely to
the boundary condition at the interface (cf. Fig. 10). Hence we
can arrive at a similar conclusion that heat transport in the gas
phase is controlled by diffusion, while heat transport in the liquid
phase is controlled by advection. Indeed, the thermal Péclet num-
ber(See Fig. 11)

Pet ¼ uid
a

; ð48Þ

is Oð1Þ for the gas layer and Oð102Þ for the liquid layer, reflecting the
large difference in the thermal diffusivities of the two layers.

In contrast with the concentration field, it is the interfacial tem-
perature Ti that controls the bulk temperature field in both layers,
as Fig. 9 illustrates. Indeed, as Fig. 10 shows, Ti is a very smooth
and monotonic function of position (aside from some minor mod-
ulation), even when an unsteady convection flow is found in the
liquid layer. This is due to a large amount of latent heat absorbed
Fig. 8. Concentration of methanol (vapor) along the interface at DT ¼ 6 K, Ym ¼ 0:6
with different Xa . Deviation dXm;i ¼ Xm;ijx � Xm;ijx¼0 from the mean is normalized by
the total variation DXm;i along the interface. For unsteady flow (Xa ¼ 0:5;0:1), the
value is averaged over a time period corresponding to the oscillation cycle of the
convection roll next to the cold end.



Fig. 9. The temperature field T in both phases at DT ¼ 6 K, Ym ¼ 0:6, and (a) Xa ¼ 0:91, (b) Xa ¼ 0:7, (c) Xa ¼ 0:5, (d) Xa ¼ 0:1, (e) Xa ¼ 0:015. The lighter (darker) color
corresponds to higher (lower) temperature. Solid lines represent the twenty equally spaced isotherms and the horizontal white solid line denotes the liquid-gas interface. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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or released at the interface during phase change, which results in
the interfacial temperature being determined by the composition
of the gas layer, Ti ¼ gmðXmÞ, where Xm varies smoothly and mono-
tonically in the horizontal direction, as discussed in the previous
section. Note that, in the central region, the interfacial temperature
has an exponential profile mirroring the methanol concentration in
the gas phase (cf. Fig. 8).

Since Xm and Ym vary relatively little about their spatial mean,
thermocapillary stresses RT

RT ¼ f ðYmÞr0
m þ ½1� f ðYmÞ�r0

w

� �
@xTi

� f ðYmÞr0
m þ ½1� f ðYmÞ�r0

w

� �
g0
mðXmÞ@xXm ð49Þ

are essentially controlled by the interfacial concentration gradient
@xXm in the gas phase. As this concentration gradient decreases with
decreasing Xa, so does the interfacial temperature gradient and the
thermocapillary stresses, until both essentially disappear at Xa ¼ 0.
To sum up, a quantitative analysis of the concentration and
temperature fields shows that solutocapillary and thermocapillary
stresses are controlled by the concentration fields in the liquid and
gas layer, respectively. Thermocapillary stresses dominate at high
Xa and solutocapillary stresses dominate at low Xa, as predicted
from qualitative considerations in Section 3.1. Since the flow at
intermediate values of Xa is unsteady, no sharp transition from
TDF to SDF is observed at DT ¼ 6 K. Unsteady flow should disap-
pear at lower DT , enabling a more direct comparison between
the experimental or numerical results and analytical predictions.
4. Summary and conclusions

We have introduced, implemented, and validated a comprehen-
sive transport model for two-phase flows of volatile binary fluids in
confined geometries. The model accounts for momentum, mass,



Fig. 11. Thermocapillary stresses RT at DT ¼ 6 K, Ym ¼ 0:6 with different Xa. The
vertical axis is truncated to highlight the variation of RT in the central region of the
cavity. For unsteady flow (Xa ¼ 0:5; 0:1), the values are averaged over a time period
corresponding to the oscillation cycle of the convection roll next to the cold end.

