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The effect of phase change on stability of
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Buoyancy–thermocapillary convection in a layer of volatile liquid driven by a
horizontal temperature gradient arises in a variety of situations. Recent studies have
shown that the composition of the gas phase, which is typically a mixture of vapour
and air, has a noticeable effect on the critical Marangoni number describing the onset
of convection as well as on the observed convection pattern. Specifically, as the total
pressure or, equivalently, the average concentration of air is decreased, the threshold
of the instability leading to the emergence of convective rolls is found to increase
rather significantly. We present a linear stability analysis of the problem which shows
that this trend can be readily understood by considering the transport of heat and
vapour through the gas phase. In particular, we show that transport in the gas phase
has a noticeable effect even at atmospheric conditions, when phase change is greatly
suppressed.

Key words: absolute/convective instability, condensation/evaporation, Marangoni convection

1. Introduction
Convection in fluids with a free surface driven by a horizontal temperature gradient

has been studied extensively due to applications in crystal growth and thermal
management. The first systematic study of convection in non-volatile fluids appears
to be due to Birikh (1966), who derived an analytic solution for a planar return
flow in a uniform laterally unbounded layer due to a combination of buoyancy and
thermocapillary stresses. This solution also describes the flow away from the end
walls in a laterally bounded geometry: thermocapillary stresses drive the flow from
the hot end towards the cold end near the free surface, with a return flow near the
bottom of the layer. Kirdyashkin (1984) repeated Birikh’s theoretical analysis and
validated the analytical solutions experimentally.

Smith & Davis (1983a,b) performed a linear stability analysis of such flows in
the limit of vanishing dynamic Bond number, BoD (i.e. ignoring buoyancy effects).
They predicted that, depending on the Prandtl number of the liquid, the uniform
base flow would undergo an instability towards either surface waves (for Pr < 0.15,
which corresponds to liquid metals) or hydrothermal waves (for Pr > 0.15, which
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corresponds to gases and non-metallic liquids) above a critical Marangoni number
Ma, which characterizes the magnitude of thermocapillary stresses. In particular,
hydrothermal waves were predicted to form at an angle to the direction of the
thermal gradient and travel in the direction of the thermal gradient. As Pr increases,
the angle changes smoothly from nearly transverse to nearly parallel to the thermal
gradient. The theoretical predictions have since been thoroughly tested and verified
both in microgravity and for thin films in terrestrial conditions. A thorough overview
of these experiments is presented in a review paper by Schatz & Neitzel (2001).

A different type of instability is found at BoD = O(1), when buoyancy is non-
negligible. Villers & Platten (1992) studied buoyancy–thermocapillary convection in a
rectangular cavity for acetone (Pr = 4.24) experimentally and numerically. Although
acetone is volatile, reasonable agreement was found between the experimental
observations at atmospheric conditions and the numerical simulations based on a
one-sided model that ignored heat and mass transfer in the gas phase. For low Ma a
featureless planar return flow was found, which is well described by Birikh’s solution.
At higher Ma a steady cellular pattern featuring multiple convection rolls was found
instead of hydrothermal waves. The (transverse) convection rolls were found to
rotate in the same direction, unlike the case of pure buoyancy (or Rayleigh–Bénard)
convection driven by a vertical temperature gradient. At even higher Ma the steady
state was found to be replaced by an oscillatory pattern that was also unlike a
hydrothermal wave: the convection rolls were observed to travel in the direction
opposite to that of the thermal gradient. Similar results were obtained later by
De Saedeleer et al. (1996) for decane (Pr = 15) and Garcimartín, Mukolobwiez &
Daviaud (1997) for 0.65 cSt and 2.0 cSt silicone oil (Pr = 10 and 30, respectively)
in rectangular cavities with strong confinement in the spanwise direction.

Riley & Neitzel (1998) performed one of the most extensive and detailed
experimental studies of convection in 1 cSt silicone oil (Pr = 13.9) in a rectangular
cavity with a spanwise dimension Ly comparable to the streamwise dimension Lx.
They discovered that a direct transitions from steady, unicellular flow to hydrothermal
waves takes place for small values of the dynamic Bond number (BoD .0.2), while for
BoD & 0.2 the results are similar to those of earlier studies with spanwise confinement:
the featureless return flow first transitions to steady co-rotating convection cells
and, upon further increase in Ma, to an oscillatory multicellular pattern. Riley
and Neitzel also determined the critical values of Ma and the wavelength λ of
the convective pattern as a function of BoD. Burguete et al. (2001) performed
experiments on convection in 0.65 cSt silicone oil (Pr = 10.3) in a rectangular
cavity with different aspect ratios where the spanwise dimension was greater than
the streamwise dimension. Similarly, they found that the base return flow destabilizes
into either oblique travelling waves or longitudinal stationary rolls, respectively, for
low and high BoD.

Convective patterns have also been studied extensively using numerical simulations.
Most of the numerical studies (Ban Hadid & Roux 1990; Ben Hadid & Roux 1992;
Villers & Platten 1992; Mundrane & Zebib 1994; Lu & Zhuang 1998; Shevtsova,
Nepomnyashchy & Legros 2003) were based on one-sided models which ignore the
transport in the gas phase, assume that the free surface is flat and non-deformable,
the bottom wall and the interface are adiabatic, and phase change is negligible. These
numerical simulations were able to reproduce some features of the experimental
studies. For example, Shevtsova et al. (2003) and Shevtsova & Legros (2003)
performed numerical simulations for decane (Pr = 14.8) in a rectangular layer at
different BoD. They found that as Ma increases, the primary instability leads to
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250 R. O. Grigoriev and T. Qin

hydrothermal waves for BoD 6 0.25, while for BoD > 0.32 the primary (secondary)
instability produces a steady (oscillatory) multicellular flow.

Since it does not account for buoyancy, the linear stability analysis of Smith &
Davis (1983a,b) fails to predict the stationary patterns that emerge for BoD = O(1).
However, most of the linear stability analyses accounting for buoyancy also failed
to predict the correct pattern, i.e. stationary (transverse) rolls that were observed in
the experiments. Using adiabatic boundary conditions at the top and bottom of the
liquid layer, Parmentier, Regnier & Lebon (1993) predicted transition to travelling
waves rather than a steady multicellular pattern for a range of Pr from 0.01 to 10,
regardless of the value of BoD. Chan & Chen (2010), who used similar assumptions,
also predicted transition to travelling waves for a Pr = 13.9 fluid. Moreover, their
predicted critical Ma and wavelength λ do not match the experiment (Riley & Neitzel
1998). In both cases the predicted travelling waves are oblique for smaller BoD and
become transverse for BoD greater than some critical O(1) value.

Mercier & Normand (1996) showed that transition to a stationary convective pattern
can take place if the adiabatic boundary conditions are replaced with Newton’s cooling
law, although that requires an unrealistically large surface Biot number (Bi&185/BoD).
Moreover, the predicted pattern corresponds to longitudinal convection rolls, while in
most experiments transverse rolls were observed. In a subsequent paper Mercier &
Normand (2002) considered the effects of the end walls, which they described as
spatial disturbances superimposed on the uniform base flow. Their analysis predicted
that, depending upon the Prandtl number, convection rolls would develop near the
hot end (for Pr > 4), near the cold end (for Pr < 0.01), or at both end walls (for
0.01< Pr< 4).

To our knowledge, the study by Priede & Gerbeth (1997) is the only one to date
which correctly predicts the formation of a stationary pattern at BoD = O(1). They
argued that travelling waves, being convectively unstable, cannot get sufficiently
amplified by linear instability in a laterally bounded system. At the same time, the
effect of lateral walls extends far into the bulk of the liquid layer, resulting in a
stationary pattern of transverse convection rolls. Their predicted critical values of
Ma are in reasonable agreement with the threshold values found by Riley & Neitzel
(1998), although there is a systematic deviation, suggesting that some important
effects have not been considered.

The volatility of the fluids used in the experiments is one source of the discrepancy
with analytical (and most numerical) predictions. Although at atmospheric conditions
phase change is usually strongly suppressed, it can still play a role. The latent heat
associated with phase change can significantly modify the interfacial temperature,
and hence the thermocapillary stresses. However, there are very few studies that
investigated this effect. Li et al. (2012) have studied non-adiabatic effects by
using Newton’s cooling law with a small Biot number. Their numerical simulations
ignored phase change, but were able to reproduce many features of the experimental
observations at atmospheric conditions. Ji, Liu & Liu (2008) considered phase
change, but ignored buoyancy, so their analysis is only applicable for thin films or
under microgravity, i.e. when BoD ≈ 0.

A few recent studies investigated the role played by the gas phase, which is
generally a binary mixture of a non-condensable gas (typically air) and the vapour,
in more detail. In particular, the experimental study of Li, Grigoriev & Yoda (2014),
which used a volatile 0.65 cSt silicone oil (Pr = 9.2), showed that for BoD = O(1)
the threshold values of Ma increase rather dramatically as the air is removed from
the experimental apparatus. The numerical simulations of this experimental set-up
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(Qin, Tuković & Grigoriev 2014, 2015; Qin & Grigoriev 2015) based on a two-sided
model, which took phase change into account and explicitly described the transport of
heat and vapour through the gas phase, reproduced the experimental results. The main
effect of air is to suppress phase change by impeding the transport of vapour towards,
or away from, the interface, but its presence also affects thermal conductivity of the
gas layer. This suggests that phase change and transport in the gas phase play an
important role in this problem, especially at reduced pressures (reduced concentrations
of air).

In order to better understand the mechanism of the instability and the effect
of the gas phase we formulated a two-sided model of the flow valid for arbitrary
composition of the gas phase; it is described in § 2. The analytical solution describing
the uniform return flow (in both phases) is derived in § 3. The stability of that
solution is investigated in § 4. The results of linear stability analysis are compared
with previous analytical, experimental and numerical studies in § 5, and are discussed
in § 6. Conclusions are presented in § 7.

2. Mathematical model
2.1. Governing equations

We will assume that the liquid layer has depth dl and lateral dimensions much larger
than dl. Since in most experiments the system is covered by a horizontal plate to limit
evaporation, we will assume that the gas layer also has a finite depth dg. To describe
convection in this two-layer system, we will use a variation of the two-sided model
originally introduced by Qin et al. (2014) for near-atmospheric conditions, and later
extended by Qin & Grigoriev (2015) to the limit when the gas phase is dominated
by the vapour, rather than air. A version of the model interpolating between the two
limits is summarized below. The momentum transport in the bulk is described, for
both the liquid and the gas phase, by the Navier–Stokes equation

ρ(∂tu+ u · ∇u)=−∇p+µ∇2u+ ρ(T, ca)g, (2.1)

where u is the fluid velocity, T is the fluid temperature, p is the fluid pressure, ρ and
µ are the fluid’s density and viscosity, respectively, ca is the concentration of air, and
g is the gravitational acceleration. (The air is non-condensable, so ca= 0 in the liquid
phase.) Following standard practice, we use the Boussinesq approximation, where the
density is considered constant everywhere except in the last term on the right-hand
side representing the buoyancy force. In particular, the mass conservation equation in
both phases reduces to

∇ · u= 0. (2.2)

To account for buoyancy, the density of the liquid phase is assumed to depend linearly
on the temperature

ρl = ρ
0
l [1− βl(T − T0)], (2.3)

where ρ0
l is the density at the temperature T0 describing global thermodynamic

equilibrium, and βl =−ρ
−1
l ∂ρl/∂T is the coefficient of thermal expansion. Here and

below, subscripts l, g, v, a and i denote properties of the liquid and gas phase,
vapour and air component, and the liquid–vapour interface, respectively. The index
0 will be used throughout the paper to distinguish the equilibrium values from the
non-equilibrium ones, where the choice is not obvious. In the gas phase

