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ABSTRACT. We extend the continuity equation of La Nave-Tian to Her-
mitian metrics and establish its interval of maximal existence. The equa-
tion is closely related to the Chern-Ricci flow, and we illustrate this in
the case of elliptic bundles over a curve of genus at least two.

1. INTRODUCTION

Let M be a compact complex manifold of complex dimension n. Suppose
that M admits a Kahler metric wg. In [13], La Nave-Tian (see also the work
of Rubinstein [17]) consider a family of Kahler metrics w = w(s) satisfying
the continuity equation

(1.1) w = wo — sRic(w), for s> 0.

Here Ric(w) = —v/—100logdet g is the Ricci curvature (1,1) form of w =
J?lgijdzi A dzl. This equation was introduced as an alternative to the
Kahler-Ricci flow in carrying out the Song-Tian analytic minimal model
program [19, 20]. The continuity equation has the feature that the Ricci
curvature along the path is automatically bounded from below and this has
led to several developments [7, 14, 15, 36, 37].

In this paper we study a natural analogue of (1.1) for non-Kéhler Her-
mitian metrics. If w is any Hermitian metric we still define

(1.2) Ric(w) = —v/—1030log det g,

which we refer to as the Chern-Ricci form of w. Unlike the Kahler case,
in general this form need not relate to the full Riemann curvature tensor
in any simple fashion. We now consider the continuity equation (1.1) for
general Hermitian metrics with the definition (1.2).

Our first result establishes the maximal existence interval for the conti-
nuity equation.

Theorem 1.1. Let M be a compact manifold with a Hermitian metric wy.
Then there exists a unique family of Hermitian metrics w = w(s) satisfying

(1.3) w=uwp — sRic(w), w>0, se€[0,7),
where T is defined by
(1.4) T :=sup{s > 0| Iy € C°(M) with wg — s Ric(wp) + v/ —199¢y > 0}.
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‘We make some remarks about this result.

1) Theorem 1.1 extends the result of La Nave-Tian [13] who showed that
when wy is Kéahler, there exists a solution to (1.1) up to 7' = sup{s > 0 |
[wo] — sc1(M) > 0}, where we are writing ¢;(M) = [Ric(wo)] € HY(M;R)
for the first Chern class of M (modulo a factor of 27). This T coincides
with the maximal existence time for the Kahler-Ricci flow [3, 22, 32, 33].

2) The continuity equation (1.3) for Hermitian metrics can be regarded as
an elliptic version of the Chern-Ricci flow

gtw = — Ric(w),

first introduced by Gill [9]. Indeed the value T" of Theorem 1.1 coincides with
the maximal existence time for the Chern-Ricci flow [28]. In particular, if
n = 2 and wy satisfies the Gauduchon condition 90w = 0 then T can be

readily computed for many examples (see [28, 29]).

3) The value T is independent of the choice of wy in the following sense: if
we replace wg by wg ++v/—190f > 0 for a smooth function f then the value
T does not change.

4) We reduce the proof of Theorem 1.1 to an existence result of Cherrier [4]
(see Theorem 3.3 below).

Our second theorem gives an example of the continuity equation (1.3)
in the setting of elliptic surfaces. In particular, it will illustrate the close
connection to the Chern-Ricci flow.

Let # : M — S be an elliptic bundle over a Riemann surface S of genus
at least 2. In particular, each point y in S has a neighborhood U so that
7~1(U) is biholomorphic to U x T? for a complex 1-dimensional torus T2.
There exist such bundles which are non-Kdhler elliptic surfaces, meaning
that they do not admit any Kéhler metric (see the exposition in [29, Section
8]). In fact, by the Kodaira classification, every minimal non-Ké&hler surface
of Kodaira dimension 1 is such an elliptic surface, or admits a finite cover
by one (see [2, Lemmas 1, 2] or [34, Theorem 7.4]).

Denote by wg the unique Kahler-Einstein metric on S satisfying Ric(wg) =
—wg. Then the pull-back [7*wg] lies in ¢1(M) and it follows from Theorem
1.1 that the continuity equation (1.3) with any initial wp has T = oo (see
Lemma 4.1 below).

Take wp to be a Gauduchon (0dwy = 0) metric on M. Note that every
Hermitian metric is conformal to a Gauduchon one [8].

There exists a family of Gauduchon metrics w'(s) satisfying the continuity
equation

W'(s) = wo — sRic(W'(s)),
for s € [0,00). It is convenient to make a scaling change (cf. [36]) and
consider w(s) = w'(s)/(s+ 1) so that the equation becomes

(1.5) (14 s)w(s) =wp — sRic(w(s)), s€[0,00).
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We call this the normalized continuity equation. Our result describes the
behavior of w(s) as s — 0.

Theorem 1.2. Let w: M — S be an elliptic bundle as above, and let wy be a
Gauduchon metric on M. Let w(s) solve the normalized continuity equation
(1.5). As s — o0,

(i) w(s) — m*wg in the CO(M,wy) topology.
(ii) (M,w(s)) converges to (S,wg) in the Gromov-Hausdorff topology.
(iii) The Chern-Ricci curvature of w(s) remains uniformly bounded.

