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We study the flow in a confined layer of volatile simple liquid subjected to a horizontal temperature gra-
dient. The somewhat unusual feature of this problem is that the gas layer, which contains a mixture of
vapor and air, plays a very important role. Due to phase change occurring at the free surface, the mean
flow in the liquid layer and its stability are controlled almost entirely by the mass and heat transport
in the gas phase. To explain why this is the case, we use numericae simulations based on a comprehen-
sive two-sided transport model to motivate a simplified analytical description of transport in the gas
phase for high-aspect-ratio geometries. This simplified description allows us to compute the interfacial
temperature and hence the thermocapillary stresses at the free surface which control the flow in the cen-
tral region of the cavity and to predict the net heat and mass flux in the direction of the applied gradient.
The analytical solutions are found to agree quite well with the results of our numerical simulations as
well as the results of relevant previous studies.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of convection in volatile fluids with a free surface
subject to horizontal temperature gradient has received a lot of
attention due to the increasing demand for more efficient and com-
pact cooling technologies. In particular, two-phase evaporative
cooling technologies achieve high heat fluxes by exploiting large
latent heat associated with phase change at the liquid-gas inter-
face. Thermal management devices such as heat pipes, ther-
mosyphons, and heat spreaders are typically sealed (to avoid loss
of working fluid due to evaporation), with a layer of liquid in con-
tact with a layer of gas mixture containing the vapor and the non-
condensable gases (such as air) [1]. Under terrestrial conditions,
horizontal temperature gradient generates a convective two-
phase flow which is driven primarily by a combination of capillary
force, thermocapillary stresses, and – for larger devices –
buoyancy.

While noncondensable gases are well-known to impede phase
change and reduce heat transfer coefficient associated with con-
densation [2], it is usually infeasible to remove them completely
from the gas phase, as air tends to dissolve in liquids and be
absorbed in solids. Therefore, a fundamental understanding of
two-phase flows and heat and mass transfer with varying levels
of noncondensables is essential for better design of evaporative
cooling devices. However, our current understanding of this prob-
lem remains incomplete (a detailed review of the state-of-art in
the field and various open questions can be found in Ref. [3]). A
key observation is that the design of thermal management devices
to this day is based on experimental studies of buoyancy-
thermocapillary convection, the vast majority of which have been
performed at ambient (atmospheric) conditions, while the ideal
operating conditions correspond to the gas phase dominated by
the vapor. For instance, many theoretical studies [4–13] focus on
the liquid layer and ignore transport in the gas layer, which is only
justified at atmospheric conditions, so their results are of limited
value where they matter the most. Only a few theoretical studies
have used comprehensive models which described momentum,
heat, and mass flux in both liquid and gas phase, as well as a
detailed description of phase change at their interface [14–17].
Yet, without such detailed models it is impossible to correctly
identify the limiting factors affecting the performance of evapora-
tive cooling devices or construct simplified models that could be
used to build intuition about the key design principles.

Several existing two-sided transport models for two-phase flow
of volatile fluids driven by horizontal temperature gradients in the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2019.118934&domain=pdf
https://doi.org/10.1016/j.ijheatmasstransfer.2019.118934
mailto:tongran@gatech.edu
https://doi.org/10.1016/j.ijheatmasstransfer.2019.118934
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt


2 T. Qin, R.O. Grigoriev / International Journal of Heat and Mass Transfer 147 (2020) 118934
presence of noncondensables include all four basic components of
this problem: (1) the fluid flow and the heat transport in the liquid
phase, (2) the fluid flow, and the heat and mass transport in the gas
phase, (3) the dynamics at the interface between the two phases
(e.g. the heat and mass transport across the interface), and (4)
the heat conduction within the solid walls of the cavity containing
the working fluid. While these models provide a comprehensive
description of two-phase flows, they are only valid in the limiting
cases when the gas phase is dominated by either air [14,16] or
vapor [17,18] and cannot accurately describe intermediate compo-
sitions. Here we present a more general transport model valid for
arbitrary composition of the gas phase, which can only be solved
numerically. Furthermore, to gain the insight into the numerical
solutions, we derive a greatly simplified transport model, which
can be solved analytically.

The outline of the present study is as follows: The comprehen-
sive model is described in detail in Section 2. The results of the
numerical investigation of this model are analyzed in Section 3.
The simplified model is derived and its predictions are compared
with those of the comprehensive numerical model in Section 4.
Finally, our summary and conclusions are presented in Section 5.

2. Comprehensive transport model

2.1. Governing equations

The generalized two-sided model of two-phase flow of non-
isothermal volatile fluids presented below is loosely based on the
previous models valid in the limiting cases where the gas phase
is dominated by either air [16] or vapor [19,17]. In those models,
mass transport was described using the advection-diffusion equa-
tion for the mass density of the dilute component. The present
model describes mass transport in terms of the molar fraction,
which makes it applicable over the entire range of composition.
Specifically, local mass conservation for the vapor can be written
in terms of its number density nv

@tnv þr � jv ¼ 0; ð1Þ
where the number density of vapor nv can be related to
the total number density ng through the vapor concentration (molar
fraction) cv

nv ¼ cvng ; ð2Þ
and jv is the total number flux of vapor

jv ¼ nvu� j0v ; ð3Þ
which consists of two components: the first term on the right-
hand-side represents the advection due to the gas mixture flowing
with the average speed u and the second term – the molecular dif-
fusion component. The diffusion number flux j0v is driven by the
concentration gradient, which can be described using the
Maxwell-Stefan relation [20]. For a binary mixture, this relation
essentially reduces to Fick’s law

j0v ¼ �ngDrcv ; ð4Þ
where the binary mass diffusivity D is a function of pressure pg and
temperature T

D ¼ D0
p0
g

pg

T
T0

� �3=2

: ð5Þ

Here and below we use the index 0 to denote the reference (equilib-
rium) values which correspond to DT ¼ 0. With the help of (2)–(4)
we find

@t cvng
� �þr � cvngu

� � ¼ r � ngDrcv
� �

: ð6Þ
Note that, in this study, we are ignoring the thermodiffusion (Soret)
and diffusion-thermo (Dufour) effects, which are typically negligi-
ble and trivial to take into account.