ρg = ρa + ρv, (2.4)
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252 R. O. Grigoriev and T. Qin

where both vapour and air are considered to be ideal gases

ρa,v =
pa,v

R̄a,vT
, (2.5)

R̄a,v=R/Ma,v, R is the universal gas constant, and Ma,v is the molar mass of air/vapour.
Correspondingly, the total pressure in the gas is

pg = pa + pv. (2.6)

Mass transport in the gas phase is described by the standard conservation equation(s)

∂tna,v +∇ · ja,v = 0, (2.7)

for the number density of the two components

na,v =
ρa,v

ma,v
, (2.8)

where ma,v = Ma,v/NA is the mass of one air/vapour molecule. The number density
flux is given by

ja,v = na,vu− ngD∇ca,v = ng(uca,v −D∇ca,v), (2.9)

where the first and the second term on the right-hand side represent the contributions
due to advection and diffusion, respectively, D is the binary diffusion coefficient, and

ca,v =
na,v

ng
=

pa,v

pg
(2.10)

are the concentrations (or, more precisely, the molar fractions) of the two components.
Therefore, the conservation equation(s) (2.7) can be rewritten as

∂t(ngca,v)+ ngu · ∇ca,v =∇ · (ngD∇ca,v). (2.11)

From the ideal gas law, the total number density in the gas phase

ng =
pg

kBT
, (2.12)

where kB = R/NA is the Boltzmann constant. As we showed previously (Qin
et al. 2015), spatial variation of pg can in practice be neglected. Furthermore,
the largest temperature variation in relevant experimental and numerical studies
is around 5 % (and typically much smaller than that), such that ng can be assumed
constant. Consequently (2.11) reduces to an advection–diffusion equation for the two
concentrations

∂tca,v + u · ∇ca,v =∇ · (D∇ca,v). (2.13)

These two equations are equivalent, so either one can be used, since ca + cv = 1.
Finally, the transport of heat is also described using an advection–diffusion equation

∂tT + u · ∇T = α∇2T, (2.14)

where α= k/(ρCp) is the thermal diffusivity, k is the thermal conductivity, and Cp is
the heat capacity, of the fluid.
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2.2. Boundary conditions at the interface
The system of coupled evolution equations for the velocity, pressure, temperature
and concentration fields should be solved in a self-consistent manner, subject to
the boundary conditions describing the balance of momentum, heat and mass fluxes
between the two phases. The phase change at the interface can be described using
kinetic theory (Schrage 1953). As we have shown previously (Qin et al. 2015), the
choice of the phase change model has negligible effect on the results. The mass flux
across the interface is given by (Klentzman & Ajaev 2009)

J =
2χ

2− χ
ρv

√
R̄vTi

2π

[
pl − pg

ρlR̄vTi
+

L
R̄vTi

Ti − Ts

Ts

]
, (2.15)

where χ is the accommodation coefficient, L is the latent heat of vaporization, and
subscript s denotes saturation values for the vapour. The dependence of the local
saturation temperature Ts on the partial pressure of vapour pv is described using the
Clausius–Clapeyron equation for phase equilibrium

ln
pv
p0
v

=
L
R̄v

[
1
T0
−

1
Ts

]
, (2.16)

where p0
v is the saturation pressure of the vapour at the equilibrium temperature T0.

The first term in (2.15) is proportional to the Young–Laplace pressure and can be
ignored in this problem, since the interface is considered flat.

The mass flux balance at the interface can be expressed with the help of (2.7). In
the reference frame of the interface, the mass flux of the vapour is given by

J
mv

= n̂ · jv = ngn̂ · ([ug − ui]cv −D∇cv), (2.17)

where ui is the velocity of the liquid at the interface and n̂ is the unit vector normal to
the interface. Since air is non-condensable, its mass flux across the interface is zero:

0= n̂ · ja = ngn̂ · ([ug − ui]ca −D∇ca). (2.18)

Since ca + cv = 1, these two relations can be solved yielding two of the boundary
conditions for (2.1) and (2.7) in the gas phase

n̂ · ∇cv =−
caJ

mvngD
(2.19)

and
n̂ · (ug − ui)=

J
mvng

. (2.20)

The heat flux balance is given by

LJ = n̂ · kg∇Tg − n̂ · kl∇Tl, (2.21)

where the advective contribution to the heat flux is negligible on both sides of the
interface. Indeed, in the gas phase, conduction is the dominant contribution (Qin &
Grigoriev 2015), while on the liquid side

n̂ · (ul − ui)=
J
ρl
. (2.22)
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254 R. O. Grigoriev and T. Qin

Since the liquid density is much greater than that of the gas, the left-hand side of
(2.22) is very small compared with n̂ · (ug − ui) and can be ignored.

The remaining boundary conditions for u and T at the liquid–vapour interface are
standard: the temperature is continuous

Tl = Ti = Tv (2.23)

as are the tangential velocity components

(I− n̂n̂) · (ul − ug)= 0. (2.24)

The stress balance
(Σl −Σg) · n̂= n̂κσ − γ∇sTi (2.25)

incorporates both the viscous drag between the two phases and the thermocapillary
effect. Here Σ = µ[∇u + (∇u)T] − p is the stress tensor, κ(= 0) is the interfacial
curvature, ∇s = (I − n̂n̂) · ∇ is the surface gradient, and γ = −∂σ/∂T is the
temperature coefficient of surface tension.

We will further assume that side/top/bottom walls are adiabatic, n̂ · ∇T = 0, which
is a good approximation for most experimental set-ups. The heat transport through the
end walls at x= 0 and x= Lx is not treated explicitly in this study, but in principle a
variety of boundary conditions, from constant temperature to constant flux to mixed
boundary conditions can be accommodated. Standard no-slip boundary conditions
u= 0 for the velocity and no-flux boundary conditions n̂ · ∇ca,v = 0 for concentration
apply on all the walls.

3. The base flow

In liquid layers that are not too thin, under normal gravity, convection is driven
by both buoyancy and thermocapillarity. The strength of these two effects can be
quantified, respectively, in terms of the Marangoni number

Ma=
γ d2

l

µlαl
τ (3.1)

and the Rayleigh number

Ra=
gβld4

l τ

νlαl
, (3.2)

where νl = µl/ρl is the kinematic viscosity of the liquid and τ is the horizontal
component of the temperature gradient, assumed to be in the positive x direction.
In the numerics and experiment we set τ = x̂ · ∇sTi, which is found to be nearly
independent of the location in the central region of the flow (Qin & Grigoriev 2015).
The dynamic Bond number

BoD =
Ra
Ma
=
ρlgβld2

l

γ
(3.3)

is independent of τ and quantifies the relative strength of buoyancy and thermo-
capillarity. In defining non-dimensional combinations, as well as various scales, we
will use the values of material parameters at the equilibrium temperature T0.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

91
8

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 G

eo
rg

ia
 In

st
itu

te
 o

f T
ec

hn
ol

og
y,

 o
n 

01
 S

ep
 2

02
0 

at
 2

1:
06

:0
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2017.918
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


The effect of phase change on stability of convective flow 255

(a) (b)

(c) (d )

FIGURE 1. Numerical solutions at c0
a = 0.96 (atmospheric conditions) for the flow of

0.65 cSt silicone oil in a rectangular cell with aspect ratios Γx = 19.4 and A = 3 (Qin
& Grigoriev 2015). Shown are the level sets of (a) the temperature field T , (b) vapour
concentration field cv , and (c) stream function ψ for Ma= 190. (d) Shows the streamlines
for a slightly higher Ma= 370. Here and below, the grey (white) background indicates the
liquid (gas) phase. The horizontal and vertical axes are x and z; the cold/hot end wall is
on the left/right.

As discussed in the introduction, at sufficiently low Ma, a steady return flow is
found in the liquid layer. The analytical solution of Birikh (1966) describes such a
flow in laterally unbounded layers of non-volatile liquids. This solution also describes
the flow observed in laterally bounded layers away from the end walls (cf. figure 1)
even for volatile fluids under atmospheric conditions when the phase change is
strongly suppressed (Qin et al. 2014). For volatile fluids at reduced pressures, Birikh’s
solution becomes invalid due to the increasing role of phase change (Li et al. 2014;
Qin et al. 2014). Instead, we should look for a solution to the two-sided model
described in the previous section, which describes the flow in both layers. In order
to reduce the number of parameters, the governing equations (2.1), (2.2), (2.13), and
(2.14) are non-dimensionalized by introducing the length scale dl, time scale d2

l /νl,
velocity scale νl/dl, density scale ρl, pressure scale ρl(νl/dl)

2, and temperature scale
τdl =µlαlMa/(γ dl).

The dimensionless governing equations for the liquid layer become

∇̃ · ũl = 0,

∂t̃ũl + ũl · ∇̃ũl =−∇̃p̃+ ∇̃2ũl +GrT̃lẑ,

∂t̃T̃l + ũl · ∇̃T̃l = Pr−1
∇̃

2T̃l,

 (3.4)

where ∇̃= dl∇, ũl = uldl/νl, T̃l = (Tl − T0)/(τdl), and

Gr=
Ra
Pr
=

gβld4
l τ

ν2
l

(3.5)

is the Grashof number. We will use a coordinate system defined such that the liquid–
vapour interface corresponds to the plane z̃= 0 (so that the liquid layer corresponds to
−1< z̃< 0). Recall that the x axis points in the direction of the applied temperature
gradient, with the origin chosen such that Ti = T0 at x̃= 0.

The dimensionless governing equations for the gas layer (0< z̃< A) are

∇̃ · ũg = 0,

∂t̃ũg + ũg · ∇̃ũg =−
ρl

ρg
∇̃p̃+Kν∇̃

2ũg + (ΞT T̃g +Ξcc̃v)ẑ,

∂t̃T̃g + ũg · ∇̃T̃g =Kα∇̃
2T̃g,

∂t̃c̃v + ũg · ∇̃c̃v =KD∇̃
2c̃v,


(3.6)
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where ũg=ugdl/νl, T̃g= (Tg−T0)/(τdl), c̃v= cv− c0
v, c0

v= 1− c0
a, A= dg/dl, Kν = νg/νl,

Kα = αg/νl, and KD =D/νl. The non-dimensional combinations

ΞT =
gβgd4

l τ

ν2
l
=
βg

βl
Gr,

Ξc =
gd3

l

ν2
l

ma −mv

c0
ama + c0

vmv

,

 (3.7)

describe the contributions to the buoyancy force in the gas layer due to perturbations
in the temperature and composition of the gas, respectively. Note that ΞT depends on
the imposed temperature gradient τ , but not c0

a, while Ξc depends on c0
a, but not τ .

Both the imposed temperature gradient τ and the composition of the gas phase,
parametrized by the equilibrium concentration of air c0

a, play a key role in this
problem. In experiment (Li et al. 2014), c0

a was controlled indirectly by varying the
net gas pressure

p0
g =

p0
v

1− c0
a

. (3.8)

In the following analysis, it will be more convenient to describe the composition
directly in terms of c0

a. In terms of p0
g, we can write ng ≈ p0

g/(kBT0), while p̃ in (3.4)
and (3.6) represents the non-dimensional form of the difference pg − p0

g.
In order to satisfy the incompressibility condition, we will assume that the flow

is strictly two-dimensional and introduce a stream function for each layer, such that

ũl = (∂z̃ψ̃l, 0,−∂x̃ψ̃l),

ũg = (∂z̃ψ̃g, 0,−∂x̃ψ̃g).

}
(3.9)

Eliminating the pressure, the governing equations (3.4) for the liquid layer can be
rewritten as

(∂t̃ − ∇̃
2
+ ∂z̃ψ̃l∂x̃ − ∂x̃ψ̃l∂z̃)∇̃

2ψ̃l +Gr∂x̃T̃l = 0,

∂t̃T̃l + ∂z̃ψ̃l∂x̃T̃l − ∂x̃ψ̃l∂z̃T̃l − Pr−1
∇̃

2T̃l = 0.

