Resilient Authentication and Authorization for the Internet
of Things (loT) Using Edge Computing

HOKEUN KIM, University of California, Berkeley, USA
EUNSUK KANG, Carnegie Mellon University, USA

DAVID BROMAN, KTH Royal Institute of Technology, Sweden
EDWARD A. LEE, University of California, Berkeley, USA

An emerging type of network architecture called edge computing has the potential to improve the availabil-
ity and resilience of IoT services under anomalous situations such as network failures or denial-of-service
(DoS) attacks. However, relatively little has been explored on the problem of ensuring availability even when
edge computers that provide key security services (e.g., authentication and authorization) become unavail-
able themselves. This article proposes a resilient authentication and authorization framework to enhance
the availability of IoT services under DoS attacks or failures. The proposed approach leverages a technique
called secure migration, which allows an IoT device to migrate to another trusted edge computer when its
own local authorization service becomes unavailable. Specifically, we describe the design of a secure migra-
tion framework and its supporting mechanisms, including (1) automated migration policy construction and
(2) protocols for preparing and executing the secure migration. We formalize secure migration policy con-
struction as an integer linear programming (ILP) problem and show its effectiveness using a case study on
smart buildings, where the proposed solution achieves significantly higher availability under simulated at-
tacks on authorization services.

CCS Concepts: « Networks — Network security; Denial-of-service attacks; - Computer systems or-
ganization — Availability; « Security and privacy — Authentication; Authorization;

Additional Key Words and Phrases: Internet of things, edge computing, secure migration, resiliency

This article is an extended version of our previous work [Kim et al. 2017a], which appeared in at the ACM SafeThings
2017 Workshop in November 2017. Main contributions of this extended paper include the newly added section of formal
problem formulation as an Integer Linear Programming (ILP) problem with a motivating example (Section 2), advanced
secure migration protocols with detailed explanation (Section 3), experiments of advanced protocols at a greater scale
including more migration considerations and a variety of configurations (Section 4), and a more comprehensive literature
review (Section 5).

The work in this article was supported in part by the National Science Foundation (NSF), award #1446619 (Mathematical
Theory of CPS), and the iCyPhy Research Center (Industrial Cyber-Physical Systems), supported by Avast, Denso, Ford, and
Siemens. This work is also financially supported by the Swedish Foundation for Strategic Research (project FFL15-0032).
Authors’ addresses: H. Kim and E. A. Lee, University of California, Berkeley, 545Q Cory Hall, Berkeley, CA 94720, USA;
emails: hokeunkim@berkeley.edu, eal@eecs.berkeley.edu; E. Kang, Carnegie Mellon University, 5000 Forbes Avenue, Pitts-
burgh, PA 15213, USA; email: eskang@cmu.edu; D. Broman, KTH Royal Institute of Technology, Kistagangen 16 Kista,
Sweden; email: dbro@kth.se.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

2577-6207/2020/02-ART4 $15.00

https://doi.org/10.1145/3375837

ACM Transactions on Internet of Things, Vol. 1, No. 1, Article 4. Publication date: February 2020.

RIGHTSE LI MN iy

mailto:permissions@acm.org
https://doi.org/10.1145/3375837

4:2 H. Kim et al.

ACM Reference format:

Hokeun Kim, Eunsuk Kang, David Broman, and Edward A. Lee. 2020. Resilient Authentication and Autho-
rization for the Internet of Things (IoT) Using Edge Computing. ACM Trans. Internet Things 1, 1, Article 4
(February 2020), 27 pages.

https://doi.org/10.1145/3375837

1 INTRODUCTION

Authentication and authorization play critical roles in ensuring safe and secure operations of the
Internet-of-Things (IoT) devices in an open or hostile environment. Existing solutions for provid-
ing these security services to IoT devices rely on remote and centralized cloud servers, including
OpenMTC,! FIWARE,? and AWS IoT Core.? In this type of approach, however, network problems
or a failure of one or more cloud servers may adversely affect devices relying on these critical
services. An example illustrating this risk can be observed from the recent Google OnHub in-
cident [Morris 2017], where a failure in the Google authentication servers caused IoT gateway
devices (called OnHub) to become inaccessible, in turn leading to failures in all devices connected
to these gateway devices.

An alternative system architecture, in part designed to reduce this dependency on remote, cen-
tralized servers, is called edge computing [Shi and Dustdar 2016] or fog computing [Luan et al. 2015].
In this approach, computing devices at the edge of the network called edge computers serve as an
Internet gateway to local, neighboring devices; these edge computers may be deployed as a wide
range of devices, including smart home routers, laptops, or smartphones. Figure 1 illustrates the
different characteristics of the cloud servers, edge computers, and IoT devices. As pointed out by
Lopez et al. [2015], benefits of adopting edge computing include better control of privacy, lower
latency for real-time applications, less dependency on cloud servers and its connections, and better
context awareness and manageability of the local systems.

Previously, we proposed an authentication and authorization infrastructure of the IoT called the
Secure Swarm Toolkit (SST) [Kim et al. 2017b]. The key distinguishing feature of SST is a locally
centralized, globally distributed architecture [Kim and Lee 2017]: It consists of a set of local au-
thorization entities called Auths [Kim et al. 2016], each of which is deployed on edge computers.
An Auth in SST enforces access policies and provides security services to local IoT devices (called
entities). In this prior work, we demonstrated how SST could provide strong confidentiality and
integrity guarantees for communication among IoT devices at scale. We also proved security and
scalability of SST using mathematical analysis and a set of experiments.

In this article, building on our prior work, we propose a novel approach for providing resilience
against denial-of-service (DoS) attacks on an IoT network—e.g., a class of attacks designed to render
critical services such as authentication and authorization unavailable to IoT devices. The ultimate
goal of a DoS attack is to compromise the availability of a system by disrupting or overloading one
or more of its service endpoints. A common and widely known type of DoS attack is called the
distributed DoS (DDoS) attack [Zargar et al. 2013], where an attacker controls a large number of
compromised computers to repeatedly generate service requests and exhaust computational and
communication resources of a server. This type of attack is becoming more prevalent as many IoT
devices are poorly secured (e.g., weak passwords) and vulnerable to both physical and wireless
attacks; thus, they can be relatively easily compromised to be used for launching DoS attacks.

Thttp://www.open-mtc.org/.
https://www.fiware.org/.
Shttps://aws.amazon.com/iot-core/.

ACM Transactions on Internet of Things, Vol. 1, No. 1, Article 4. Publication date: February 2020.

RIGHTSE LI MN iy

https://doi.org/10.1145/3375837
http://www.open-mtc.org/
https://www.fiware.org/
https://aws.amazon.com/iot-core/

Resilient Authentication and Authorization for the loT Using Edge Computing 4:3

Cloud servers Edge computers 10T devices (Things)
=) (Internet gateways) N AN
2 - [=1 ON

=

< — [— .
o~ @ H
More available resources <1Restricted resources
e — " Better connectivity
Less stable connections Lower latency
B — T V) i
guarantee data privacy Easier to keep data private
Limited context awareness _:>Better context awareness

(of local system) (of local system)

Fig. 1. lllustration of various trade-offs between cloud servers, edge computers, and loT devices. For instance,
cloud servers can provide more available resources but have higher latencies and challenges regarding data
privacy, compared to edge computers.

/ \‘ : @ X ‘
G -4 ‘o <&

(a) Normal operation

H Auth (on edge computeri\\

: @ Entity (on loT device)

m ----@ tjis authorized by A;

=
\
Trust between Auths @ - @

— - — Communication between entities! (c) SST + Proposed approach

f
'
'
'
'

Fig. 2. (a) SST in normal operation. (b) SST without the architectural mechanism proposed in this article, in
case of Auth failure. (c) Proposed secure migration technique for enhancing the availability of SST, in case
of Auth failure.

In particular, our approach leverages an architectural mechanism called secure migration, which
allows IoT devices to dynamically migrate from one Auth to another and continue to receive critical
services even when some of the Auth devices become unavailable due to an attack or other failures.
To illustrate, Figure 2(a) shows an example of a small IoT network in normal operation using SST:
there are two Auths, A; and A, and each Auth is responsible for authorization of three entities, ;,
t, and t3 for Ay and ty, t5, and ts for A,. If A; fails due to a DoS attack, then authorization services
for registered entities will become unavailable as shown in Figure 2(b). This will also affect the
availability of other entities. For example, communication between t; and t; will be disrupted.
However, SST with the proposed secure migration approach will gracefully migrate #, t,, and t3
from A; to A, and resume authorization services for the IoT entities, as shown in Figure 2(c).

The main research challenge is to perform such secure migration in an optimal manner, taking
into account constraints such as communication costs and security requirements for specific IoT
services and devices. The contributions of this article are as follows:

e A novel architectural mechanism for constructing IoT services that are resilient against
DoS attacks, including a secure migration technique that allows IoT devices to continue to
operate even when local authorization services become unavailable.

e A formulation of the secure migration problem, including formal constraints and security
requirements that define what constitutes a valid migration policy (Section 2).

e A novel approach for finding an optimal migration policy by leveraging an Integer Linear
Programming (ILP) solver (Section 3).

ACM Transactions on Internet of Things, Vol. 1, No. 1, Article 4. Publication date: February 2020.

RIGHTSE LI MN iy

4:4 H. Kim et al.

e A case study in smart buildings, demonstrating the effectiveness of our approach against
DoS attacks (Section 4).

This article is organized as follows: Section 2 provides a formalization of migration as the prob-
lem of finding valid assignments of IoT entities and Auths. A technique for automatically solving
the migration problem is presented in Section 3, followed by experiments and results showing the
effectiveness of the proposed approach in Section 4. The article concludes with a discussion of the
related work (Section 5) and future work (Section 6).

2 PROBLEM FORMULATION

We propose an approach called secure migration for improving the availability of IoT devices by
exploiting the architectural characteristics of SST. In particular, we accomplish this goal by having
Auths take over other Auths’ authorization tasks when the latter group becomes unavailable due
to an attack. At high level, each Auth backs up information about IoT entities that it is serving
(e.g., security credentials) and shares it with other trusted Auths. When a failure occurs in an
Auth, its registered entities are migrated to other trusted Auths so they can continue to rely on
authorization services that are necessary for their operations.

2.1 Threat Model

We assume the existence of an active network attacker with an ability to discover and send packets
to Auths running on edge devices. In particular, the attacker seeks to disrupt the availability of IoT
devices connected to a gateway (e.g., an Auth) by carrying out various DoS attacks on it, such as
flooding or distributed denial-of-service (DDoS) attacks. In our model, we primarily focus on DoS
attacks and failures, instead of confidentiality or integrity attacks (addressed by our prior work on
SST [Kim et al. 2017b]).

In addition, we exclude insider attacks; i.e., malicious acts by an individual who already has
control over IoT and gateway devices on the local area network. Also, we assume that every local
Auth is protected from physical tampering and that authorized* local network users are trustwor-
thy. Furthermore, we do not consider an attack that involves impersonation of Auths; this attack
can be addressed by preventing access to private keys of Auths, using various approaches including
hardware security support such as Intel’s Software Guard Extensions (SGX). These assumptions
allow us to rely on local Auths to perform critical steps in mitigating against a DoS attack.

