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ABSTRACT

Access to mobile wireless networks has become critical for day-
to-day life. However, it also inherently requires that a user’s geo-
graphic location is continuously tracked by the service provider.
It is challenging to maintain location privacy, especially from the
provider itself. To do so, a user can switch through a series of iden-
tifiers, and even go offline between each one, though it sacrifices
utility. This strategy can make it difficult for an adversary to per-
form location profiling and trajectory linking attacks that match
observed behavior to a known user.

In this paper, we model and quantify the trade-off between utility
and location privacy. We quantify the privacy available to a com-
munity of users that are provided wireless service by an untrusted
provider. We first formalize two important user traits that derive
from their geographic behavior: predictability and mixing, which
underpin the attainable privacy and utility against both profiling
and trajectory linking attacks. Second, we study the prevalence of
these traits in two real-world datasets with user mobility. Finally,
we simulate and evaluate the efficacy of a model protocol, which
we call Zipphone, in a real-world community of hundreds of users
protecting themselves from their ISP. We demonstrate that users
can improve their privacy by up to 45% by abstaining minimally
(e.g., by sacrificing at most 5% of their uptime). We discuss how a
privacy-preserving protocol similar to our model can be deployed
in a modern cellular network.
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« Security and privacy — Usability in security and privacy;
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1 INTRODUCTION

When mobile users connect to the Internet, they authenticate to a
cell tower, allowing service providers such as Verizon and AT&T
to store a log of the time, radio tower, and user identity [69]. As
providers have advanced towards the current fifth generation of
cellular networks, the density of towers has grown, allowing these
logs to capture users’ location with increasing precision. Many users
are persistently connected, apprising providers of their location all
day. Connecting to a large private Wi-Fi network provides similar
information to its administrators. And some ISPs offer cable, cellular,
and Wi-Fi hotspots as a unified package.

While fixed user identifiers are useful in supporting backend
services such as postpaid billing, wireless providers’ misuse of
identifier data is increasingly leading to privacy concerns [14].
Users concerned about their location privacy [10] may use existing
tools that allow protection only at the network and application
levels. For example, VPNs and Tor [21] mask the IP address of a
user from a remote server, and hide the remote server location from
the service provider. Additionally, access control features allow
users to hide or reduce location information sent to location-based
services. No such tools exist for protection of geographic locations
from local service providers — but that does not mean that users are
complacent about their ISPs having knowledge of their locations.
A recent class action lawsuit demonstrates that mobile users do
not want cellular service providers to sell their historic movement
records to third parties, such as location aggregators [14].

To gain privacy, a user u may attempt to anonymously use a
wireless service by obtaining a mobile identity i; without revealing
personal information. The service would provide data connection,
while phone calls would be signalled over a VPN using Voice over
IP (VoIP). The user may switch to a new pseudonymous identity, iz,
before the first is compromised, eventually going through a series
of identities over time [12]. However, two primary attacks prevent
the user from having location privacy, as illustrated in Figure 1.

(1) In location profiling, an attacker identifies one or more of the
identities iy, iz, . . . as user u by exploiting the uniqueness of
the locations the user is known to regularly visit.

(2) In trajectory linking, an attacker infers that activity by i
is linked to activity by iz despite the change in identifier.
The union of locations can enhance the success of location
profiling.

There is a fundamental location privacy cost to connecting to
a mobile service. To reduce the success of these attacks without
modifying their behaviors, users can (i) switch identifies frequently,
and (ii) remain offline for a period of time between connection
sessions, which both reduce user utility. In this paper, we model
and quantify this trade-off between utility and location privacy. We
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Figure 1: Left: Diverging paths that are regularly taken
by two users. During training, an attacker would encode
each labelled transition into a transition matrix for loca-
tion profiling. Right: Separate, unlabelled activity where an
unknown user reconnects using a new pseudonym at every
tower. If the anonymous user does not successfully mix at
these towers (i.e. does not remain offline long enough), the
attacker can link the trajectories together and match the
concatenated trace to User B’s profile.

define utility as the proportion of time the user may stay connected
throughout the day while behaving in a privacy preserving manner.

Our work complements existing research in location privacy. Lo-
cation profiling has been long known to be a problem [19]; attacks
typically classify either the set of locations cells visited by an unla-
belled user during a time period, or the list of transitions between
locations [51]. Trajectory privacy studies, including a body of work
in VANETs [35, 48], generally link disconnected traces using Eu-
clidean information. Defenses against these attacks generally utilize
a mixing strategy or, more recently, differential privacy. While the
latter can separately protect against either location profiling or
trajectory linking [24, 65, 66], it requires the cooperation of ISPs. In
contrast, our work assumes the ISP is an adversary, and we evaluate
robustness against attackers using both profiling and linking.

For our analysis, we model defensive strategies as a protocol
we call Zipphone, and we define specific ISP-based attacker algo-
rithms as well. We assume a set of users employ Zipphone, using
ephemeral identifiers and go offline to prevent trajectory linking.
Notably, users do not need to coordinate mixing; naturally occur-
ring mix zones are enough to significantly reduce linking success.
Our attacker model looks to historical transition probabilities to
model linking, rather than Euclidean distance. Using two real-world
datasets [23, 52], we quantify the path predictability and mixing
degree of user activity. With the same data, we demonstrate how a
small community can reduce an attacker’s re-identification accu-
racy substantially while sacrificing a limited amount of utility.

Contributions. We make the following contributions.

e We formalize two important user traits that derive from their geo-
graphic behavior: predictability and mixing, which underpin the
attainable privacy and utility against both profiling and linking.
To our knowledge, prior work has not analyzed the combination
of the profiling and trajectory linking attacks.

e We analyze two real-world datasets [23, 52] and quantify the
predictability and mixing behavior of mobile users. While these
datasets are relatively small (100-150 active users), they provide
a realistic look at the behavioral properties of a set of users.

