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Abstract—Cognitive radio aims at identifying unused radio-
frequency (RF) bands with the goal of re-using them oppor-
tunistically for other services. While compressive sensing (CS)
has been used to identify strong signals (or interferers) in the RF
spectrum from sub-Nyquist measurements, identifying unused

frequencies from CS measurements appears to be uncharted
territory. In this paper, we propose a novel method for identify-
ing unused RF bands using an algorithm we call least matching
pursuit (LMP). We present a sufficient condition for which LMP
is guaranteed to identify unused frequency bands and develop
an improved algorithm that is inspired by our theoretical result.
We perform simulations for a CS-based RF whitespace detection
task in order to demonstrate that LMP is able to outperform
black-box approaches that build on deep neural networks.

I. INTRODUCTION

In 2019, approximately 10.8 billion Internet of things (IoT)

devices have been deployed worldwide, with the number of

wirelessly connected devices growing at extreme rates over the

last years [1]. Without proper radio-frequency (RF) spectrum

allocation strategies, the vast amount of wireless IoT devices

would inevitably result in overcrowding of the available fre-

quency resources. To optimally utilize the available spectrum,

novel means to allocate IoT devices to unused frequencies are

of paramount importance [2]. While RF spectrum allocation

can be performed at the infrastructure base station, identifying

unused frequency bands must be performed at minimal power

to reduce system costs [3]. Furthermore, enabling IoT devices

with rudimentary whitespace detection capabilities would

enable further improvements in terms of resource utilization

as transmission could be scheduled opportunistically and more

dynamically, when other nearby IoT transmitters are idle [4].

Consequently, both the infrastructure basestations and IoT

devices would benefit from the development of novel means to

identify unused frequencies in an energy-efficient manner [5].

A straightforward way for detecting unused frequencies

would be to sample the RF signal at Nyquist rate and

analyze the spectrum in the Fourier domain [6]. To reduce the

sampling rates and power consumption, a range of compressive

sensing (CS)-based methods [7]–[11] have been proposed
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for spectrum sensing. However, CS-based spectrum sensing

is limited to detecting strong signals and not designed for

whitespace detection (i.e., identifying unused frequencies). In

fact, CS is typically unable to identify weak non-zero entries

if they are only slightly above the noise floor [12]. As a

sole exception, reference [13] proposed a method called zero-

detection group thresholding (ZD-GroTH), which is, to the

best of our knowledge, the only CS-based method that has

been designed to detect zero (unused) components.

A. Contributions

In this paper, we improve upon the results of [13] in two

ways: First, we develop a sufficient condition for which ZD-

GroTH is guaranteed to identify zero (or unused) components;

the condition depends on the dynamic range of the sparse

signal, coherence properties of the sampling operator, and the

noise power. Second, by inspecting our whitespace identifica-

tion condition, we develop a refined “anti-CS” algorithm we

call least matching pursuit (LMP). Our method improves upon

ZD-GroTH by including a block orthogonal matching pursuit

(BOMP) stage [14], [15], which reduces the dynamic range

between non-zero signal components, and a refined correlation

criterion, which improves sensitivity. To demonstrate the

efficacy of LMP, we simulate a whitespace detection task

in a realistic RF system that measures spectral features using

nonuniform wavelet sampling (NUWS) [16], and we compare

the performance of LMP to that of BOMP, ZF-GroTH, and a

deep-learning based whitespace detector.

B. Notation

Uppercase boldface letters stand for matrices; lowercase

boldface letters denote column vectors. For a matrix A, we

denote its Hermitian transpose by AH , its pseudo-inverse

by A†, and its ith block by Ai, which is a collection of

contiguous columns in A. The ℓ2-norm (spectral norm) of a

matrix A is ‖A‖2 = σmax, where σmax is the largest singular

value of A. The ℓ2-norm of a vector a is ‖a‖2 =
√
∑

k |ak|
2.