2.2 Design Considerations

Although the high-level idea behind migration may appear straightforward, determining a migra-
tion policy—an assignment of entities to Auths to which they will be migrated to—is a non-trivial
problem due to the following constraints that must be taken into account:

Auth trust relationships: SST introduces an explicit notion of trust between a pair of Auths and
enables an entity from Auth A to communicate to an entity in another Auth A’ if and only if A
and A’ trust each other. This communication constraint imposed by the trust must be maintained
during migration while satisfying individual entities’ requirements. Consider Figure 3(a), where
entities t; and t5 are required to communicate with each other, and there is a trust relationship
between Auths A; and A,, as well as between A; and As. Suppose that A; becomes unavailable. If
we arbitrarily decide to migrate ¢4 to A,, then t4 will no longer be allowed to communicate with
t5, since there exists no trust relationship between A; and A;. A proper migration policy may

“We do not exclude the possibility that non-authorized users can still be malicious.
ACM Transactions on Internet of Things, Vol. 1, No. 1, Article 4. Publication date: February 2020.

RIGHTSE LI MN iy

Resilient Authentication and Authorization for the loT Using Edge Computing 4:5

When A; fails, migrate
t,fromA;t0 A, /7

‘ i

O [} —
ST \\ o

! Auth (on edge computer) . O O @ O
: @ Entity (on loT device) | tycan't communicate with tsafter migration
| [A]--® yisauthorized by A, | (a) (b)
! Trust between Auths i

:\ — - — Communication between entities ‘,'

* Equipped with HW
security support
(TPM and Intel SGX)