267

Keen Sung, Brian Levine, and Mariya Zheleva

o We use the same two datasets to quantify attacker accuracy in
the re-identification of a community of users running Zipphone.
Predictable, mixing users are identifiable only 24% of the time if
they renew their identifiers every ten minutes. At the same time,
users with permanent identifiers are susceptible to attacks in 69%.
We quantify the trade off between the frequency of identifier
renewals and user utility. We find that renewals as often as even
one hour offer little protection.

e Finally, we discuss how our model Zipphone protocol can be

employed in emerging mobile cellular networks without explicit
cooperation of the provider.
We additionally estimate the incurred user-side overhead from
Zipphone in terms of time and battery consumption for 3G and 4G
networks. Specifically, we measured power consumption during
network association and disassociation, and we demonstrate that
a user may incur at most 1% battery overhead per day regardless
of network technology or desired privacy if Zipphone were used.
We detail the challenges that such deployment would face.

In what follows, we first summarize related work in Section 2.
We then present our attacker model and corresponding attacker-
defender dynamics in Section 3. We evaluate Zipphone’s privacy
preserving performance in Section 4. We then discuss avenues for
employing Zipphone in emerging mobile cellular networks and
quantify the user overhead in Section 5. We discuss limitations and
ethical implications in Section 6 and conclude in Section 7.

2 RELATED WORK

Our study is related to a broader category of prior work on location
privacy. Most prior work assumes the service provider is trusted and
in fact responsible for user privacy. Prior approaches have a variety
of goals, including: (i) properly anonymizing mobility datasets
before public release; (ii) adding privacy for users of locations based
services; and (iii) increasing location privacy for mobile device users
from third-party attackers but not the service provider itself. In
contrast to these works, our goal is to provide mobile users location
privacy from the wireless provider itself. This presents a unique
challenge: the user is responsible for her own privacy, and the only
control she has over this is whether to remain connected to the
service at any moment in time.

In our preliminary work [59], we examined the efficacy of
ephemeral IMSIs. This paper significantly expands upon that work
by: including trajectory linking as an attack; including user util-
ity, off time, and cool down in the renewal algorithm, which is
more practical and also thwarts trajectory linking; quantifying
predictability and mixing of users; using a new data set; and quan-
tifying overhead.

Location privacy with provider cooperation. Many studies
focus on enlisting a trusted carrier to protect against a third party
attacker [29, 32, 33, 46]. Reed et al. [56] propose privacy from the
carrier using onion routing, but does not consider the direct con-
nection that must be made to a tower. Federrath et al. [28] propose
a similar scheme that prevents linkability of calls between two par-
ties but omit critical details regarding authentication to the carrier.
Fatemi et al. [27] propose an anonymous scheme for UMTS using
identity-based encryption, but unlike our approach, their scheme
involves the carrier in the cryptographic exchange; they enumerate
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the vulnerabilities of similar works [41, 54, 67, 70]. Kesdogan et
al. [42] proposes using a trusted third party to create pseudonyms
for GSM users, but also routes all calls through that provider, which
allows it to characterize the calling pattern and infer the caller.

User-driven trajectory privacy. Mix zones [12, 30] can be em-
ployed by a user against a provider attacker when the network
service provider is non-cooperative. While the concept of mix zones
is fairly old, it remains the only available option for users who want
to hide their own location privacy from a service provider. Work in
VANETs also uses mix zones to protect vehicle trajectory [25, 35, 48].
Given that their focus is on trajectory, these studies do not consider
location profiling. Other work involves the introduction of false
information [44, 58]. Few studies use this concept to protect the
user from an omnipresent network attacker. Chan [15] focuses on
call metadata privacy, rather than location privacy.

User-driven profiling privacy. Work that increases the privacy
of location-based services (LBS) [38, 53, 62, 63] generally add noise
to location queries. These works are not viable or applicable against
an untrusted service provider: a user cannot manipulate which
tower they connect to, and the provider knows the physical loca-
tions of the towers serving users.

Dataset protection. Works that aim to prevent leaks in personally
identifiable information in shared or publicly released datasets [68]
primarily rely on obfuscation. They also strive to prevent trajectory
recovery [34, 60]. Older work on deanonymization of mobile users’
traces assumes the user’s pseudonym is unchanged throughout the
trace. But a small amount of external information, such as the per-
son’s home or work address [40], can deanonymize an obfuscated
trace [11, 12, 31, 45, 49, 51] given a consistent identifier. Zang and
Bolot [69] show that suitably anonymizing a trace of 25 million
cellular users across 50 states (30 billion records total) requires only
that users have the same pseudonym for no longer than a day. A
day’s duration is unsuitable for Zang and Bolot’s goal of support-
ing researchers that wish to characterize the behaviour of users
over time (while maintaining their privacy). On the other hand, the
result is promising for users seeking privacy, who might be able to
change their pseudonyms more frequently than once per day.

Differential privacy. More recently, differential privacy ap-
proaches [22, 50] are used to add noise to datasets while preserving
its aggregate characteristics. Palamidessi et al. [9] introduce geo-
indistinguishability, and ElSalmouny & Gambs [24] further discuss
(D, €)-location privacy. Xiong et al. [65, 66] formalize situations
where location queries can be temporally correlated and linked.
These methods all assume the service provider is trusted and are,
thus, not applicable to our problem setting.

Outside threats. Several studies protect against third party at-
tackers and vulnerabilities in 3GPP implementations [36, 39]. Khan
et al. [43] provide a cryptographic mechanism to generate LTE
pseudonyms and prevent third-party attackers or IMSI catchers
from linking users.

In comparison to related work, we differ in that we do not trust
the wireless service to ensure the user’s privacy, and we assume
in our analysis that the adversary is attempting to link together
traces. Our evaluations are based on traces of real users [23, 52],
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which allows us to quantify the periodicity of identifier changes in
the context of modern cellular infrastructure.