Both the vapor and air are assumed ideal, hence the total num-
ber density ng can be computed using the ideal gas law

ng ¼
pg

kBT
; ð7Þ

where pg is the total pressure in the gas phase and kB is the Boltz-
man constant. The corresponding chemical potential is

lg ¼ l0
g þ RT ln

pg

p0
g
; ð8Þ

where R is the universal gas constant. The constancy of the chemical
potential implies that the gas pressure is constant (even taking vis-
cous effects into account this remains an excellent approximation
[19]). Since the gas is non-isothermal, the flow cannot be consid-
ered incompressible. The conservation law for the total number
density is

@tng þr � ngu
� � ¼ 0: ð9Þ

Combining (6) and (9) we find

@tcv þ u � rcv ¼ n�1
g r � ngDrcv

� �
: ð10Þ

Since the product ngD / T1=2 depends rather weakly on the temper-
ature (and hence on the position), we consider it constant, yielding
an advection-diffusion equation for the concentration of vapor

@tcv þ u � rcv ¼ Dr2cv : ð11Þ
The transport Eq. (11) is valid for the entire range of gas composi-
tion. Although a similar equation can be written for air, its concen-
tration ca ¼ na=ng can instead be found from

cv þ ca ¼ 1: ð12Þ
The transport equations for momentum, temperature, and mass

(in the liquid phase) are standard and remain the same as in the
previous models [16,17]. The momentum transport in the bulk is
described by the Navier-Stokes equation

q @tuþ u � ruð Þ ¼ �rpþ lr2uþ qg; ð13Þ
where q and l are the fluid’s density and viscosity, respectively, and
g is the gravitational acceleration. Following standard practice, the
Boussinesq approximation is used, where the density variation due
to temperature and concentration is only considered in the last
term on the right-hand-side, which represents the buoyancy force.
In the liquid phase,

ql ¼ q0
l 1� bl T � T0ð Þ½ �; ð14Þ

where bl ¼ � @ql=@Tð Þ=ql is the coefficient of thermal expansion. In
the gas phase,

qg ¼ qa þ qv ¼ m1
aca þm1

vcv
� �

ng ; ð15Þ

where m1
a and m1

v are the masses of the air and vapor molecules. On
the left-hand-side of (13) the density is considered constant for
each phase, and is taken to be equal to the spatial average of the
fields given by (14) or (15). The liquid phase is considered incom-
pressible, since bl is small, so that

r � u ¼ 0: ð16Þ
For the gas phase, in steady state, we find from (7) and (9)

r � u ¼ �n�1
g u � rng ¼ T�1u � rT; ð17Þ

where the right-hand-side can also be neglected for small temper-
ature gradients considered here (e.g., an applied temperature differ-
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ence of DT ¼ 10 K corresponds to about 1% variation in the temper-
ature along the interface [16]). Finally, the heat transport in the bulk
is described by the advection–diffusion equation

@tT þ u � rT ¼ ar2T; ð18Þ
where a ¼ k=qCp is the thermal diffusivity, k is the thermal conduc-
tivity, and Cp is the specific heat capacity, of the fluid.

For a volatile fluid in a sealed cavity, the external temperature
gradient causes both evaporation and condensation, which leads
to movement of the liquid-gas interface, and the change of the vol-
umes of the two phases. In a numerical implementation of the
model, the change in the liquid volume does not satisfy the mass
flux balance at the interface exactly due to numerical errors (e.g.,
discretization). These errors eventually accumulate, leading to a
loss off mass conservation for the liquid phase and resulting, due
to the large ratio of the densities, in a large relative error for the
mass of vapor, unless corrected. The approximations made in
deriving the mass transport Eq. (11) will also contribute to the
error. To ensure global mass/number conservation for each compo-
nent (vapor and air) we will requireZ
liquid

nl dV þ
Z
gas

cvng dV ¼ Nv ¼ mv

m1
v

ð19Þ

andZ
gas

1� cvð Þng dV ¼ Na ¼ ma

m1
a
; ð20Þ

where Nv and Na are the total numbers of molecules of the vapor
and air, and mv and ma are the initial net mass of vapor and air. A
(spatially uniform) pressure offset po and vapor concentration cor-
rection Dcv are introduced to enforce these conservation laws. They
are updated at each time step by solving the constrains (19) and
(20) with

cv ¼ c0v þ Dcv ; ð21Þ
pg ¼ pþ po;

where c0v is the (uncorrected) numerical solution of the transport
Eq. (11), pg is the absolute pressure, and p is the dynamic pressure
in the gas phase obtained by solving the momentum transport (13)
and incompressibility Eq. (16).

2.2. Boundary conditions

The system of coupled evolution Eqs. (16), (13), (18), and (11)
for the velocity, pressure, temperature, and concentration fields
should be solved in a self-consistent manner, subject to the bound-
ary conditions describing the balance of momentum, heat, and
mass/number fluxes. In the comprehensive model, we will describe
phase equilibrium using the Antoine equation, which is valid over a
wide range of conditions,

ln pv ¼ Av � Bv
Cv þ T

; ð22Þ

where Av ;Bv , and Cv are empirical coefficients. In the simplified
description, it will be more convenient to use the more popular
Clausius-Clapeyron equation

ln
pv
p0
v
¼ �L

Rv

1
T
� 1
T0

� �
; ð23Þ

where Rv is the specific gas constant for vapor. The Clausius–
Clapeyron equation and the Antoine equation are equivalent for
small deviations from T0 when the latent heat is defined according
to
L ¼ BvRvT
2
0

Cv þ T0ð Þ2
; ð24Þ

as can be verified by evaluating the relations (22) and (23) and their
partial derivatives with respect to T at T0. In the following, these
relations will be used to define the saturation temperature Ts in
terms of the partial pressure pv .

We will rely on the kinetic theory of gases [21] which assumes
that the chemical potential and the temperature are continuous
across the liquid-gas interface

Tl ¼ Ti ¼ Tg ; ð25Þ
yielding the following expression for the number density flux across
the interface due to phase change

jv ¼ 2k
2� k

ngcv

ffiffiffiffiffiffiffiffiffiffi
RvTi

2p

r
pl � pg

qlRvTi
þ L

RvTi

Ti � Ts

Ts

� �
; ð26Þ

where k is the accommodation coefficient and Ts is computed from
(22). For nonpolar liquids, the accommodation coefficient is found
to be equal (or very close) to unity [22,23], so we set k ¼ 1 in this
study.