II. SYSTEM MODEL AND BLOCK-SPARSE RECOVERY

We now introduce the CS signal and measurement model,

which we will use to model RF whitespace detection. Then,

we summarize the recovery of non-zero blocks using BOMP

and discuss its limitations for whitespace detection.



A. Compressive Sensing and Block-Sparse Signals

To minimize the costs of sampling, we focus on CS-based

acquisition schemes that acquire fewer measurements than the

Nyquist rates dictates while exploiting signal sparsity in a

given transform domain [17]. To model the fact that typical

RF signals occupy frequency bands, we use a block-sparse

signal model for which the signal components that are active

or inactive appear in contiguous groups [14], [15].

Mathematically, we assume a discretized signal x ∈ C
N

that consists of B blocks xi ∈ C
Ni , where i = 1, . . . , B,

∑B

i=1
Ni = N , and x = [xH

1 , . . . ,xH
B ]H . For RF whitespace

detection, each block xi, i = 1, . . . , B, represents a contiguous

band of discrete frequencies. In what follows, we assume that

the signal x is K-block-sparse, meaning that exactly K blocks

are nonzero. CS-based signal acquisition is modeled by the

input-output relation y = Ax+ n, where y ∈ C
M contains

the compressive measurements with M ≪ N , A ∈ C
M×N

is the effective sensing matrix (which combines the effect

of the sensing matrix and the sparsifying transform), and

n ∈ C
M models measurement noise. To simplify notation, we

can write an equivalent system model y =
∑

i∈U Aixi + n,

where Ai ∈ C
M×Ni is the ith block matrix of the effective

sensing matrix A = [A1, . . . ,AB ] and U denotes the set of

indices corresponding to the non-zero blocks in the vector x.

In practice, CS measurements are acquired by computing

inner products between the uncompressed signal, written by

z = Ψ−1x where Ψ ∈ C
N×N is a sparsifying transform, and

rows of the sensing matrix Θ ∈ C
M×N using analog circuitry.

The effective sensing matrix is A = ΘΨ−1 and each block

matrix is given by Ai = ΘΨ−1
i , where Ψ−1

i ∈ C
N×Ni

is the ith block of the inverse sparsifying transform so that

Ψ−1 = [Ψ−1
1 , . . . ,Ψ−1

B ]. For RF whitespace detection, z is the

Nyquist-sampled time-domain signal, Ψ is the discrete Fourier

transform (DFT) matrix (as we assume block-sparsity in the

frequency domain), Θ is a suitably-chosen sensing matrix (see

Section IV-A for the sensing matrix used in our experiments),

and y contains the M compressive measurements

B. Block Orthogonal Matching Pursuit (BOMP)

A prime goal of CS is to recover the nonzero (or used)

blocks xi, i ∈ U , in the vector x from the CS measurements

in y using block-sparse signal recovery algorithms [14]. In

contrast, whitespace detection aims at detecting unused blocks,

i.e., the blocks indexed by the set N = {i = 1, . . . , N |
‖xi‖2 = 0}. For noiseless measurements, one could first

run a block-sparse signal recovery algorithm to identify the

used blocks and then label all other blocks as unused. The

presence of noise, however, renders it extremely challenging to

distinguish noise from weak signal components—the situation

is further aggravated by the fact that most (block) sparse

signal recovery algorithms shrink weak signals to zero. Even

though our goal is not to detect strong signals, we now briefly

summarize BOMP, a prominent block-sparse signal recovery

method. As shown in Section III, we will use BOMP as a

preprocessing step to improve CS-based whitespace detection.