3 ATTACKER AND DEFENDER ALGORITHMS

Our primary goal is to quantify the privacy-utility trade-offs present
in systems that provide geographic anonymity from mobile ISPs.
To do so, first we instantiate a specific protocol for users and pro-
vide well-defined attacker algorithms. The protocol, Zipphone, is
based on mechanisms available to the user only; i.e., the ISP is not
cooperative, an assumption not shared by many location privacy
systems. In short, users can control only their active identity (i.e.
pseudonym) and whether or not they are connected; providers
attempt to link the activities of identities to existing user profiles.

3.1 Problem Statement

Zipphone users seek to use the network, but not have their real
identities associated with mobility recorded in traces. Upon joining
the network, the user u is assigned a pseudonym i. The pseudonym
lets the user maintain a connection session for some period of time.
The user attaches to a sequence of towers as it moves according
to signal strength and the corresponding handoff procedures. By
registering as identity i and then moving, the user provides to the
ISP a trace: (i, (s1, s2, - - .)), where each value of s indicates a specific
wireless transceiver and a timestamp. The provider knows the
locations of the transceivers and can, thus, trace a user’s mobility.
It is not the goal of the user to hide that they are using Zipphone.

The goal of the attacker is to infer and label their identities from
the traces. The attacker is a wireless provider such as a Mobile Net-
work Operator (MNO) that already has a history of traces for each
Zipphone user. The attacker then tries to determine which user from
a set uq, Uy, us, ... is the one that created the trace (i, (s1,s2,...))
based on a classifier trained from the known history, where i repre-
sents an IMSI. Since longer traces are easier to classify, users must
regularly renew their identity; programmable solutions such as an
eSIM could facilitate this process. Section 5 provides a discussion on
how this may be implemented in a modern cellular infrastructure.

In Section 4.3, we demonstrate that longer traces are easier to
identify and link with other traces; users should regularly renew
their identifier in order to keep these traces short. We assume the
user does not perturb their own movement patterns. Therefore
important parameters are (i) the identity renewal frequency, and
(ii) the user’s offline duration. When the renewal frequency is higher,
privacy also increases; but each identity renewal incurs an offline
period and increases power usage. Longer offline durations improve
privacy but reduce utility. We assume all such parameters are public
and known to the attacker.

3.2 Attacker Model

The attacker’s goal is to determine the identify u of a trace
(i, (s1,82,...)) of consecutive tower connections. We assume the
attacker (i) has all traces of all Zipphone devices, and (ii) has la-
belled/identified traces of historic movement for all Zipphone users,
for training a classifier; in other words, the attacker is a service
provider such as a mobile network operator. The attacker performs
trajectory linking, which patches together separate traces if a classi-
fier predicts they are from the same user.
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Algorithm 1 User identifier renewal strategy (Zipphone)

Algorithm 2 Location profiling algorithm

1: utility «~ Minimum utility between 0.0 and 1.0

2: max_off_time «— Maximum time offline during renewal
3: while device is online do

4 waIT(until device moves outside range of tower)
DISCONNECT

off_time « UNIFORM(0,max_off time)
wAIT(off_time)

CONNECT > connect with new identifier
cooldown_time « utility X off_time
waIT(cooldown_time)

Y 2 N T

10:

We assume that all Zipphone users are of equal interest to the
attacker, and that it uses only normal cellular infrastructure to
attack. For example, we assume that the attacker does not install
cameras on towers to identify users via facial recognition, nor
would they follow a particular user by car. It does not make sense
for the attacker to set up an IMSI catcher[17] since they already own
the entire real infrastructure. We assume that location accuracy
is on the level of cell tower; while features such as RSSI or TDOA
could locate wireless devices with more precision, devices could in
turn artificially slightly reduce performance as a defense, effects of
which are outside the scope of this paper.

We assume that the attacker gains no other information from the
users; in mobile phones, information such as IMEL device model, or
OS signatures, are easily turned off via OS settings. In practice, such
features would assist the attacker (see [16]), but are not the focus
of this paper as they are more easily obfuscated or falsified than
real geographical movement. For example, IMEIs, which are akin
to a MAC address, can be modified by the user since she controls
the handset hardware (e.g., SilentCircle’s blackphone [6]). Since
users are likely identifiable by the unique set of outgoing calls they
make, they should make calls via VoIP through an anonymizing
proxy or circuit instead of using a conventional phone connection.
Encryption of the VoIP stream can thwart carrier eavesdropping.
Stronger protection is available by using VoIP over Tor [8].

A user tries to maximize their utility (i.e. uptime) while remaining
private; thus, their reidentifiability depends on their predictability
and mixing behaviour. A user who visits vastly different location
than her peers could not mix easily; her activity could be easily
linked and profiled. A user who is not predictable could not be
easily identified regardless of mixing behaviour.

3.3 Attacker-defender dynamics

3.3.1 User strategy. Algorithm 1 defines the Zipphone user algo-
rithm. As described in the previous section, Zipphone users renew
their identifiers only when three conditions are met: (i) they are
in the process of switching towers, and (ii) the renewal cool down
period (in seconds) has expired; (iii) they are not actively using
the phone. To renew, users first detach, then stay offline, and then
reattach with a new profile. The offline time is selected uniformly
at random from a maximum offline period. It must be random, other-
wise linking traces would be trivial. The cool down period ensures
that the loss of utility remains at a minimum for the user. This
aggressive renewal strategy is frequent enough to allow the natural
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1: function PROFILE_USER(u) > u is the user index

. u __ Count(q)
2: TO,q - Lgec Count(q’)

3: for all p — q € TRANSITIONS (1) do
transition
. u
4 Tyg <
sparse

> The prior for user’s initial location

> p — g denotes a

Count(p—q) . oy .
_ Count(pog)
Soec Count (p—q) This transition matrix may be
5: return T
6: function CLASSIFY_USER(S) > s = (So,$1...),s € C is a sequence

of tower IDs

‘ w -2 Tu
7 return argmax,, Ty, 155 T ..,

formation of mix zones, and does not require users to coordinate
times or places to mix.