}
(3.10)

For the gas layer we have

(∂t̃ −Kν∇̃
2
+ ∂z̃ψ̃g∂x̃ − ∂x̃ψ̃g∂z̃)∇̃

2ψ̃g +ΞT∂x̃T̃g +Ξc∂x̃c̃v = 0,

∂t̃T̃g + ∂z̃ψ̃g∂x̃T̃g − ∂x̃ψ̃g∂z̃T̃g −Kα∇̃
2T̃g = 0,

∂t̃c̃v + ∂z̃ψ̃g∂x̃c̃v − ∂x̃ψ̃g∂z̃c̃v −KD∇̃
2c̃v = 0.

 (3.11)

3.1. Boundary conditions
At the bottom of the liquid layer (z̃=−1) and the top of the gas layer (z̃=A), no-slip
and adiabatic boundary conditions apply

ũ= 0,
∂z̃T̃ = 0.

}
(3.12)

At the interface (z̃= 0), the temperature and velocity fields are continuous

T̃l = T̃g = T̃i,

ũl = ũg = ũi,

}
(3.13)
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where for our choice of the origin of coordinate system T̃i = x̃. Since µl � µg
and typically dg > dl, the viscous stress in the gas layer can be ignored, yielding a
simplified expression for the shear stress balance at the interface

∂z̃ũl,x =−Re∂x̃T̃l, (3.14)

where

Re=
Ma
Pr
=
γ d2

l

µlνl
τ (3.15)

is the Reynolds number.
The heat flux balance (2.21) at the interface reduces to

∂z̃T̃l =
kg

kl
∂z̃T̃g −

V
Ma

J̃, (3.16)

where kg = c0
vkv + c0

aka, and J̃ = Jdl/(Dmvng) is the dimensionless mass flux. The
dimensionless combination

V =
Lγ dl

αlµlkl

Dp0
g

R̄vT0
, (3.17)

or more precisely the ratio V/Ma, describes the relative magnitude of the latent heat
released (absorbed) at the interface due to condensation (evaporation) compared with
the vertical heat flux in the liquid layer due to conduction. It should be noted that,
although the product Dp0

g, and consequently V , is a function of T0, it is independent
of the gas pressure, and therefore c0

a.
Non-dimensionalizing (2.19) and (2.20), we obtain

∂z̃c̃v =−c0
ac0
v J̃, (3.18)

and
n̂ · (ũg − ũi)= c0

vKDJ̃. (3.19)

The mass flux vanishes at the top of the gas layer

∂z̃c̃v = 0. (3.20)

The base uniform flow corresponds to a vanishing mass flux at the interface, J̃ = 0,
which is also an assumption made by all one-sided models. The base flow is spatially
uniform in the lateral direction(s) which, coupled with incompressibility, requires
n̂ · ui = 0. This leads to a number of simplifications. In particular, (3.18) and (3.19)
require that ũl,z = ũg,z = 0 and ∂z̃c̃v = 0 at the interface. Furthermore, the heat flux at
the interface should also vanish, so that (2.21) gives ∂z̃T̃l = ∂z̃T̃g = 0.

The boundary conditions for the stream function can be easily obtained from those
for the velocities. At the bottom of the liquid layer and the top of the gas layer

ψ̃ = 0,

∂x̃ψ̃ = ∂z̃ψ̃ = 0.

}
(3.21)

For a uniform flow, the net flux through any vertical plane vanishes. Combined with
conditions (2.24) and (2.25) this requires that at the interface

ψ̃l = ψ̃g = 0,

∂z̃ψ̃l − ∂z̃ψ̃g = 0,

∂2
z̃ ψ̃l + Re∂x̃T̃l = 0.

 (3.22)
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258 R. O. Grigoriev and T. Qin

3.2. Fluid flow and temperature in the liquid layer

For a uniform horizontal flow, where both ψ̃l and ψ̃g are functions of z̃ alone, we can
look for solutions to (3.10) in the form

T̃l = x̃+ θ̃l(z̃), (3.23)

where θ̃l(0) = 0. With this choice, the system (3.10) reduces to coupled ordinary
differential equations (ODEs)

−ψ̃ ′′′′l +Gr= 0,
Pr ψ̃ ′l − θ̃

′′

l = 0,

}
(3.24)

where prime stands for the derivatives with respect to the z̃ coordinate.
Solving the system (3.24) subject to the boundary conditions at the bottom and

the free surface of the liquid layer, we find the steady-state solutions for the stream
function

ψ̃l = Re
[
−

z̃(z̃+ 1)2

4
+ BoD

z̃(z̃+ 1)2(2z̃− 1)
48

]
, (3.25)

velocity

ũl = Re
[
−
(z̃+ 1)(3z̃+ 1)

4
+ BoD

(z̃+ 1)(8z̃2
+ z̃− 1)

48

]
x̂, (3.26)

and temperature field

T̃l = x̃+Ma
[
−

z̃2(3z̃2
+ 8z̃+ 6)
48

+ BoD
z̃2(8z̃3

+ 15z̃2
− 10)

960

]
, (3.27)

describing the base flow. They agree with the analytical solutions originally obtained
by Birikh (1966) and later rederived by Kirdyashkin (1984) and Villers & Platten
(1987) using a one-sided model that ignores the effects of the gas phase.

The assumption that the interfacial temperature varies linearly has been widely
used in previous studies, without much justification, for deriving the solutions (3.26)
and (3.27) for the return flow underlying the stability analyses (Parmentier et al.
1993; Mercier & Normand 1996; Priede & Gerbeth 1997) as well as in models of
the adiabatic section of heat pipes (Ha & Peterson 1994; Suman & Kumar 2005;
Markos, Ajaev & Homsy 2006), which assume unidirectional flow in the liquid phase.
However, the validity of this assumption cannot be established by a one-sided model
which ignores heat and mass transport in the gas phase. In fact, when c0

a becomes
sufficiently low, the interfacial temperature profile becomes nonlinear (Li et al. 2014;
Qin & Grigoriev 2015). Proper justification of the linearity assumption requires
showing that it is consistent with a steady-state solution of the transport equations in
the gas phase, which satisfies all of the boundary conditions at the free surface. We
turn to this next.

3.3. Fluid flow, temperature and composition in the gas layer
The solutions for the velocity, temperature and composition of the gas phase can
be found in the same way the solutions (3.26) and (3.27) were obtained for the
liquid phase. We will start by finding the solution for the vapour concentration
at the interface before deriving the solution in the bulk. Since there is no phase
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change, Ts = Ti, according to (2.15), and ∂xTs = τ . Using the Clausius–Clapeyron
relation (2.16) and neglecting the deviation of pg from the equilibrium value (3.8) we
therefore find

∂xcv =
Lτ

R̄vT2
i

cv, (3.28)

where for τx� T0 we can replace Ti with the equilibrium temperature T0. In general,
the solution to this equation yields an exponential concentration profile for cv and
hence a nonlinear interfacial temperature profile (Qin & Grigoriev 2015). However,
when the deviation of cv from c0

v is small, the concentration profile at the interface
becomes approximately linear

c̃v ≈Ω x̃, (3.29)

where

Ω = c0
v

Ldlτ

R̄vT2
0
= c0

v

H
V

Ma, (3.30)

and

H =
L2Dp0

g

R̄2
vT

3
0 kl

(3.31)

is another non-dimensional parameter, the meaning of which will become clear later.
Again, since the product Dp0

g is independent of c0
a, so is H.

Given the boundary conditions for T̃g and c̃v, we can look for solutions to these
two fields in the gas layer of the form

T̃g = x̃+ θ̃g(z̃),
c̃v =Ω[x̃+ ς̃v(z̃)],

}
(3.32)

where
θ̃g(0)= 0,
ς̃v(0)= 0.

}
(3.33)

For a uniform flow, ψ̃g should only depends on z̃, so the system (3.11) reduces to

−ψ̃ ′′′′g +ΞT +ΞcΩ = 0,

ψ̃ ′g −Kα θ̃
′′

g = 0,

ψ̃ ′g −KDς̃
′′

v = 0.

 (3.34)

Solving these equations subject to the boundary conditions (3.20), (3.21), (3.22) and
(3.33) at the interface and the top of the gas layer yields the steady-state solutions for
the stream function

ψ̃g =−R
[

z̃(z̃− A)2

4A2
+B

z̃(z̃− A)2(2z̃+ A)
48A3

]
, (3.35)

velocity

ũg =−R
[
(z̃− A)(3z̃− A)

4A2
+B

(z̃− A)(8z̃2
− Az̃− A2)

48A3

]
x̂, (3.36)
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temperature

T̃g = x̃−
R
Kα

[
z̃2(3z̃2

− 8Az̃+ 6A2)

48A2
+B

z̃2(8z̃3
− 15Az̃2

+ 10A3)

960A3

]
, (3.37)

and vapour concentration in the gas phase

c̃v =Ω x̃−Ω
R
KD

[
z̃2(3z̃2

− 8Az̃+ 6A2)

48A2
+B

z̃2(8z̃3
− 15Az̃2

+ 10A3)

960A3

]
. (3.38)

The parameters R and B are analogous to the Reynolds number and the dynamic
Bond number, but incorporate the properties of both fluid layers:

R= Re
(

1+
BoD

12

)
+

A3

12Kν

(ΞT +Ξς),

B=−
A3

RKν

(ΞT +Ξς),

 (3.39)

where we defined

Ξς =ΞcΩ =−
(1− c0

a)(R̄a − R̄v)
R̄a − (R̄a − R̄v)c0

a

LBoD

βlR̄vT2

Ma
Pr
. (3.40)

Note that the form of the analytical solutions (3.26)–(3.27) and (3.36)–(3.38) is
different from that of the solutions derived by Qin et al. (2014) because (i) the
buoyancy force caused by the variation in the composition of the gas is explicitly
taken into account in the present analysis, (ii) the mass transport in the gas phase is
described using the concentration rather than the mass density of the vapour, and (iii)
a different choice of the origin of the coordinate system is made. Figure 2 compares
the analytical solutions with the numerical ones (cf. figure 1) computed by Qin &
Grigoriev (2015). We find that the analytical solutions accurately describe the core
region of the flow away from the end walls for sufficiently low τ at which the base
flow is stable.

4. Linear stability analysis
The main focus of our study is on relatively thick layers where the effect of

buoyancy is non-negligible, such that BoD = O(1). In this parameter regime gravity
is strong enough to keep the liquid interface nearly flat, so in our analysis we will
assume that the thickness of the liquid layer remains uniform even after the onset of
the convection pattern. To date, only one study (Priede & Gerbeth 1997) of pattern
formation in buoyancy–thermocapillary convection correctly predicted the formation
of a stationary pattern of convection rolls observed in experiment at BoD = O(1).
This study was based on a one-sided model which completely ignored phase change
and assumed adiabatic conditions at the free surface. While such description may
be acceptable for non-volatile liquids or at high concentrations of air, it fails to
describe volatile liquids at lower concentrations of air. Below a generalized analysis is
presented, which accounts for both heat and mass flux across the interface associated
with phase change and which is applicable regardless of the amount of air present in
the gas layer (quantified by c0

a).
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FIGURE 2. Comparison between the numerical and analytical solutions for Ma= 190 and
c0

a = 0.96 (atmospheric conditions) in the middle of the cell, x = Lx/2. Shown are the
normalized vertical profiles of (a) the horizontal velocity ux = ux, (b) the variation δT =
T − Ti of the temperature, and (c) the variation δcv = cv − cv,i of vapour concentration.
Open circles correspond to numerical results and solid lines correspond to the analytical
solutions.