The mass/number flux balance for the vapor on the gas side of
the interface is given by

jv ¼ ngcv n̂ � ug � ui
� �� ngD@ncv ; ð27Þ

where ui is the velocity of the interface, n̂ is the surface normal vec-
tor, and @n ¼ n̂ � r. Since air is noncondensable, its flux across the
interface is zero:

0 ¼ ngca n̂ � ug � ui
� �� ngD@nca: ð28Þ

Using (12), (27), and (28) we can find a pair of boundary conditions
for ug and cv at the interface:

n̂ � ug � ui
� � ¼ jv

ng
; ð29Þ

and

@ncv ¼ �1� cv
D

jv
ng

: ð30Þ

The mass/number flux balance on the liquid side of the interface is
given by

n̂ � ul � uið Þ ¼ jv
nl
; ð31Þ

where the right-hand-side can be effectively set to zero, since
nl � ng . While the normal component of velocity is discontinuous
at the interface in the presence of phase change, the tangential com-
ponents of velocity are continuous:

I� n̂n̂ð Þ � ul � ug
� � ¼ 0: ð32Þ

The normal component of the stress balance at the interface

n̂ � Rl � Rg
� � � n̂ ¼ rjþ J2v q�1

l � q�1
v

� � ð33Þ
incorporates the capillary pressure and vapor recoil [24], where

R ¼ l ruþ ruð ÞT
h i

� pI ð34Þ

is the stress tensor and Jv ¼ m1
v jv is the mass flux of vapor. The

effect of vapor recoil is found to be negligible in this study. The tan-
gential component of the stress balance

I� n̂n̂ð Þ � Rl � Rg
� � � n̂ ¼ rsr ð35Þ

accounts for the thermocapillary effect, where

rsr ¼ �crsTi; ð36Þ
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c ¼ �@r=@T is the temperature coefficient of surface tension, and

rs ¼ I� n̂n̂ð Þ � r ð37Þ
is the surface gradient. The heat flux balance across the interface is
given by

LJv ¼ kg@nTg � kl@nTl: ð38Þ
Finally let us discuss the boundary conditions at the inner sur-

faces of the cavity confining the fluid. Following the previous
experimental [25] and numerical studies [16,17], we assume the
fluid is contained in a rectangular test cell with inner dimensions
L�W � H (cf. Fig. 1) and thin walls of thickness dw and conductiv-
ity kw. The left wall is cooled with constant temperature Tc

imposed on the outer surface, while the right wall is heated with
constant temperature Th > Tc imposed on the outer surface. Since
the walls are thin, one-dimensional conduction (normal to the sur-
face) is assumed through all the walls, yielding the following
mixed boundary conditions on the inner surfaces of the side walls:

Tjx¼0 ¼ Tc þ ki
dw
kw

@nT; ð39Þ

Tjx¼L ¼ Th þ ki
dw
kw

@nT;

where n̂ is the wall-normal vector and i ¼ g (i ¼ l) above (below)
the contact line. The remaining walls of the cell are assumed to
be in contact with air, which is a poor thermal conductor, and hence
can be considered adiabatic:

@nT ¼ 0: ð40Þ
Standard no-slip boundary conditions u ¼ 0 for the velocity and no-
flux boundary conditions for the concentration of vapor

@ncv ¼ 0 ð41Þ
are imposed on all the inner surfaces of the walls.

2.3. Solution procedure and numerical implementation

The main ingredients of the mathematical model of two-phase
flow described above are summarized in Fig. 2. The main difficulty
in using this comprehensive model is that all the transport equa-
tions are coupled, e.g., the mass, heat, and momentum transport
equations along with the mass conservation (incompressibility)
condition in the gas phase have to be solved simultaneously to
compute the velocity ug , pressure pg , concentration cv , and temper-
ature Tg ,. Moreover, the transport in the gas and liquid phase is also
coupled through the boundary conditions which, in turn, depend
on the solutions to the transport equations. This requires an itera-
tive procedure that ensures that both the transport equations and
the boundary conditions are satisfied at each instant in time.

The governing equations in both phases are discretized using
finite volume method [26–28], and the motion of the liquid–gas
interface is described using the moving mesh method [29,30].
Fig. 1. The test cell containing the liquid and gas mixture. Gravity is pointing in the
negative z direction. The shape of the contact line reflects the curvature of the free
surface.
The governing Eqs. (13), (16), and (18) are solved (simultaneously
and iteratively) for the velocity u, dynamic pressure p, and temper-
ature T in both the liquid and gas domain separately subject to the
boundary conditions at the interface and the inner surface of the
solid walls. In addition, the governing Eq. (11) is solved for the con-
centration cv in the gas phase subject to global mass conservation
constraints (21).

The boundary conditions summarized in Table 1 are updated at
each time step on both the liquid and the gas side of the interface,
as well as the inner surfaces of solid walls. The nonlinear equations
representing the boundary conditions at the interface are coupled
and also need to be solved simultaneously. In particular, the inter-
facial fields jv ; Ti, and Ts are obtained by solving the system of Eqs.
(22), (26), and (38) using Newton iteration with the values of the
fields at the previous iteration used as initial condition. After this,
the boundary conditions for the velocity, temperature, and concen-
tration are updated using the remaining boundary conditions.

We implemented the model numerically by adapting an open-
source CFD package OpenFOAM [31]. In the numerical solution
procedure, each time step involves three major parts: (i) updating
the interface shape and the computational mesh; (ii) updating the
boundary conditions on the velocity, pressure, temperature, and
concentration fields on both sides of the interface and the inner
surfaces of solid walls; and (iii) updating pressure, velocity, tem-
perature, and concentration fields in the bulk. In particular, pres-
sure and velocity are solved for using PISO (Pressure Implicit
with Splitting of Operators) algorithm [32], where the velocity field
is predicted before the pressure equation is solved, so that the con-
tinuity (incompressibility) condition is satisfied, and velocity is
then corrected based on changes in pressure field. It is an iterative
procedure repeated until both the pressure and the velocity field
converge. Once the velocity field has been computed, the temper-
ature and concentration fields are updated. Since the shape of the
interface, the boundary conditions, and the bulk fields are coupled,
these three parts are repeated iteratively, until convergence.