3.3.2  Attacker strategies. The attacker’s goal is to take a times-
tamped sequence of visited towers and infer the user, given a train-
ing set. We first describe a location profiling classifier that could
be employed by the attacker. We then define a trajectory linking
classifier to aid the attacker in trajectory linking.

Location profiling algorithm. Our classifier (Algorithm 2) is a
Markov model that chooses the most likely user for a sequence of
tower attachments; the classifier is adapted from Mulder et al. [51].
This algorithm is well suited to identify users of a device that
has its location constantly logged throughout the day. With this
classifier, the attacker labels a sequence of locations with the most
likely user, based on all possible users’ transition histories. In our
model, vector s is a sequence of locations in the location set C:
s = (80,581,852 ...),s € C. In the steps below, the attacker identifies
the most probable user given each candidate user’s history, i =
arg maxy, p(uls).

We determine the most likely user, given a sequence of locations.
Pr(uls) = Pr(u|so, s1,s2,...)

We apply Bayes’ rule, and consider the likelihood of a sequence
given a user.
Pr(so, 1,52, - - . |u) Pr(u)
Pr(so, $1,52,--.)
We assume that each user is equally likely.
|u)

= Pr(so|u) - Pr(s1|u, so) - Pr(sz|u, so,s1)-

Pr(uls) =

Pr(uls) o« Pr(so, s1,s2, ...

Pr(s3|u, so,51,52) - ..

Each transition is independent per the Markov assumption.
n
= Pr(so|u) r[ Pr(sis1lsi, u)
i=0
We determine the most likely user .

n
@ = arg max Pr(so|u) 1_[ Pr(si+1]si, u)
u i=0

The attacker computes a transition matrix T for each user in the
training data by counting the historical transitions. The probability
of the first location in the sequence Pr(so|u) is computed from the
overall number of a user’s occurrence at a location. The attacker
does not consider the probability of a trace ending at a certain
location, since a sequence can end for arbitrary reasons.
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Algorithm 3 Linking algorithm

1: max_t « Maximum time offline during renewal
2: function TRAIN_LINK_TRANSITIONS

3 for all p Taxt, g do v all locations g seen within max_t of p

max_t
Count(p——> -, .
ount (p ) > transition matrix used for

4: T})’ T T
Ygec Count(p——q')
linking

return T!
: function CLASSIFY_USER_WITH_TRAJECTORY(S)

while link_count<max_links do

candidates «—FIND_CANDIDATES(s)> traces < max_off_time
after s ends
9: if EmMpTY(candidates) then

10: break
11: s — arg maxgy Tsl,,,s;,
12:
13:

® N o W

> Vs’ € candidates
S «— CONCATENATE(S,s”)
return CLASSIFY_USER(S)

The success of such an attack depends on two factors: the num-
ber of users in the anonymous community, and the similarity of
the user’s location transitions to the other users. If there is one
registered cell phone user on the network, then linking the user
to location is trivial; however, if there are many users who behave
similarly, it would be difficult for the attacker to tell the user apart.

We also designed and tested a classifier that exploited diurnal
features of user mobility, however, it did not perform significantly
better than the above outlined algorithm. Thus, in the remainder
of the paper, our attacker model does not employ diurnal features.

Trajectory linking algorithm. In Algorithm 3, we extend Algo-
rithm 2 to model the attacker’s ability to do trajectory linking. The
attacker uses the transitions of all users and builds a semi-Markov
linking transition matrix. This matrix is similar to the one described
in Algorithm 3, except that it is built by considering all subsequent
locations within a given offline time, rather than only the next
immediate location. This strategy ensures that unreasonable tran-
sitions do not confuse the classifier, and any unseen transitions
occurring within that time frame are accounted for.

Our trajectory linking first searches for candidate traces that start
within the maximum offline time. If a number of traces start within
the offline time, the targets have a chance to mix, and the attacker
must infer which trace comes next by using the semi-Markov tran-
sition matrix. This process is repeated until the trace is of sufficient
length for classification, or there are no more candidates.

4 EVALUATION

In this section, we determine the parameters in our model and
evaluate the algorithms using two real-world datasets that con-
tain geotagged user data coupled with tower attachment logs:
PhoneLab [52] and RealityMining [23]. First, we characterize the
amount of predictability and mixing behaviour exhibited by users
in these datasets. We demonstrate that both characteristics are re-
lated to the success of the attacker’s accuracy. Next, we simulate
a deployment of Zipphone amongst a community of users, and
determine their reidentifiability with respect to sacrificed utility.

4.1 Datasets

Both datasets were collected by university affiliates who carried
phones instrumented to log network attachment and user activity.

Trait Privacy Reality

Type Predictable Mixing hypothesis PhoneLab Mining
P/M Yes Yes Moderate-Low 18% 18%
P/nM Yes No Low 26% 30%
nP/M No Yes High 30% 24%
nP/nM No No Moderate 26% 29%
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Table 1: User typology and their proportions in our target
datasets, with a hypothesis about the amount of privacy a
user could attain from Zipphone.

(1) PhonelLab [52] is an Android testbed comprising 593 phones
distributed to students at the University of Buffalo campus.
As a part of this testbed, users contributed geotagged traces
of their cellular network associations. We use 24 months from
January 2015 to January 2017 of cellular network association
traces from Phonelab to assess the privacy preservation
potential of Zipphone.

(2) RealityMining [23] is a dataset released by MIT that tracks
a group of 100 mobile phone users across various contexts.
Similar to Phonelab, RealityMining contains geotagged net-
work association information. For our analysis, we leverage
12 months of RealityMining data from July 2004 to July 2005.