Algorithm 1 Block Orthogonal Matching Pursuit (BOMP)

1: input {Ai}
B
i=1, y, and K

2: initialize r0 = y and Ω0 = ∅

3: for t = 1, . . . ,K do

4: for i = 1, . . . , B do

5: λt+1
i = ‖(AH

i Ai)
−0.5AH

i rt‖2
6: end for

7: ct+1 = arg maxi λ
t+1
i

8: Ωt+1 = Ωt ∪ ct+1

9: x̂Ωt+1 = A
†
Ωt+1y

10: rt+1 = y −AΩt+1 x̂Ωt+1

11: end for

12: return x̂Ωt+1 , Ωt+1, and {λt+1
i , i = 1, . . . , B}Kt=1

BOMP is an iterative block-sparse signal recovery algorithm

put forward in [15]. The algorithm starts by initializing the

so-called residual by r0 = y. At each iteration t = 1, . . . ,K,

BOMP first calculates a normalized correlation between the

residual rt and each block Ai, ∀i ∈ B according to

λt+1
i = ‖(AH

i Ai)
−0.5AH

i rt‖2. (1)

Note that, compared to [15], we use a modified correlation

criterion that uses the term (AH
i Ai)

−0.5, which does not

require the blocks to have orthonormal columns. Next, BOMP

selects the index of the block with the highest correlation

according to ct+1 = arg maxi λ
t+1
i and adds the selected

block to the support set Ωt+1 = Ωt ∪ ct+1. BOMP then

computes an estimate x̂Ωt+1 of the non-zero blocks x̂ =
A

†
Ωt+1y, where AΩt+1 contains the blocks indexed by the

support set estimate Ωt+1. Finally, BOMP updates the residual

according to rt+1 = y −AΩt+1 x̂Ωt+1 . See Algorithm 1 for

the pseudocode of BOMP.

III. LMP: LEAST MATCHING PURSUIT

While (block) sparse signal recovery aims at recovering

strong non-zero entries, RF whitespace detection requires the

identification of unused blocks. We now summarize the zero-

detection group thresholding (ZD-GroTH) method from [13],

the only method we are aware of that has been proposed

to detect unused signal components from CS measurements.

We provide a sufficient condition that guarantees successful

detection of unused blocks in presence of noise. By using our

theoretical result, we improve upon ZD-GroTH by including

(i) a BOMP stage that reduces the dynamic range between non-

zero signal components and (ii) a refined correlation criterion—

we call the resulting method least matching pursuit (LMP).

A. Recovery Guarantee for ZD-GroTh

The ZD-GroTh algorithm [13] identifies the block Ai that

minimizes the correlation with the received signal as

f̂ = arg min
i=1,...,B

‖(AH
i Ai)

−0.5AH
i y‖2. (2)

In contrast to the original method in [13], we use the selection

criterion in (2) that enables the use of unnormalized blocks.

While [13] provides statistical guarantees for the success of



ZD-GroTh, we next propose a sufficient condition for the

success of ZD-GroTh that depends on the dynamic range of

the block-sparse signal, the effective sensing matrix, and the

power of the measurement noise. In what follows, we will

make use of the following definitions:

Definition 1. Let ‖xmin‖2 = minj∈U ‖xj‖2 be the ℓ2-norm

of the block of xi that has the minimum ℓ2-norm among

the used blocks indexed by U . Let σmin = mini=1,...,B σAi

be the minimum singular value among all the blocks Ai,

i = 1, . . . , B. Let the block mutual coherence of A be

µB = max
i 6=j

‖(AH
i Ai)

−0.5AH
i Aj‖2. (3)

We can now formulate the following sufficient condition for

the success of ZD-GroTh. The proof is given in Appendix A.

Proposition 1. If the following condition holds
∑

j∈U ‖xj‖2

‖xmin‖2
<

1

2

(

σmin

µB

+ 1

)

−
‖n‖2

µB‖xmin‖2
, (4)

then ZD-GroTh (2) is guaranteed to identify an unused block.