Fig. 10. Interfacial temperature Ti at DT ¼ 6 K, Ym ¼ 0:6 with different Xa . The
vertical axis is truncated to highlight the variation dTi ¼ Ti � hTiix about the mean
in the central region of the cavity. For unsteady flow (Xa ¼ 0:5; 0:1), the values are
averaged over a time period corresponding to the oscillation cycle of the convection
roll next to the cold end.
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and heat transport in both phases, as well as phase change at the
liquid-gas interface. It should be emphasized that, with straightfor-
ward modifications, the model can also describe transport in mix-
tures of an arbitrary number of miscible components with
arbitrary composition. The numerical model was used to investi-
gate buoyancy-Marangoni convection in water-methanol mixture
confined inside a sealed rectangular cavity, which arises when a
horizontal temperature gradient is imposed. Although the numer-
ical simulations were confined to two spatial dimensions, their
results are found to be in good agreement with experimental
observations [17].

The presence of air inside the cavity was found to have a signif-
icant effect on the flow in both phases. When the concentration Xa

of air in the gas phase is high, differential phase change is greatly
suppressed, solutocapillary stresses are negligible, and thermocap-
illarity stresses dominate. In this limit, the binary mixture behaves
like a simple fluid, with a combination of thermocapillary stresses
and buoyancy driving the flow away from the hot end along the
entire interface. At low Xa, thermocapillary stresses are suppressed
and solutocapillary stresses are enhanced. As a result, the direction
of the flow along the entire interface is reversed, with the fluid
flowing towards, rather than away from, the hot end. Buoyancy
is too weak in this problem to have much of an effect on the direc-
tion of the mean flow, although is likely plays an important role in
its stability.

Interestingly, both thermocapillary stresses and solutocapillary
stresses are found to be controlled by the mass transport. In
particular, the thermocapillary stresses are controlled by the con-
centration of the two vapors in the gas phase (Xw and Xm). At high
Xa, the effective diffusion coefficients Dmm and Dww are low, which
leads to a large gradient of the vapor concentrations and, conse-
quently, a large gradient in the interfacial temperature and large
thermocapillary stresses. As Xa decreases, so do the vapor concen-
tration gradients, the interfacial temperature gradient, and the
thermocapillary stresses, until they all essentially disappear as
Xa ! 0.

The solutocapillary stresses, in turn, are controlled by the con-
centration of the two components of the liquid phase (Yw and
Ym). At high Xa, advection in the liquid layer is strong and the dif-
ferential phase change is weak, which results in an effectively uni-
form composition of the liquid at interface, making solutocapillary
stresses negligible. As Xa decreases, the differential phase change
becomes stronger, leading to an increase in the interfacial concen-
tration gradient and the associated solutocapillary stresses. The
interfacial concentration gradient, and hence the solutocapillary
stresses, become the largest as Xa ! 0, when noncondensables
do not impede phase change.

As Fig. 2 shows, the boundaries between different flow regimes
are shifted towards smaller values of Xa, highlighting the asymme-
try between thermocapillary and solutocapillary stresses. There
are two reasons for this. Although the temperature and concentra-
tion are described by similar transport equations, the mass diffu-
sion coefficient Dl is much lower than the corresponding heat
diffusion coefficient al, so that advection in the liquid layer plays
a more important role in suppressing the interfacial concentration
gradient compared with the interfacial temperature gradient. Fur-
thermore, phase change leads to a large amount of heat released/
absorbed at the interface, which has a correspondingly large effect
on the temperature field. The effect of phase change on the inter-
facial composition of the liquid is much weaker, since the density
of the vapors is much lower than the density of the liquid.

Despite its apparent complexity, the transport model can be
simplified dramatically by focusing on mass transport in the gas
phase. For cavities with reasonably high aspect ratios L=H, this
should allow one to obtain approximate analytical solutions for
the steady state interfacial temperature and concentration profiles
(and hence thermo- and solutocapillary stresses), that can be used
to predict when the transition between thermocapillary- and
solutocapillary-dominated flows occurs as Xa varies. Such analysis
has already been performed and discussed in a subsequent publi-
cation Ref. [53].

Conflict of interest

Authors declared that there is no conflict of interest.