Additional details can be found in Chapter 2 and the Appendices
of Ref. [33]. The numerical codes and sample case files can be
downloaded from https://github.com/tongran-qin/simple-fluid.
3. Results

To validate the generalized two-sided transport model
described here, we implemented it numerically and reproduced
several key results obtained previously for the well-studied prob-
lem [34,16,17,3] of buoyancy-thermocapillary-driven flow of vola-
tile silicone oil (hexamethyldisiloxane) confined in a sealed
rectangular test cell made of quartz (fused silica). The inner dimen-
sions of the test cell are L� H �W ¼ 48:5 mm �10 mm �10 mm
and all material parameters of the fluid and its vapor can be found
in Ref. [17].

A horizontal temperature gradient is applied by keeping the
outer surfaces of the end walls at the temperatures
Tc ¼ T0 � DT=2 and Th ¼ T0 þ DT=2. For comparison with the previ-
ous numerical studies, the same average thickness of the liquid
layer dl ¼ 2:5 mm (which corresponds to the dynamic Bond num-
ber BoD ¼ O 1ð Þ) and contact angle of 50� were used. While the
numerical implementation of the model can describe flows in
either 2D or 3D geometry, the results presented here were
obtained exclusively for 2D flows (where the variation as well as
the flow in the y-direction are neglected).
3.1. Dilute limits

Previous numerical studies [16,17] used transport models that
were only justified in the limiting cases where the gas phase is

https://github.com/tongran-qin/simple-fluid


Fig. 2. The diagram showing the transport equations in the gas phase (light gray), liquid phase (dark gray), and the boundary conditions at the interface. The flowchart shows
the order in which equations are solved in the simplified description of the problem, with the dashed box indicating the parts of the simplified model considered in this paper.

Table 1
Types of boundary conditions imposed on various boundaries in the numerical implementation of the model.

Field Types of boundary conditions

Interface, Interface, Hot/Cold Other
gas side liquid side walls walls

u Dirichlet Neumann Dirichlet Dirichlet
p Neumann Dirichlet Neumann Neumann
T Dirichlet Neumann Neumann Neumann
cv Neumann – Neumann Neumann
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dominated by either vapor or air. In these limits the predictions of
the present model should agree with those older models, and in
fact this is what we find. Fig. 3 shows the asymptotic states of
the flow (after initial transients have died down) for T0 ¼ 293 K
and DT ¼ 4 K at the average air concentration �ca ¼ 0:01 (when
the vapor is dominant) and �ca ¼ 0:96 (atmospheric conditions,
when the air is dominant). This temperature difference was chosen
since it corresponds to steady flows for the entire range of �ca, as we
show in the next Section. Although the shape of the streamlines
depends on the (arbitrary) choice of the streamfunction values,
the flow patterns produced using different transport models are
found to be essentially indistinguishable in both limits.

A more quantitative comparison in terms of the interfacial mass
flux Jv describing phase change, interfacial temperature profile Ti

which controls the thermocapilllary stresses, and the resulting
interfacial flow velocity ui is provided in Fig. 4. Again, we find
the predictions of the present model to be quite similar to those
of the previous studies at DT ¼ 4 K. (We have also performed com-
parison for DT ¼ 10 K and found reasonable agreement, although
direct comparison is more difficult due to time-dependence of
the flow.) The slight discrepancy in ui observed near the cold end
Fig. 3. Numerical results for the flow field at DT ¼ 4 K with different average concentratio
case) models [16,17] (right column). The cold end wall is on the left. Solid lines represent
the stream function w, where darker (lighter) shade indicates higher (lower) values of w
of the test cell is due to the difference in the treatment of the gra-
dient of the number density at the interface between the two mod-
els. The previous models [16,17], which rely on local mass
conservation of the dilute component, lead to the following rela-
tion between the mass fractions of vapor and air
@nqv
Mv

þ @nqa

Ma
¼ � pg

RT2
i

@nT: ð42Þ
The current formulation uses molar fractions instead, where (12)
yields instead
@ncv þ @nca ¼ 0: ð43Þ
The two relations become formally equivalent only when the gradi-
ent of T (or ng) normal to the interface vanishes. When the gradient
is not too large, the difference is quite small, so both models can be
considered to provide a comparably accurate description of
transport.
ns of air �ca using the new (general) model (left column), and the previous (limiting-
the streamlines of the flow. Here and below, the background represents the value of
.



Fig. 4. Numerical results for the mass flux due to phase change (a), interfacial
temperature profile (b), and the magnitude of the interfacial velocity (c) at DT ¼ 4 K
at different average concentrations of air �ca. To highlight the variation of the mass
flux Jv and the interfacial temperature Ti in the central region of the cavity, the y-
axis is truncated in (a) and (b), respectively. In addition, the deviation
dTi ¼ Ti � Tiix

	
from the average is plotted in (b). Black lines represent the results

based on the current model, grey lines – the results based on the previous models
[?,17].

Fig. 5. Numerical results for the flow field at DT ¼ 10 K. The cold end wall is on the
left. Solid lines represent the streamlines of the flow; color corresponds to the
values of stream function w, where darker (lighter) indicates higher (lower) values
of streamfunction w.
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3.2. Flow regimes

Having validated the generalized transport model, we next
investigate the effect of air on the convective flow over the entire
range of �ca, which was previously inaccessible to numerical simu-
lations. Most of the results presented correspond to the imposed
temperature difference of DT ¼ 10 K, to enable comparison with
previous studies. Another advantage of this choice is that, as �ca var-
ies between the two limits, the flow exhibits all the qualitatively
different regimes observed previously at BoD ¼ O 1ð Þ, with the cor-
responding flow states shown in Fig. 5. At atmospheric conditions
(cf. Fig. 5(a)), we find an oscillatory multicellular flow (OMC) with
the convection rolls covering the entire liquid layer. As �ca is
decreased, the flow becomes steady and a steady multicellular
(SMC) convection pattern is found (cf. Fig. 5(b)) with convection
rolls still covering the entire liquid layer but becoming noticeably
weaker. As �ca is decreased further (cf. Fig. 5(c–d)), the convection
rolls in the liquid layer further weaken and start to disappear near
the cold end, but persist near the hot end; the resulting state is
referred to as the partial multicellular (PMC) pattern. At even lower
�ca (cf. Fig. 5(e–f)), convection rolls in the bulk of the liquid layer
disappear completely. This pattern is known as a steady unicellular
flow (SUF) and features only a pair of weak convection rolls driven
by buoyancy, one near each end wall.