*Located in a

restricted-access area

« Located in an open area

H *Which Auth is directly reachable
? 7 through wireless communication?
~~~~~ @' *What guarantees can Auths provide?
(C) ¢ Is Auth protected from physical harm?

Fig. 3. Considerations for migration policies: (a) Trust among Auths and communication requirements be-
tween loT entities (Things). (b) Balancing the workload of Auths for Authorization. (c) Characteristics and
security guarantees of Auths.

*No hardware security support ]

instead involve migrating ¢4 to As. Note that the trust relationship among Auths is not necessarily
transitive.

Managing Auth’s workload for authorization: Let us consider a different scenario where en-
tities that have lost connections with their original Auths are placed within the signal ranges of
Auths A; and A; as depicted in Figure 3(b). In this scenario, ts, ts, and t; are within signal ranges
of both Auths; thus, they can migrate to either of the two Auths. An arbitrary migration decision
may lead to a situation described in Figure 3(b) where all seven entities will have migrated to only
A;. However, this type of decision may adversely affect the performance of the overall network,
depending on the operational conditions of Auths. Each Auth may have an inherent limit in its re-
source capacity to perform authorization tasks for entities; for example, A; may be required to run
other computationally intensive tasks, or it may be running on a battery-powered edge computer
with a limited energy budget. Therefore, assigning entities within A,’s signal range (ts, , and t7)
to A, may lead to greater performance for the overall network.

Security guarantees of Auth: Another important factor to be considered in a migration policy
is the level of security provided by Auth from the viewpoint of each entity. These include whether
the Auth is equipped with hardware security support such as a TPM (Trusted Platform Module)
or Intel’s SGX (Software Guard Extensions) and whether the Auth is located in a restricted-access
area for extra physical security. For instance, consider Auths A; and A; in Figure 3(c). Suppose A,
is equipped with hardware security support and deployed in a restricted-access area, whereas A; is
located in an open area without any hardware security support. If a particular entity (for instance,
t3) requires a high level of security guarantee by an Auth, then #; may wish to be registered with
Aj rather than with A, even if the cost of communication with A; is higher.

2.3 Policy Construction as an Optimization Problem

When an Auth becomes unavailable due to an attack, we say that Things belonging to that Auth
are dangling. A migration policy is an assignment of each dangling Thing to one of the remaining
Auths in the network. As discussed in Section 2.2, a valid policy must ensure that the new network
resulting from migration satisfies a number of hard constraints (e.g., trust relationships).
Another aspect of policy construction is that of optimization; that is, generating a migration
policy that results in a network with a minimal amount of overall communication costs between

ACM Transactions on Internet of Things, Vol. 1, No. 1, Article 4. Publication date: February 2020.

RIGHTSE LI MN iy



4:6 H. Kim et al.

Auths and Things. For instance, communication costs between a pair of nodes may depend on a
number of factors, such as the physical distance between them and the energy required to perform
cryptographic operations.

Structure: We formulate the problem of finding an optimal policy as an instance of the Integer
Linear Programming (ILP) problem. Formally, let network graph G be a tuple G = (V, E), where
V = A UT is the set of nodes representing Auths and Things (entities), respectively, and E is the
set of edges between these nodes. We assume that G is an undirected graph (i.e., all edges are
bidirectional), and that A N T = 0, i.e., a Thing cannot be an Auth and vice versa.

Each auth A € A itself is associated with a set of attributes, (Sa, capa), where S, is the set of
security guarantees that the Auth can provide, and capy is the threshold of Auth’s capacity for
authorization of Things without causing degradation.

Similarly, each Thing t € T is associated with the tuple (S;, r;), where S; is the set of security
guarantees that a Thing requires, and r; is a positive real value representing the resource require-
ment for authorization tasks. In particular, the sum of r;’s for Things assigned to a particular Auth
should not exceed the threshold capacity of that Auth so as not to cause service degradation.

A network graph contains three distinct sets of edges, as follows (i.e., E = Ega U E77 U EAT):

o Eaa: A set of edges representing relationships between a pair of Auths, A; and A,. Each
ean € Eana is associated with (1) the trust relationship between a pair of Auths, trust :
A XA — {0,1}, which is set to 1 if and only if A; and A, trust each other and (2) the com-
munication cost costcomm € R between the two Auths.

e Er7: A set of edges representing relationships between a pair of Things, #; and t,. Each
err € Err is associated with the criticality of communication, critical : T X T — {0, 1},
which is set to 1 if and only if the two Things require a secure communication channel
for the availability of the IoT system.

e E,r: A set of edges representing assignments of Things to Auths. In case of an Auth failure,
some of the Things may be dangling, in that there exists no edge of type Esr from these
Things to an Auth. The goal of our migration technique is to assign an Auth to every one of
these dangling Things. In addition, each et is associated with some communication cost
costeomm € R.

Constraints: The set of constraints that must be satisfied by every graph G is defined as:
constraints(G) = securityCons(G) A commReqCons(G) A capacityCons(G),

which are, in turn, defined in terms of the following constraints:

e Thing-specific security requirements: Each Thing may have security requirements that
must be provided by Auth. These requirements include hardware support (e.g., TPM/SGX),
restricted physical location, cryptography specification (e.g., ephemeral keying for perfect
forward secrecy). For each Thing and its security requirement, the Thing must be connected
to at least one Auth that provides the same security guarantee:

securityCons(G) =Vt € TVr € S; AA € A.(A,t) € Ex1 A1 € Sa.

e Thing-to-thing communication requirements: After being migrated, some Things
need to re-perform an authorization process to obtain the necessary credentials to com-
municate to other Things. For every pair of Things that communicate with each other but

ACM Transactions on Internet of Things, Vol. 1, No. 1, Article 4. Publication date: February 2020.

RIGHTSE LI MN iy



Resilient Authentication and Authorization for the loT Using Edge Computing 4:7

belong to different Auths, the latter pair must satisfy the trust constraint for the Things:

commReqCons(G) = Vt,t, € T, A1, Ay € A.
(t1,t2) € Err A (A1, t1) € Ear A (Ag,t2) € Ear A (A = Ay) Acritical(ty, t) = 1
= trust(A;, Ap) = 1.

e Auth capacity: Each Auth has a threshold in terms of upper bounds for authorization
requests served per minute or upper bounds for session keys cached in Auth. When there are
more registered entities than this threshold can handle, the Auth will suffer from potential
degradation in the services that it provides. For each Auth, the sum of authorization task
requirements for all Things connected to this Auth must not exceed its capacity:

capacityCons(G) = VA € A. Z re | < capa,
tets(A)

where capy is the capacity of auth A, r; is the resource requirement of Thing ¢, and ts(A) =
{t e T| (A t) € Eat} is the set of all Things connected to A.

Costs to be optimized: Another aspect of policy construction is that of optimization; that is,
generating a migration policy that results in a network with a minimal amount of overall com-
munication costs between Auths and Things. A cost may represent (some combination of) energy
consumption, latency, or distance between nodes. For instance, as the distance between a pair of
nodes increases, the frequency of packet loss may also increase, in turn triggering more frequent
retransmission and, thus, overall communication cost. To accommodate different types of costs
that may be relevant to different domains, we intentionally treat the notion of cost as an abstract
entity. In particular, the goal here is to optimize over a cost variable, TC, which represents the total
communication costs for the Auths and Things:

TC = wrCr + Wy{Cy[’

where C # and Cr represent the overall communication costs for Auths and Things, respectively. In
addition, w4 and wr are positive real numbers that represent the weighting factors to distribute
the migration costs over Auths and Things, where w# + wr = 1. The types of costs are further
defined as follows:

e Total communication costs of Auths: The sum of communication costs imposed on
Auths defined as:

Cq = Z (AA(e).costeomm),

ecErT

where AA(e) returns the Auth-to-Auth edge for authorizing communication between the
pair of Things in the given edge, e. Note that if the Things belong to the same Auth, then the
cost associated with AA(e) is 0, because there is no need for Auth-to-Auth communication.

e Total communication costs of Things: The sum of communication costs imposed on
Things is defined as:

Cr= Z (AT (e).costeomm + ATz(€).costeomm),

ecErT

where ATj (e) returns the edge between the first Thing and the Auth that it belongs to, and
similarly, AT, (e) returns the edge between the second Thing and its Auth.

ACM Transactions on Internet of Things, Vol. 1, No. 1, Article 4. Publication date: February 2020.

RIGHTSE LI MN iy



4:8 H. Kim et al.

ILP formulation: An ILP problem has the following canonical form:

minimize ¢’ x

subjectto Ax <b,x € Z",

where ¢ and b are vectors, and A is a matrix. In particular, for our problems, x is a vector of binary
variables, each of which encodes an assignment of a particular Thing to an Auth. In other words,
x = [x00, Xo1, - - ., Xij» . . .] Where x;; is assigned 1 if and only if there exists an edge of type Ear
from some Auth A; € A to Thing t; € T. In addition, ¢ is a vector of integers (of the same length
as x) where each entry c;; corresponds to the cost incurred by assigning Thing ¢; to Auth A;.

Two of the logical constraints in our model (i.e., securityCons and commReqCons) can be reduced
to a propositional formula as follows:

e securityCons: Since each network has a fixed number of Things and Auths, quantifiers can
be eliminated by unrolling them over the finite domains. For instance, suppose that a sample
network consists of two Things (ty, t1) and two Auths (Ay, A;) such that S;) = {ra}and 5, =
{rg}. Then, the security constraint can be expressed as the following quantifier-free formula:

securityCons(G) = ((Ao, to) € Ear Ara € Sa, V (A1, 1) € EaT ATa € 54,)
A ((Ao,t1) € EaTr ArB € Sa, V (A1, t1) € Ear AT € Sa,).

In addition, for each security requirement r € S;, we introduce a Boolean variable that is
true if and only if r € S4.

e commReqCons: Again, quantifiers can be eliminated through unrolling. Boolean variables
are introduced to represent whether (1) a pair of Things requires a critical communication
channel (critical(t, t;)) and (2) their corresponding Auths consider each other trustworthy:.

It is a well-known result that any propositional logic formula can be encoded as a set of linear
inequality constraints [Hooker and Lama 1999]. In addition, the constraint capacityCons is already
in linear inequality form and thus can be directly encoded as a constraint in the ILP problem. Given
these constraints, an ILP solver attempts to find a satisfying assignment of truth values to the vector
x that minimizes the associated costs. The output from the solver (if any) represents a migration
policy that assigns dangling Things to the remaining Auths in the network while minimizing the
overall communication cost of the resulting network.

2.4 Example

Let us consider the example shown in Figure 4, where there are three Auths, A;, A;, As, and five
Things, t; through t5. For brevity, let us denote the cost of communication between A; and t; as
c(A;, tj). Similarly, we denote the communication cost between A; and Ay as c¢(A;, Ax). Here, the
communication costs include energy consumption due to wireless communication, cryptographic
operations, and local data storage access.

The relationships and costs of communication between Auths and Things are described in
Figure 4. In this system, all Auths are assumed to trust one another; t; and t, are required to
communicate with each other and so are t; and t5. Originally, #; and ¢, are registered with Ay, t3
and 14 are registered with A, and t5 is registered with As. These relationships can also be stated
as follows:

{(A1,Az), (A1, A3), (A2, A3)} C Eag,
{(A1,11), (A1, 12), (A2, t3), (A2, t4), (A3, t5)} C Ear,
{(t1,t2), (t1,15), (13, t4)} C ETT.

ACM Transactions on Internet of Things, Vol. 1, No. 1, Article 4. Publication date: February 2020.

RIGHTSE LI MN iy



Resilient Authentication and Authorization for the loT Using Edge Computing 4:9

Auth (on edge device) i
@ Thing (on loT device) i

c Trust relationship between E
Auths (with cost ¢) E

— - — - -(Required) communication
between loT entities

C.@ Thing t;, is currently registered
with Auth 4; (with cost c)

__5__@ Thing t; is newly registered withi
Auth A; after migration (cost c) !

Cost of communication for edges i
c(Ay Ay) 3 i
@, 1) 2 i
(A, t) 15 i
c(4y t5) 1 !
c(Apty) E
c(4;ty) 25 i
c(43ty) E
(43, t5) |

Fig. 4. Migration plan examples with considerations for communications costs for authorization of loT en-
tities after migration; (a) Relationships and communication costs between Auths and entities during normal