We are unaware of other public datasets that could be used to
analyze our algorithms. Larger datasets [13, 61] do not contain
sufficient information about users’ association with towers and,
thus, do not cater to our analyses. (We filed IRB protocol 2017-3900
as part of this project, and it was approved as exempt.)

4.2 Behaviour that affects attacker accuracy

We begin by characterizing user behaviour. Intuitively, there are
two behavioural traits that affect mobile users’ privacy: (i) Pre-
dictability, or to what extent users travel over fixed routes; and
(ii) Mixing behaviour, or how likely are users to visit popular loca-
tions that see a large volume of other Zipphone users. To highlight
the effect of user behaviour on privacy, we categorized PhoneLab
and RealityMining users post hoc into four groups:

e predictable (P) or unpredictable (nP); and

e mixing (M) or not mixing (nM).
The four resulting user types are described in Table 1, where we
also set forth a hypothesis of how user behaviour would affect
privacy. We verify and confirm these hypothesis in our evaluation
(Section 4).

Predictability We calculate the user predictability in terms of the
similarity of the set of cellphone towers they visited during the
testing and training period. For each user, let Cpe be the set of
towers visited during the training phase and Cpos; be the set of
towers visited in the testing phase. We express the predictability in
terms of a user’s Jaccard similarity score between Cpre and Cpost,
defined as

_ Cpre n cpost (1)

Cpre U Cpost”

where 0 < Jo < 1. Jo = 0 when the sets of visited towers in
testing and training are completely disjoint, while Jc = 1 means
that the sets of visited towers in testing and training are the same.
Intuitively, a higher Jo means a more predictable trajectory.

C
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Figure 2: Top: User predictability versus attacker accuracy,
showing that attacker accuracy is near zero with low pre-
dictability. Bottom: User mixing versus attacker accuracy,
showing that median accuracy falls to zero as user mixing in-
creases. The plots were computed from the Phonelab dataset.
The presented results are for a maximum offline time period
of 30 seconds and a set utility of 95%. Utility and accuracy
metrics are discussed in detail in Section 4.3.

Figure 2 (top) presents the attacker’s accuracy (i.e., the proba-
bility that a user would be identified) as a function of the users’
Jaccard score in the PhonelLab dataset. We note that the trends
and respective thresholds are similar for the RealityMining dataset
and omit these results due to space limitations. For this setup, 91%
of users fall within the 0.0-0.4 Jaccard score range. Users with a
Jaccard score below 0.1 are less identifiable. Using this analysis
of our test dataset, we set the Jaccard score to 0.1 as a cut off to
differentiate between predictable users (such with Jo > 0.1) and
unpredictable users (such with Jo < 0.1).

Mixing behaviour We establish a mixing score M¢ as a met-
ric that evaluates a user’s likelihood to mix with other Zipphone
users. Intuitively, the higher the mixing score, the more efficient ID
switching will be and the harder it will be for the adversary to evade
a user’s privacy. We calculate M for each individual user. Let tlk
be the duration of time a user i € (1, N) spends at tower k € (1,K).
During the period tlk, other users j € (1,N’),j # i, N’ c N, may
arrive and depart from tower k. Let lej be the time of user j’s arrival

or departure. Intuitively, tf and rlkj define the temporal granularity
of tower mobility and Zipphone user encounter events, respectively,

from the perspective of a single user i. Let C (rlkj) be the number of
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users in user i’s vicinity at time r . We define the mixing score as:

Ky C(r’f)
Mo=D 2 7 — &
k=1j=1 "ij z(; 1)

@)

Figure 2 (bottom) presents the attacker’s accuracy as a function of
the users’ mixing score in the PhoneLab dataset. The trends and
respective thresholds are similar for the RealityMining dataset. The
attacker’s accuracy deteriorates as the users’ mixing score increases.
Based on this analysis, we set a mixing score of 4 as the cutoff to
determine whether a user is mixing or not mixing, i.e. users with
M < 4 are not mixing and these with M¢ > 4 are mixing.
User typology in our datasets. As detailed earlier, we differenti-
ate between four types of users based on their predictability and
mixing behaviour. Using the presented analysis in Figure 2, we set
a Jaccard similarity threshold of 0.1 and mixing score threshold of
4. We note that these thresholds are solely used to establish the
user topology in the following evaluation and do not play a role
in the profile classification carried out by the attacker. Figure 1
presents the amount of users that fall in each user type category.
We see a relatively even user representation across all categories.
We use these user types and the corresponding user populations in
all results presented in the evaluation of Zipphone (Section 4.3).

4.3 Results

To determine the affect of Zipphone on the utility and privacy
of users, we simulated the protocol using the PhonelLab and
RealityMining datasets. In these simulations, the attacker uses the
inference algorithms outlined in Section 3.3.2 to develop a location
profile for each user. We split the data up into several sets of three
months; training was done on the first two months, and testing was
done on the third month.

4.3.1 Utility-privacy trade-off. We evaluated the utility-privacy
tension with regard to the four user types. We quantify privacy
gained in terms of reduced attacker accuracy. We measured loss
of utility in terms of time spent offline during the testing period.
Figure 3 displays the privacy gained by each user group during the
one-month testing periods.

Users gained significant privacy from sacrificing 5% utility, on
average remaining online for 9.5 minutes, and going offline for
30 seconds. In particular, Type P/M (predictable but mixing users)
gained 45% in the PhonelLab dataset, and 49% in the RealityMining
dataset. Interestingly, Types nP/M and P/nM also show a similar
trend: Type nP/M benefits from having the divided traces be less
predictable, and for Type P/nM any small amount of predictability is
reduced to none. Type nP/nM does not mix, and enjoys uniformly
high privacy because they are unpredictable. Users were more
private in general in the PhoneLab, since it represented a larger
community of users, making mixing easier for the user, and user
inference more difficult for the attacker.