4.1. Diffusion-dominated case
While the non-dimensional equations (3.4) for the liquid layer can be used without
modification, in order to obtain a simplified problem, which can generate useful
physical insight, we will start by making several approximations in the treatment
of heat and mass transport on the gas side. The relative contribution of advection
and diffusion to the mass and heat transport in the gas layer are described by the
Péclet numbers Pem and Pet, respectively. Since the relevant length scale here is the
wavelength of the convective pattern, which is comparable to the depth of the liquid
layer, and the velocity scale is determined by the interfacial velocity ui = νlũl(0)/dl

(cf. (3.26)), we have

Pem =
|ui|dl

D
=

12+ BoD

48
Re
KD
, (4.1)

and

Pet =
|ui|dl

αg
=

12+ BoD

48
Re
Kα

. (4.2)

In typical experiments (Villers & Platten 1992; Riley & Neitzel 1998; Li et al. 2014)
both Péclet numbers are at most O(1), so we can drop the advective terms in the
transport equations (2.13) and (2.14) in the gas phase. Furthermore, if we are only
interested in the transition thresholds for stationary instability, we can also ignore the
time derivatives, such that the system (3.11) simplifies to

ψ̃g = 0,

(∂2
x̃ + ∂

2
z̃ )T̃g = 0,

(∂2
x̃ + ∂

2
z̃ )c̃v = 0.

 (4.3)

Note that neglecting the transient dynamics of the gas phase changes neither the
critical Marangoni number nor the critical wavelength of a (stationary) pattern.

The base solution ψ̃l0, T̃l0 describing the uniform return flow in the liquid layer
is given by (3.25)–(3.27). The base solution to (4.3) describing the gas layer in the
diffusion-dominated case can be obtained by setting R= 0 in (3.37)–(3.38), which is
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262 R. O. Grigoriev and T. Qin

equivalent to setting ũg = 0 (ψ̃g = 0) and gives:

T̃g0 = x̃,
c̃v0 =Ω x̃.

}
(4.4)

Although the base state satisfies the adiabatic boundary condition at the interface,
perturbations in the temperature will give rise to heat and mass flux across the
interface and, consequently, through the gas phase. Perturbed solutions can be written
in the form of Fourier integrals

ψ̃m = ψ̃m0 +

∫
∞

−∞

ψ̃mq(z̃)eiqx+σqt dq,

T̃m = T̃m0 +

∫
∞

−∞

θ̃mq(z̃)eiqx+σqt dq,

c̃v = c̃v0 +Ω

∫
∞

−∞

ς̃vq(z̃)eiqx+σqt dq,


(4.5)

where m={l,g} denotes the phase, q is the wavenumber describing the variation in the
horizontal direction, and σq is the temporal growth rate. The functions ψ̃mq(z̃), θ̃mq(z̃),
and ς̃vq(z̃) define the vertical profile for the perturbations in, respectively, the stream
function ψ̃ , temperature T̃ , and vapour concentration c̃v with wavenumber q.

Rewriting (4.3) in terms of the perturbations, we obtain

ψ̃gq = 0,

θ̃ ′′gq = q2θ̃gq,

ς̃ ′′vq = q2ς̃vq.

 (4.6)

Temperature continuity at the interface requires

θ̃gq(0)= θ̃lq(0). (4.7)

At the top of the gas layer we have

θ̃ ′gq(A)= 0,
ς̃ ′vq(A)= 0.

}
(4.8)

The solution of (4.6) satisfying these boundary conditions is

θ̃gq(z̃)=
cosh[q(z̃− A)]

cosh(qA)
θ̃gq(0). (4.9)

The solution for the perturbation in the vapour concentration is analogous,

ς̃vq(z̃)=
cosh[q(z̃− A)]

cosh(qA)
ς̃vq(0), (4.10)

where ς̃vq(0) can be related to the perturbation in the interfacial temperature via the
Clausius–Clapeyron relation (2.16)

ς̃vq(0)= θ̃gq(0). (4.11)
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The effect of phase change on stability of convective flow 263

Fourier transforming (3.18) yields

J̃q =−
Ω

c0
a

ς̃ ′vq(0), (4.12)

where J̃q is the Fourier coefficient of J̃(x̃). Subtracting the base solutions from the heat
balance (3.16), Fourier transforming the result, and using (4.12) gives the following
relation

θ̃ ′lq(0)=
kg

kl
θ̃ ′gq(0)+

Ω

c0
a

V
Ma

ς̃ ′vq(0). (4.13)

With the help of (4.9), (4.10) and (4.11) this can rewritten in the form of Newton’s
cooling law

θ̃ ′lq(0)=−Biqθ̃lq(0), (4.14)

where we introduced a wavenumber-dependent analogue of the Biot number

Biq = q tanh(qA)
[

kg

kl
+

1− c0
a

c0
a

H
]
, (4.15)

which will be referred to as the Biot coefficient below to highlight the fact that it is
a function of q and c0

a, not a constant. The prefactor tanh(qA) describes the effect
of finite thickness of the gas layer. For dg � dl (A � 1), it approaches unity and
(4.15) reduces to the expression derived by Chauvet, Dehaeck & Colinet (2012) in the
context of stability of a volatile liquid layer in the presence of a vertical temperature
gradient. The first term describes the effect of thermal conduction through the gas
layer, while the second term describes the effect of latent heat released/absorbed at
the interface as a result of condensation/evaporation.

By linearizing the governing equations (3.10) around the base state (3.25)–(3.27),
we obtain the evolution equations for the perturbations ψ̃lq and θ̃lq in the liquid layer

∇̃
2
q ∇̃

2
q ψ̃lq + iqC1(z̃)Reψ̃ ′′lq − iqC2(z̃)Reψ̃lq − iqGrθ̃lq = σq∇̃

2
q ψ̃lq,

Pr−1
∇̃

2
q θ̃lq + iqC1(z̃)Reθ̃lq − iqC3(z̃)Maψ̃lq − ψ̃

′

lq = σqθ̃lq,

}
(4.16)

where we defined ∇̃2
q = ∂

2
z̃ − q2 and

C1(z̃)=
(z̃+ 1)(3z̃+ 1)

4
− BoD

(z̃+ 1)(8z̃2
+ z̃− 1)

48
,

C2(z̃)= q2C1(z̃)+
3
2
− BoD

8z̃+ 3
8

,

C3(z̃)=
z̃(z̃+ 1)2

4
− BoD

z̃(z̃+ 1)2(2z̃− 1)
48

.


(4.17)

This is a system of ODEs which is fourth order with respect to ψ̃lq and second order
with respect to θ̃lq and hence needs a total of six boundary conditions. These boundary
conditions are:

ψ̃lq(−1)= 0,

ψ̃ ′lq(−1)= 0,

θ̃ ′lq(−1)= 0,

 (4.18)
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264 R. O. Grigoriev and T. Qin

at the bottom of the liquid layer and

ψ̃lq(0)= 0,

ψ̃ ′′lq(0)=−iqReθ̃lq(0),

}
(4.19)

and
θ̃ ′lq(0)=−Biqθ̃lq(0), (4.20)

at the free surface. In the subsequent discussion we will refer to the system (4.16)
with the boundary conditions (4.18)–(4.20) as the enhanced one-sided model, since it
incorporates the effect of the gas phase entirely through boundary conditions at the
interface.

4.2. Transient dynamics in the gas layer
A more accurate description of the instability, stationary or oscillatory, can be obtained
by restoring the time dependence of the temperature and composition of the gas phase.
This corresponds to replacing the Laplace equations (4.3) with

∂t̃T̃g =Kα∇̃
2T̃g,

∂t̃c̃v =KD∇̃
2c̃v.

}
(4.21)

The corresponding equations for the perturbations are

ψ̃gq = 0,

θ̃ ′′gq − q2θ̃gq = σqK−1
α θ̃gq,

ς̃ ′′vq − q2ς̃vq = σqK−1
D ς̃vq.

 (4.22)

These equations should be solved subject to the boundary conditions (4.7), (4.8),
(4.11), (4.18), (4.19) and

θ̃ ′lq(0)=−
kg

kl
θ̄ ′gq(0)−

1− c0
a

c0
a

Hς̄ ′vq(0), (4.23)

which follows from the heat flux balance (3.16) and the mass flux balance (4.12) and
replaces (4.14).

Since it involves an incomplete description of the gas layer (the effects of advection
are not included), this model based on the governing equations (4.16) and (4.22) can
be called ‘one-and-a-half-sided.’ Note that, since both Kα and KD are typically large
compared with unity, the terms on the right-hand side of (4.22) are small. Dropping
them would lead to the enhanced one-sided model derived in § 4.1.

4.3. The effect of advection in the gas layer

The effect of advection can also be incorporated for the range of c0
a where the base

solution (3.35)–(3.38) is valid. By setting ψ̃gq 6= 0 we ensure that all of the transport
mechanisms in the gas phase are accounted for and both layers are treated using an

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

91
8

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 G

eo
rg

ia
 In

st
itu

te
 o

f T
ec

hn
ol

og
y,

 o
n 

01
 S

ep
 2

02
0 

at
 2

1:
06

:0
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2017.918
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


The effect of phase change on stability of convective flow 265

equally comprehensive model. The linearized evolution equations for the perturbations
ψ̃gq, ς̃vq and θ̃gq in the gas phase are

Kν∇̃
2
q ∇̃

2
q ψ̃gq + iqC̃1(z̃)Rψ̃ ′′gq − iqC̃2(z̃)Rψ̃gq − iqΞT θ̃gq − iqΞς ς̃vq = σq∇̃

2
q ψ̃gq,

Kα∇̃
2
q θ̃gq + iqC̃1(z̃)Rθ̃gq − iqC̃3(z̃)RK−1

α ψ̃gq − ψ̃
′

gq = σqθ̃gq,

KD∇̃
2
q ς̃vq + iqC̃1(z̃)Rς̃vq − iqC̃3(z̃)RK−1

D ψ̃gq − ψ̃
′

gq = σqς̃vq,


(4.24)

where

C̃1(z̃)=
(z̃− A)(3z̃− A)

4A2
+B

(z̃− A)(8z̃2
− Az̃− A2)

48A3
,

C̃2(z̃)= q2C̃1(z̃)+
3

2A2
+B

8z̃− 3A
8A3

,

C̃3(z̃)=
z̃(z̃− A)2

4A2
+B

z̃(z̃− A)2(2z̃+ A)
48A3

.


(4.25)

The boundary conditions are given by (4.7), (4.8), (4.11), (4.18), (4.19) and (4.23).
In addition, the boundary conditions for ψ̄gq(z̄) follow from (3.21) and (3.22):

ψ̃gq(A)= 0,

ψ̃ ′gq(A)= 0,

}
(4.26)

at the top of the gas layer and

ψ̃gq(0)= 0,

ψ̃ ′gq(0)= ψ̃
′

lq(0),

}
(4.27)

at the free surface. In the subsequent discussion we will refer to the system (4.16)
and (4.24) with the appropriate boundary conditions as the two-sided model, since it
treats both the liquid and the gas phase with the same level of detail.

4.4. Different modes of instability
The boundary value problem, whether it is described by the system (4.16) by
itself or combined with (4.22) or (4.24), has a spectrum of eigenvalues σ n

q and
the corresponding eigenfunctions {ψn

lq, θ
n
lq, . . .}, n = 0, 1, . . . , for a given complex

wavenumber q = k + is and Marangoni number Ma. The stability of the base flow
is determined by the eigenvalue σ 0

q = κq + iωq with the largest real part κq and the
character of the instability (oscillatory or stationary) is determined by the imaginary
part ωq.