Acknowledgments

This work was supported by the National Science Foundation
under Grant No. CMMI-1511470.

Appendix A. Material properties

The walls of the test cell are made of quartz (fused silica) with
thermal conductivity ks ¼ 1:4 W/m-K and have a thickness
hs ¼ 1:25 mm.

The material properties of methanol, water, and air are summa-
rized in Table A.1. The binary diffusion coefficients are
Dl ¼ 1:29� 10�9 m2/s, Dmw ¼ 1:65� 10�5 m2/s, Dma ¼ 1:50� 10�5

m2/s, and Dwa ¼ 2:50� 10�5 m2/s. The activity coefficients c are
calculated based on the UNIFAC (UNIQUAC Functional-group



Table A.1
Material properties of pure components at the reference temperature T0 ¼ 293 K (cf. Refs. [55,56]). The maximum reported value for enthalpy of mixing between the water and
methanol is �0.96 kJ/mol [57], when the concentration of methanol is around 0.31.

Methanol Water Air

Liquid Vapor Liquid Vapor

l (kg/(m�s)) 5:78� 10�4 9:44� 10�6 9:94� 10�4 9:80� 10�6 1:81� 10�5

q (kg/m3) 792 0:167 998 0:017 1:20
b (1/K) 1:13� 10�3 3:41� 10�3 2:07� 10�4 3:41� 10�3 3:41� 10�3

k(W/(m�K)) 0.203 0.013 0.597 0.018 0.026
Cp (J/kg) 2:57� 103 1:36� 103 4:23� 103 1:86� 103 1:00� 103

r (N/m) 2:42� 10�2 7:23� 10�2 -

r0 (N/(m�K)) �1:35� 10�4 �1:50� 10�4 -

L (J/mol) 3:51� 104 4:06� 104 -
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Activity Coefficients) method [54]. For the binary water-methanol
mixture at Ym ¼ 0:6; cm ¼ 1:088; cw ¼ 1:355.

The Antoine coefficients are A ¼ 23:52;B ¼ 3645;C ¼ �34:05
for methanol and A ¼ 23:44;B ¼ 3969;C ¼ �40:07 for water. The
empirical parameters in the expression (36) are c1 ¼ 0 and
c2 ¼ 0:87.

Appendix B. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.ijheatmasstransfer.
2018.06.141.

References

[1] J. Zhang, R.P. Behringer, A. Oron, Marangoni convection in binary mixtures,
Phys. Rev. E 76 (1) (2007) 016306.

[2] J. Zhang, A. Oron, R.P. Behringer, Novel pattern forming states for Marangoni
convection in volatile binary liquids, Phys. Fluids 23 (7) (2011) 072102.

[3] K.E. Uguz, R. Narayanan, Instability in evaporative binary mixtures. I. The effect
of solutal Marangoni convection, Phys. Fluids 24 (2012) 094101.

[4] K.E. Uguz, R. Narayanan, Instability in evaporative binary mixtures. II. The
effect of Rayleigh convection, Phys. Fluids 24 (2012) 094102.

[5] H. Machrafi, A. Rednikov, P. Colinet, P.C. Dauby, Time-dependent Marangoni-
Bénard instability of an evaporating binary-liquid layer including gas
transients, Phys. Fluids 25 (8) (2013) 084106.

[6] E.M. Sparrow, E. Marschall, Binary, gravity-flow film condensation, J. Heat
Transf. 91 (1968) 205–211.

[7] A. Tamir, Y. Taitel, E. Schlünder, Direct contact condensation of binary
mixtures, Int. J. Heat Mass Transf. 17 (10) (1974) 1253–1260.

[8] R. Taylor, R. Krishnamurthy, J.S. Furno, R. Krishna, Condensation of vapor
mixtures. 1. Nonequilibrium models and design procedures, Indus. Eng. Chem.
Process Des. Dev. 25 (1) (1986) 83–97.

[9] K. Hijikata, Y. Fukasaku, O. Nakabeppu, Theoretical and experimental studies
on the pseudo-dropwise condensation of a binary vapor mixture, J. Heat
Transf. 118 (1996) 140–147.