The presence of air also strongly affects the flow in the gas
phase. At relatively high �ca, phase change is greatly suppressed
and the flow in the gas phase is similar to that in the liquid (cf.
Fig. 5(a)), with convection rolls appearing at almost the same posi-
tions along the interface, but rotating in the opposite direction. As
�ca decreases, the convection rolls gradually weaken and disappear,
also starting near the cold end (cf. Fig. 5(b-c)). At �caK0:3, phase
change becomes stronger, as indicated by the streamlines that
originate and terminate at the interface (cf. Fig. 5(d-e)). For ever
lower �ca (cf. Fig. 5(f)) all recirculation zones in the gas phase disap-
pear, and the flow becomes uni-directional, from the hot side,
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where the liquid evaporates, to the cold side, where the vapor
condenses.

The different regimes are summarized in the flow regime map
presented in Fig. 6 as a function of the average air concentration
�ca and the interfacial Marangoni number

Mai ¼ cd2
l

llal
�s: ð44Þ

Here �s is the spatial average of the interfacial temperature gradient
s ¼ rsTi, which reflects the imposed temperature difference. As the
Figure illustrates, the flow regimes found in the simulations based
on the generalized transport model are found to be in good agree-
ment with both the experimental observations [25] and the predic-
tions of the linear stability analysis [35], except at �caK0:2 (the
reasons for the discrepancy will be discussed later). Note that for
the lower temperature difference DT ¼ 4 K the flow remains either
in the SUF regime or in the PMC regime which is fairly similar. In
both reigmes convection is suppressed throughout most of the cell.
4. Simplified transport model

In this section we will use the insight provided by the numerical
simulations to derive a simplified transport model capable of pro-
viding a quantitative description of the flow in the SUF regime. The
simplified description relies on the same governing equations, but
makes certain reasonable assumptions that allow some variables
to be decoupled, which allows the problem to be solved sequen-
tially. The dashed box in Fig. 2 describes the part of the model trea-
ted in this paper and the arrows show the order in which various
governing equations can be solved to determine all of the unknown
fields.
Fig. 6. Flow regime diagram in the �ca �Mai parameter space: SUF (	), PMC (M), SMC (�)
filled symbols – numerical results obtained in this study. Thick solid lines represent the cr
by the linear stability analysis [35]. Thin dotted (dashed) black line corresponds to DT ¼
The previous analysis of the �ca ! 0 limit [17] has shown that it
is the concentration field in the gas phase that ultimately plays the
dominant role in this problem: it determines the interfacial tem-
perature, surface stresses, and hence the flow field. As we will
show below, a pretty accurate analytical description of the concen-
tration field can be obtained for the base flow over the entire range
of �ca in the central region of the flow, where the interface is nearly
flat. The original analysis assumed that phase change and advec-
tion in this region are negligible to compute the concentration field
cv ¼ cv xð Þ. Why and under which conditions this result is valid will
be discussed below.

4.1. Concentration profile in the gas phase

Following Ref. [36], we will introduce the rescaled coordinates
v ¼ x=dg and f ¼ z=dg , where dg ¼ H � dl is the thickness of the
gas layer in the central region. If we assume the interface coincides
with the plane z ¼ 0, then the gas phase corresponds to 0 < f < 1
and 0 < v < Cg , where Cg ¼ L=dg is the aspect ratio of the gas layer.
Since the flow field is constrained to the v� f plane and is incom-
pressible, it can be written in terms of the stream function w v; fð Þ,
ug ¼ x̂@fw� ẑ@vw: ð45Þ
As Fig. 4(a) illustrates, phase change in the central region is indeed
negligible in the SUF regime. Hence, for a sufficiently large Cg (in
this study Cg � 6:5), the flow of gas in this region can be assumed
horizontal

ug ¼ uxx̂þ uzẑ � uxx̂; ð46Þ

where uz=ux ¼ O C�1
g


 �
. We can therefore simplify the mass trans-

port Eq. (11) to read
, and OMC (}). Open symbols correspond to experimental results of Li et al. [25] and
itical Marangoni number for onset of the PMC (black) and SMC (dark grey) predicted
10 K (DT ¼ 4 K).
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dgux@vcv ¼ D @2
vcv þ @2

f cv

 �

; ð47Þ

with the vertical component uz of the velocity yielding a higher
order correction. Furthermore, the horizontal component of velocity
ux can be decomposed into two contributions:

ux ¼ �ux þ ~ux v; fð Þ; ð48Þ
where �ux ¼ const < 0 represents the mean flow (the vapor flows in
the direction opposite to the applied temperature gradient) and ~ux

represents the zero-mean recirculation flow such thatZ 1

0

~uxdf ¼ 0: ð49Þ

Correspondingly, we can write

w ¼ �uxfþ ~w fð Þ þ O C�1
g


 �
; ð50Þ

where ~ux ¼ @f
~w andZ 1

0
@f
~wdf ¼ ~w 1ð Þ � ~w 0ð Þ ¼ 0: ð51Þ

Since the phase change at the liquid–gas interface is negligible in
the central region, the mass/number flux vanishes, i.e., @fcv ¼ 0, at
both f ¼ 0 and f ¼ 1. The solution obtained in Ref. [17] can be
reproduced by setting ux ¼ �ux (i.e., ~ux ¼ 0) and solving (47) subject
to the no-flux boundary conditions on cv , which yields

cv ¼ C0 þ C1e�Pemv: ð52Þ
Here

Pem ¼ j�uxjdg

D
ð53Þ

is the Péclet number which corresponds to the mean flow and C0

and C1 are the constants which can be determined based on the
net amount of vapor and the net mass flux associated with phase
change (to be determined later). In the general case (i.e., ~ux – 0),
the solution to (47) is

cv ¼ C0 þ C1e�Pemv 1þ g fð Þ½ �; ð54Þ
where the function g fð Þ describing the vertical concentration profile
satisfies the differential equation

g00 fð Þ ¼
�ux~ux fð Þd2

g

D2 1þ g fð Þ½ �: ð55Þ

The right-hand-side of (55), and hence g fð Þ itself, is of order
� ¼ PemPer , where

Per ¼ max
f

j~ux fð Þjdg

D
ð56Þ

is the Péclet number describing the strength of the recirculation
flow ~ux. To leading order in �, we find

g fð Þ ¼
�uxd

2
g

D2

Z
~w fð Þdfþ O �2

� �
: ð57Þ

The no-flux boundary conditions for cv require g0 0ð Þ ¼ g0 1ð Þ ¼ 0.
This is only consistent with (57) when (51) is satisfied, which justi-
fies the separation of the flow field into the two components, �ux and
~ux.