So far we have only focused on the boundary conditions in the vertical (confined)
direction. In both experiment and simulations the fluid layers are also bounded
in the horizontal (extended) directions 0 < x < Lx and 0 < y < Ly. Comparison of
various experimental results suggests that the spanwise aspect ratio Γy = Ly/dl is
not particularly important: aside from the orientation of hydrothermal waves at low
BoD, the pattern that emerges above the threshold of primary instability is basically
the same for both Γy = O(1) (Villers & Platten 1992; De Saedeleer et al. 1996;
Garcimartín et al. 1997; Li et al. 2014) and Γy� 1 (Riley & Neitzel 1998; Burguete
et al. 2001). This is not very surprising since the boundaries in the spanwise direction
play a passive role – they tend to suppress, rather than enhance convection.
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266 R. O. Grigoriev and T. Qin

The boundaries in the streamwise direction are less trivial and play a crucial role
in selecting the convection pattern for any Γx = Lx/dl. The corresponding boundary
conditions are of the enhancing type (Cross & Greenside 2009): buoyancy, which
plays a significant role for BoD =O(1), drives an upward flow near the hot end wall,
generating a single localized convection roll. Similarly, buoyancy drives a downward
flow near the cold end wall, generating another, much weaker, convection roll. These
rolls appear for Ma well below the critical value Mac at which convection pattern
emerges away from the end walls. The rolls are steady over a wide range of Ma and
have a horizontal extent of O(dl). For Γx � 1 and sufficiently low Ma, the flow in
the core region between these two convection rolls, i.e. for O(dl) < x< Lx −O(dl), is
described well by the base flow solution (3.26) and (3.36), as mentioned previously
(cf. figure 1). Riley & Neitzel (1998) refer to this state as a steady unicellular flow
(SUF). Since the perturbation strength is always finite at the end walls, defining the
threshold of the primary instability at finite Γx requires some care.

4.4.1. Convective instability
The dominant mode of primary instability in laterally unbounded systems (infinite

Γx) tends to be convective. The threshold of convective instability corresponds to
κq being negative over all q-real, except for q = kc, where kc is the (real) critical
wavenumber which defines the wavelength λ/dl = 2π/kc of the pattern that develops
above threshold. Therefore, the critical wavenumber kc and the critical Marangoni
number Mac are given by the solution of the two equations

κq|qc = 0,
∂κq

∂q

∣∣∣∣
qc

= 0,

 (4.28)

over q-real. Generally, the critical frequency ωc = ωq|qc 6= 0, so the resulting pattern
will be oscillatory, with disturbances amplified in the frame of reference moving with
the group velocity (Huerre 2000)

vg = −
∂ωq

∂q

∣∣∣∣
qc

. (4.29)

In laterally bounded systems, such as the fluid volumes with finite aspect ratios Γx

discussed in this paper, convective instabilities should not be observed in the absence
of a localized oscillatory source of the right temporal frequency (ω≈ωc). An example
of such a source could be an oscillating convection roll near the left (right) end wall
for vg > 0 (vg < 0) driven by a completely different mechanism (e.g. buoyancy due
to cooling or heating at the end wall). While such oscillating convection rolls have
indeed been observed in experiment (De Saedeleer et al. 1996; Garcimartín et al.
1997; Li et al. 2014) and simulations (Qin et al. 2014), they arise after convection
pattern in the core region of the flow has already been established. Hence, this is a
secondary, rather than a primary, instability. We should only expect to see a primary
convective instability in systems with very large streamwise aspect ratio Γx where
infinitesimal disturbances have sufficient time Γx/vg to develop.
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4.4.2. Absolute instability
Absolute instabilities arise when infinitesimal disturbances grow in the laboratory

frame. Since they do not need a finite-amplitude source, they can arise both in
laterally unbounded systems as well as in bounded systems with moderate Γx.
Absolute instability requires that the group velocity vg = 0 at onset, yielding a
system of three real equations for three real unknown kc = Re(qc), sc = Im(qc), and
Mac, which can be rewritten as a system of two equations (Huerre 2000)

κq|qc = 0,

∂σ 0
q

∂q

∣∣∣∣∣
qc

= 0,

 (4.30)

the second of which is complex, for qc-complex and Mac.
The resulting pattern will generally be oscillatory, ωc 6= 0, just like in the case of

convective instability. Although its group velocity vanishes, the phase velocity vp =

−ωc/kc of the pattern will be non-zero. A good example of such an absolute instability
is hydrothermal waves (Smith & Davis 1983a,b) that are observed in the limit of low
BoD (Daviaud & Vince 1993; Riley & Neitzel 1998; Burguete et al. 2001). In the
following, where necessary to avoid confusion, we will use the superscript a to denote
the critical values corresponding to absolute instability.

4.4.3. Stationary instability
The threshold of a stationary instability corresponds to both the real and imaginary

part of σ 0
q vanishing

κq|qc = 0,
ωq|qc = 0.

}
(4.31)

These two equations should be solved for the critical wavenumber kc and the critical
Marangoni number Mac, which both depend on the spatial attenuation rate s. In the
following, where necessary to avoid confusion, we will use the superscript s to denote
the critical values corresponding to stationary instability. In particular, we will write
Mas

c(s) to explicitly denote the dependence on s.
In laterally infinite systems the transition threshold is well defined and corresponds

to a spatially uniform stationary pattern (s= 0). Such a pattern will be referred to as
the steady multicellular (SMC) state below. For Ma<Mas

c(0) the convection pattern
arises due to forcing at one of the boundaries (convection rolls driven by buoyancy,
cf. figure 1(c,d)), rather than spontaneously, and generally does not extend across the
entire length of the system. In this case the absolute value of s= Im(qc) defines the
spatial attenuation of the perturbation (or the number of convection rolls that can be
detected in the liquid layer), while kc = Re(qc) determines the wavelength λ of the
pattern (or the distance between convection rolls). For s 6= 0 the pattern appears below
Mas

c(0) and is localized near the right (hot) end wall for s< 0 or near the left (cold)
end wall for s> 0. As we will see below, dMas

c/ds> 0, which means that the pattern
always appears near the hot end wall (cf. figure 1d) and we can only consider s 6 0.

When e−|s|Γx � 1, the pattern extends over a region of length O(2dl/|s|) < Lx. We
will refer to this as partial multicellular (PMC) state following Qin & Grigoriev
(2015) and Li et al. (2014). In this analysis, we set sPMC=−1 to define the transition
from SUF to PMC at Mas

c(−1) < Mas
c(0), which roughly corresponds to one extra

roll nucleating near the (hot) end wall. As Ma is increased beyond this value,
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268 R. O. Grigoriev and T. Qin

the convection pattern extends further away from the end wall, until it eventually
covers the entire fluid layer. In practice this roughly corresponds to e−|s|Γx ≈ 0.1 or
sSMC =±2/Γx. This is the definition that has to be used for Pr . 1 (i.e. for gases or
metallic liquids featuring sensitive dependence of Mas

c on s for small |s|, as shown
below). For typical (non-metallic) liquids with Pr=O(10), we can set sSMC = 0, as in
the case of laterally unbounded layers, as long as Γx & 20. This is the case in both
the experimental (Riley & Neitzel 1998; Li et al. 2014) and numerical studies (Qin
et al. 2014; Qin & Grigoriev 2015) used for comparison below.

Note that, for σ 0
q = 0, equations (4.22) reduce to (4.6) even if Kα and KD are not

large. Hence the two formulations always give identical predictions for the threshold
of stationary instability (even though they predict different growth rates for modes
with wavenumbers q different from the critical one). Therefore, in what follows we
will only focus on the limits when either both Pem and Pet are vanishingly small and
stability is described by (4.16) alone, or when they are both O(1), so (4.16) and (4.24)
have to be solved simultaneously.

5. Results
Previous theoretical studies of stability focused mainly on the dependence of the

critical Marangoni number Ma on the dynamic Bond number BoD and Prandtl number
Pr characterizing the liquid layer. We have also investigated how both the critical
Ma and the critical wavelength λ depend on the equilibrium concentration c0

a of air
in the gas layer. Where possible, the predictions of linear stability analysis have
been compared with the available experimental and numerical data. The boundary
value problems, which determine σ 0

q as a function of the wavenumber q and various
non-dimensional parameters, were solved using the function bvp5c in Matlab 2016a
(cf. appendix A for details) and the equations (4.28), (4.30) and (4.31), defining the
conditions for various types of instabilities where solved using the Newton method.

5.1. Convection at atmospheric conditions
The most comprehensive experimental study to date that investigated convection
patterns in the problem considered here is due to Riley & Neitzel (1998), who
determined the dependence of both the critical Ma and the critical wavelength λ
corresponding to the onset of various instabilities on the dynamic Bond number
BoD for the 1 cSt silicone oil with Pr = 13.9. Since the authors have not reported
the values of all material parameters of the liquid, we took the missing ones from
Kavehpour, Ovryn & McKinley (2002). No data has been found for the material
properties of the vapour; these were assumed to be the same as those of the 0.65
cSt silicone oil (Yaws 2003, 2009). Any potential uncertainty in the values of these
material parameters, however, will have a negligible effect on the results. The 1.0 cSt
silicone oil is not particularly volatile (the saturation vapour pressure is pv = 0.5 kPa
at T = 298 K, which corresponds to c0

a = 0.995 at atmospheric conditions), therefore
the properties of the gas phase are essentially those of air.

The predictions of the linear stability analysis for this particular fluid are shown
in figures 3 and 4. The enhanced one-sided model and the two-sided model produce
essentially identical results at atmospheric conditions; we only show the results of
the latter. In particular, the thresholds of different types of instabilities for a laterally
unbounded system (Γx = ∞) are shown as solid lines in figure 3(a). These are
in decent agreement with the thresholds of convective, absolute, and stationary
instabilities predicted by Priede & Gerbeth (1997) using an adiabatic one-sided model
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FIGURE 3. Different types of instability in a laterally infinite layer of 1.0 cSt silicone
oil at atmospheric conditions (c0

a = 0.995) as a function of the dynamic Bond number.
(a) Critical Ma for the absolute (light grey), stationary (dark grey), and convective (black)
instability. (b) Group velocity vg for convective instability (black) and phase velocity vp for
absolute instability (light grey). Analytical predictions of the two-sided model are shown
as solid lines and the predictions of the one-sided model with Biq = 0 as dashed lines.
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FIGURE 4. Dependence of the critical Marangoni number (a) and the critical wavelength
(b) on the dynamic Bond number for the 1.0 cSt silicone oil at atmospheric conditions
(c0

a= 0.995) in a layer with Lx= 30 mm. Experimental results obtained by Riley & Neitzel
(1998) are shown as symbols (black filled for PMC/SMC, light grey filled for HTW,
open for OMC). The boundary between HTW and OMC is shown as the dotted line. In
both panels, analytical predictions of the two-sided model are shown as solid lines (light
grey/dark grey/black for absolute instability/SMC/PMC threshold).

(which is equivalent to our enhanced one-sided model with Biq = 0). As expected,
convective instability is predicted to occur at the lowest value of Ma regardless of
BoD. Figure 3(b) shows the group velocity vg associated with convective instability
(along with the phase velocity vp associated with absolute instability). In the absence
of end walls, one should expect a pattern arising from convective instability to
develop sooner on one side than the other, with the interface between patterned and
unpatterned flow propagating in the direction controlled by the sign of vg, i.e. in the
direction of the thermal gradient for BoD < 0.18 and opposite the thermal gradient
for BoD > 0.18.

In practice, the aspect ratio Γx is too low for convective instability to amplify
tiny disturbances that are naturally present in the flow sufficiently so they could be
observed before they collide with one of the walls and disappear. For instance, in the
study of Riley & Neitzel (1998) 12<Γx < 40, while in most other experimental and
numerical studies Γx 6 20. As a result, convective instability would not be observed
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(and will not be considered in detail here). Instead an absolute instability, a stationary
instability, or a combination of both instabilities would occur, and the order in which
these instabilities occur would determine the type of convection pattern. In particular,
hydrothermal waves (HTW) are usually found for BoD→ 0 and a stationary pattern
is found for BoD=O(1). However, we are not aware of any studies that predict what
the pattern might look like at the intermediate values of BoD. The analysis for large,
but finite Γx (so there are end walls) is presented below.