operation. (b) Migration Plan; after A;’s failure. (c) Migration Plany after A;’s failure. (d) Migration Plans
after Ay’s failure.

In addition, we assume that all things have a uniform resource requirement (i.e., 7, = 1 for every
t € T), and each Auth is capable of servicing at most three things at any given moment (caps = 3
for every auth A).

Let us consider a scenario in which A; becomes unavailable due to an attack, and migration is
needed. To represent this attack, all edges involving A, are deleted, resulting in the following set
of edges:

{(A2,A3)} C Eag,
{(A2,13), (A2, 14), (A3, 5)} C Ear,
{(t1, 12), (t1, 15), (83, 4)} C E7T.
To satisfy the communication requirements between t; and t,, these Things must be assigned to
the remaining Auths, while satisfying the capacity constraint. For example, for Ay, this constraint
is equal to:
I{(x’ y) | (x’ y) C EAT AX = A2}| S CapAz = 37

meaning that the number of Things registered with A; should not exceed 3. Due to this constraint,
either only one of t; or t; can migrate to A, but not both. This results in the following three possible
migration plans:

L4 Planl: {(AZa tl)’ (A37 tz)} - EAT7
o Plany: {(As, 1), (A3, t1)} C Ear,
e Plans: {(As,11), (As,t2)} C Ear.

Each plan is evaluated in terms of the overall communication costs (Ct and C.#) that result after
the migration takes place. Note that the communication costs incurred on t3, t4, and t5 remain
the same after migration; that is, C;, = 1, Cy, = 1, and C;, = 1. Thus, we need to consider only the

ACM Transactions on Internet of Things, Vol. 1, No. 1, Article 4. Publication date: February 2020.

RIGHTSE LI MN iy



4:10 H. Kim et al.

Table 1. The Total Cost to Be Optimized Depending on
Different Weights for the Things and Auths, wr and wy,
respectively

(wr,wa) | (0.9,0.1) | (0.8,0.2) | (0.7,0.3) | (0.5, 0.5)
Plan, 11.2 12.4 13.6 16
Plan, 10.1 10.7 113 12.5
Plan; 11 11 11 11

Note that the minimum costs are marked as bold for each set of weights.

changes in the costs associated with t;and t,; i.e., Cy, and Cy,. The total communication cost of
Things is CT = Ct1 + Ctz + Ct3 + Ct4 + Cts = Ct1 + Ctz + 3.

Plan1 :Ct1 ZZXC(Az,t1)=4 Ctz =C(A3,t2) =3 Cr =Ct1+ct2+3= 10,
Plan2 : Ct1 =2X C(Ag,tl) =5 Ctz = C(Az,tz) =1.5 Cr = Ct1 + Ctg +3 =95,
Plang :Ctl =2XC(A3,t1):5 Ctg :C(A3,t2) =3 CT:Ct1 +Ctz +3=1.

Let us now consider Auth-related costs that result from the migration. The communication cost
for A, to handle authorization of ¢; and ¢4 remains the same after migration; let us set this cost
C 1'42 = c(Az, 13) + c(Az, t4) = 2. Similarly, the communication cost for A; to handle authorization of
t5 remains unaffected by migration, which is c(As, t5) = 1.

Plan1 : CAZ = C:‘lz +2X C(Az, tl) + 2 X C(Az,A3) =12

CA3 = C(Ag, tz) + C(A3, t5) + 2 X C(Az,A3) =10 Cj[ = 22,
Planz : CAZ = CAA + C(Az, tz) + C(Az,A3) =6.5
Ca, = 2% c(As, t1) + c(As, t5) + ¢(Az,A3) =9 Cq =15.5,

Plans : CAZ = Cj“z =2 CA3 =2X C(A3,t1) + C(Ag,tz) + C(A3,t5) =9 Cq =11.

Let TC be the total communication cost to be optimized. TC can be expresses as a weighted sum
of CT and C;}[:

TC = WTCT + WACy{,

where wr and wy are the weights for Cr and C 4, respectively, such that wy + wy = 1. The values
for wr and w4 should be determined with considerations of the IoT network’s characteristics. For
instance, if the IoT network consists of battery-powered Things, then we need to use greater wr
to optimize the cost for Things. However, when the edge computers hosting Auths have resource
constraints such as limited communication bandwidth, w4 should be greater to take this factor into
account. Table 1 shows TC for different sets of weights, demonstrating that the choice of an optimal
policy depends on the allocation of weights as well. For example, when (wr, w4) = (0.8,0.2), Plan;
is considered the optimal plan, whereas if (wr, wa) = (0.7, 0.3), then Plans is the one that results
in a minimal cost.

2.5 Remark about Performance

For a large, densely connected network with a high number of nodes, it may take a considerable
amount of time and resources to compute the total communication costs (for all possible migration
plans) and solve the optimization problem. In practice, we believe that this will not be a significant
obstacle to our approach, since the generation of potential migration plans and an optimal policy
can be performed offline, thus incurring little run-time overhead when actual migration takes
place. We further discuss the performance of our approach through an experiment on a realistic

ACM Transactions on Internet of Things, Vol. 1, No. 1, Article 4. Publication date: February 2020.

RIGHTSE LI MN iy



Resilient Authentication and Authorization for the loT Using Edge Computing 4:11

A4’s Migration Policies i ------- @ t, is currently registered with 4; i
Entity |Backup to ' i
t, A, i

tZ AZ

t3 A3

t4 A4

t5 A4

(a) Auth Backup (b) Failure Detection  (c) Secure Migration

Fig. 5. Overview of operations to defend against DoS attacks: (a) Backup, (b) Detection, and (c) Migration.

IoT system in Section 4. Based on our performance measurements of solving the migration policy
construction problem, the execution time for a realistic setting with 7 Auths and 70 Things takes
less than a second on a typical laptop computer. Given that the execution time is almost negligible,
there will not be an issue even on a rare occasion where we need to recalculate the optimization
problem, for example, when there are changes in the environment or configuration such as the
number of Auths or Auths’ capacity. Also, it should not matter where we run the migration policy
construction; for instance, it can run on any of the Auths in the network.

3 APPROACH: SECURE MIGRATION

In this section, we describe a robust architecture and implementation for achieving secure mi-
gration. Figure 5 illustrates the overall operations to enhance availability when some Auths are
down; (a) Auth backup, (b) Failure detection, and (c) Secure migration. As shown in Figure 5(a),
during normal operation, each Auth backs up credentials and information of its registered IoT en-
tities to other trusted Auths as planned using the migration methods proposed in Section 2. The
registered entities detect when their Auth is unavailable, as depicted in Figure 5(b). Example ways
of detecting Auth failures are explained in Section 3.3.1. Upon recognizing its Auth’s failure, each
entity tries to reach alternative Auths by sending a migration request (explained in Section 3.2.3).
For this, each entity needs to be assigned a list of hosts and ports for alternative Auths that it can
potentially migrate to. The alternative Auth will accept the migration request if an entity tries to
migrate to the right alternative Auth as planned in the migration policy. As a result of migration,
each registered entity will be assigned to new Auths as shown in Figure 5(c).

The following subsections discuss a brief description of SST’s authentication and authorization
(Section 3.1), the preparation process and Auth backup protocol (Section 3.2), and details of the
secure migration protocol to find right Auths to which the IoT entities migrate (Section 3.3). All of
our work, including implementation and experimental setups, is also available on an open-source
GitHub repository.’

3.1 Background: SST’s Authentication and Authorization Process

3.1.1 Session Key. In SST, each IoT entity is authenticated and authorized by an Auth. Upon
authorization, the entity receives a session key from the Auth. A session key is a temporary

Shttps://github.com/iotauth.
ACM Transactions on Internet of Things, Vol. 1, No. 1, Article 4. Publication date: February 2020.

RIGHTSE LI MN iy


https://github.com/iotauth

4:12 H. Kim et al.

symmetric cryptographic key® for accessing a certain service or communicating with another en-
tity (or entities). A session key can be just a key for a Message Authentication Code (MAC)” when
the access activity does not require confidentiality of the data. For confidential data, we can use
a session key as a combination of a MAC key and a cipher key.® A session key could be a sin-
gle key if the session uses authenticated encryption’ that does both the encryption and message
authentication with a single key value.

3.1.2 Distribution Key. Session keys need to be confidential; they must be only known to the
entities participating in a certain access activity. Thus, these session keys must always be encrypted
with another symmetric cryptographic key between Auth and each entity called a distribution key.
A distribution key in SST consists of a pair of keys, a cipher key for encryption, and a MAC key
for message authentication.

A distribution key can be optionally updated using public-key cryptography. In this case, Auth
and the registered entity should have already exchanged public keys during the registration (ini-
tialization) process of SST. This public-key cryptography can also include an ephemeral Diffie-
Hellman key exchange!® for perfect forward secrecy'! of the distribution key, meaning that the
previously used distribution keys cannot be recovered even when the private key of either Auth
and the entity is stolen. SST provides an option of using a permanent distribution key so it can
support resource-constrained IoT devices that cannot afford public-key cryptography.

3.1.3 Auth Database. In SST, each Auth has database tables to store authorization information
of entities and trust relationships among Auths. As introduced in the SST paper [Kim et al. 2017b],
the four main database tables maintained by each Auth are Registered Entity Table, Communication
Policy Table, Trusted Auth Table, and Cached Session Key Table.

e Registered Entity Table stores information and credentials of the IoT entities (Things)
registered with the Auth.

e Communication Policy Table specifies cryptographies and duration of communication
sessions between entities.

e Trusted Auth Table is used to look up information and credentials of other trusted Auths.

e Cached Session Key Table stores session keys issued by the Auth and cached by IoT
entities.

The trust relationships among Auths and credentials of the trusted Auths are stored in Trusted
Auth Table. This information is used to securely back up Auth’s IoT entities’ information and
credentials (stored in Registered Entity Table) to other trusted Auths. If the communication policy
of 10T entities to be backed up is not available in the trusted Auth’s Communication Policy Table,
then the necessary communication policies should be backed up as well.

3.2 Preparing for Failures: Auth Backup

For the preparation of DoS attacks or failures on Auths, migration policies are constructed us-
ing the approach presented in Section 2. The policy construction mechanism is implemented as

®Symmetric cryptography uses the same key for both a sender and a receiver.

7A tag (short data) used to authenticate the sender of the message and guarantee data integrity that the original message
has not been altered. A MAC is generated from the message and a cryptographic key called a MAC Key.

8 A cryptographic key used for encryption and decryption of data.

%A type of encryption that provides data integrity and message authenticity as well as confidentiality.

10 A key exchange mechanism to generate an ephemeral key for protecting a temporary communication session.

1A cryptographic feature to ensure that even compromised future keys do not lead to compromises of previous keys and
confidentiality of past sessions.

ACM Transactions on Internet of Things, Vol. 1, No. 1, Article 4. Publication date: February 2020.

RIGHTSE LI MN iy



Resilient Authentication and Authorization for the loT Using Edge Computing 4:13

part of Auth of SST using the Gurobi ILP solver.!? We currently do not limit where and when the
migration policy should be constructed. As stated in Section 2.5, any Auth has the capability of
running the policy construction and propagating the policies. The minimum requirement for mi-
gration policy construction is that it needs to be computed before an Auth failure occurs to enable
secure migration. Also, in this article, we do not limit how Auths are informed about system con-
figurations and requirements for computing migration policies, including Auth trust relationships
and communication requirements between Things. For simplicity, we assume that all necessary
information is given to Auths when they are initialized. After migration policy construction, Auths
back up authentication and authorization information for their entities so the entities can migrate
to other trusted Auths when their Auths become unavailable.

How can we make sure that a migrating entity (an entity that migrates to another Auth) and a
new Auth (an Auth to which the migrating entity is supposed to migrate) continue authentication
and authorization after migration? Also, how can we make the migrating entity and the new Auth
trust each other? To make these happen, the original Auth (the Auth that the migrating entity was
originally registered with before the failure) will need to set up credentials for the new Auth and
entities before failures. In our proposed scheme, the backup tasks are performed by Auths, not
individual IoT entities, for the following reasons:

1. Migration policies are constructed, updated, and managed by Auths.
2. The burden of maintaining backup information can be offloaded from IoT entities, espe-
cially from resource-constrained IoT devices.

In this section, we describe the considerations for preparing credentials for different types of IoT
entities (Sections 3.2.1 and 3.2.2), the Auth backup protocol to share backup information among
Auths (Section 3.2.3), and how Auths store and manage backup information in database tables
(Section 3.2.4).

3.2.1 Entity with Public-key Support. First, let us consider the case where a migrating entity