As long as �
 1, the variation of cv in the vertical direction is
negligible and the general solution (54) reduces to the special case
(52). The crucial observation is that, although Per can become quite
large for �ca ! 1; � remains small regardless of the average concen-
tration �ca of air for sufficiently low DT , as Fig. 7 illustrates. Indeed,
numerically computed solutions for all �ca are characterized by con-
centration field (cf. Fig. 8) whose gradient in the vertical direction
is small compared with that in the horizontal direction in the cen-
tral region of the test cell. The variation in the vertical direction
becomes more pronounced only for �ca ! 1, where � becomes com-
parable to unity and one has to use the solution (54) rather than
(52). Moreover, at �ca ¼ 0:96 and the higher DT ¼ 10 K, where a
strong convective pattern is present, one finds the concentration
profile deviating near the interface from the solution (54) derived
for the SUF regime, since phase change in the central region can
no longer be neglected.

4.2. Net heat and mass flux

In order to compare the analytical predictions with numerical
results quantitatively, we need to determine the mean flow veloc-
ity in the gas, which is related to the net mass flux. Since mass
transport is essentially one-dimensional in the central region, the
fluxes of vapor and air satisfy

J ¼ m1
vng D@xcv � �uxcvð Þ;

0 ¼ m1
ang D@xca � �uxcað Þ; ð58Þ

where J is the mean mass flux of vapor through a vertical cross-
section. Adding these two equations and using the relation between
ca and cv we find

�ux ¼ � J
m1
vng

: ð59Þ

Using mass conservation, the mean mass flux at location x; Jg xð Þ, can
be approximated by integrating the local mass flux Jv describing
phase change at the interface, from x to L:

Jg xð Þ ¼ 1
dg

Z L

x
Jv x0ð Þdx0: ð60Þ

Since evaporation (condensation) takes place mainly near the hot
(cold) wall, mean flux is a function of x, however, as suggested by
the numerical results, it becomes essentially constant Jg xð Þ � J0 in
the central region of the cell (cf. Fig. 9), where we have defined
the characteristic mean mass flux

J0 ¼ max
x

J xð Þ: ð61Þ

We will therefore use J0 in place of J in (58) and (59).
Let us next consider the dependence of the mean flux J0 on the

average concentration of air �ca. For sufficiently low DT and highly
volatile fluids, the overall heat transport between the end walls
is dominated by the latent heat associated with phase change,
and the heat flux balance gives

J0L ¼ DT
ZT

; ð62Þ

where

ZT ¼ Zo þ Zd; ð63Þ
is the net thermal resistance, Zo is the thermal resistance due to
conduction through the end walls and the liquid wedges between
the wall and the interface, and Zd is the diffusive resistance of the
gas layer [36]. While Zo can be considered independent of the air
concentration, Zd depends sensitively on �ca.

Since heat flows though the end walls and the liquid wedges
between the wall and the interface sequentially, Zo is a sum of
the conduction resistances of the end walls Zw ¼ dw=kw and the
conduction resistances of the liquid wedges Zl � 0:5dl=kl, yielding

Zo ¼ 2 Zw þ Zlð Þ � 2
dw
kw

þ dl

kl
: ð64Þ



Fig. 7. The numerical values of Pem (open symbols), Per (gray symbols), and their product � (black symbols) at DT ¼ 10 K.

Fig. 8. Numerical results for the concentration of air ca ¼ 1� cv in the gas phase for different �ca at DT ¼ 4 K (left column) and 10 K (right column). Solid lines represent twenty
equally spaced level sets of the concentration field. In the gas phase, darker background indicates higher air concentration, while in the liquid phase the concentration field is
undefined.
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To determine Zd, we solve the system of Eqs. (58) together with
(59), which yields

J0 ¼ m1
vngD
ca

@xcv : ð65Þ

For volatile fluids, Ti is very close to Ts [19], so the concentration
and temperature profiles are related. The phase equilibrium condi-
tion (23) can be expressed in terms of the concentrations using the
relation

pv
p0
v
¼ cv

�cv
; ð66Þ

where �cv ¼ 1� �ca, such that



Fig. 9. Mean mass flux Jg xð Þ in the gas phase (60) across the vertical cross-section of the cavity at location x. The value is computed numerically at DT ¼ 10 K with different
average concentrations of air �ca.
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1
Ti

¼ 1
T0

� Rv
L

ln
cv
�cv

ð67Þ

and consequently

@xcv ¼ �@xca ¼ Lcv
RvT

2
i

s; ð68Þ

where s ¼ @xTi. Substituting the mean values for the concentrations
and interfacial temperature into (68) and (65) yields

J0 ¼ 1� �ca
�ca

m1
vngLD

RvT
2
0

�s; ð69Þ

where �s ¼ DT 0=L and DT 0 ¼ Tjx¼L � Tjx¼0 is the temperature differ-
ence between the inner surfaces of the hot and cold end walls.
The heat flux balance at the interface near either of the end walls
yields a relation similar to (62) which only includes the diffusive
resistance

J0L � DT 0

Zd
: ð70Þ

Solving (7), (69), and (70) together, we find
Fig. 10. Characteristic mass flux J0 as a function of the average concentration of air �ca a
numerical results obtained using (60) and (61).
Zd �
�ca

1� �ca

R2
vT

3
0L

DpgL
2 ; ð71Þ

where Dpg ¼ D0p0 is independent of �ca according to (5). This result
corresponds to the effective condensation thermal conductivity
kc ¼ L=Zd obtained by Peterson et al. [37].
4.3. Comparison of numerical and analytical results