4.3.2  Trace length and location profiling. The main driver of at-
tacker accuracy is trace length. Longer traces contain more informa-
tion, allowing more accurate reidentification. In these experiments,
the attacker tries to identify an independent trace of varying length,
increasing from one second to four weeks. Figure 4 shows the result.
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Figure 3: Top: PhonelLab. Bottom: RealityMining. In both
datasets, predictable but mixing users (Type P/M) gain the
most from using Zipphone. Ten test traces were evaluated
per user, and accuracy is represented as a mean of the pro-
portion of successful reidentifications per user. Error bars
represent a 95% confidence interval.

The longer the trace, the more identifiable (and thus less private)
an individual is. Users who exhibit more predictable behaviour have
less privacy; generally, they benefit from traces that are at most one
hour long. In other words, predictable users should change their
identifier at least once per hour while in motion. Those who travel
to unique locations as compared to others benefit significantly less
from the shorter trace. This result highlights the benefit of Zipphone.
Users should change their identifiers more than once per hour, and
this system obviates the need to physically change an identifier,
and handles this process automatically. While a temporary SIM
device may grant some measure of privacy, a system that renews a
user’s identifier a lot more quickly can be a lot more effective.

4.3.3 Compromises in utility. While users may renew identifiers by
prearranging mixing strategies with other users, such coordination
is impractical. A frequent enough renewal strategy and long enough
renewal times allow mix-zones to naturally form, which enables
users to mix without any coordination. In Figure 5 (top), we examine
the amount of time a user should remain offline. The frequency of
renewal is informed by the utility desired, which we set at 95%.
For users to gain privacy during identifier renewal, they must
remain offline long enough to mix with other users. Additionally,
users must not have a fixed offline time, since this would be suscep-
tible to a timing attack. Users must choose an offline time that is
not so long to be disruptive, but not so short as to offer little privacy.
The Zipphone population’s policy should fix a chosen utility, and
employ a cool down time between each user’s identifier renewal

272

WiSec 20, July 8-10, 2020, Linz, Austria (Virtual Event)

—= PM
PINM - -ofe-

-+~ nP/M
nP/nM

©c o o =
> o ®» ©
| | | |

Attacker accuracy

o
N
L

0.0 — —

Trace length

=
o
L

o o o
B o [ee]

Attacker accuracy

S o
o N
.

Trace length

Figure 4: Top: PhoneLab. Bottom: RealityMining. Users lose a
significant amount of privacy when traces are on the order
of one day long. The accuracy at one month is equivalent to
the accuracy in Figure 3 at 100% utility.

based on that desired utility. For example, if users’ offline-times are
30 seconds, and are aiming to maintain 95% utility, they will keep
every identity for at least 30 seconds + (1 — 0.95) =10 minutes.

Because going offline for 30 seconds can be fairly disruptive, we
analyzed scenarios where reconnections are disallowed if (i) the
user is in the middle of a phone call, or (ii) the device screen is active.
This data was available in only the PhoneLab dataset. Since phone
calls were intermittent, active calls could be kept online without
sacrificing privacy. However, within the offline periods, users would
on average miss 4 calls out of 24 per month while maintaining 95%
utility. Looking at screen usage, we show in Figure 5 (bottom) that
users could preserve active usage of phone undisturbed, but in
doing so would sacrifice additional privacy by a small amount (i.e.
about 2% across all utility levels).

5 INTEGRATING ZIPPHONE WITH
EMERGING MOBILE NETWORKS

In this section we discuss how Zipphone could be integrated in
emerging mobile cellular networks towards improved user privacy.
We first present necessary background on user authentication in
emerging cellular networks. We then detail how Zipphone can
utilize these networks for privacy-preserving services without re-
quiring network modifications. Finally, we present empirical results
for user-side energy overhead.
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Figure 5: Top: the effect of mixing-time on privacy while
maintaining a 95% utility for the PhonelLab dataset. Bottom:
privacy/utility of all users depending on whether their pri-
ority is privacy, phone calls, or screen use. Calls can be pri-
oritized without sacrificing privacy. However, remaining on-
line while the screen is on significantly reduces privacy.

5.1 Background

Traditionally, hardware SIM cards installed in mobile devices pro-
vide the basis for user provisioning in Mobile Network Operators
(MNO). Each SIM has a unique International Mobile Subscriber
Identity (IMSI), which is pre-programmed by the vendor prior to
being sold to a mobile subscriber. At the point of sale, when a user
purchases the SIM card, an entry is created in the MNO’s Home
Location Registry (HLR) connecting the IMSI with a Mobile Sta-
tion International Subscriber Directory Number (MSISDN; i.e., a
phone number). In addition, the IMSI is paired with a Ki value at
the MNO’s Authentication Center (AuC) and used for user equip-
ment (UE) authentication. We note that this procedure requires a
mapping between IMSIs and devices, not IMSIs and users and, thus,
it supports both pre-paid and post-paid services.

This hardware SIM approach to user provisioning is plagued
with high overhead, wasted IMSI allocations, and manual processes.
To address these limitations, the eSIMs standard [1] has been de-
veloped, which allows programmatic and on-the-fly provisioning
of a user’s identity on a network. With eSIMs, mobile users can
maintain multiple simultaneous mobile network identities and use
heterogeneous services from one or multiple MNOs. Three out of
the four major carriers in the US currently support eSIM, with one
major carrier supporting eSIM in 42 other countries worldwide [2].

eSIMs introduce new components to user management that are
useful for Zipphone. Similar to traditional SIMs, the eSIM functional
profile [5] carries phone identification information and is jointly
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maintained in the MNO’s HLR and the AuC. The Subscription Man-
ager Data Preparation (SM-DP+), is responsible for provisioning a
user’s profile onto the eSIM. Thus, the SM-DP+ is the first point of
contact between an aspiring subscriber and the MNO, from which
the subscriber obtains their functional profile. There is no upper
limit on the amount of profiles an eSIM can maintain; it depends on
(i) the size of a single profile, (ii) the eSIM integrated memory and,
(iii) the operator’s preferences. As an example, T-Mobile currently
supports up to 10 concurrent eSIM Profiles [4]. Responding to the
eSIM revolution, both major mobile operating systems, Android!
and i0S?, integrate APIs that allow the development of carrier apps
for programmatic user subscription management.