uses public-key cryptography for updating its distribution key. In this case, the migrating entity
and the new Auth should be able to verify each other’s public key. For the new Auth to be able
to trust the migrating entity, the original Auth must provide the public key of its registered entity
(entity public key) beforehand. To let the migrating entity verify the new Auth’s public key, the
original Auth prepares a migration certificate (cert), the new Auth’s public key signed by the orig-
inal Auth’s private key. Since the migrating entity already has the original Auth’s public key, it
can verify the migration certificate later. A migration certificate has its validity period and expires
after the validity period.

3.2.2  Entity without Public-key Support. In SST, we allow a resource-constrained IoT device
without public-key cryptography support to be authenticated and authorized by using a perma-
nent distribution key, a distribution key valid for the entire lifetime of the entity. For such devices,
we need a different approach. The new Auth and the migrating entity need a new permanent dis-
tribution key after migration. We do not allow reuse of an original distribution key—a distribution
key between the migrating entity and the original Auth—to prevent the new Auth from being able
to access past session keys given by the original Auth. We define a new distribution key as a newly
generated distribution key between the migrating entity and the new Auth.

The original Auth generates a new distribution key and sends it to the new Auth via a
secure channel protected by HTTPS over SSL/TLS so the new Auth can communicate with the
migrating entity. The original Auth also encrypts and authenticates the new distribution key

12http://www.gurobi.com.

ACM Transactions on Internet of Things, Vol. 1, No. 1, Article 4. Publication date: February 2020.

RIGHTSE LI MN iy


http://www.gurobi.com

4:14 H. Kim et al.

/| AUTH_BACK_REQ from A; to A3
Ay’s Registered Entities and /| (1) Migration cert (43’s public key signed by
Migration Policy Construct—: : : Ay’s private key)
Entity[Public-key|Backup| ™gration| i, (2) Authorization information of entities
Support? | to policiesly; FUTH‘BACKUP‘REQUESTB\E 7 « Each entity’s unique name, group,
H H /: key distributi iti
t Y 4, : }AUTH_BACKUP_RESPONSEG: S ey distribution conditions,
i& : : communication policies, etc.
L y 4 : z : * New distribution key if necessary
t3 N A3 : AUTH_BACKUP_REQUEST| : (in this case, for t3)
ty Y A; : . \ i (3) List of entity public keys
. N 7 3 [AUTH_BACKU P_RESPONSEB i > Es public key
: : N N « t,’s public key
« | (4) List of entity migration tokens
\ ¢ t3’s migration token

Fig. 6. An example Auth backup procedure. A; is the original Auth trying to back up its entities t;—t5. Note
that #;-t3 should be backed up to As, and t4 and t5 are backed up to Az according to the migration policy.
Also, note that t3 and t5 do not support public-key cryptography; thus, A; needs to back up migration tokens
for them. Each lock icon means that the message is protected by HTTPS protocol over SSL/TLS.

using the original distribution key. We call this a protected new distribution key. The protected
new distribution key should be backed up on the new Auth so the new Auth can provide it
to the migrating entity. The migrating entity can decrypt and authenticate the protected new
distribution key using the original distribution key, and can check whether the new Auth has the
new distribution key using a challenge-response.

With this, the migrating entity can trust the new Auth using the protected new distribution key.
But how about the other way around? How can the new Auth trust the migrating entity? For this,
the original Auth also sends the MAC key of the original distribution key to the new Auth, because
a distribution key can be decomposed into two parts: a cipher key for encryption and a MAC key
for message authentication, as defined in Section 3.1.2. We explain how the migrating entity can
trust the new Auth with the MAC key of the original distribution key in Section 3.3.2. By giving
only the MAC key—not the cipher key of the original distribution key to the new Auth—we can
make sure that the new Auth cannot see the previous communications between the original Auth
and the migrating entity.

The combination of (1) the protected new distribution key and (2) the MAC key of the original
distribution key is called a migration token. The original Auth sends these migration tokens for
IoT entities without public-key cryptography to the new Auths during the Auth backup. Like a
migration certificate, a migration token also has its validity period and expires after the validity
period.

3.2.3  Auth Backup Protocol. In this section, we explain a network protocol called Auth Backup
Protocol to back up the credentials prepared for secure migration. For the following communica-
tions between trusted Auths, we assume that all messages exchanged are protected by HTTPS over
SSL/TLS. An example of the backup operation is described in Figure 6. First, A; constructs a migra-
tion policy for its registered entities, either by itself or by receiving migration policies from other
trusted Auths, using the method shown in Section 2. With the constructed migration policy, (1) A4
prepares a migration cert, (2) basic and authorization information of each entity (this also includes
a new distribution key between the new Auth and an entity without public-key cryptography
support—in this case, t3), (3) entity public keys for entities supporting public-key cryptography,
and (4) migration tokens for entities without a public-key cryptography support as explained in
Sections 3.2.1 and 3.2.2. These four components are sent as an AUTH_BACKUP_REQUEST message.
In the example, A; sends AUTH_BACKUP_REQUEST to As with a migration cert, entity public

ACM Transactions on Internet of Things, Vol. 1, No. 1, Article 4. Publication date: February 2020.

RIGHTSE LI MN iy



Resilient Authentication and Authorization for the loT Using Edge Computing 4:15

CONNECT_TO_AUTH @ Eli CONNECT_TO_AUTH @
€ H i< H , List of trusted Auth
H AUTH_HELLO U : AUTH_HELLO G (Auth ID, Network address, port number)
H >, H > /
SESSION_KEY_REQUESTG SESSION_KEY_REQUESTB ,’ Example:
i : H £ : [
{[SESSION_KEY_RESPONSE |Q i [TRUSTED_AUTH_LIS e (2,10.0.2.1, 21902),
E > i % (3,10.0.3.1, 20902),
1[SESSION_KEY_RESPONSE |Q N (4,10.0.4.1, 22001)
i >~ ]
(a) When there is no update for (b) When there is an update for
trusted Auth list trusted Auth list

Fig. 7. Updating trusted Auth during Auth-entity communication defined in Kim et al. [2017b]. Each lock
icon means that the message is encrypted and authenticated by a distribution key.

keys of t; and t, and a migration token of t5. Upon receiving the request, A; updates its data-
base tables using the information (explained in Section 3.2.4) in the request and responds to A,
with AUTH_BACKUP_RESPONSE to acknowledge that the request has been processed. If there is
a newly registered entity for A;, then A; should send out AUTH_BACKUP_REQUEST to back up
credentials for the newly registered entity.

We also need to make sure that the migrating entities can connect to new Auths in case of orig-
inal Auth’s failure. Network information of trusted Auths (potential new Auths) can be embedded
in each IoT entity when each IoT entity is initialized. Also, the trusted Auth information can be up-
dated using the Auth-entity communication. In SST, Auth-entity communication occurs when an
entity requests session keys to be authorized to access other entities or services, as shown in Fig-
ure 7(a). CONNECT_TO_AUTH can be a TCP connection setup or a UDP message from the entity,
t1, to the original Auth, A;. AUTH_HELLO includes the Auth’s unique ID in a string and a nonce'?
to prevent a replay attack.!* After receiving AUTH_HELLO, t; sends SESSION_KEY_REQUEST en-
crypted and authenticated with the distribution key between t; and A;. Then, A; responds with
SESSION_KEY_RESPONSE including a list of session keys, also encrypted and authenticated.

For migration, this Auth-entity communication is extended as shown in Figure 7(b). When A,
needs to update network information of trusted Auths, it also sends TRUSTED_AUTH_LIST, which
includes a list of trusted Auths and their network addresses and port numbers, before sending
SESSION_KEY_RESPONSE. The TRUSTED_AUTH_LIST message is also protected by the distribu-
tion key between t; and A;.

3.2.4  Storing Backup Information. To store backup information for secure migration, the Auth
database tables of SST should be extended. Trusted Auth table (explained in Section 3.1.3) is ex-
tended to store migration certs (explained in Section 3.2.1). To store backup-related information
for each IoT entity, a registered entity table (explained in Section 3.1.3) is also extended. Figure 8
shows an example of the extended version of a registered entity table after the Auth backup is fin-
ished. SST’s original design of a registered entity table stores each entity’s unique name, group,
key distribution conditions, and distribution key name. In addition, we add four new columns for
secure migration. The Active field indicates whether the IoT entity is currently authorized by the
Auth. Thus, for the backed up IoT entities, this field is set to False initially, and it is changed to True
when the IoT entities migrate to the Auth and become active. Backup To Auth ID is used to back

3 Randomly generated number.

14The nonce is randomly generated every time an entity connects to Auth, and an authenticated nonce should be included
in the following message from the entity. This makes sure that the message from the entity is fresh and not replayed by an
attacker.

ACM Transactions on Internet of Things, Vol. 1, No. 1, Article 4. Publication date: February 2020.

RIGHTSE LI MN iy



4:16 H. Kim et al.

Original columns in Auth’s Registered Entity Table in SST New columns added for secure migration
[ . | . . 1
Key Distribution Conditions Distribution Key Information Backup | Backup Migration
Name Group <Protocol, Permanent Distribution Key?, Crypto, Max| <Value, Expiration Time (YYYY-MM- [Active?| To | From TP
Session Keys Per Request, Distribution Key Validity> DD:HH-MM-SS)> AuthID | AuthID
PGO012 [Power Generator[ <TCP, False, RSA-2048:DH-secp384r1, 3, 1 Day> <9092 67 3f ..., 2018-08-01:17-03-25>| True 104 Null Null
CSW107| Circuit Switch <TCP, False, RSA-2048, 3, 7 Days> <ed 73 41 1c ..., 2018-08-05:14-48-03>| True 103 Null Null
VS037 | Voltage Sensor |<UDP, True, AES-128-CBC:Hmac-SHA256, 3, 2 Years> | <83 d6 f6 f6 ..., 2020-04-21:08-00-00> | True 106 Null Null
CSWO065| Circuit Switch <TCP, False, RSA-2048, 3, 7 Days> <3e af 04 0f...,, 2018-08-04:03-26-15> | False | NULL 102 Null
CS087 | Current Sensor | <UDP, True, AES-256-CBC:Hmac-SHA256, 3, 1 Year> | <al f0 8f db..., 2019-06-30:09-00-00> | False | NULL 103 |b658791c...
o0 00 00 o0 00 00 o0 e00

Fig. 8. Registered entity table with migration information.

Ay’s Registered Entities and Repente failure@
> T T

Migration Policy

Entity[Public-key|Backup CONNECT_TO_AUTH ;

Support? | to P AUTH_HELLO H

t Y 4 MIGRATION_REQUEST|ER i

t, Y A : : > :

t; N A3 : i AUTH_ALERT (Migration Rejected) i

t, Y A, : i€ :

r N 4, i CONNECT_TO_AUTH i o

R Tl P AUTH_HELLO
\ [MESSAGE em ge is signed with the | i i€ - :
H a sender’s private key or message | : : MIGRATION_REQUEST H o
! authenticated with the MAC key| : H X " :
1 1 H : . ) :
| ofthe original distribution key ; [MIGRATION_RESPONSE (Migration Accepted)|E}

Fig. 9. Secure migration protocol example: A; fails and its entity t; tries to migrate to Ay or As. Each certifi-
cate icon means that the message is signed or MAC authenticated.

up the entity to designated Auths in migration policies. The Backup From Auth ID field is used to
keep track of from which Auth an IoT entity is backed up and to choose the right migration cert
for each entity. For the entity CS087, a backed-up entity without a public-key support, a migration
token (explained in Section 3.2.2) is also stored.

3.3 Secure Migration for Recovery from Auth Failure

3.3.1 Detecting Auth Failure. When an attack or a failure occurs, first, it needs to be detected by
IoT entities. Each entity should have criteria for determining whether its Auth is down. This can
be done by setting up a threshold for the number of connection failures or connection downtime.
For example, an entity recognizes the failure of its Auths when it fails to connect to its Auth 10
times in a row or when it cannot connect to its Auth for more than 10 minutes. Each entity should
have a list of Auths that it can connect to a priori in the case of its Auth’s failure. This list includes
other Auths’ network addresses (host names) and port numbers. When an entity detects its Auth’s
failure, it tries to connect to the Auths in its list and tries to migrate to one of them.

3.3.2  Secure Migration Protocol. Figure 9 describes an example with a set of migration oper-
ations. In this example, an IoT entity, 1, detects the failure of its original Auth, A;. Assume that
A, and Aj; are in t;’s list of potential new Auths. Then #; connects to A, using the network infor-
mation of A; and sends MIGRATION_REQUEST to A,. Although A; is trusted by Ay, it is not the
one that t; is supposed to migrate to, according to the migration policy. Since A, does not have
the required credentials for t;, A, sends an AUTH_ALERT message, indicating that the migration
request is rejected and #; should try another trusted Auth in its list. After receiving AUTH_ALERT

ACM Transactions on Internet of Things, Vol. 1, No. 1, Article 4. Publication date: February 2020.

RIGHTSE LI MN iy



Resilient Authentication and Authorization for the loT Using Edge Computing 4:17

from A,, t; tries the next Auth in its list, A;. When Ajz receives MIGRATION_REQUEST from t;, it
