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ABSTRACT

Access to mobile wireless networks has become critical for day-

to-day life. However, it also inherently requires that a user’s geo-

graphic location is continuously tracked by the service provider.

It is challenging to maintain location privacy, especially from the

provider itself. To do so, a user can switch through a series of iden-

tifiers, and even go offline between each one, though it sacrifices

utility. This strategy can make it difficult for an adversary to per-

form location profiling and trajectory linking attacks that match

observed behavior to a known user.

In this paper, we model and quantify the trade-off between utility

and location privacy. We quantify the privacy available to a com-

munity of users that are provided wireless service by an untrusted

provider. We first formalize two important user traits that derive

from their geographic behavior: predictability and mixing, which

underpin the attainable privacy and utility against both profiling

and trajectory linking attacks. Second, we study the prevalence of

these traits in two real-world datasets with user mobility. Finally,

we simulate and evaluate the efficacy of a model protocol, which

we call Zipphone, in a real-world community of hundreds of users

protecting themselves from their ISP. We demonstrate that users

can improve their privacy by up to 45% by abstaining minimally

(e.g., by sacrificing at most 5% of their uptime). We discuss how a

privacy-preserving protocol similar to our model can be deployed

in a modern cellular network.

CCS CONCEPTS

• Security andprivacy→Usability in security andprivacy;

Pseudonymity, anonymity and untraceability; Mobile and wireless

security.
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1 INTRODUCTION

When mobile users connect to the Internet, they authenticate to a

cell tower, allowing service providers such as Verizon and AT&T

to store a log of the time, radio tower, and user identity [69]. As

providers have advanced towards the current fifth generation of

cellular networks, the density of towers has grown, allowing these

logs to capture users’ locationwith increasing precision.Many users

are persistently connected, apprising providers of their location all

day. Connecting to a large private Wi-Fi network provides similar

information to its administrators. And some ISPs offer cable, cellular,

and Wi-Fi hotspots as a unified package.

While fixed user identifiers are useful in supporting backend

services such as postpaid billing, wireless providers’ misuse of

identifier data is increasingly leading to privacy concerns [14].

Users concerned about their location privacy [10] may use existing

tools that allow protection only at the network and application

levels. For example, VPNs and Tor [21] mask the IP address of a

user from a remote server, and hide the remote server location from

the service provider. Additionally, access control features allow

users to hide or reduce location information sent to location-based

services. No such tools exist for protection of geographic locations

from local service providers Ð but that does not mean that users are

complacent about their ISPs having knowledge of their locations.

A recent class action lawsuit demonstrates that mobile users do

not want cellular service providers to sell their historic movement

records to third parties, such as location aggregators [14].

To gain privacy, a user 𝑢 may attempt to anonymously use a

wireless service by obtaining a mobile identity 𝑖1 without revealing

personal information. The service would provide data connection,

while phone calls would be signalled over a VPN using Voice over

IP (VoIP). The user may switch to a new pseudonymous identity, 𝑖2,

before the first is compromised, eventually going through a series

of identities over time [12]. However, two primary attacks prevent

the user from having location privacy, as illustrated in Figure 1.

(1) In location profiling, an attacker identifies one or more of the

identities 𝑖1, 𝑖2, . . . as user 𝑢 by exploiting the uniqueness of

the locations the user is known to regularly visit.

(2) In trajectory linking, an attacker infers that activity by 𝑖1
is linked to activity by 𝑖2 despite the change in identifier.

The union of locations can enhance the success of location

profiling.

There is a fundamental location privacy cost to connecting to

a mobile service. To reduce the success of these attacks without

modifying their behaviors, users can (i) switch identifies frequently,

and (ii) remain offline for a period of time between connection

sessions, which both reduce user utility. In this paper, we model

and quantify this trade-off between utility and location privacy. We
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the vulnerabilities of similar works [41, 54, 67, 70]. Kesdogan et

al. [42] proposes using a trusted third party to create pseudonyms

for GSM users, but also routes all calls through that provider, which

allows it to characterize the calling pattern and infer the caller.

User-driven trajectory privacy. Mix zones [12, 30] can be em-

ployed by a user against a provider attacker when the network

service provider is non-cooperative. While the concept of mix zones

is fairly old, it remains the only available option for users who want

to hide their own location privacy from a service provider. Work in

VANETs also uses mix zones to protect vehicle trajectory [25, 35, 48].

Given that their focus is on trajectory, these studies do not consider

location profiling. Other work involves the introduction of false

information [44, 58]. Few studies use this concept to protect the

user from an omnipresent network attacker. Chan [15] focuses on

call metadata privacy, rather than location privacy.