Comparison of the theoretical predictions with the results of Riley & Neitzel (1998)
is complicated by the fact that in the experimental study the transition threshold for
SMC is identified as the instant when multiple convection rolls appear (near the
hot end wall), but do not extend all the way to the cold end wall, which is not
a very precise definition. However, the experimental data, which corresponds to an
unknown value −1< s< 0, should lie between the analytical prediction for the onset
of PMC (s=−1) and SMC (s= 0). As shown in figure 4, both the critical Ma and
the critical wavelength λ observed in the experiments are indeed bracketed by the
theoretical values corresponding to the onset of PMC and SMC, and lie closer to
the SMC boundary in the entire range of BoD investigated in the experiment, where
stationary convective patterns are observed. Riley and Neitzel’s supporting figures
show the presence of numerous convection rolls at what they define to be the critical
Ma, so their data points should indeed be closer to the SMC threshold than the PMC
threshold.

For BoD < 0.04 the absolute instability boundary lies below that of PMC,
Maa

c <Mas
c(−1), so a pattern should appear at Maa

c over the entire extent of the fluid
layer and feature travelling convection rolls, since ωc 6=0. The predicted phase velocity
is positive, which is consistent with hydrothermal waves that are known to propagate
from the cold end wall to the hot end wall. All of this is in perfect agreement
with the analysis of Smith & Davis (1983a) applicable in the limit BoD→ 0. Riley
and Neitzel’s experimental observations for 0.04 < BoD < 0.29 deserve a separate
discussion, since this is the range where the threshold of absolute instability lies
between the PMC and SMC thresholds, Mas

c(−1) >Maa
c >Mas

c(0). In this range the
base flow can undergo an instability with respect to two different patterns in different
regions. Consider the experimental protocol in which Ma is gradually increased at
a fixed BoD. Our analysis predicts that a stationary pattern first develops near the
hot end wall at the SMC threshold Mas

c(−1). As Ma is increased beyond this value,
the pattern spreads towards the cold end wall until Ma reaches the threshold Maa

c
of absolute instability, which should cause hydrothermal waves to appear near the
cold end wall. Hence the fraction of the fluid layer occupied by the two patterns
should then depend on BoD and Γx, with HTW dominating for smaller BoD and PMC
at higher BoD, which is qualitatively consistent with experimental observations. As
figure 4(a) illustrates, our quantitative predictions for Mac and λ are also consistent
with the experimental results in this range of BoD.

If Ma is increased further beyond Mas
c(0), the SMC pattern itself eventually

becomes unstable and is replaced by the oscillatory multicellular convection (OMC)
state (Villers & Platten 1992; De Saedeleer et al. 1996; Garcimartín et al. 1997;
Riley & Neitzel 1998; Qin et al. 2014). OMC features convection rolls travelling
in the direction opposite to that of HTW, i.e. against thermal gradient, with the
right-most convection roll acting as the oscillatory source of disturbance (Garcimartín
et al. 1997; Qin et al. 2014; Li et al. 2014). While it may be tempting to associate
the extension of the curve Ma=Maa

c for BoD > 0.29 in figure 4(a) with the boundary
between SMC and OMC, it is incorrect to do so, since the absolute instability
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FIGURE 5. Dependence of the critical Marangoni number (a) and the critical wavelength
(b) on the dynamic Bond number for the 0.65 cSt silicone oil at atmospheric conditions
(c0

a = 0.96). Open symbols correspond to the experimental results of Li et al. (2014) and
filled symbols correspond to the numerical results of Qin et al. (2014). The four distinct
flow regimes are: SUF (E), PMC (A), SMC (@) and OMC (6). In both panels, analytical
predictions of the two-sided model are shown as solid lines (light grey/dark grey/black for
absolute instability/SMC/PMC threshold). Predictions of the one-sided model with Biq= 0
are shown as dashed lines.

describes destabilization of the uniform base flow rather than the SMC pattern. On
the other hand, the group velocity vg associated with convective instability appears
to predict the location of the boundary between HTW and OMC (the dashed line in
figure 4a). As mentioned previously, vg > 0 for BoD < 0.18, such that disturbances
originating near the cold end wall should amplify as they propagate towards the hot
end wall, while vg < 0 for BoD > 0.18, so the opposite is true, which is consistent
with the location of the wave sources for HTW and OMC. For comparison, in the
experiment the boundary is at BoD = 0.22.

Next we compare the analytical predictions with the results of numerical and
experimental studies (Li et al. 2014; Qin et al. 2014; Qin & Grigoriev 2015), which
used a more volatile liquid (0.65 cSt silicone oil with Pr = 9.2) and characterized
both the SMC→PMC and the PMC→SMC transition. The predicted dependence
of the critical Marangoni number and wavelength on the dynamic Bond number at
atmospheric conditions (c0

a= 0.96) is shown in figure 5. Again, the predictions of the
enhanced one-sided and two-sided model are essentially indistinguishable and are in
reasonable agreement with both experimental and numerical data. Just as in the case
of 1 cSt silicone oil, the critical values of Ma and λ increase monotonically with
BoD over the range where a stationary pattern is found (BoD > 0.31). This increase
in Mac can be easily understood by noting that buoyancy has a stabilizing effect on
the flow. The base flow solution (3.27) shows that the temperature increases, and
hence the density of the liquid decreases, with height. An increase in BoD therefore
corresponds to an increasingly strong effect of the stable density stratification.

At low BoD we again find that the absolute instability precedes the stationary
instability, and we should expect to find HTW, at least near the cold end wall.
According to figure 5(a), for BoD < 0.05, the threshold of absolute instability lies
below the PMC threshold, Maa

c <Mas
c(−1), so HTW should be observed over nearly

the entire extent of the fluid layer. For 0.05< BoD < 0.31, the threshold of absolute
instability lies between the PMC and SMC thresholds, Mas

c(−1) < Maa
c < Mas

c(0).
As we discussed previously, in this range we expect the two patterns to coexist for
sufficiently large Γx, with the boundary between HTW and PMC at onset of the
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FIGURE 6. Stationary instability. Dependence of the critical Marangoni number (a) and
the critical wavelength (b) on the Prandtl number of the liquid for B1 = 0.2 and c0

a→ 1.
The lines (solid for BoD = 1, dashed for BoD = 0.3) show the prediction of the enhanced
one-sided model with s=−1 (black), s=−0.1 (dark grey) and s= 0 (light grey).
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FIGURE 7. Absolute instability. Dependence of the critical Marangoni number (a) and
wavelength (b) on the Prandtl number of the liquid for B1 = 0.2 and c0

a→ 1. The lines
show the prediction of the enhanced one-sided model for BoD= 0 (black), BoD= 0.1 (dark
grey) and BoD = 0.2 (light grey).

absolute instability gradually shifting towards the cold end wall as BoD increases.
The competition between these patterns above the threshold should be described by
nonlinear theory and hence is not addressed here.

The dependence of the threshold values of Ma and λ on the Prandtl number of the
liquid has previously been investigated only in the context of linear stability analysis.
In particular, Priede & Gerbeth (1997), who only considered uniform disturbances
(s = 0) and ignored heat and mass flux across the interface, found that the critical
values of Ma for the stationary instability diverges at Pr0 = O(1) and reaches a
minimum at Pr1 just slightly higher than Pr0. (Oddly enough, they only show the
data for BoD= 0, where HTW are expected instead of SMC.) Our enhanced one-sided
model predicts that this result also holds for BoD = O(1), once transport in the gas
phase has been taken into account (cf. figure 6). The corresponding data for the
absolute instability at lower BoD is shown in figure 7. Predictions of the two-sided
model are not shown, since it involves too many parameters which will vary with Pr,
as different Pr correspond to different liquids.
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FIGURE 8. Stationary instability. Dependence of the critical Marangoni number (a) and
wavelength (b) on the spatial attenuation rate for c0

a→ 1, B1 = 0.2, and Pr = 10 (black),
Pr = 1 (dark grey), or Pr = 0.1 (light grey). Solid lines correspond to the predictions of
the enhanced one-sided model with BoD = 0.3 and dashed lines to BoD = 1.

Qualitatively similar trends are found for the threshold of SMC for all BoD=O(1),
with both Pr0 and Pr1 slowly increasing with BoD. Over the entire range of Pr
corresponding to non-metallic liquids, Mac is a monotonically increasing function
of Pr. The dependence of the critical wavelength on the Prandtl number is
non-monotonic even for non-metallic liquids; λ has a minimum at Pr2 = O(10)
and also diverges at Pr0. The divergence of the critical values of Ma and λ at Pr0,
however, does not imply that no stationary pattern emerges at Pr < Pr0. Indeed, the
critical Ma for PMC (s=−1) decreases monotonically as Pr decreases, with Mac→ 0
as Pr→ 0. For instance, for a moderate value of Ma ≈ 600, a stationary (spatially
non-uniform) pattern is predicted to appear near the hot end wall for any Pr < Pr0.
As Ma increases, the spatial extent of the pattern should increase as well.

As noted in the introduction, the analysis of Mercier & Normand (2002) predicted
that steady convection rolls should develop near the hot end for Pr> 4, near the cold
end for Pr< 0.01, or at both end walls for 0.01< Pr< 4. Our results unequivocally
contradict that prediction for BoD = O(1). According to figure 6(b), for Pr . 0.1
the wavelength of the pattern exceeds typical values of Γx for any value of the
spatial attenuation rate s, so it makes no sense to discuss spatial localization. (The
dependence of the critical Ma and λ on s for the stationary instability at Pr = 0.1,
1 and 10 are shown in figure 8). We find that Mas

c is a monotonically increasing
function of s, regardless of the values of Pr for BoD = O(1), indicating that a
stationary pattern always emerges first near the hot end wall.

The analysis of Mercier & Normand (2002) was performed mainly to understand
the results of numerical simulations by Ban Hadid & Roux (1990) in the limit of
low Pr which indicated the formation of a convective pattern near the cold end wall.
Both of these studies made two contradicting assumptions: (i) that the dynamic Bond
number BoD � 1 and (ii) that the liquid–gas interface is flat. As Smith & Davis
(1983b) showed, in the limit BoD→ 0 the uniform base flow undergoes an instability
towards surface waves for Pr< 0.15, violating the assumption of flat interface before
a stationary instability can occur. Indeed, as figure 7(b) shows, even for finite BoD the
critical wavelength associated with the absolute instability diverges as Pr approaches
Pr0 = O(1) from above, indicating that for Pr < Pr0 a long-wavelength instability
will arise that necessarily causes substantial deformation of the interface. Even for
Pr>Pr0, no stationary pattern will appear near the cold end wall for small BoD, since
the absolute instability precedes the stationary one, as figures 4 and 5 show.
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FIGURE 9. Dependence of the critical Marangoni number (a) and wavelength (b) on the
average concentration of air for the 0.65 cSt silicone oil with BoD = 0.7. Solid (and
dashed) lines are predictions of the two-sided (and enhanced one-sided) model for the
thresholds of the PMC (black), SMC (dark grey) and OMC (light grey) patterns. The
OMC threshold is a sketch based on numerical and experimental data. The meaning of
the symbols is the same as that in figure 5. The inset in panel (b) shows the region of
high c0

a and low λ.

In conclusion of this section, let us point out that even though phase change is
greatly suppressed at atmospheric conditions, this does not mean that the effect of the
gas phase is negligible. Figure 3 clearly shows the difference in the thresholds of all
three instability types predicted by the adiabatic one-sided model (which completely
ignores the effect of the gas layer) and the two-sided model (which accounts for heat,
mass and momentum transport in the gas) for a fluid of relatively low volatility (1 cSt
silicone oil). The difference is even more significant for the more volatile 0.65 cSt
silicone oil, as figure 5 illustrates. We find that the one-sided model underestimates
the critical values of both Ma and λ which correspond to the PMC/SMC boundary by
between 4 % at BoD ≈ 0.3 and 11 % at BoD ≈ 1. The corresponding discrepancy for
the absolute stability boundary ranges from 3 % at BoD= 0 to 10 % for BoD≈ 0.3. Not
surprisingly, we find that transport of heat and mass through the gas phase delays all
of the transitions. The effect of the gas phase increases rather dramatically, however,
once the pressure is reduced below the atmospheric value, as we show below.