With the solution for Zo and Zd, we can finally obtain the analyt-
ical estimate for J0 using (62) and compare it with the numerical
result for J0, which is obtained using the numerical solution of local
mass flux given by (60) and (61). Fig. 10 shows that the analytical
and numerical results are in good agreement over the entire range
of �ca, suggesting that the one-dimensional description of transport
in the gas phase is reasonably accurate. Note that at DT ¼ 10 K the
flow is in the OMC regime at �ca ¼ 0:96 (cf. Fig. 6), so the predictions
of our simplified transport model can be trusted far outside the SUF
regime. As expected, the vapor flux is the largest when the air is
removed entirely from the cell and Zd ¼ 0. An increase in �ca leads
to an increase in Zd and, correspondingly, a decrease in the vapor
t DT ¼ 10 K. Solid line represents the analytical estimate based on (62), symbols –
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flux. The minor discrepancy between the numerical and analytical
results is likely due to the contribution of heat conduction and
advection in the liquid layer that have been ignored in our analysis
of heat flux balance. These contributions are negligible for low �ca,
but would become progressively more important at higher �ca,
when phase change is suppressed, and our estimates of J0 are
expected to overestimate the numerical results, consistent with
Fig. 10. In practical applications (e.g., for heat pipes) the liquid layer
will be substantially thinner, so conductive/convective heat flux
would be negligible and the prediction of our simplified transport
model would be even more accurate.

To compare the analytical prediction (52) for the concentration
profiles with the numerical results, we need to determine the con-
stants C0 and C1 in (52) or (54). When the concentration profile can
be considered one-dimensional (i.e., for �
 1), the solution (52)
can be obtained directly from the second of the two equations in
(58) which yields

@xca ¼ � Pem
dg

ca: ð72Þ

The average value of air concentration satisfies

1
L

Z L

0
cadx ¼ �ca; ð73Þ

so that

ca ¼ 1� cv ¼ �ca
PemCge�Pemv

1� e�PemCg
: ð74Þ

Note that Pem can be computed from (53), (59), and (69) as long as
the relation between �s and DT is known.

As Fig. 11 illustrates, we find rather good agreement between
the analytical predictions and the numerical results in the central
region of the cavity. In the general case, the concentrations of both
components in the gas mixture have an exponential profile. The
concentration profiles become approximately linear only when
Pem 
 C�1

g . This limit corresponds to low values of the mean flow
velocity �ux and hence low values of DT and/or high values of �ca.
In particular, for DT ¼ 10 K, we have Pem < C�1

g for �ca > 0:08, and
the concentration profiles indeed become essentially linear for
�caJ0:08 as shown in Fig. 11. The deviations noticeable at low �ca
are mainly due to the breakdown of our assumption that phase
change at the interface is negligible.

Substituting (72) into (68) and replacing Ti with T0 we find

s ¼ RvT
2
0

dgL

Pemca
1� �ca

: ð75Þ

This expression shows that the interfacial temperature profile is lin-
ear, quadratic, or exponential when the air concentration profile is
constant, linear, or exponential, respectively. This is illustrated in
Fig. 12, which shows that the analytical estimates for the interfacial
temperature agree well with numerics. These results are in stark
contrast with the very common assumption of linear temperature
profile made in modeling heat pipes. While the temperature profile
may indeed be linear in experiments with relatively small Cg and

conducted at atmospheric pressure, the condition Pem 
 C�1
g will

most certainly not be satisfied for high-aspect-ratio heat pipes
operating at low �ca, where the temperature profile will be exponen-
tial. Similarly, these results show the limitations of linear stability
analysis of this flow [35] which assumed s to be constant. In fact,
the discrepancy between the numerical results and predictions of
the linear stability analysis in this limit found in Fig. 6 are likely
due in part to the deviation of s from a constant. Another reason
for the discrepancy is that the linear stability analysis breaks down
at low �ca due to the wavelength of the instability becoming compa-
rable to the system size L.

Whether the temperature profile is linear or not, the mean
value of the interfacial temperature gradient can be found by sub-
stituting ca ¼ �ca into (75), which yields

�s / �ca
1� �ca

Pem ¼ �ca
1� �ca

J0dg

m1
vngD

/ �ca
1� �ca

J0; ð76Þ

where ngD ¼ pgD= RT0
� �

is independent of �ca and J0 can be obtained
using the expression (62). At low air concentration, thermal resis-
tance is dominated by the contribution Zo, which is independent
of �ca. Hence J0 is also independent of �ca and �s / �ca. In particular,
in the limit �ca ! 0 we also have �s! 0, consistent with our previous
finding [19]. At high air concentration, thermal resistance is domi-
nated by the contribution Zd given by (71). Hence,
J0 / DT=Lð Þ 1� �cað Þ=�ca, such that �s / DT=L is independent of �ca. This
is consistent with the results of both numerical simulations [17]
and experiments [25] which found that the interfacial velocity
(and hence thermocapillary stresses) remain essentially constant
for �caJ0:14.

Fig. 13 shows that at DT ¼ 10K, our theoretical predictions
match the numerical results for the interfacial temperature gradi-
ent at low �ca, but overestimate them at high �ca. The reason is that
at high DT , our assumption that conductive and especially convec-
tive heat transfer in the liquid layer is negligible, breaks down.
Numerical simulations show that �s / DT=L only at sufficiently
low DT . At higher DT we have [16]

DT
L

� 1þ a�s2

1þ b�s2
�sP �s; ð77Þ

where a and b 6 a are parameters that dependent on �ca and the
geometry of the liquid layer. In particular, the data in Fig. 13 corre-
sponds to numerical simulations for DT ¼ 10 K, where strong con-
vection in the (relatively thick) layer makes the relationship
between �s and DT=L nonlinear. For thin liquid layers characteristic
of, e.g., heat pipes, both conductive and convective heat transfer
in the liquid phase can be ignored, so our theoretical description
should be quite accurate over the entire range of �ca.

In conclusion of this section, let us return to the issue of validity
of the one-dimensional solution (52) for the concentration profile.
The value of � can be easily estimated in the practically important
case �ca ! 0. In this limit, the gas velocity is much larger than the
liquid velocity, so the flow profile in the gas layer in the central
region is nearly parabolic and symmetric about its mid-height, so
maxfj~uxj ¼ j�uxj. Furthermore, diffusive resistance Zd is negligible
and, since the wall material (fused quartz) is a far better thermal
conductor than the liquid (silicone oil), ZT � Zo � dl=kl. Substitut-
ing (59) and (62) into (53) and (56) we find

Per ¼ Pem ¼ DTdg

m1
vngDLZT

� dg

dl

ll

lv
Scv E; ð78Þ

where Scv ¼ mv=D is the Schmidt number for the vapor and

E ¼ klDT
llL

ð79Þ

is the evaporation number [38]. The analytical solution (52) pro-
vides a good approximation when �
 1, which is equivalent to

DT 
 Sc�1
v

dl

dg

lvL
kl

� 27 K: ð80Þ

In particular, for DT ¼ 10 K, Eq. (78) yields Per ¼ Pem ¼ 0:37, which
is very close to the value (0.4) obtained numerically (cf. Fig. 7).