[10] K. Kanatani, Stability of a condensing liquid film in a binary vapor mixture
system, Int. J. Heat Mass Transf. 58 (1) (2013) 413–419.

[11] Y. Abe, About self-rewetting fluids-possibility as a new working fluid, Therm.
Sci. Eng. 12 (3) (2004) 9–18.

[12] P. Neogi, Tears-of-wine and related phenomena, J. Colloid Interface Sci. 105 (1)
(1985) 94–101.

[13] J. Fournier, A. Cazabat, Tears of wine, EPL (Europhys. Lett.) 20 (6) (1992) 517.
[14] D.C. Venerus, D.N. Simavilla, Tears of wine: new insights on an old

phenomenon, Sci. Rep. 5 (2015) 16162.
[15] N. di Francescantonio, R. Savino, Y. Abe, New alcohol solutions for heat pipes:

Marangoni effect and heat transfer enhancement, Int. J. Heat Mass Transf. 51
(2008) 6199–6207.

[16] A. Cecere, R. Paola, R. Savino, Y. Abe, L. Carotenuto3, S. Vaerenbergh,
Observation of Marangoni flow in ordinary and self-rewetting fluids using
optical diagnostic systems, Eur. Phys. J. Special Top. 192 (2011) 109–120.

[17] Y. Li, M. Yoda, An experimental study of buoyancy-Marangoni convection in
confined and volatile binary fluids, Int. J. Heat Mass Trans. 102 (2016) 369–
380.

[18] T.T. Nguyen, A. Kundan, P.C. Wayner Jr., J.L. Plawsky, D.F. Chao, R.J. Sicker, The
effect of an ideal fluid mixture on the evaporator performance of a heat pipe in
microgravity, Int. J. Heat Mass Transf. 95 (2016) 765–772.

[19] P. Kolodner, C. Surko, H. Williams, Dynamics of traveling waves near the onset
of convection in binary fluid mixtures, Physica D 37 (1-3) (1989) 319–333.

[20] A. Bergeon, D. Henry, H. Benhadid, L. Tuckerman, Marangoni convection in
binary mixtures with Soret effect, J. Fluid Mech. 375 (1998) 143–177.
[21] A. Bergeon, E. Knobloch, Oscillatory Marangoni convection in binary mixtures
in square and nearly square containers, Phys. Fluids 16 (2) (2004) 360–372.

[22] A. Podolny, A. Nepomnyashchy, A. Oron, Long-wave coupled Marangoni-
Rayleigh instability in a binary liquid layer in the presence of the Soret effect,
Math. Modell. Nat. Phenomena 3 (1) (2008) 1–26.

[23] J. Platten, P. Costesèque, Charles Soret, A short biographya, Eur. Phys. J. E 15
(2004) 235–239.

[24] J. Kern, P. Stephan, Theoreticalmodel for nucleate boiling heat andmass transfer
of binary mixtures, J. Heat Transfer-Trans. ASME 125 (2003) 1106–1115.

[25] S. Karpitschka, F. Liebig, H. Riegler, Marangoni contraction of evaporating
sessile droplets of binary mixtures, Langmuir 33 (2017) 4682–4687.

[26] S. Zhou, L. Zhou, X. Du, Y. Yang, Heat transfer characteristics of evaporating
thin liquid film in closed microcavity for self-rewetting binary fluid, Int. J. Heat
Mass Transf. 108 (2017) 136–145.

[27] T. Qin, R.O. Grigoriev, Convection, evaporation, and condensation of simple
and binary fluids in confined geometries, in: Proc. of the 3rd Micro/Nanoscale
Heat & Mass Transfer International Conference, MNHMT2012–75266, 2012.