5.2. Convection at reduced pressures
In this section we will discuss the dependence of the critical Ma on the average
concentration c0

a of air. We will focus exclusively on the 0.65 cSt silicone oil and
BoD = 0.7, since relevant numerical and experimental data tend to cluster around that
value. As we discussed previously, at this BoD the stationary instability dominates, so
a time-independent pattern emerges. The one-sided model of Priede & Gerbeth (1997)
does not account for phase change (recall that it corresponds to our enhanced one-
sided model with Biq = 0), so its predictions are independent of c0

a. The predictions
of the enhanced one-sided and the two-sided model are compared with available data
in figure 9. The results of the two models are essentially identical, except for low
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c0
a, where the validity of the assumptions underlying both models is questionable, as

discussed below.
The predicted Mac increases rather significantly as c0

a is decreased from the
atmospheric values down to the regime when the gas is dominated by the vapour,
rather than air. The results of linear stability analysis are generally consistent with
the experimental data, although at atmospheric conditions the predicted thresholds for
the onset of PMC and SMC states are higher by about 20 % compared with those
found in experiment (cf. figure 9a). Numerical simulations have only been performed
in the limits when either air or vapour dominate. When the gas phase is dominated
by air (c0

a > 0.85), the predictions of linear stability analysis are consistent with
the results of numerical simulations. When the vapour is dominant (c0

a 6 0.16), the
numerical simulations only find the SUF flow over the limited range of the imposed
temperature gradients considered, so no prediction of Mac can be made. However,
the corresponding lower bound supports the theoretical prediction that the threshold
increases considerably.

The dependence of the critical wavelength on c0
a shows a trend similar to Mac:

the predicted λ increases as c0
a decreases (cf. figure 9b). These predictions are in

reasonable agreement with the available numerical and experimental results (Li et al.
2014; Qin & Grigoriev 2015). When the gas phase is dominated by air (c0

a >0.85), the
predicted critical wavelength for both the PMC and SMC state is in good agreement
with the values found in the numerics and experiment. Only experimental data is
available for lower c0

a, and again it is consistent with theoretical predictions for c0
a >

0.3: the wavelength of the pattern is found to lie between the PMC and SMC curves,
as it should. For c0

a< 0.16 the critical wavelength becomes comparable to the length L
of the cavity studied in Li et al. (2014), so some discrepancy between the theoretical
predictions and the experimental results is expected.

In general, our linear stability analysis assumes a flat interface and will break
down for λ � dl (i.e. at low c0

a and/or low Pr), when the thickness of the liquid
layer is expected to vary noticeably. Furthermore, for sufficiently low c0

a and/or large
Γx the interfacial temperature profile in the SUF state deviates significantly from
linear, resulting in the breakdown of the analytical solution for the base flow (Qin &
Grigoriev 2015). Therefore, the theoretical predictions in these limits are not expected
to be particularly accurate.

6. Discussion

As our results illustrate, the predictions of the linear stability analysis based on
the two-sided model are in general agreement with the reported numerical and
experimental data. In particular, this analysis correctly predicts that the transitions
between different flow regimes (SUF, PMC, SMC) are delayed (i.e. shifted towards
higher Ma) when the concentration of air decreases, although quantitative agreement is
not expected at low c0

a when the assumptions underlying our analysis become invalid.
The general agreement found at higher c0

a confirms the validity of the assumptions
made in the linear stability analysis, giving us confidence that it captures all the
essential physical processes governing the flow stability for volatile liquids driven by
a horizontal temperature gradient.

The predictions of linear stability analysis are consistent with the available
numerical results. The discrepancy with the experiment can be due to a number
of different reasons. One is the effect of transverse confinement: the liquid is wetting
and rises at the sidewalls, increasing the thickness of the liquid layer there by up
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FIGURE 10. The role of heat and mass transport in the gas layer on flow stability for (a)
the 0.65 cSt silicone oil and (b) the 1 cSt silicone oil. B1 is shown as black and B2 as
grey line.

to 60 %. The experimental study by Li et al. (2014) used the (smaller) thickness
dl of the liquid layer at the symmetry midplane y = Ly/2 of the cavity to compute
Ma. Furthermore, the experimental study indirectly deduced the interfacial temperature
gradient by comparing the experimental velocity profile with the analytical solution as
in figure 2(a) rather than measure it directly, which introduces additional uncertainty
into the reported values of Mac.

In this problem, buoyancy plays a stabilizing role, hence the instability leading
to the formation of convection rolls is driven primarily by thermocapillary stresses,
which depend on the interfacial temperature gradient. The fluctuations in the interfacial
temperature are significantly affected by the heat and mass transport through the gas
phase described – in the enhanced one-sided model – by the Biot coefficient Biq,
which is a function of both the wavenumber q and the concentration of air c0

a. In
particular, the first term in the square brackets in (4.15)

B1 =
kg

kl
=

c0
aka + (1− c0

a)kv
kl

(6.1)

describes the effect of conductive heat transport through the gas layer and reflects the
dependence of thermal conductivity of the gas phase on its composition, while the
second term

B2 =
1− c0

a

c0
a

H, (6.2)

where H is the non-dimensional parameter defined by (3.31), describes the effect of
the latent heat released or absorbed at the interface as a result of phase change and
reflects the variation in the diffusive transport of vapour through the gas phase, which
also depends on the gas composition. Both heat and mass transport through the gas
phase suppress fluctuations in the interfacial temperature and hence play a stabilizing
role.

To see the relative impact of the heat and mass transport on stability, it is instructive
to compare the trends and characteristic magnitudes of the two terms. For the 0.65 cSt
silicone oil, B1 decreases slightly as c0

a decreases (thermal conductivity of the vapour
is somewhat smaller than that of the air), but B2 increases significantly, reflecting the
enhancement of phase change (cf. figure 10). At atmospheric conditions, the heat flux
in the gas phase has a slightly larger effect (B1 = 0.23 versus B2 = 0.17). The effect
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of phase change becomes dominant for c0
a < 0.95 and increases as c0

a decreases. In
fact, B2 diverges as c0

a→ 0 which, according to (4.14), implies that the temperature
fluctuations at the interface vanish and the critical Ma becomes infinite. The trends
are similar for the less volatile 1 cSt silicone oil, although the effect of phase change
is clearly weaker.

The increase in the critical Ma with decreasing c0
a is due primarily to the

enhancement of phase change which increases the amount of latent heat released/
absorbed by the warmer/cooler regions of the interface. Interestingly, the composition
of the gas phase has a more significant effect on flow stability than the base flow
itself. As discussed by Qin & Grigoriev (2015), the concentration of air has a
relatively weak effect on the base flow, since the average interfacial temperature
gradient, which determines the thermocapillary stresses, and hence the speed of the
base flow, is insensitive to c0

a above 10 % or so.
The one-sided model with the adiabatic boundary condition is ill-suited for

describing the flow of volatile fluids. As discussed previously, even at atmospheric
conditions, when phase change is strongly suppressed, it underestimates the critical
Ma corresponding to all three instability types. At reduced pressures, phase change at
the interface and heat and mass transport through the gas phase are all significantly
enhanced, and predictions of the one-sided model become very inaccurate, since it
completely fails to describe these effects. To illustrate the role of the gas phase,
it is useful to focus on the dimensionless combinations that have been introduced
over the years to describe the deviation from thermodynamic equilibrium, which
gives rise to convection in the presence of evaporation. In particular, in their analysis
of pure Marangoni (thermocapillary) instability in volatile fluids subjected to a
vertical temperature gradient, Burelbach, Bankoff & Davis (1988) introduced two
non-dimensional parameters: the evaporation number

E=
kl1T
ρlνlL

, (6.3)

which defines the ratio of the evaporative time scale (how long it would take
for a liquid layer to evaporate completely) to the viscous time scale, and the
‘non-equilibrium parameter’

K =
2χ

2− χ

√
R̄vT0

2π

ρvL2dl

klR̄vT2
0
, (6.4)

which defines the ratio of the latent heat flux at the interface to the conductive heat
flux in the liquid. The stability analysis of that problem was performed correctly only
recently by Chauvet et al. (2012) who found that a version of the Biot coefficient
(4.15) appears there as well. However, neither E nor K appears in the stability analysis,
regardless of the direction of the temperature gradient, because both parameters fail
to account for the transport (of either heat or mass) in the gas phase. Instead, the
Biot coefficient involves a non-dimensional combination H which describes the effect
of the latent heat associated with phase change and explicitly takes into account the
mass transport in the gas phase.

The study by Normand, Pomeau & Velarde (1977) was probably the first to
note that the Biot ‘number’ should depend on the wavenumber of the pattern for
convective flows. In their analysis of buoyancy–thermocapillary convection driven by
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a horizontal temperature gradient, Mercier & Normand (1996) repeated that statement,
but proposed to use the definition

Bi=
kgdl

kldg
(6.5)

based on conduction in the two layers instead. Although wavenumber-independent, this
definition is similar in form to the correct one in the combined limits of an infinitely
thick gas layer and vanishing volatility. Indeed, if we ignore phase change, for dg� dl,
the expression (4.15) would reduce to

Biq = q
kg

kl
= 2π

kgdl

klλ
. (6.6)

Here the wavelength of the pattern effectively plays the role of the gas layer thickness,
the result that follows immediately from the second equation in (4.3) which controls
the heat transport in the gas phase.

The wavenumber dependence of the Biot coefficient (4.15) implies that, once
transformed to the real space, Newton’s cooling law

dln̂ · ∇Tl =−Bi(Ti − T0) (6.7)

becomes invalid and has to be replaced by a spatially non-local relation between the
interfacial temperature and the normal temperature gradient (or heat flux) in the liquid
phase. Given that the Biot number (6.5) describes one-dimensional conduction, it is
not surprising that (6.7) fails when spatial variation of the solution in the extended
direction(s) is taken into account.

Finally, by comparing the results of linear stability analysis based on three models
of the gas layer that incorporate varying levels of detail, we found that advection
(of heat, mass, or momentum) plays a relatively minor role and can be ignored
except for low c0

a (e.g. when vapour dominates in the gas phase). In this limit, the
two-sided model, which accounts for advection in the gas layer, predicts a slightly
higher critical Ma for the threshold of both PMC and SMC. The increased role of
advection can be readily understood by considering the associated changes in the
Péclet numbers (4.1) and (4.2). Both αg and D are proportional to p−1

g ∝ 1 − c0
a, so

both Pem and Pet should increase with decreasing c0
a (even if we ignore the increase

in the characteristic velocity of the gas associated with enhanced phase change). We
should also expect advection to play a more important role for low Pr, since both
Pem and Pet are proportional to Re=Ma/Pr. The enhanced advective transport in the
gas phase at low c0

a or low Pr tends to suppress the variation in the temperature at
the interface, the thermocapillary stresses, and hence the onset of convection.

7. Conclusions
As several recent experimental (Li et al. 2014) and numerical (Qin & Grigoriev

2015) studies have demonstrated, phase change has a rather dramatic effect on the
stability of the flow in a layer of a volatile liquid (0.65 cSt silicone oil) driven by
a horizontal temperature gradient. These studies showed that the onset of instability
is delayed rather significantly when the phase change is enhanced by removing non-
condensable gases, such as air, from the system. Linear stability analysis based on
a model that takes heat and mass transport in the gas phase into account produces
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results that are overall in good quantitative agreement with these studies. In particular,
it confirms that the instability that is responsible for generating a pattern of convection
rolls is caused by the thermocapillary stresses, while buoyancy in the liquid layer has
a stabilizing effect.