User-driven profiling privacy. Work that increases the privacy

of location-based services (LBS) [38, 53, 62, 63] generally add noise

to location queries. These works are not viable or applicable against

an untrusted service provider: a user cannot manipulate which

tower they connect to, and the provider knows the physical loca-

tions of the towers serving users.

Dataset protection. Works that aim to prevent leaks in personally

identifiable information in shared or publicly released datasets [68]

primarily rely on obfuscation. They also strive to prevent trajectory

recovery [34, 60]. Older work on deanonymization of mobile users’

traces assumes the user’s pseudonym is unchanged throughout the

trace. But a small amount of external information, such as the per-

son’s home or work address [40], can deanonymize an obfuscated

trace [11, 12, 31, 45, 49, 51] given a consistent identifier. Zang and

Bolot [69] show that suitably anonymizing a trace of 25 million

cellular users across 50 states (30 billion records total) requires only

that users have the same pseudonym for no longer than a day. A

day’s duration is unsuitable for Zang and Bolot’s goal of support-

ing researchers that wish to characterize the behaviour of users

over time (while maintaining their privacy). On the other hand, the

result is promising for users seeking privacy, who might be able to

change their pseudonyms more frequently than once per day.

Differential privacy. More recently, differential privacy ap-

proaches [22, 50] are used to add noise to datasets while preserving

its aggregate characteristics. Palamidessi et al. [9] introduce geo-

indistinguishability, and ElSalmouny & Gambs [24] further discuss

(𝐷, 𝜖)-location privacy. Xiong et al. [65, 66] formalize situations

where location queries can be temporally correlated and linked.

These methods all assume the service provider is trusted and are,

thus, not applicable to our problem setting.

Outside threats. Several studies protect against third party at-

tackers and vulnerabilities in 3GPP implementations [36, 39]. Khan

et al. [43] provide a cryptographic mechanism to generate LTE

pseudonyms and prevent third-party attackers or IMSI catchers

from linking users.

In comparison to related work, we differ in that we do not trust

the wireless service to ensure the user’s privacy, and we assume

in our analysis that the adversary is attempting to link together

traces. Our evaluations are based on traces of real users [23, 52],

which allows us to quantify the periodicity of identifier changes in

the context of modern cellular infrastructure.

3 ATTACKER AND DEFENDER ALGORITHMS

Our primary goal is to quantify the privacy-utility trade-offs present

in systems that provide geographic anonymity from mobile ISPs.

To do so, first we instantiate a specific protocol for users and pro-

vide well-defined attacker algorithms. The protocol, Zipphone, is

based on mechanisms available to the user only; i.e., the ISP is not

cooperative, an assumption not shared by many location privacy

systems. In short, users can control only their active identity (i.e.

pseudonym) and whether or not they are connected; providers

attempt to link the activities of identities to existing user profiles.

3.1 Problem Statement

Zipphone users seek to use the network, but not have their real

identities associated with mobility recorded in traces. Upon joining

the network, the user 𝑢 is assigned a pseudonym 𝑖 . The pseudonym

lets the user maintain a connection session for some period of time.

The user attaches to a sequence of towers as it moves according

to signal strength and the corresponding handoff procedures. By

registering as identity 𝑖 and then moving, the user provides to the

ISP a trace: (𝑖, (𝑠1, 𝑠2, . . .)), where each value of 𝑠 indicates a specific

wireless transceiver and a timestamp. The provider knows the

locations of the transceivers and can, thus, trace a user’s mobility.

It is not the goal of the user to hide that they are using Zipphone.

The goal of the attacker is to infer and label their identities from

the traces. The attacker is a wireless provider such as a Mobile Net-

work Operator (MNO) that already has a history of traces for each

Zipphone user. The attacker then tries to determinewhich user from

a set 𝑢1, 𝑢2, 𝑢3, . . . is the one that created the trace (𝑖, (𝑠1, 𝑠2, . . .))

based on a classifier trained from the known history, where 𝑖 repre-

sents an IMSI. Since longer traces are easier to classify, users must

regularly renew their identity; programmable solutions such as an

eSIM could facilitate this process. Section 5 provides a discussion on

how this may be implemented in a modern cellular infrastructure.