Proposition 1 is useful to understand conditions for which

we can identify an unused block via ZD-GroTh. For the

special case where (i) the blocks Ai, i = 1, . . . , B have

orthonormal columns, (ii) all the used signal blocks have

equal power, i.e., ‖xi‖ = ‖xj‖ for i 6= j and i, j ∈ U ,

(iii) and for noiseless measurements, we recover the standard

BOMP condition K < 1

2

(

µ−1

B + 1
)

from [15]. For the general

case, it is clear that the dynamic range between strong signal

components and the weakest one xmin plays a critical role in

the success of this method, i.e., the ratio δ =
∑

j∈U
‖xj‖2

‖xmin‖2
on the

LHS of (4) should be as small as possible1. This observation

enables us to design the following improved algorithm for

detecting unused blocks from CS measurements.

B. LMP: Least Matching Pursuit

Inspired by the above observation, we minimize the detri-

mental effect of high dynamic range δ of active signal compo-

nents by first eliminating the strongest active sparse blocks and

then invoke a variant of the minimum correlation condition

in (2); this can be accomplished by first running BOMP for P
iterations (typically P ≤ K) followed by selecting the least

correlated block from the resulting residual rP+1. However,

by directly using (2) on the residual, we ignore correlation

information that has been acquired during all BOMP iterations.

To this end, we also refine the selection criterion by considering

the sum of all correlation coefficients over the P BOMP

iterations and select the block with the smallest sum. This

approach effectively avoids the selection of blocks that had

small correlation only in the last iteration of BOMP but had

consistently low correlation before. Concretely, we propose to

use the following refined selection criterion:

f̂ = arg min
i∈{1,2,...,B}\ΩP+1

P
∑

t=1

λt+1
i . (5)

1This ratio is lower-bounded by the block-sparsity K, which is achieved
with equality if all active signal components have equal power.

Algorithm 2 Least Matching Pursuit (LMP)

1: input {Ai}
B
i=1, y, and P

2: Run BOMP for P iterations to obtain ΩP+1 and

{λt+1}Pt=1

3: return f̂ = arg mini∈{1,2,...,B}\ΩP+1

∑P

t=1
λt+1
i

Here, the correlation results {λt+1
i , i = 1, . . . , B}Pt=1 have

been collected while running BOMP as detailed in Algo-

rithm 1. The resulting whitespace detection method, called

least matching pursuit (LMP), is summarized in Algorithm 2.

IV. RESULTS

We now show simulation results for LMP in a CS-based

whitespace detection task. We first detail the used compressive

sensing strategy. We then detail the simulation setup. We finally

show performance results for LMP compared to BOMP, ZD-

GroTH, and a deep-learning based whitespace detector.

A. Non-uniform Wavelet Sampling (NUWS)

Non-uniform wavelet sampling (NUWS) has been proposed

in [16] as a flexible and hardware-friendly compressive sensing

strategy for RF sensing [18] and feature extraction tasks [19].

In short, NUWS combines the advantages of nonuniform

sampling [9] and random modulation [20]. Mathematically,

NUWS takes inner products between the analog signal and

wavelet-like pulses w(τ, ρ, f) ∈ C
N , which can be tuned in

terms of the time instant τ , pulse width ρ, and frequency f .

The tunability of NUWS enables one to adapt the sequence of

wavelets to the task at hand. For our RF sensing application, we

consider Haar-like wavelets [19] with entries in {+1, 0,−1}
that can easily be generated with mixed-signal circuitry [18].

In order to adapt the sensing matrix to our application, we

first construct an overcomplete dictionary W ∈ C
L×N whose

rows consists of a large number of different wavelet sequences

{w(τl, ρl, fl)}
L
l=1 with L ≫ N . We then select a subset of M

wavelets so that the effective sensing matrix A = RΩW

has desirable properties. Here, RΩ is a restriction operator

that selects a subset of M sequences from the dictionary W.

Subset selection is carried out so that the resulting block

mutual coherence µB in (3) is minimized. Since this subset

selection problem is of combinatorial nature, we use a greedy

approach. We start with an empty set of wavelet sequences.