The analysis also shows that phase change plays a very important role, with the
magnitude of the effect described by the non-dimensional combination H defined by
(3.31), the same combination that appears in the convection problem with a vertical,
rather than horizontal, temperature gradient (Chauvet et al. 2012). The similarity
of the two problems is not coincidental: due to the weakness of advective fluxes,
the transport of heat and mass in the gas layer is primarily due to diffusion of
the perturbations about the base state. This diffusive transport is independent of the
direction of the thermal gradient, which mainly affects the base state.

Even when phase change is suppressed (e.g. at atmospheric conditions or for a
fluid with relatively low volatility), we find that the gas phase can have a noticeable
effect on the stability of the flow. Our analysis shows that the transport of heat in
the gas layer can account for an increase of more than ten percent in the critical
Marangoni number. The effect of heat transport through the gas layer has been
traditionally described using the Newton cooling law, with the magnitude of the
heat flux characterized by the Biot number. While this law may be a reasonable
approximation for the base flow, it breaks down completely the moment convection
rolls appear. In fact, heat transport in the gas phase has to be treated explicitly in
order to obtain quantitatively accurate results in the entire range of parameters.
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Appendix A. Numerical solution of the boundary value problem

The boundary value solver bvp5c is designed to deal with systems of first-order
ODEs, so the higher-order ODEs arising in the linear stability analysis were converted
to this form.

A.1. Diffusion-dominated case
For the diffusion-dominated case, we converted the boundary value problem (4.16) to
a system of six first-order ODEs

y′1 = y2, y′2 = y3,

y′3 = y4, y′4 =C4(z̃)y1 +C5(z̃)y3 + i Gr qy5,

y′5 = y6, y′6 =C6(z̃)y1 + Pry2 +C7(z̃)y5,

 (A 1)

where y1 = ψ̃lq, y5 = θ̃lq, and

C4(z̃) = −i Gr
q3(z̃+ 1)(8z̃2

+ z̃− 1)
48

− i Gr q
8z̃+ 3

8

+ i Re
q3(z̃+ 1)(3z̃+ 1)+ 6q

4
− q2(q2

+ σq), (A 2)
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C5(z̃)= i Gr
q(z̃+ 1)(8z̃2

+ z̃− 1)
48

− i Re
q(z̃+ 1)(3z̃+ 1)

4
+ 2q2

+ σq,

C6(z̃)= i Ma Pr qC3(z̃),
C7(z̃)=−i Ma qC1(z̃)+ σqPr+ q2.

 (A 3)

Respectively, the boundary conditions become

y1(−1)= 0, y1(0)= 0,
y2(−1)= 0, y6(−1)= 0,

y3(0)+ iq Re y5(0)= 0

 (A 4)

and
y6(0)+ Biqy5(0)= 0. (A 5)

A.2. Transient dynamics in the gas layer
To avoid solving coupled boundary value problems (4.16) and (4.24) defined on
adjacent domains, we remapped the domain of θ̃gq and ς̃vq from [0, A] to [−1, 0]
by defining z̄ = −z̃/A and introducing two new functions θ̄gq(z̄) = θ̃gq(−z̃) and
ς̄vq(z̄)= ς̃vq(−z̃). In terms of these new functions, the system (4.22) becomes

A−2θ̄ ′′gq − q2θ̄gq = σqK−1
α θ̄gq,

A−2ς̄ ′′vq − q2ς̄vq = σqK−1
D ς̄vq,

}
(A 6)

where the prime now denotes the derivative with respect to z̄, and the boundary
condition (4.23) is replaced with

Aθ̃ ′lq(0)=−
kg

kl
θ̄ ′gq(0)−

1− c0
a

c0
a

Hς̄ ′vq(0). (A 7)

Furthermore, the no-flux boundary conditions at the top of the gas layer become

θ̄ ′gq(−1)= 0,
c̄′vq(−1)= 0.

}
(A 8)

Temperature continuity and the local phase equilibrium (4.11) at the free surface yield

θ̄gq(0)= θ̃lq(0),
ς̄vq(0)= θ̃gq(0).

}
(A 9)

Converting (A 6) into a system of first-order ODEs yields four additional equations

y′7 = y8, y′8 = A2(q2
+K−1

α σq)y7,

y′9 = y10, y′10 = A2(q2
+K−1

D σq)y9,

}
(A 10)

where y7= θ̄gq and y9= ς̄vq, which should be added to the system (A 1). The boundary
conditions (A 4) remain and (A 5) is replaced with

Ay6(0)+
kg

kl
y8(0)+

1− c0
a

c0
a

Hy10(0)= 0,

y7(0)= y5(0), y8(−1)= 0,
y9(0)= y5(0), y10(−1)= 0.

 (A 11)
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A.3. The effect of advection in the gas layer

Just like in the previous case, we introduce new functions θ̄gq(z̄)= θ̃gq(−z̃), ς̄vq(z̄)=
ς̃vq(−z̃) and ψ̄gq(z̄)= ψ̃gq(−z̃), so the system (4.24) becomes

Kν∇̄
2
q ∇̄

2
q ψ̄gq + iqC̄1(z̄)RA−2ψ̄ ′′gq − iqC̄2(z̄)Rψ̄gq − iqΞT θ̄gq − iqΞς ς̄vq = σq∇̄

2
q ψ̄gq,

Kα∇̄
2
q θ̄gq + iqC̄1(z̄)Rθ̄gq − iqC̄3(z̄)RK−1

α ψ̄gq + A−1ψ̄ ′gq = σqθ̄gq,

KD∇̄
2
q ς̄vq + iqC̄1(z̄)Rς̄vq − iqC̄3(z̄)RK−1

D ψ̄gq + A−1ψ̄ ′gq = σqς̄vq,


(A 12)

where we have defined ∇̄2
q = A−2∂2

z̄ − q2 and

C̄1(z̄)=
(z̄+ 1)(3z̄+ 1)

4
−B

(z̄+ 1)(8z̄2
+ z̄− 1)

48
,

C̄2(z̄)= q2C̄1(z̄)+
3

2A2
−B

8z̄+ 3
8A2

,

C̄3(z̄)=−
Az̄(z̄+ 1)2

4
+B

Az̄(z̄+ 1)2(2z̄− 1)
48

.


(A 13)

The functions ς̄vq(z̄) and θ̄gq(z̄) again satisfy the boundary conditions (A 8) and (A 9).
The boundary conditions for the function ψ̄gq(z̄) follow from (3.21) and (3.22):

ψ̄gq(−1)= 0, ψ̄ ′gq(−1)= 0,
ψ̄gq(0)= 0, ψ̄ ′gq(0)=−Aψ̄ ′lq(0).

}
(A 14)

Converting (A 12) into a system of first-order ODEs yields eight additional
equations

y′7 = y8, y′8 = C̄4(z̄)y7 + iqA2RK−2
α C̄3(z̄)y11 − AK−1

α y12,

y′9 = y10, y′10 = C̄5(z̄)y9 + iqA2RK−2
D C̄3(z̄)y11 − AK−1

D y12,

y′11 = y12, y′12 = y13,

y′13 = y14, y′14 = iqA4K−1
ν (ΞTy7 +Ξςy9)+ C̄6y11 + C̄7y13,

 (A 15)

which augment the system (A 1) describing the liquid layer. Here y7 = θ̄gq, y9 = ς̄vq,
y11 = ψ̄gq, and

C̄4(z̄)=−iqA2RK−1
α C̄1(z̄)+ A2(q2

+K−1
α σq),

C̄5(z̄)=−iqA2RK−1
D C̄1(z̄)+ A2(q2

+K−1
D σq),

C̄6(z̄)= iqA4RK−1
ν C̄2(z̄)− A4q2(q2

+K−1
ν σq),

C̄7(z̄)=−iqA2RK−1
ν C̄1(z̄)+ A2(2q2

+K−1
ν σq).

 (A 16)

The boundary conditions are given by (A 4), (A 11), and

y11(0)= 0, y11(−1)= 0,
y12(0)=−Ay2(0), y12(−1)= 0.

}
(A 17)

In all of the expressions given in the appendix, the non-dimensional parameters Re,
Gr, R, B, ΞT and Ξς were expressed in terms of Ma, Pr, BoD and c0

a using the
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definitions (3.3), (3.5), (3.7), (3.15), (3.30), (3.39) and (3.40). Similarly, parameters
KD, Kα and Kν were evaluated as functions of c0

a.
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QIN, T., TUKOVIĆ, Z̆. & GRIGORIEV, R. O. 2015 Buoyancy-thermocapillary convection of volatile
fluids under their vapors. Intl J. Heat Mass Transfer 80, 38–49.

RILEY, R. J. & NEITZEL, G. P. 1998 Instability of thermocapillarybuoyancy convection in shallow
layers. Part 1. Characterization of steady and oscillatory instabilities. J. Fluid Mech. 359,
143–164.

SCHATZ, M. F. & NEITZEL, G. P. 2001 Experiments on thermocapillary instabilities. Annu. Rev.
Fluid Mech. 33, 93–127.

SCHRAGE, R. W. 1953 A Theoretical Study of Interface Mass Transfer. Columbia University Press.
SHEVTSOVA, V. M. & LEGROS, J. C. 2003 Instability in thin layer of liquid confined between rigid

walls at different temperatures. Acta Astron. 52, 541–549.
SHEVTSOVA, V. M., NEPOMNYASHCHY, A. A. & LEGROS, J. C. 2003 Thermocapillary-buoyancy

convection in a shallow cavity heated from the side. Phys. Rev. E 67, 066308.
SMITH, M. K. & DAVIS, S. H. 1983a Instabilities of dynamic thermocapillary liquid layers. Part 1.

Convective instabilities. J. Fluid Mech. 132, 119–144.
SMITH, M. K. & DAVIS, S. H. 1983b Instabilities of dynamic thermocapillary liquid layers. Part 2.

Surface-wave instabilities. J. Fluid Mech. 132, 145–162.
SUMAN, B. & KUMAR, P. 2005 An analytical model for fluid flow and heat transfer in a micro-heat

pipe of polygonal shape. Intl J. Heat Mass Transfer 48, 4498–4509.
VILLERS, D. & PLATTEN, J. K. 1987 Separation of marangoni convection from gravitational

convection in earth experiments. Phys. Chem. Hydrodyn. 8, 173–183.
VILLERS, D. & PLATTEN, J. K. 1992 Coupled buoyancy and marangoni convection in acetone:

experiments and comparison with numerical simulations. J. Fluid Mech. 234, 487–510.
YAWS, C. L. 2003 Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical

Compounds (Electronic Edition): Physical, Thermodynamic and Transport Properties for 5,000
Organic Chemical Compounds. Knovel.

YAWS, C. L. 2009 Yaws’ Thermophysical Properties of Chemicals and Hydrocarbons (Electronic
Edition). Knovel.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

91
8

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 G

eo
rg

ia
 In

st
itu

te
 o

f T
ec

hn
ol

og
y,

 o
n 

01
 S

ep
 2

02
0 

at
 2

1:
06

:0
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2017.918
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

	The effect of phase change on stability of convective flow in a layer of volatile liquid driven by a horizontal temperature gradient
	Introduction
	Mathematical model
	Governing equations
	Boundary conditions at the interface

	The base flow
	Boundary conditions
	Fluid flow and temperature in the liquid layer
	Fluid flow, temperature and composition in the gas layer

	Linear stability analysis
	Diffusion-dominated case
	Transient dynamics in the gas layer
	The effect of advection in the gas layer
	Different modes of instability
	Convective instability
	Absolute instability
	Stationary instability


	Results
	Convection at atmospheric conditions
	Convection at reduced pressures

	Discussion
	Conclusions
	Acknowledgements
	Appendix A. Numerical solution of the boundary value problem
	Diffusion-dominated case
	Transient dynamics in the gas layer
	The effect of advection in the gas layer

	References