notices that #; can migrate to it and responds with a MIGRATION_RESPONSE message indicating
that the request has been accepted.

So, how can t; and Ajs establish a new trust relationship? This is achieved by a challenge-
response where they check if the counterpart has the necessary credential using random num-
bers. As shown in Figure 7 in Section 3.2.3, Auth-entity communication starts with AUTH_HELLO
after the IoT entity connects to an Auth. AUTH_HELLO includes an Auth nonce, a fresh random
number generated by the new Auth. The MIGRATION_REQUEST message includes the migrating
entity’s name, Auth nonce, and entity nonce, another random number generated by the entity. If
the migrating entity supports public-key cryptography, then MIGRATION REQUEST is signed by
the migrating entity’s private key. If the migrating entity does not support public-key cryptogra-
phy, then MIGRATION_REQUEST is authenticated by the MAC key of the original distribution key.
Upon receiving MIGRATION_REQUEST, the new Auth first checks its database with the migrating
entity’s name to pull out the credential to verify the migrating entity’s signature or MAC. If the
migration entity cannot be found in the new Auth’s database, then MIGRATION_REQUEST gets
rejected. When the new Auth finds the necessary credential—either the migrating entity’s public
key or the MAC key of the original distribution key—it verifies if MIGRATION_REQUEST came
from the migrating entity using the Auth nonce and the signature or the MAC. If the verification
succeeds, then the new Auth trusts the migrating entity.

Now, the new Auth prepares MIGRATION_RESPONSE so the migrating entity can trust the new
Auth. A MIGRATION_RESPONSE message includes the new Auth’s unique ID, entity nonce, and an
Auth cert or a protected new distribution key, depending on whether the migrating entity supports
public-key cryptography. MIGRATION_RESPONSE is signed by the Auth’s private key or message
authenticated by the MAC key of the original distribution key. Also, the migrating entity verifies
the Auth cert using the original Auth’s public key or tries to decrypt the protected new distribution
key using the original distribution key’s MAC key. After verifying MIGRATION_RESPONSE, the
new Auth’s credential, the migrating entity can trust the new Auth.

Based on the newly established trust relationship, the migrating entity continues to be authenti-
cated and authorized by the new Auth. If the migrating entity uses public-key cryptography, then
it can get and update new distribution keys from the new Auth using public-key cryptography. If
the migrating entity does not support public keys, then the new distribution key decrypted from
MIGRATION_RESPONSE becomes a new permanent distribution key with the new Auth. The mi-
grating entity can request session keys and use them for accessing other IoT entities and services
in SST.

4 EXPERIMENTS AND RESULTS

In this section, we carry out experiments to demonstrate the effectiveness of the proposed mi-
gration approach for maintaining availability. For the following experiments, we only consider
Things (IoT entities) that are capable of public-key cryptography. As an experimental scenario,
we take door controllers and door opening applications in a smart building. This is inspired by
a prototype door controller deployed on the fifth floor of Cory Hall at UC Berkeley. We assume
a virtual environment where the door controllers are deployed on currently card-key accessed
doors, door opening mobile phone apps run on user smartphones, and Auths are deployed on
some of the existing Wi-Fi access points. Figure 10 illustrates this virtual environment. We also
assume Auths have trust relationships depending on research centers on the fifth floor and the
fourth floor, and the Things (door controllers and user smartphones) are registered with Auths, as
shown in Figure 10. We measure availability as the ratio of responses from door controllers (the
number of correct door operations) to the door opening requests for a given time window. In the

ACM Transactions on Internet of Things, Vol. 1, No. 1, Article 4. Publication date: February 2020.

RIGHTSE LI MN iy



4:18

516

515
L
513
512
4 sn

510

Prototype door controller
is deployed here

P
15ft. (= 4.57m)

/(\/ ﬁ’ r‘(\w W,M

! [l Card key accessed doors

i A\ Possible user positions

H. Kim et al.

Cory Hall
5th floor

@ Positions of Auths (Edge
Computers)

| |Auth registration range

5th floor 502
th floor 401

_=5th floor 504
= Wmyth floor 401
’

Trust between Auths
on the same floor

~ = ~ Trust between Auths
across floors

Auth Capacity Information

&

roTLT

:
,/.‘.
>
]

\
1
'
i
|
'
i
1
'
1
'
1
1
1
1
i
|
'
1
1
'
1
'
|
1
1
'
1
|
'
1
1
'
1
1
'
1
1
'
1
1
'
1
'
'
1
1
1
1
1
'
i
'
1
1
'
'
1
1
'
1
1
1
1
'
1
1

’

Capacity
Auth ID |(Max # of auth
requests per min)
501 24
5th f\loor 501 502 55
Ra4th floor 403 { 503 25
i _;l A 504 21
T floorsos 401 18
4th floor 402 0 402 23
: I: . I 403 30
“60) N £ mmc e ccm e ——————————
4“3
L | I
a5
NE b1 CoryHail
L 4th floor

Fig. 10. An experimental virtual environment with Auths, door controllers, and door opening mobile appli-
cations on the floor map of the fourth and fifth floors, Cory Hall at UC Berkeley. (Floor plans used with

permission.)

following experimental scenarios, different numbers of Auths can be unavailable due to failures
or DoS attacks. In addition, we compare against scenarios without secure migration and also a
scenario where all Auths are unavailable, which is equivalent to the case where an authorization
entity is deployed on a remote cloud and the cloud is not reachable.

ACM Transactions on Internet of Things, Vol. 1, No. 1, Article 4. Publication date: February 2020.

RIGHTS LI N K}



Resilient Authentication and Authorization for the loT Using Edge Computing 4:19

(P T
I Auth running on edge device with both wired and wireless interfaces E
I

I
i @ Thing (loT entity) running on loT device with wireless interface !

«» Containers use OS-level virtualization rather than full virtualization

Auth Containers Thing Containers
LXC LXC LXC LXC
Linux Container) Linux Container) Linux Ci iner) Linux Ci iner)
Auth Auth Thing Thing
(Java program) (Java program) LA (in Node.js) (in Node.js)
eth0 | | ethl | ethO || ethl | ethO ethO
Wired (LAN) Wifi 5 4 wifi
interface interface interface
v v v Host OS
Linux | | Linux Linux | | Linux Linux Linux
Bridge| |Bridge Bridge| [Bridge Bridge Bridge
""" VNV '"r{s'-'a'éi'rh'dlé'ta'r"'["""""""t"""
TAP Bridge | | ||TAP Bridge ns-3 |TAP Bridge |TAP Bridge
ns-3
ns3-node ns3-node (::;:uet- node| ® ® @ | ns3-node ns3-node
CSMA wifi || fo-point)| | (W) Wifi wifi
NetDevice | | ||NetDevice NetDevice NetDevice

~

/

7

Fig. 11. Experimental setup with the ns-3 simulator network simulator.

4.1 Experimental Setup

Figure 11 describes the experimental setup with the ns-3 network simulator [Riley and Henderson
2010]. For realistic experiments, we use the actual implementation of Auth available on the GitHub
repository and IoT entities (door controllers and opening apps) written using SST’s APIs, secure
communication accessors. Each of Auths and IoT entities runs within an individual Linux Container
(LXC)* that provides OS-level virtualization (paravirtualization) with a separate virtual network
space. For simulating the network infrastructure, we use ns-3. The LXCs’ virtual Ethernet inter-
faces are connected to the host OS’s Linux bridges, then to the TAP bridges of ns-3 nodes in the
ns-3 simulator. The other side of ns-3 nodes are either CSMA or WiFi NetDevice and are con-
nected to the network simulated in ns-3. LXCs on which Auths are running have both the wired
and Wi-Fi connections, and LXCs for IoT entities have Wi-Fi connections. For connections be-
tween Auths’ wired network interfaces, we use a CSMA channel with a data rate of 100 Mbps. For
connections between the wireless network interfaces of Auths and Things, we use an ad hoc IEEE
802.11a channel with a data rate of 54 Mbps. For the channel signal strength model, we use a Log

Shttps://linuxcontainers.org/Ixc/.
ACM Transactions on Internet of Things, Vol. 1, No. 1, Article 4. Publication date: February 2020.

RIGHTSE LI MN iy


https://linuxcontainers.org/lxc/

4:20 H. Kim et al.

== No Migration ==#==Nearest ==#=Trusted Nearest Simple ILP ==¢=Advanced ILP
(a) 100 y (b)100
90 90
80 80 3 X
® 70 g 70
> 60 z 60
= 50 3 50
S 40 3 40
2 E
Z 30 Z 30
20 20
. 10 L
18 1 Auth fails p 2 Auths fail
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Elapse (Min.) Time Elapse (Min.)
(c) 100
90
80
g 70
Zz 60
3 50
= 40
]
Z 30
20
18 3 Autbhs fail 13 4 Auths fail
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
Time Elapse (Min.) Time Elapse (Min.)

100 | B
90
80
70
60
50
40
30

20 - 20 V-

1 5 Auths fail 0 6 Auths fail _\__‘f.;'"v L

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 12 3 4 5 6 7 8 9 101112 13 14 15 16 17 18 19 20
Time Elapse (Min.) Time Elapse (Min.)

o
-

Availability (%)

Fig. 12. Availability results with different numbers of failing Auths for four different migration policies using
SST simulated on the ns-3 simulator and Linux containers: when 1-6 Auths fail.

Distance Propagation Loss Model in ns-3 to represent the channels between Auths and Things.
As a simulation platform, we use Ubuntu Linux 16.04.2 LTS on Amazon’s AWS EC2 “m4.4xlarge”
with 16 CPUs, 64 GB RAM, and 256 GB SSD.

4.2 Experimental Results

We ran simulations with seven Auths, 35 door controllers (19 on the fifth floor and 16 on the fourth
floor), and 45 user devices (26 on the fifth floor and 19 on the fourth floor) for 20 minutes for each
experiment in real-time, 5 minutes before Auth failures and 15 minutes after failures. We let the
whole system run for 5 minutes before the failure to allow Auths to finish backup processes for
secure migration during the normal operations. Each user device sends a door opening request to
the closest door controller every minute, simulating the user behaviors in front of doors.

Figure 12 illustrates the experimental results. We performed experiments with up to six Auths
failing during the experiments. The failure occurs in order of Auth 504, Auth 402, Auth 501, Auth
403, Auth 503, and Auth 401, where the Auth IDs are as denoted in Figure 10. The Auth capac-
ity, defined as the maximum authorization requests that each Auth can handle per minute, is also
shown in Figure 10. When all seven Auths failed, the availability became 0% in our experiments
as we expected, although we did not include this in Figure 10. It will be the same when the au-
thorization services based on the cloud lose connections with the cloud. We also compared four
different migration policies: (1) No Migration, (2) Nearest, (3) Trusted Nearest, (4) Simple ILP, and
(5) Advanced ILP.

ACM Transactions on Internet of Things, Vol. 1, No. 1, Article 4. Publication date: February 2020.

RIGHTS LI N K}



Resilient Authentication and Authorization for the loT Using Edge Computing 4:21

1. No Migration—No secure migration is used, same as the original SST.

2. Nearest—IoT entities (both door controllers and door opening applications) try to migrate
to the nearest available Auth first, then try the next nearest Auth, and so on for all Auths.
They repeat this until they can migrate.

3. Trusted Nearest—Similar to Nearest, but this one considers trust relationship among
Auths as well as proximity. IoT entities try to migrate to the nearest available Auth that is
trusted by their original Auth, then try the next nearest Auth among those that are trusted
by their original Auth.

4. Simple ILP—Uses migration policies constructed using the proposed ILP-based approach
but only with limited consideration of the communication criticality between IoT entities.

5. Advanced ILP—Uses migration policies constructed using the proposed ILP with more
considerations, including trusts among Auths and capacity of each Auth.

For Simple ILP and Advanced ILP, we precomputed a series of migration policies offline before
running the experiments. We measured the computation time for migration policies construction
using ILP. With our open-source implementation using Gurobi ILP solver library (explained in
Section 3.2), the program execution took 491 ms and 505 ms for Simple ILP and Advanced ILP,
respectively, including all I/O operations, on a MacBook Pro machine with 2.2 GHz Intel Core i7
and 16 GB DDR3 RAM.

Each migration policy was constructed as an assignment of Things when a specific Auth be-
comes not available. The assignment of Things for multiple Auth failures is represented as a list
of Auths that the Thing can migrate to. For example, assume that there is a Thing associated with
Auth 504 and the assignment for the Thing when Auth 504 is not available is Auth 402, and the
assignment for the Thing when Auth 402 is also not available is Auth 501. Then, the list of Auths
to which this Thing can migrate will start with Auth 402, Auth 501, and so on.

Also, for Nearest, Trusted Nearest, Simple ILP, and Advanced ILP, each Auth backs up authen-
tication and authorization information of its entities to all of its trusted Auths before the failures,
using the Auth backup protocol described in Section 3.2.3. In our experiments, we assumed the
same LAN interface cards were used by Auths and the same Wi-Fi interface cards were used by
Auths and 10T entities, leading to the same communication costs for the same communication
channels. We also assumed the security requirements of IoT entities were the same.

As shown in Figure 12(a), when one Auth failed, the availability dropped down to 84% with No
Migration, Trusted Nearest, or Nearest; while Simple ILP migration and Advanced ILP policies
recovered the availability up to 93% and 96%, respectively. Similarly, when two Auths failed (in