In the opposite limit (e.g., at atmospheric conditions), diffusive
resistance dominates, ZT � Zd, so with the help of (71) we find



Fig. 11. Normalized concentration profiles in the gas phase at DT ¼ 10 K for vapor (a) and (b) air with different �ca. Numerical and analytical results are represented by gray
and black lines, respectively. Numerical results correspond to the mid-height of the gas layer.
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Pem � DTdg

LZT
¼ 1� �ca

�ca

L

RvT0

dg

L
DT
T0

; ð81Þ

which, as Fig. 7 illustrates, vanishes as �ca ! 1. The recirculation
component of the flow in this limit can be estimated by balancing
the viscous and thermocapillary stresses [17]

maxf~ux � 1
4
cdl

ll

�s � 1
4
cdlDT
llL

; ð82Þ

which yields

Per � 1
4
cdldgDT
llLD

¼ 1
4

1
1� �ca

cdldgDTp
0
v

llLD0p0
: ð83Þ

As our estimate shows and numerical data presented in Fig. 7 con-
firms, Per diverges at �ca ! 1, however the product of the two Peclet
numbers approaches a constant
� � 1
4

cdlL

llRvD0

p0
v

p0

d2
g

L2
DT2

T2
0

: ð84Þ

In particular, we find that �
 1 when

DT 
 2
L
dg

llRvD0

cdlL

p0

p0
v

" #1=2

T0 � 34 K: ð85Þ

Note that the estimate (82) and hence (83) and (85) is conservative
since, for DTJ10 K, the interfacial temperature gradient �s is only a
fraction of DT=L (a third to a quarter for �ca ¼ 0:96 [16]).

To sum up, for the silicone oil studied here, our estimates sug-
gest that the one-dimensional approximation (52) should hold for
any �ca as long as DT is around 10 K or less; the more general
expression (54) has to be used for larger temperature gradients.
Indeed, our numerical simulations show that the concentration
profile develops noticeable variation in the vertical direction only
for DTJ10 K. For comparison, the onset of convection pattern



Fig. 12. Interfacial temperature at DT ¼ 10 K with different �ca. The variation dTi ¼ Ti � T0 about the mean is plotted. Numerical and analytical results are represented by gray
and black lines, respectively.

Fig. 13. The mean value of the interfacial temperature gradient �s as a function of the average air concentration �ca at DT ¼ 10 K. Numerical and analytical results are
represented by solid line and symbols, respectively.
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(SMC regime) at atmospheric conditions corresponds to DT � 4 K
in this geometry [16,25]. It should be noted that some of our
assumptions (most notably, that phase change at the interface is
negligible) start to break down when convection pattern develops,
which leads to spatial modulation developing on top of the (nearly
linear) interfacial temperature profile (see, e.g., Fig. 5 in Ref. [16]).
5. Summary

We have formulated and implemented numerically a general-
ized two-sided transport model for two-phase flow of nonisother-
mal volatile fluids which accounts for momentum, mass, and heat
transport in both phases, as well as phase change at the liquid-gas
interface. The model is valid for arbitrary composition of the gas
phase, described in terms of the average concentration of air �ca
here. It has been thoroughly validated by comparing its predictions
both against other numerical models in the limiting cases �ca ! 1
and �ca ! 0 and against experimental observations [25] and linear
stability analysis [35] over the entire range of �ca,. The model has
been used to study the flow of low viscosity silicone oil confined
in a sealed cavity and driven by a horizontal temperature gradient.
In particular, we have investigated how the flow changes when the
pressure inside the cavity, and with it the composition of the gas
layer, changes. Numerical simulations reported here and elsewhere
[16,19,17] show that the flow in both layers is very different in the
limits �ca ! 0 and �ca ! 1.

In order to understand these differences, we have developed a
simplified transport model for the central region of the cavity
which showed that, somewhat surprisingly, for �ca – 0, it is the
gas layer that controls the flow in the liquid layer. More specifi-
cally, mass transport in the gas layer determines its local composi-
tion, the interfacial temperature, and hence the thermocapillary
stresses which drive the flow in the liquid layer. Quite interest-
ingly, we found that, in high-aspect ratio geometries (such as the
interior of a heat pipe), the mass transport in the gas layer remains
diffusion-dominated and hence independent of the flow, even in
the limit when the traditionally defined Peclet number, which cor-
responds to our Per , becomes large compared to unity. We have
shown that mass transport is in fact described by two different
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Peclet numbers – Per which describes recirculation, and Pem which
describes the mean flow – and that it is the product � ¼ PerPem that
controls whether mass transport in the gas phase is dominated by
diffusion or advection. We have also shown that, for small to mod-
erate imposed temperature gradients, � remains small regardless
of the composition of the gas phase.

Our simplified transport model has not just qualitatively
explained a range of numerical and experimental results, it was
also found to be capable of producing quantitatively accurate pre-
dictions. For instance, it correctly predicted the concentration pro-
file in the gas phase and the interfacial temperature profile over
the entire range of �ca. In particular, we found that the interfacial
temperature profile is generally exponential, not linear as assumed
by many one-sided transport models of two-phase flows. The
assumption of linearity can be justified in the limit �ca ! 1 (e.g.,
at atmospheric conditions), but not in the practically important
limit �ca ! 0. Furthermore, the model correctly predicted the
dependence of the net vapor flux (and hence the net heat flux)
and the average interfacial temperature gradient (and hence ther-
mocapillary stress) on �ca. Finally, it is worth pointing out that
although the simplified transport model is formally valid only in
the steady unicellular flow regime, it was found to give reasonably
accurate predictions even when convection rolls appear.
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[27] J.H. Ferziger, M. Perić, Computational Methods for Fluid Dynamics, Springer,
Berlin, 1997.

[28] R. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge
University Press, Cambridge, 2002.
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