In Section 4.3, we demonstrate that longer traces are easier to

identify and link with other traces; users should regularly renew

their identifier in order to keep these traces short. We assume the

user does not perturb their own movement patterns. Therefore

important parameters are (i) the identity renewal frequency, and

(ii) the user’s offline duration.When the renewal frequency is higher,

privacy also increases; but each identity renewal incurs an offline

period and increases power usage. Longer offline durations improve

privacy but reduce utility. We assume all such parameters are public

and known to the attacker.

3.2 Attacker Model

The attacker’s goal is to determine the identify 𝑢 of a trace

(𝑖, (𝑠1, 𝑠2, . . .)) of consecutive tower connections. We assume the

attacker (i) has all traces of all Zipphone devices, and (ii) has la-

belled/identified traces of historic movement for all Zipphone users,

for training a classifier; in other words, the attacker is a service

provider such as a mobile network operator. The attacker performs

trajectory linking, which patches together separate traces if a classi-

fier predicts they are from the same user.
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Algorithm 1 User identifier renewal strategy (Zipphone)

1: utility←Minimum utility between 0.0 and 1.0

2: max_off_time← Maximum time offline during renewal

3: while device is online do

4: wait(until device moves outside range of tower)

5: disconnect

6: off_time← uniform(0,max_off_time)

7: wait(off_time)

8: connect ⊲ connect with new identifier

9: cooldown_time← utility × off_time

10: wait(cooldown_time)

We assume that all Zipphone users are of equal interest to the

attacker, and that it uses only normal cellular infrastructure to

attack. For example, we assume that the attacker does not install

cameras on towers to identify users via facial recognition, nor

would they follow a particular user by car. It does not make sense

for the attacker to set up an IMSI catcher[17] since they already own

the entire real infrastructure. We assume that location accuracy

is on the level of cell tower; while features such as RSSI or TDOA

could locate wireless devices with more precision, devices could in

turn artificially slightly reduce performance as a defense, effects of

which are outside the scope of this paper.

We assume that the attacker gains no other information from the

users; in mobile phones, information such as IMEI, device model, or

OS signatures, are easily turned off via OS settings. In practice, such

features would assist the attacker (see [16]), but are not the focus

of this paper as they are more easily obfuscated or falsified than

real geographical movement. For example, IMEIs, which are akin

to a MAC address, can be modified by the user since she controls

the handset hardware (e.g., SilentCircle’s blackphone [6]). Since

users are likely identifiable by the unique set of outgoing calls they

make, they should make calls via VoIP through an anonymizing

proxy or circuit instead of using a conventional phone connection.

Encryption of the VoIP stream can thwart carrier eavesdropping.

Stronger protection is available by using VoIP over Tor [8].

A user tries tomaximize their utility (i.e. uptime)while remaining

private; thus, their reidentifiability depends on their predictability

and mixing behaviour. A user who visits vastly different location

than her peers could not mix easily; her activity could be easily

linked and profiled. A user who is not predictable could not be

easily identified regardless of mixing behaviour.

3.3 Attacker-defender dynamics

3.3.1 User strategy. Algorithm 1 defines the Zipphone user algo-

rithm. As described in the previous section, Zipphone users renew

their identifiers only when three conditions are met: (i) they are

in the process of switching towers, and (ii) the renewal cool down

period (in seconds) has expired; (iii) they are not actively using

the phone. To renew, users first detach, then stay offline, and then

reattach with a new profile. The offline time is selected uniformly

at random from amaximum offline period. It must be random, other-

wise linking traces would be trivial. The cool down period ensures

that the loss of utility remains at a minimum for the user. This

aggressive renewal strategy is frequent enough to allow the natural

Algorithm 2 Location profiling algorithm

1: function profile_user(𝑢) ⊲ 𝑢 is the user index

2: 𝑇𝑢
0,𝑞 ←

𝐶𝑜𝑢𝑛𝑡 (𝑞)∑
𝑞′∈C𝐶𝑜𝑢𝑛𝑡 (𝑞′)

⊲ The prior for user’s initial location

3: for all 𝑝 → 𝑞 ∈ transitions(𝑢) do ⊲ 𝑝 → 𝑞 denotes a

transition

4: 𝑇𝑢
𝑝,𝑞 ←

𝐶𝑜𝑢𝑛𝑡 (𝑝→𝑞)∑
𝑞′∈C𝐶𝑜𝑢𝑛𝑡 (𝑝→𝑞′)

⊲ This transition matrix may be

sparse

5: return𝑇𝑢

6: function classify_user(𝒔) ⊲ 𝒔 = (𝑠0, 𝑠1 . . . ), 𝑠 ∈ C is a sequence

of tower IDs

7: return argmax𝑢 𝑇
𝑢
0,𝑠0

∏𝑛−2
𝑖=0 𝑇𝑢

𝑠𝑖 ,𝑠𝑖+1

formation of mix zones, and does not require users to coordinate

times or places to mix.