Figure 12(b)), Simple ILP and Advanced ILP recovered up to 78% and 87% availability, respectively,
while the availability of No Migration, Trusted Nearest, and Nearest converged to approximately
70%. The differences were more significant when more Auths became unavailable. For example,
in Figure 12(c), the availability became around 53% for No Migration and 58% for Nearest migra-
tion when three Auths failed. However, Trusted Nearest and Simple ILP recovered around 69%
availability and Advanced ILP recovered above 85% of availability. The Nearest migration policy
could not recover as much availability as other migration policies due to the fact that it did not
consider the trust relationships between Auths properly, thus leading to a migration policy that
was infeasible for some IoT entities.

When there were only three or fewer Auths left available, the Simple ILP migration technique
became no better than Nearest and Trusted Nearest, or even worse than Trusted Nearest some-
times, as we can see in Figures 12(d), (e), and (f). This was partly because some IoT devices ended
up being stuck at an Auth that the 10T devices could not trust while they are trying to reconnect
to other Auths, due to the lack of consideration for trust between Auths in constructing migration

ACM Transactions on Internet of Things, Vol. 1, No. 1, Article 4. Publication date: February 2020.

RIGHTSE LI MN iy



4:22 H. Kim et al.

Table 2. Considerations Applied in Migration Policy Construction for Each Approach Used in Experiments

Considerations Nearest | Trusted Nearest | Simple ILP | Advanced ILP
Proximity (Distance between Auths and Things) (0] (@) X X
Trust relationship among Auths X (@) X (@)
Communication requirements among Things X X 0] O
Capacity of Auths X X X O

“O” for the ones applied and “X” for those that are not.

policies. Another important reason for this was that the Simple ILP migration assigned too many
IoT devices to one Auth, failing to balance the authentication and authorization workload among
Auths. Table 2 summarizes the conditions considered in migration policy construction for each ap-
proach used in experiments. Note that Simple ILP and Advanced ILP did not consider proximity,
since modeling the distance between Auths and Things as costs in ILP is out of the scope of this
article. Modeling distance as part of the ILP is a separate non-trivial problem including research
on modeling radio signal strength, noise, and environments.

The fluctuation with the Nearest, Trusted Nearest, and Simple ILP migration was caused mainly
by the infeasible migration requests and their interference with normal requests, especially when
the Auths are overloaded with requests over their capacity. Even the Advanced ILP migration was
not able to achieve 100% availability, because some of the entities were out of the signal ranges of
Auths and some Auths could not afford the authorization workload due to their capacity limits.
Overall, the proposed Advanced ILP solution maintained significantly higher availability com-
pared to other migration policies.

4.3 Extended Experimental Results

We further extended the evaluation of our approach by performing a series of additional ex-
periments to measure the availability under different circumstances. Specifically, we varied the
(1) trust relationships between Auths and (2) Auth failure orders. Changing trust relationships
between Auths allowed us to see the impact of different initial configurations and connectivity.
Furthermore, varying Auth failure orders resulted in different patterns of skewed load (e.g., how
many Things have to migrate to a certain Auth) and connectivity among Things (e.g., connectivity
after migration).

The results for this series of extended experiments are shown in Figure 13. We used three differ-
ent trust relationship configurations and three different Auth failure orders. Then, we measured
the average availability for 15 minutes after the failure of Auths, which corresponds to the minutes
from 6 to 20 in Figure 12 of Section 4.2.

From the results, we observed that the migration policy based on the Advanced ILP approach
achieves higher average availability after the failure of Auths in most cases. However, there were
configurations where the Trusted Nearest or Nearest outperformed Advanced ILP, for example,
when 3 and 4 Auths failed in Figure 13(d), when 4 Auths failed in Figure 13(f), and when 2 Auths
failed in Figure 13(g).

We found a couple of main reasons for these consequences. First, the distance between Auths
and Things becomes critical under certain circumstances. To be specific, the network packet loss
rate increase as the distance between wireless interfaces of an Auth and a Thing. This makes the
distance an essential factor to be considered, especially when the two devices are far enough to
cause packet losses. As illustrated in Figure 11 of Section 4.1, Auths and Things are connected via
Wi-Fi channels simulated by ns-3. Our ns-3 simulator setup takes the actual physical coordinates
of the devices; thus, it also simulates packet losses due to radio signal attenuation. However, our

ACM Transactions on Internet of Things, Vol. 1, No. 1, Article 4. Publication date: February 2020.

RIGHTSE LI MN iy



Resilient Authentication and Authorization for the loT Using Edge Computing 4:23

M Advanced ILP Simple ILP Trusted Nearest Nearest No Migration
Trust 1- Order A

80
70 1

60 7‘

50 ‘

40 ‘

30 ‘ |
20 ‘

10 ‘

0

1Auth 2Auths 3 Auths 4 Auths 5 Auths 6 Auths
Failed Failed Failed Failed Failed Failed

Trust 2 - Order A

60
50
40
30
20
10

[

1Auth 2 Auths 3 Auths 4 Auths 5 Auths 6 Auths
Failed Failed Failed Failed Failed Failed

Trust 3 - Order A

Trust1-Order B

s

Trust1-Order C

70
60
50
30
20 I
10
0

1Auth 2 Auths 3 Auths 4 Auths 5 Auths 6 Auths
Failed Failed Failed Failed Failed Failed

Trust 2 - Order C

60

50

30 |
20

10

0 |

1Auth 2 Auths 3 Auths 4 Auths 5 Auths 6 Auths
Failed Failed Failed Failed Failed Failed

Trust 3 - Order C

80
70
60
50
30 i
20 ‘
10 ‘
0

1Auth 2Auths 3 Auths 4 Auths 5 Auths 6 Auths
Failed Failed Failed Failed Failed Failed

100

80
70

|
50 }
40 |
30 }
20
0 | |
0

1Auth 2Auths 3 Auths 4 Auths 5 Auths 6 Auths
Failed Failed Failed Failed Failed Failed

Trust 2 - Order B

60
40
30
20
10

[

1Auth 2 Auths 3 Auths 4 Auths 5 Auths 6 Auths
Failed Failed Failed Failed Failed Failed

Trust 3 - Order B

90 90 -
80 3 g0 |
70 70 |
60 60 i
50 |

£ 40 i
30 5 30 |
20 T 20 |
10 I 10 |
o |

1Auth 2 Auths 3 Auths 4 Auths 5 Auths 6 Auths
Failed Failed Failed Failed Failed Failed

Average Availability After Failure (%) T

Average Availability After Failure (%)
N
3

=

Average Availabilty After Failure (%) T Average Availability After Failure (%)

Average Availability After Failure (%) "
I
S
Average Availability After Failure (%)
IS
S

(L)

=
=
=

1Auth 2 Auths 3 Auths 4 Auths 5 Auths 6 Auths
Failed Failed Failed Failed Failed Failed

Average Availability After Failure (%) =
I
S

Average Availability After Failure (%)
a
S

Average Availability After Failure (%)
N
S

| Experimental Configurations
| * Numbers mean Auth IDs

| Auth Trust Relationship (AuthID1-AuthID2 means trust between AuthID1 and AuthID2) Auth Failure Order

| Trust 1: 401-402, 401-403, 401-502, 401-504, 402-503, 403-501, 501-502, 501-504, 502-503, 502-504 Order A: 504, 402, 501, 403, 503, 401 |
| Trust 2: 401-402, 401-403, 401-502, 401-504, 402-501, 403-503, 501-502, 502-503, 502-504, 503-504 Order B: 503, 504, 402, 403, 401, 501 H
« Trust 3: 401-403, 401-501, 401-502, 402-502, 403-402, 501-502, 501-504, 502:503, 502-504, 503504 _________ Order C: 401, 504, 402, 403, 501, 503 !

Fig. 13. Average availability for 15 minutes after Auth failures with three different Auth trust relationship
configurations and three different Auth failure orders.

proposed ILP model does not take the distance between Auths and Things into account, as shown in
Table 2 of Section 4.2. Therefore, in some cases where the ILP ends up migrating a Thing to an Auth
that is too far from the Thing, then it underperformed compared to Trusted Nearest or Nearest
migration policies. Modeling the distance between Wi-Fi devices as a cost in the ILP formulation
is not a trivial problem and thus out of the scope for this article.

Another reason is the noise in the network simulation and the imperfect emulation of the Auth
capacity. Auth’s capacity control is implemented in terms of the number of requests per minute
that an Auth can handle. In theory, the capacity considerations in the ILP modeling should match
the implementation; however, because some network packets get delayed and arrive like in a real
wireless network environment, causing some packets to arrive at Auths at once. This leads to un-
expectedly rejected or accepted requests on Auths, depending on when the packet burst happens,
making the availability measurement subject to change.

We also observed that in all 9 cases, when 6 Auths failed, the availability for Migration ap-
proaches except for Advanced ILP was no better or even worse than No Migration. This is because
Simple ILP, Trusted Nearest, and Nearest approaches tried to migrate Things beyond Auths’ ca-
pacity, disrupting other requests with migration requests, as happened in the case where there was
only one Auth left in Figure 12(f) of Section 4.2. However, Advanced ILP did not try to migrate
over Auths’ capacity and, thus, did not create excessive migration requests, still achieving higher
availability than No Migration.

ACM Transactions on Internet of Things, Vol. 1, No. 1, Article 4. Publication date: February 2020.

RIGHTSE LI MN iy



4:24 H. Kim et al.

4.4 ILP Execution Time

We also measured the execution time of solving the migration plan construction problem. We
used the Java implementation of ILP solver, which is a part of the open-source implementation
of SST. The migration solver included the Gurobi ILP solver library version 8.01 and ran on a
MacBook Pro machine with 2.2 GHz Intel Core i7 and 16 GB DDR3 RAM. For each configuration
used for Section 4.3, the ILP computation time took 500 ms on average. Also, we assumed the ILP
computation is done offline for the experiments.

The ILP computation time will surely increase if there are more Auths, Things, or connections
among Auths and Things. However, the execution time measurements show that the ILP compu-
tation time would be within a reasonable range for solving the migration problem even under a
realistic environment with 7 Auths, 70 Things, 10 Auth-to-Auth connections, 45 Thing-to-Thing
connections, 70 Auth-to-Thing initial connections (490 Auth-to-Thing connections in total, includ-
ing exploration of migration policies). The scale of this setup is far beyond a simple toy example,
and thus, to the best of our knowledge, we claim that the execution time for offline ILP computation
will be feasible for most real-world applications.

4.5 Threats to Validity

Our experimental settings were based on realistic environments using floor plans of an actual
building on the UC Berkeley campus. The realistic environments include actual Auth and Things
implementation (in Java and Node.js, respectively) and real-time (synchronized to wall-clock time)
network simulation using actual physical locations with packet-level accuracy. However, we did
not extend the experiments to the extent where we conduct experiments with random configura-
tions to test exhaustive possibilities. One of the main reasons for this was the temporal and com-
putational cost of experiments. Each experiment takes more than 40 minutes per configuration,
including credential creation and setup for Auths and Things, and initialization and tear-down of
Linux containers and ns-3 simulation. In addition, it is already costly to run 77 (7 for Auths and 70
for Things) virtual machines (Linux containers) with 84 network interfaces, 7 X 2 (one wired and
one wireless for each Auth) + 70 (one wireless for each Thing), and ns-3 simulator real-time mode
for 84 network interfaces and the network packets among them. This hindered us from expanding
the scale of experiments to hundreds or thousands of Auths or Things. We acknowledge that we
have not verified that our approach works well when the environments are randomly configured
or under corner cases.

5 RELATED WORK

To the best of our knowledge, we are aware of only a couple of other approaches that rely on
an edge computing architecture for IoT security. To provide robust authorization of medical IoT
devices without dependency on remote servers, SEA (Secure and Efficient Authentication and Au-
thorization Architecture) [Moosavi et al. 2015] uses distributed smart e-health gateways as local
authorization centers based on DTLS (Datagram TLS). TACIoT (Trust-aware Access Control for
the I0T) [Bernabe et al. 2016] employs an architecture based on entities called IoT bubbles, which
act as local units of authorization for the IoT, similar to Auths. As far as we know, while these
approaches ensure the confidentiality and integrity of communication among IoT devices, they do
not provide resilience against availability attacks.

Besides the two mentioned in the previous paragraph, a number of other authorization and au-
thentication services for IoT devices have been proposed [Amazon Web Services 2018; Cirani et al.
2015; Neto et al. 2016; Soldatos et al. 2015; Vucini¢ et al. 2015]. However, all of these approaches rely
on remote, cloud servers to provide critical security services. We believe that the local, distributed

ACM Transactions on Internet of Things, Vol. 1, No. 1, Article 4. Publication date: February 2020.

RIGHTSE LI MN iy



Resilient Authentication and Authorization for the loT Using Edge Computing 4:25

. . |
Pointof Time  pefore the Attack |

During the Attack

1
| After the Attack N

>

IACACfor IoT (2013) | Hummen et al. (2013); 1oTPOT (2016) 4
Preventing excessive | Making it challenging : Honeypot-based