5.2 Proposed Zipphone Architecture

5.2.1 Overview. Zipphone can be realized as a smartphone applica-
tion. Upon installation and then periodically, the Zipphone app will
anonymously acquire multiple functional profiles and associated
service quants from the MNO’s SM-DP+. We define a service quant
as a set of mobile services (i.e. data, SMS and voice calls) that the
subscriber will use while active with the particular profile and note
that these quants can be obtained in the form of an anonymous pre-
paid service [3, 7]. Zipphone then programmatically swaps these
profiles as discussed in Section 3.3 and uses the corresponding
service quant for the duration in which a profile is active. This
functionality can be achieved without explicit cooperation from the
network provider or any modifications in the network as long as
the provider is eSIM-capable and offers anonymous prepaid plans.

5.2.2  Purchasing Credentials. Zipphone requires that users anony-
mously purchase profiles without linking to a consistent financial or
network identifier. This purchase would be a significant challenge
to deploying Zipphone as it must also not be used to profile the
user. Here we offer a sketch of how it could be done.

Purchase can be made through traditional means, such as a
credit card, to a third-party Mobile Virtual Network Operator. The
MVNO can issue Privacy Pass tokens [18]. These cryptographic
tokens cannot be forged by the client and cannot be spent twice,
and yet they are unlinkable to the purchase. The advantage of this
approach is that the MVNO has the option of keeping track of who
its customers are while not knowing where they are geographically.
In contrast, the MNO would know clients have paid the MVNO,
but not know who they are. The use of Privacy Pass makes it hard
for the MVNO and MNO to share knowledge. If the tokens are sold
by an MVNO, then signaling is required to the MNO to cancel the
IMSI a period of time after they are first used (e.g., 15-30 minutes).
To purchase the Privacy Pass tokens anonymously from an MNO
or MVNO is more challenging. Cash can be used in person. To pay
online, anonymous currencies such as Zcash [37, 57] can be used.
Protocols such as Dandelion++ [26] allow transactions to be issued
to Zcash with network anonymity. It’s also possible that an MNO
could accept Zcash payments, issue Privacy Pass tokens, and accept
the anonymized tokens later. It’s worth noting that Zipphone offers
benefits even when anonymous purchases cannot be made. For
example, law enforcement, activists, or journalists and other large

https://source.android.com/devices/tech/connect/esim-overview
https://developer.apple.com/documentation/coretelephony/
ctcellularplanprovisioning
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Figure 6: Experimental setup for power measurements on
3G and 4G networks.

organizations for whom security is crucial can create their own
trusted MVNO and maintain location privacy from an untrusted
MNO.

5.2.3 Communication without Leaking ldentity or Location. For
an additional layer of privacy, Zipphone users should ignore the
MSISDN (phone numbers) provided by a profile. In other words,
users should not use MSISDN-based services such as text and voice
calls and instead should rely on IP based services over the data plan.
If a Zipphone user initiated or received overt LTE or unencrypted
VOoIP calls, they risk being identified via a profile of call records
held by the carrier. Incoming calls are spam or attacks and should
be ignored. Note that the E911 service, which is tied to a handset
and not a user or SIM, would be still available if needed.

Some protection would be gained from using an encrypted VoIP
service, since it would not reveal to the carrier the identity of
the user’s contact, whom she calls, or from whom she receives
calls. However, if the IP address of the VoIP service is unique, then
connecting to it would help the MNO link a collection of profiles
together. An anonymous VoIP service, such as Torfone can be used;
note that anonymous VoIP has a performance penalty [47].

In general, an anonymous communication system, i.e., Tor, must
be used for all Zipphone communication (voice or data). However,
there is one change required. Tor chooses a consistent, single guard
relay to start all three-relay circuits through the Tor network. If
Zipphone users send all traffic to a single guard relay, it would be
a consistent identifier despite changing IMSIs. Instead of a guard
at the start of the circuit, Zipphone users should use a consistent
relay as the exit. This switching of roles allows Zipphone users to
receive all protections against the Predecessor Attack [64] that Tor
normally provides via guard nodes at the entry.

5.3 Zipphone Overhead

Zipphone triggers periodic disassociation/association from the mo-
bile carrier, which together incur additional battery draw and con-
nect/disconnect delays on the mobile device. Thus, in this section,
we quantify the overhead in terms of battery drain and latency,
incurred by Zipphone on 3G and 4G networks.

Experimental setup. In order to evaluate the power consump-
tion of mobile network association/disassociation, we used a Sam-
sung Galaxy S5 Duos phone with a bypassed battery and a Google
Fi SIM card, and a Monsoon Power Meter. We connected the phone
to the main channel of the power meter, as illustrated in Figure 6,
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Figure 7: Power trace for 3G (top) and 4G (bottom) associa-
tion and disassociation.

which allowed us to both power up the phone and measure its
energy consumption. In order to measure the power draw at 3G
and 4G networks, we forced the phone to the respective technology
and sampled the power draw at a granularty of 200us. We used the
phone’s Settings screen to toggle between Airplane Mode OFF and
Airplane Mode ON every 10 seconds for 4G and every 20 seconds
for 3G. We disabled all background services on the phone. This
ensured that we are only measuring the power draw from associ-
ation/disassociation, plus a baseline of about 700mW used by the
display for the Airplane Settings page. For each of 3G and 4G we
completed 10 full association/disassociation cycles. The average
experienced time and power to connect inform our simulation.