We then calculate the block mutual coherence µB for each

of the l = 1, . . . , L wavelet sequences in W and keep the

sequence associated with the lowest µB . We repeat this greedy

procedure until M wavelets have been collected.

B. Simulation Setup

To demonstrate the efficacy of LMP in a realistic scenario,

we model a complete RF transmitter and receiver chain

in MATLAB; see Fig. 1 for an overview. We generate 20
frequency bands between 2.4GHz and 2.5GHz and assume

that at most five transmitters in five bands are active at a

time. We randomly place the transmitters within a distance of

1m and 280m from the receiver and use the path-loss model



Fig. 1. Block diagram of the system model representing RF transmitters and
an RF receiver that performs NUWS and whitespace detection.

from [21]. At the transmitter, we generate a 5MHz QPSK

signal that is mixed with a carrier that is randomly selected

among the 20 uniformly spaced channels. The 20 dBm signal

is then transmitted over an antenna at height 1.65m.

At the receiver side, we collect the signals at an antenna at

height 15m with an antenna gain of 10 dBi. The signal is then

passed through a low-noise amplifier (LNA) followed by a

intermediate frequency mixer operating at 2.45GHz. We model

LNA and mixed non-linearities using first, third, and fifth

harmonics at 50Ohm impedance, −1 dB gain compression,

and a third-order intercept point of 10 dBm. Phase noise at the

mixers is simulated using Leeson’s model [22] with 1MHz

carrier frequency offset at −110 dBc. For the voltage gains of

mixers and the LNA, we use 8 dB and 20 dB respectively, and

we use a noise figure of 5 dB for both the mixer and LNA.

We add thermal noise to the signal both at the transmitter

before the mixer and at the receiver before LNA operating at

290K. We then perform NUWS on the output signal of the RF

receiver using the wavelet dictionary described in Section IV-A

by taking a maximum of N = 200 Nyquist samples.

C. Simulation Results

We show simulation results for M = 50, M = 100,

and M = 150 NUWS measurements (corresponding to

compression ratios of 1/4, 1/2, and 3/4) that are obtained

by performing 50, 000 Monte-Carlo trials, which randomize

transmitter location, spectrum occupancy, transmit signals, and

noise. Figures 2a, 2b, and 2c show the resulting error rates vs.

average signal-to-noise ratio (SNR) over all active transmitters.

Errors are declared whenever we decide a channel was unused

but the channel was occupied by a transmitter. Black dashed

lines show the baseline error rate for randomly selecting an

unused channel; blue dashed lines show the error rate of using

all the N = 200 Nyquist samples and analyzing the signal

power in the discrete Fourier domain. Green dashed lines show

the error rate of a feedforward neural network (NN) with four

hidden layers, each having 1024, 512, 256, and 128 neurons

with rectified linear unit (ReLU) activation functions. We train

the NN from 200,000 examples. Purple dashed lines show the

error-rate of BOMP with K = 19 iterations which leaves one

channel left that we declare as unused and red solid lines show

the error rate of ZD-GroTh as in (2). Orange solid lines show

the error rate of the proposed LMP algorithm with P = 4.

We observe that both ZD-GroTh and LMP consistently

achieve lower error rate than BOMP and the NN-based

whitespace detector, even though the neural network has been

retrained for each SNR. Furthermore, we see that at moderate

SNR values (SNR ≥ 5 dB), LMP outperforms ZD-GroTh.

At low SNR (SNR < 5 dB), performing NUWS on 200 time

samples is insufficient to achieve low error rates. If lower error

rates are desirable, more samples have to be acquired—the

same observation applies to the Nyquist-based approach.

V. CONCLUSIONS

We have proposed a novel algorithm, called least matching

pursuit (LMP), for detection of unused blocks from CS

measurements. The design of LMP is inspired by a novel

recovery guarantee designed for the zero-detection group

thresholding (ZD-GroTH) method put forward in [13]. In

contrast to ZD-GroTH, LMP first eliminates the strongest

signal components using block orthogonal matching pursuit

(BOMP) to reduce the dynamic range in the residual signal.