[28] J.-J. Yu, Y.-R. Li, C.-M. Wu, J.-C. Chen, Three-dimensional thermocapillary-
buoyancy flow of a binary mixture with Soret effect in a shallow annular pool,
Int. J. Heat Mass Transf. 90 (2015) 1071–1081.
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[48] Z̆. Tuković, H. Jasak, A moving mesh finite volume interface tracking method

for surface tension dominated interfacial fluid flow, Comput. Fluids 55 (2012)
70–84.

https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.141
https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.141
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0005
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0005
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0010
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0010
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0015
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0015
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0020
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0020
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0025
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0025
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0025
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0030
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0030
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0035
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0035
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0040
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0040
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0040
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0045
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0045
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0045
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0050
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0050
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0055
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0055
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0060
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0060
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0065
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0070
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0070
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0075
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0075
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0075
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0080
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0080
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0080
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0085
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0085
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0085
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0090
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0090
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0090
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0095
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0095
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0100
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0100
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0105
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0105
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0110
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0110
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0110
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0115
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0115
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0120
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0120
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0125
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0125
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0130
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0130
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0130
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0140
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0140
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0140
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0145
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0145
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0145
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0150
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0150
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0160
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0160
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0160
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0165
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0165
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0170
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0170
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0170
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0175
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0175
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0180
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0180
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0185
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0185
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0190
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0190
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0195
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0195
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0195
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0200
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0200
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0205
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0205
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0205
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0210
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0210
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0215
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0215
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0215
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0220
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0220
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0220
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0225
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0225
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0230
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0230
http://www.openfoam.com
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0240
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0240
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0240


320 T. Qin, R.O. Grigoriev / International Journal of Heat and Mass Transfer 127 (2018) 308–320
[49] T. Qin, Buoyancy-Thermocapillary Convection of Volatile Fluids in Confined
and Sealed Geometries (Ph.D. thesis), Georgia Institute of Technology, 2016.

[50] T. Qin, Buoyancy-Thermocapillary Convection of Volatile Fluids in Confined
and Sealed Geometries (Springer Theses), Springer International Publishing,
ISBN 9783319613314, 2017.

[51] R.O. Grigoriev, T. Qin, The effect of phase change on stability of convective flow
in a layer of volatile liquid driven by a horizontal temperature gradient, J. Fluid
Mech. 838 (2018) 248–283.

[52] M.K. Smith, S.H. Davis, Instabilities of dynamic thermocapillary liquid layers.
Part 1. Convective instabilities, J. Fluid Mech. 132 (1983) 119–144.

[53] T. Qin, R.O. Grigoriev, The effect of gas-phase transport on buoyancy-
Marangoni convection in confined volatile binary fluids, Phys. Rev. Fluids
Under Review.
[54] A. Fredenslund, R.L. Jones, J.M. Prausnitz, Group-contribution estimation of
activity coefficients in nonideal liquid mixtures, AIChE J. 21 (6) (1975) 1086–
1099.

[55] C.L. Yaws, Yaws’ Handbook of Thermodynamic and Physical Properties of
Chemical Compounds (Electronic Edition): physical, thermodynamic and
transport properties for 5,000 organic chemical compounds, Knovel,
Norwich, 2003.

[56] C.L. Yaws, Yaws’ Thermophysical Properties of Chemicals and Hydrocarbons
(Electronic Edition), Knovel, Norwich, 2009.

[57] Methanol-Water Enthalpy of Mixing: Datasheet from Dortmund Data Bank
(DDB) - Thermophysical Properties Edition 2014 in Springer Materials, 2014.

http://refhub.elsevier.com/S0017-9310(18)30748-8/h0255
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0255
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0255
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0260
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0260
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0270
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0270
http://refhub.elsevier.com/S0017-9310(18)30748-8/h0270

	A numerical study of buoyancy-Marangoni convection of volatile binary fluids in confined geometries
	1 Introduction
	2 Mathematical model
	2.1 Governing equations
	2.2 Boundary conditions
	2.3 Implementation

	3 Results and discussion
	3.1 Dynamical regimes
	3.2 Flow field
	3.3 Concentration field and solutocapillary stresses
	3.4 Temperature field and thermocapillary stresses

	4 Summary and conclusions
	Conflict of interest
	Acknowledgments
	Appendix A Material properties
	Appendix B Supplementary material
	References