Figure 7 presents a zoomed version of a single asso-
ciate/disassociate cycle for 3G (top) and 4G (bottom)>. There are
several important points to note on each trace. First, the red vertical
line indicates the phone’s transition from Airplane Mode ON to
OFF state, which immediately triggers a network association. After
the association procedure completes, the phone enters FACH (For-
ward Access CHannel) state in anticipation for the user to begin
accessing the Internet. Since this does not happen in our controlled
activity, the phone futher transitions into IDLE state. At the instant
designated with a green vertical line, we toggle Airplane Mode ON,
which immediately triggers a disassociation procedure.

A Zipphone user would experience two types of overhead: (i) of-
fline time, and (ii) power draw. We measure the offline time as
the time between the beginning of network association and the
beginning of the FACH state. We measure the power overhead as
the sum of power to associate and power to disassociate, whereby
the power to associate is incurred from the begining of the network
association to the beginning of the FACH state, while the power
to disassociate is measured from the beginning till the end of the
disassociation procedure.

Figure 2 presents the average incurred overhead for our mea-
surement campaign. We see that the offline time incurred by 3G
is nearly double that of 4G. The power consumption, on another
hand, is comparable across the two technologies. We use these re-
sults to quantify the battery usage per day for users in our datasets.
To this end, we convert the measured power consumption for a

3Note that the timescale (i.e. the x-axis range) for 3G is longer than that for 4G. On
3G, the phone takes significantly longer to transition to IDLE mode compared to 4G.
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mean (std dev)

Power to connect (mW) 2,098 (435)

3G Power to disconnect (mW) 1,282 (157)
Time to connect (s) 5.0 (0.8)

Time to disconnect (s) 4.0 (1.0)
Power to connect (mW) 2,006 (171)

4G Power to disconnect (mW) 1,120 (295)
Time to connect (s) 2.6 (0.2)

Time to disconnect (s) 3.0 (1.2)

Table 2: Time and power overhead incurred by a single asso-
ciation/disassociation procedure on 3G and 4G in our exper-
iments. Results are averaged over 10 runs.
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Figure 8: Battery usage does not exceed 1% per day, regard-
less of desired privacy or network type.

single connect/disconnect from mW to mWh using the values in
Figure 2. We assume a 3.85V battery with a capacity of 2800mAh,
which is typical. On the x-axis we control the desired user utility
from 0.8 to 1, which effectively controls the amount of network
disconnect/connect cycles a user will incur for the duration of a day.
We multiply that number by the energy consumption (in mWh) and
then divide by the battery’s capacity to determine what fraction
of the battery is consumed due to Zipphone. Table 8 presents our
results, which indicate that the battery usage is at most 1% per day
regardless of technology (3G or 4G) or desired privacy.

Network control overhead. Finally, although we do not explic-
itly quantify it, we do not expect that Zipphone users would incur
significantly higher signalling overhead on the cellular network
compared to non-Zipphone users. In order to release network re-
sources and optimize clients’ battery life, network providers force-
fully disassociate users from the network after a network-defined
timeout [55], typically in the order of a few seconds as illustrated by
our measurements in Figure 7. Since Zipphone only operates when
a user is inactive, the control overhead incurred by the network
will be comparable with that from non-Zipphone users.

6 DISCUSSION

6.1 Limitations

Our technique has limitations. Privacy from the MVNO, and not
just the MNO, requires that users make purchases anonymously.
As such, our approach requires deliberate action from the user.
And we require devices that accept software SIMs. Skyroam is one
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provider of devices based on a software SIM that operates in tens of
countries around the world. Another limitation is that users would
never be able to quantify their privacy gains as there is no way
to determine the number of other Zipphone users. In addition, we
do not address other privacy risks, which include physical attacks
(e.g., radio frequency fingerprinting [20]), software vulnerabilities,
use of location-based services, advertising fingerprints, browser
cookies, and malware.

Our evaluations are limited as well. For example, we do not ex-
plicitly consider users mixing when they are stationary; if they do,
attackers could also consider these additional mixes when linking.
Attackers may also use more advanced classifiers that account for
yet additional features (e.g., time of day or favourite locations [69])
to increase accuracy. Conversely, users could develop more effica-
cious methods to prevent linking.

Finally, our results are tied to our datasets, which are relatively
small and limited to university populations. Obtaining a usable
large-scale dataset is difficult, as MNOs are generally unwilling to
anonymize and share such data. Furthermore, collecting user mo-
bility data first-hand requires a fairly involved longitudinal effort.

Despite the limitations, this paper introduces an effective method
for mobile network users to take charge of their own location
privacy, and provides a detailed look at the efficacy of such a service.

6.2 Ethical implications

Mobile devices are an essential part of most people’s daily routine.
Accordingly, there is a tension between the right to location privacy
and the need to investigate crimes and threats to public safety. The
techniques we introduce and evaluate are effective to protecting
privacy, but unfortunately would thwart a common method of
investigation as well. Any deployment of Zipphone would have to
take into account this difficult, zero-sum game ethical dilemma.

7 CONCLUSION

Our work demonstrates that, fundamentally, users do not need to
trust wireless service providers with their location information.
We evaluated a deanonymization attack that uses a combination
of location profiling and trajectory linking, and showed that it is
effective in identifying long-term pseudonyms. Using two sepa-
rate datasets of call detail records, we then demonstrated that a
Zipphone user can defend against such attacks by renewing her
identifier regularly. We also evaluated the utility cost in terms of
time offline and battery life, and showed it to be minimal. Users
who do not use any anonymization scheme are always identifiable.
In our trace-driven evaluations, a non-Zipphone user who is ha-
bitual and conventional (predictable and mixing) who renews her
pseudonym monthly is identifiable 69% of the time, and one who
uses Zipphone is identifiable 24% of the time if she sacrifices 5% of
her utility and 1% of battery life, towards a lower bound of 19% if
she sacrifices more. In other words, users can significantly reduce
their identifiability by up to 45% by renewing their pseudonym
after offline periods consuming less than 5% of their uptime.
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