3.3.2 Attacker strategies. The attacker’s goal is to take a times-

tamped sequence of visited towers and infer the user, given a train-

ing set. We first describe a location profiling classifier that could

be employed by the attacker. We then define a trajectory linking

classifier to aid the attacker in trajectory linking.

Location profiling algorithm. Our classifier (Algorithm 2) is a

Markov model that chooses the most likely user for a sequence of

tower attachments; the classifier is adapted from Mulder et al. [51].

This algorithm is well suited to identify users of a device that

has its location constantly logged throughout the day. With this

classifier, the attacker labels a sequence of locations with the most

likely user, based on all possible users’ transition histories. In our

model, vector 𝒔 is a sequence of locations in the location set C:

𝒔 = (𝑠0, 𝑠1, 𝑠2 . . . ), 𝑠 ∈ C. In the steps below, the attacker identifies

the most probable user given each candidate user’s history, 𝑢 =

argmax𝑢 𝑝 (𝑢 |𝒔).

We determine the most likely user, given a sequence of locations.

Pr(𝑢 |𝒔) = Pr(𝑢 |𝑠0, 𝑠1, 𝑠2, . . . )

We apply Bayes’ rule, and consider the likelihood of a sequence

given a user.

Pr(𝑢 |𝒔) =
Pr(𝑠0, 𝑠1, 𝑠2, . . . |𝑢) Pr(𝑢)

Pr(𝑠0, 𝑠1, 𝑠2, . . . )

We assume that each user is equally likely.

Pr(𝑢 |𝒔) ∝ Pr(𝑠0, 𝑠1, 𝑠2, . . . |𝑢)

= Pr(𝑠0 |𝑢) · Pr(𝑠1 |𝑢, 𝑠0) · Pr(𝑠2 |𝑢, 𝑠0, 𝑠1)·

Pr(𝑠3 |𝑢, 𝑠0, 𝑠1, 𝑠2) . . .

Each transition is independent per the Markov assumption.

= Pr(𝑠0 |𝑢)

𝑛∏

𝑖=0

Pr(𝑠𝑖+1 |𝑠𝑖 , 𝑢)

We determine the most likely user 𝑢.

𝑢 = argmax
𝑢

Pr(𝑠0 |𝑢)

𝑛∏

𝑖=0

Pr(𝑠𝑖+1 |𝑠𝑖 , 𝑢)

The attacker computes a transition matrix 𝑇 for each user in the

training data by counting the historical transitions. The probability

of the first location in the sequence Pr(𝑠0 |𝑢) is computed from the

overall number of a user’s occurrence at a location. The attacker

does not consider the probability of a trace ending at a certain

location, since a sequence can end for arbitrary reasons.
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Algorithm 3 Linking algorithm

1: max_t←Maximum time offline during renewal

2: function train_link_transitions

3: for all 𝑝
max_t
−−−−→ 𝑞 do ⊲ all locations 𝑞 seen within max_t of 𝑝

4: 𝑇 l
𝑝,𝑞 ←

𝐶𝑜𝑢𝑛𝑡 (𝑝
max_t
−−−−→𝑞)

∑
𝑞′∈C𝐶𝑜𝑢𝑛𝑡 (𝑝

max_t
−−−−→𝑞′)

⊲ transition matrix used for

linking

5: return𝑇 l

6: function classify_user_with_trajectory(𝒔)

7: while link_count<max_links do

8: candidates←find_candidates(𝒔) ⊲ traces ≤ max_off_time

after 𝒔 ends

9: if empty(candidates) then

10: break

11: 𝒔
′ ← argmax𝒔′ 𝑇

l
𝒔𝑛 ,𝒔

′
0

⊲ ∀𝑠′ ∈ candidates

12: 𝒔 ← concatenate(𝒔,𝒔′)

13: return classify_user(𝒔)

The success of such an attack depends on two factors: the num-

ber of users in the anonymous community, and the similarity of

the user’s location transitions to the other users. If there is one

registered cell phone user on the network, then linking the user

to location is trivial; however, if there are many users who behave

similarly, it would be difficult for the attacker to tell the user apart.

We also designed and tested a classifier that exploited diurnal

features of user mobility, however, it did not perform significantly

better than the above outlined algorithm. Thus, in the remainder

of the paper, our attacker model does not employ diurnal features.