LMP then evaluates a minimum correlation criterion that uses

intermediate results acquired during BOMP iterations. Simu-

lation results with realistic RF components and a nonuniform

wavelet sampling (NUWS) stage have shown that LMP is able

to outperform BOMP, ZD-GroTH, and a neural-nework-based

baseline detector for compressive whitespace detection.

While LMP achieves lower error rates that existing methods,

its performance can further be improved by using a generalized

algorithm for an “anti” multiple measurement vectors (MMV)

problem [23], which performs averaging over more time slots.

A corresponding study is part of ongoing work. A theoretical

analysis of the proposed average minimum correlation criterion

is an open research problem and evaluating the performance

of LMP for multipath channels is part of ongoing work.

Finally, we are developing a hardware prototype that performs

NUWS and LMP in an energy-efficient manner, which will

demonstrate the real-world performance of our approach.

APPENDIX A

PROOF OF PROPOSITION 1

A sufficient condition for ZD-GroTh to succeed is

min
i∈N

‖(AH
i Ai)

−0.5AH
i y‖2

< min
j∈U

‖(AH
j Aj)

−0.5AH
j y‖2, (6)

which holds true if the smallest correlation with an unused

block in the set N is strictly smaller than the smallest

correlation with a used block in U . The proof follows by

upper-bounding and lower-bounding the left-hand side (LHS)

and right-hand side (RHS) of (6), respectively. An upper bound

to the LHS of (6) is as follows:

min
i∈N

‖(AH
i Ai)

−0.5AH
i y‖2 (7)

= min
i∈N

∥

∥

∥

∥

∥

∥

(AH
i Ai)

−0.5AH
i





∑

j∈U

Ajxj + n





∥

∥

∥

∥

∥

∥

2

(8)
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(b) 100 NUWS Samples

−5 0 5 10 15 20 25
10

−4

10
−3

10
−2

10
−1

Average SNR [dB]

E
rr

o
r

ra
te

All samples
ZD-GroTh
LMP
NN
BOMP
Random

(c) 150 NUWS Samples

Fig. 2. Comparison of algorithms that identify unused RF channels: BOMP, ZD-GroTh, LMP, and neural network (NN)-based detector; (a) 50 NUWS samples;
(b) 100 NUWS samples, and (c) 150 NUWS samples; as baseline methods, we include the performance of identifying an unused channel using all the Nyquist
samples and the performance of random guessing. Clearly, LMP and ZD-GroTh outperform both conventional BOMP and the NN-based approach, whereas
LMP has a clear advantage over ZD-GroTh at high SNR by reducing the dynamic range and using an improved correlation criterion.

≤ µB

∑

j∈U

‖xj‖2 + ‖n‖2. (9)

Here, the inequality follows from the triangle inequality, the

definition of the block mutual coherence µB , and the fact that

our selection criterion is normalized. A lower bound on the

RHS of (6) is as follows:

min
j∈U

‖(AH
j Aj)

−0.5AH
j y‖2 (10)

= min
j∈U

∥

∥

∥

∥

∥

∥

(AH
j Aj)

−0.5AH
j



Ajxj +
∑

l∈U\j

Alxl + n





∥

∥

∥

∥

∥

∥

2

(11)

≥ σmin‖xmin‖2 − µB

∑

j∈U

‖xj‖2 + µB‖xmin‖2 − ‖n‖2.

(12)

Here, the inequality follows from the definitions of σmin

and µB , the fact that for one of the used blocks ‖xj‖ =
‖xmin‖, and the normalized selection criterion. By substituting

the LHS and RHS in the sufficient condition (6) by (9) and (12),

respectively, we arrive at the final result in (4).
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