access to resources by | for malicious initiators ; malware analysis

limiting the number of 1 to establish excessive | and report for

DoS attack
source
(compromised

computers .
P ) sessions for each ID : connections : compromised loT
__________ g
Sonar and | Oliveiraetal. (2012) | Wang et al. (2016)
Networks & 3—( )
between attac 2 Upfwdf;y ay (2016) Filtering-based : Distributed
source and Identifying DDoS attack | yitigation for IPv6 IoT 1 network forensics
destination < in loT network a priori : on DoS packets with : for M2M
U atborder gateways | ,.o0er addressing | communications
— (Dosinati [ | e e e e e e
Zhang and Green | TESLA++(2012) | Oriwoh and Sant
DoS attack (2015) : DoS-tolerant : (2013)
destination ‘( QZI Q Preventive , authentication for loT |, Autonomous and
o =) 1 measure against N independent
(victims) %))b~q"‘\' DDoS attack on Proposed a-pprc.)ach . forensics for
S =S loT network Secure migration home loT

Fig. 14. Countermeasures against DoS attacks to the loT classified by two criteria used in Zargar et al. [2013]:
deployment location and point of time.

nature of Auths enables a more lightweight, flexible defense against DoS attacks: Our approach
allows an Auth to continue providing critical services to its local network without requiring a
connection to the Internet.

There exists a large body of work that addresses DoS attacks in the network security literature
(a comprehensive survey can be found in Zargar et al. [2013]). These works can be categorized
as (1) preventing a DoS attack before it takes place [Mahalle et al. 2013; Sonar and Upadhyay
2016; Zhang and Green 2015], (2) limiting the effect of an on-going attack by filtering malicious
connections [Oliveira et al. 2013; Ruan and Hori 2012], or (3) performing forensics after an attack
to identify compromised IoT devices [Oriwoh and Sant 2013; Pa et al. 2016; Wang et al. 2016]. As far
as we know, none of these approaches involve providing resilience against a DoS attack through
migration of critical services from an attacked node to another.

Although we do not limit the scope of DoS attacks to DDoS attacks in this article, we use the
DDoS attack classification criteria presented by Zargar et al. [2013] to position the proposed se-
cure migration technique in this article. Figure 14 illustrates a variety of countermeasures and
mitigations against the DoS attacks to the IoT or the similar networked systems. The horizontal
axis in Figure 14 shows the stages of a DoS attack broken into three, according to the point of
time when the measure takes effect relative to the attack: before the attack, during the attack, and
after the attack. The vertical axis shows three categories of DoS attack countermeasures based on
their deployment locations: at potential attack sources, on networks between the attacker and the
target, and at attack destinations—the victims.

Before the attack, a preventive measure can be taken at the attack source such as Identity Au-
thentication and Capability Based Access Control (IACAC) for the IoT [Mahalle et al. 2013], which
limits excessive access activity by imposing capability associated to IoT devices. An approach pro-
posed by Sonar and Upadhyay [2016] can prevent the DDoS attack traffic from reaching the IoT
devices by identifying the attack traffic a priori at border gateways. Zhang and Green [2015] have
proposed a lightweight defensive algorithm for an IoT end network by leveraging distributed in-
telligence at IoT end nodes to detect and prevent malicious packet streams.

There have been DoS mitigations proposed for the IoT, which take effect while a DoS attack is
happening. Hummen et al. [2013] have presented an approach that makes it difficult for malicious

ACM Transactions on Internet of Things, Vol. 1, No. 1, Article 4. Publication date: February 2020.

RIGHTSE LI MN iy



4:26 H. Kim et al.

entities to create excessive connections from the attack source. The solution proposed by Oliveira
etal. [2013] mitigates the DoS traffic with filtering for the IPv6-based IoT. TESLA++ [Ruan and Hori
2012] supports DoS-tolerant authentication at the destination by extending the original TESLA
(Timed Efficient Stream Loss-tolerant Authentication) protocol [Perrig et al. 2005].

Forensics and log analysis—based approaches for the IoT have been proposed at a variety of
deployment locations for investigation after DoS attacks. Such approaches include a honeypot-
based malware analysis, [oTPOT [Pa et al. 2016], which is used to track and report malware that
can potentially compromise the IoT devices and use them as zombie computers for launching DDoS
attacks. Forensics using distributed anti-honeypots has been proposed by Wang et al. [2016] for
M2M communication (machine-to-machine, another name for the IoT) to be deployed on networks
between the attack source and destination. As a solution to be deployed on the victim side, Oriwoh
and Sant [2013] have proposed a user-manageable forensics solution for the home IoT.

The secure migration mechanism presented in this article maintains the availability of the IoT
services by migrating Things while Auths are under attack; thus, it falls into the category of the
victim side during the attack, as marked in Figure 14. Since the secure migration approach involves
migration policy construction and backup operations before the attack, it has some overlaps with
the “before the attack” category. Although TESLA++ falls into the same category, the proposed se-
cure migration technique is a more comprehensive approach that covers more diverse IoT devices
and cryptography, while TESLA++ focuses on broadcasting network and message authentication.

6 CONCLUSIONS

Availability of IoT services can be critical for the system’s safety. By leveraging emerging network
architecture based on edge computing and SST’s distributed authorization infrastructure, the pro-
posed approach achieves much higher availability even under failures of local authorization enti-
ties running on edge computers. The proposed formulation of migration policy construction allows
the proposed approach to be not only valid but also optimal with respect to the overall network
costs and capacity of edge computers. Also, the secure migration protocol supports heterogeneous
IoT devices, for example, whether they are capable of public-key cryptography or reliable TCP con-
nections. The proposed secure migration approach can be appropriate for the Internet of Things
under safety-critical environments, including medical centers, manufacturing systems, and electric
power grids so the proposed infrastructure can maintain as much availability as possible.

As future work, we plan to research how to distribute migration policy construction across
multiple Auths and extend it to consider different Auth failure cases and scenarios. In addition, we
plan to investigate secure migration on various types of network architectures, including network
topologies and communication protocols. To address the threat of DDoS attacks launched by the
IoT botnets, we will also study the ways to mitigate the DDoS traffic from IoT devices by leveraging
edge computing.

REFERENCES

Amazon Web Services. 2018. How the AWS IoT Platform Works—Amazon Web Services. Retrieved from http://aws.amazon.
com/iot-platform/how-it-works/.

Jorge Bernal Bernabe, Jose Luis Hernandez Ramos, and Antonio F. Skarmeta Gomez. 2016. TACIoT: Multidimensional
trust-aware access control system for the Internet of Things. Soft Comput. 20, 5 (May 2016), 1763-1779.

Simone Cirani, Marco Picone, Pietro Gonizzi, Luca Veltri, and Gianluigi Ferrari. 2015. IoT-OAS: An OAuth-based autho-
rization service architecture for secure services in IoT scenarios. IEEE Sens. . 15, 2 (Feb. 2015), 1224-1234.

John N. Hooker and Maria Auxilio Osorio Lama. 1999. Mixed logical-linear programming. Disc. Appl. Math. 96-97 (1999),
395-442.

René Hummen, Hanno Wirtz, Jan Henrik Ziegeldorf, Jens Hiller, and Klaus Wehrle. 2013. Tailoring end-to-end IP secu-
rity protocols to the Internet of Things. In Proceedings of the 21st IEEE International Conference on Network Protocols
(ICNP’13). 1-10.

ACM Transactions on Internet of Things, Vol. 1, No. 1, Article 4. Publication date: February 2020.

RIGHTSE LI MN iy


http://aws.amazon.com/iot-platform/how-it-works/
http://aws.amazon.com/iot-platform/how-it-works/

Resilient Authentication and Authorization for the loT Using Edge Computing 4:27

Hokeun Kim, Eunsuk Kang, David Broman, and Edward A. Lee. 2017a. An architectural mechanism for resilient IoT services.
In Proceedings of the 1st ACM Workshop on the Internet of Safe Things (SafeThings’17). ACM, New York, NY, 8-13.

Hokeun Kim, Eunsuk Kang, Edward A. Lee, and David Broman. 2017b. A toolkit for construction of authorization service
infrastructure for the internet of things. In Proceedings of the 2nd ACM/IEEE International Conference on Internet-of-
Things Design and Implementation. ACM/IEEE, 147-158.

Hokeun Kim and Edward A. Lee. 2017. Authentication and authorization for the internet of things. IT Prof. 19, 5 (Sept.
2017), 27-33.

Hokeun Kim, Armin Wasicek, Benjamin Mehne, and Edward A. Lee. 2016. A secure network architecture for the internet
of things based on local authorization entities. In Proceedings of the 4th IEEE International Conference on Future Internet
of Things and Cloud. IEEE, 114-122.

Pedro Garcia Lopez, Alberto Montresor, Dick Epema, Anwitaman Datta, Teruo Higashino, Adriana Iamnitchi, Marinho
Barcellos, Pascal Felber, and Etienne Riviere. 2015. Edge-centric computing: Vision and challenges. SIGCOMM Comput.
Commun. Rev. 45, 5 (Sept. 2015), 37-42.

Tom H. Luan, Longxiang Gao, Zhi Li, Yang Xiang, Guiyi Wei, and Limin Sun. 2015. Fog computing: Focusing on mobile
users at the edge. Arxiv:1502.01815 [cs] (Feb. 2015). Retrieved from http://arxiv.org/abs/1502.01815.

Parikshit N. Mahalle, Bayu Anggorojati, Neeli R. Prasad, and Ramjee Prasad. 2013. Identity authentication and Capability
Based Access Control (IACAC) for the internet of things. J. Cyber Sec. Mob. 1, 4 (2013), 309-348.

Sanaz R. Moosavi et al. 2015. SEA: A secure and efficient authentication and authorization architecture for IoT-based health-
care using smart gateways. Procedia Comput. Sci. 52 (Jan. 2015), 452-459.

Tan Morris. 2017. Google’s latest failure shows how immature its hardware is. Forbes (Feb. 2017). Retrieved from
http://www.forbes.com/sites/ianmorris/2017/02/24/googles-latest-failure- shows-how-immature-its-hardware-is/.

Antonio L. Maia Neto et al. 2016. AoT: Authentication and access control for the entire IoT device life-cycle. In Proceedings
of the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM (SenSys’16). ACM, New York, NY, 1-15.

Luis M. L. Oliveira, Joel J. P. C. Rodrigues, Amaro F. de Sousa, and Jaime Lloret. 2013. Denial of service mitigation approach
for IPv6-enabled smart object networks. Concur. Comput.ation: Pract. Exper. 25, 1 (Jan. 2013), 129-142.

Edewede Oriwoh and Paul Sant. 2013. The forensics edge management system: A concept and design. In Proceedings of the
IEEE 10th International Conference on Ubiquitous Intelligence and Computing and the IEEE 10th International Conference
on Autonomic and Trusted Computing. 544-550.

Yin Minn Pa Pa, Shogo Suzuki, Katsunari Yoshioka, Tsutomu Matsumoto, Takahiro Kasama, and Christian Rossow. 2016.
IoTPOT: A novel honeypot for revealing current [oT threats. J. Inf. Proc. 24, 3 (May 2016), 522-533.

Adrian Perrig, Ran Canetti, J. D. Tygar, and Dawn Song. 2005. The TESLA broadcast authentication protocol. RSA CryptoB.
(July 2005).

George F. Riley and Thomas R. Henderson. 2010. The ns-3 network simulator. In Modeling and Tools for Network Simulation.
Springer Berlin, 15-34.

Na Ruan and Yoshiaki Hori. 2012. DoS attack-tolerant TESLA-based broadcast authentication protocol in internet of things.
In Proceedings of the International Conference on Selected Topics in Mobile and Wireless Networking. 60—65.

Weisong Shi and Schahram Dustdar. 2016. The promise of edge computing. Computer 49, 5 (May 2016), 78-81.

John Soldatos, Nikos Kefalakis, Manfred Hauswirth, Martin Serrano, Jean-Paul Calbimonte, Mehdi Riahi, Karl Aberer, Prem
Prakash Jayaraman, Arkady Zaslavsky, Ivana Podnar Zarko, Lea Skorin-Kapov, and Reinhard Herzog. 2015. OpenloT:
Open source internet-of-things in the cloud. In Interoperability and Open-Source Solutions for the Internet of Things.
Springer, Cham, 13-25.

Krushang Sonar and Hardik Upadhyay. 2016. An approach to secure internet of things against DDoS. In Proceedings of the
International Conference on ICT for Sustainable Development. Springer, 367-376.

Malisa Vu¢ini¢, Bernard Tourancheau, Franck Rousseau, Andrzej Duda, Laurent Damon, and Roberto Guizzetti. 2015.
OSCAR: Object security architecture for the internet of things. Ad Hoc Netw. 32 (Sept. 2015), 3-16.

Kun Wang, Miao Du, Yanfei Sun, Alexey Vinel, and Yan Zhang. 2016. Attack detection and distributed forensics in machine-
to-machine networks. IEEE Netw. 30, 6 (Nov. 2016), 49-55.

Saman Taghavi Zargar, James Joshi, and David Tipper. 2013. A survey of Defense Mechanisms Against Distributed Denial
of Service (DDoS) flooding attacks. IEEE Commun. Surv. Tutor. 15, 4 (2013), 2046—-2069.

Congyingzi Zhang and Robert Green. 2015. Communication security in internet of things: Preventive mMeasure and avoid
DDoS attack over IoT network. In Proceedings of the 18th Symposium on Communications & Networking (CNS’15). Society
for Computer Simulation International, 8-15.

Received October 2018; revised September 2019; accepted November 2019

ACM Transactions on Internet of Things, Vol. 1, No. 1, Article 4. Publication date: February 2020.

RIGHTSE LI MN iy


http://arxiv.org/abs/1502.01815
http://www.forbes.com/sites/ianmorris/2017/02/24/googles-latest-failure-shows-how-immature-its-hardware-is/