Trajectory linking algorithm. In Algorithm 3, we extend Algo-

rithm 2 to model the attacker’s ability to do trajectory linking. The

attacker uses the transitions of all users and builds a semi-Markov

linking transition matrix. This matrix is similar to the one described

in Algorithm 3, except that it is built by considering all subsequent

locations within a given offline time, rather than only the next

immediate location. This strategy ensures that unreasonable tran-

sitions do not confuse the classifier, and any unseen transitions

occurring within that time frame are accounted for.

Our trajectory linking first searches for candidate traces that start

within the maximum offline time. If a number of traces start within

the offline time, the targets have a chance to mix, and the attacker

must infer which trace comes next by using the semi-Markov tran-

sition matrix. This process is repeated until the trace is of sufficient

length for classification, or there are no more candidates.

4 EVALUATION

In this section, we determine the parameters in our model and

evaluate the algorithms using two real-world datasets that con-

tain geotagged user data coupled with tower attachment logs:

PhoneLab [52] and RealityMining [23]. First, we characterize the

amount of predictability and mixing behaviour exhibited by users

in these datasets. We demonstrate that both characteristics are re-

lated to the success of the attacker’s accuracy. Next, we simulate

a deployment of Zipphone amongst a community of users, and

determine their reidentifiability with respect to sacrificed utility.

4.1 Datasets

Both datasets were collected by university affiliates who carried

phones instrumented to log network attachment and user activity.

Type
Trait Privacy

hypothesis
PhoneLab

Reality

MiningPredictable Mixing

P/M Yes Yes Moderate-Low 18% 18%

P/nM Yes No Low 26% 30%

nP/M No Yes High 30% 24%

nP/nM No No Moderate 26% 29%

Table 1: User typology and their proportions in our target

datasets, with a hypothesis about the amount of privacy a

user could attain from Zipphone.

(1) PhoneLab [52] is an Android testbed comprising 593 phones

distributed to students at the University of Buffalo campus.

As a part of this testbed, users contributed geotagged traces

of their cellular network associations.We use 24months from

January 2015 to January 2017 of cellular network association

traces from PhoneLab to assess the privacy preservation

potential of Zipphone.

(2) RealityMining [23] is a dataset released by MIT that tracks

a group of 100 mobile phone users across various contexts.

Similar to PhoneLab, RealityMining contains geotagged net-

work association information. For our analysis, we leverage

12 months of RealityMining data from July 2004 to July 2005.

We are unaware of other public datasets that could be used to

analyze our algorithms. Larger datasets [13, 61] do not contain

sufficient information about users’ association with towers and,

thus, do not cater to our analyses. (We filed IRB protocol 2017-3900

as part of this project, and it was approved as exempt.)

4.2 Behaviour that affects attacker accuracy

We begin by characterizing user behaviour. Intuitively, there are

two behavioural traits that affect mobile users’ privacy: (i) Pre-

dictability, or to what extent users travel over fixed routes; and

(ii) Mixing behaviour, or how likely are users to visit popular loca-

tions that see a large volume of other Zipphone users. To highlight

the effect of user behaviour on privacy, we categorized PhoneLab

and RealityMining users post hoc into four groups:

• predictable (P) or unpredictable (nP); and

• mixing (M) or not mixing (nM).

The four resulting user types are described in Table 1, where we

also set forth a hypothesis of how user behaviour would affect

privacy. We verify and confirm these hypothesis in our evaluation

(Section 4).

Predictability We calculate the user predictability in terms of the

similarity of the set of cellphone towers they visited during the

testing and training period. For each user, let 𝐶𝑝𝑟𝑒 be the set of

towers visited during the training phase and 𝐶𝑝𝑜𝑠𝑡 be the set of

towers visited in the testing phase. We express the predictability in

terms of a user’s Jaccard similarity score between 𝐶𝑝𝑟𝑒 and 𝐶𝑝𝑜𝑠𝑡 ,

defined as

𝐽𝐶 =

𝐶𝑝𝑟𝑒 ∩𝐶𝑝𝑜𝑠𝑡

𝐶𝑝𝑟𝑒 ∪𝐶𝑝𝑜𝑠𝑡
, (1)

where 0 ≤ 𝐽𝐶 ≤ 1. 𝐽𝐶 = 0 when the sets of visited towers in

testing and training are completely disjoint, while 𝐽𝐶 = 1 means

that the sets of visited towers in testing and training are the same.

Intuitively, a higher 𝐽𝐶 means a more predictable trajectory.
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