The behavior of w(s) mirrors the behavior of the Chern-Ricci flow on such
elliptic surfaces, which was studied by Tosatti, Yang and the second-named
author [30]. Indeed (i) and (ii) hold for both equations, and the proof of
Theorem 1.2 makes heavy use of the results and techniques of [30]. A crucial
difference is that the Chern-Ricci curvature bound was not obtained in [30],
suggesting a possible advantage of the continuity equation in this setting.
We also find some simplifications compared to [30].

Here are some further remarks about Theorem 1.2.

1) We note that the Gauduchon assumption is only used to obtain the iden-
tity (4.1) below (see [30, Lemma 3.2]) which is used for the bound on the
potential ¢ (Lemma 4.2 below).

2) For (i) the precise convergence we obtain is |w(s) — m*wg|w, < Cs™¢ for
any a € (0,1/8), which corresponds to the exponential convergence for the
Chern-Ricci flow in [30].

3) The paper [30] considers the metrics restricted to the fibers along the
Chern-Ricci flow and obtains convergence (after rescaling) to flat metrics,
making use of arguments from [6, 10, 11, 18, 21, 24]. The analogous result
holds for the continuity equation. Moreover, the argument of [29, Theorem
8.2] or [30, Corollary 1.2] gives an extension of Theorem 1.2 to all minimal
non-Kahler elliptic surfaces, by taking a finite cover. We omit the details
for the sake of brevity and to avoid repetition.

3) It is not even known if the Chern scalar curvature R is uniformly bounded
for the Chern-Ricci flow on elliptic bundles. The bounds for R proved in
[30] were —C' < R < Ce'/2, where t is the time parameter along the flow.

4) Zhang-Zhang [36] investigated the Ké&hler version of the continuity equa-
tion on minimal elliptic Kahler surfaces, including those which have non-
bundle fibration structures and singular fibers and established the analogue
of (ii) (cf. [19, 23]).

The outline of the paper is as follows. In Section 2 we establish notation
and state a technical but important lemma for later use. In Sections 3 and
4 we prove Theorems 1.1 and 1.2 respectively.
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2. PRELIMINARIES

Given a Hermitian metric g = (g;;) with associated (1,1) form w =
J?lgijdzi A dZ) we write V for its Chern connection; note that here and
throughout the rest of the article the Einstein summation convention is ap-
plied. The Christoffel symbols of V are given by Ffj = gﬁkaigﬁ, its torsion
is given by TZ]; = Ffj - Fé?i and the Chern curvature is szip = —9,I,. We
will sometimes raise and lower indices in the usual way using the metric g.

The Chern-Ricci curvature of g is the tensor R, ; = gﬁRkZiE = —0i0;logdet g,
and the associated Chern-Ricci form is

Ric(w) = leszdzk A dzt,
a closed real (1, 1) form. The Chern scalar curvature is the trace R = gz"’RkZ.
We use A to denote the complex Laplacian of g which acts on a function
f by the formula Af = gﬁ(?ia]% f. Given another Hermitian metric ¢’ with
associated (1,1) form ', we write tryg’ = trow’ = gﬁg}..
We note here a technical result which will be useful for later sections.

Proposition 2.1. Let g = (g;5) and ¢’ = (923) be Hermitian metrics with

g% =9+ 82‘(9]%4,0, for a smooth function ¢, and define

det ¢’
=1
J=log det g
Then
1 2 ——
/ o gk /
A'logtryg’ = @ {trgg’Re (Q‘J Ti’qutrgg) +K+Af—-R
+ 97V + 979 g5Vl — 979 G (VT — Rigy59™)
_ g/]lgék:jvgcjv‘]qegpq} ,

for K = gzz'gljpg@kBﬁkB@q > 0 where

Vitr,g'

o o /7 g P /7
B = Vigi; — 95 trag’ ikIpj
and A’ is the complex Laplacian of ¢'.

Proof. This identity is due to Cherrier [4]. In this precise form it can be
found in [28, Section 9. O

3. PROOF OF THEOREM 1.1

In order to prove Theorem 1.1 we reduce the equation (1.3) to a complex
Monge-Ampere equation on M. Let T € (0,7). By definition of T' there is
a smooth function 1 such that

wo — TRiC(wo) + vV —1357/1 > 0.
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Let © be the volume form given by ) = wgew T, so that
wo + TvV/—=18010g Q = wy — TRic(wo) +/=100¢ > 0.

By convexity of the space of Hermitian metrics we also have wo +5001og ) >
0 for each s € [0, 7.

Proposition 3.1. Fiz s € [0,T]. Then there exists a metric w satisfying
w = wp — sRic(w) if and only if there exists a smooth function u: M — R
satisfying

(wo + sv/—1001og Q + s3/—100u)"

log O —u =0,

wo + 5v/—1901og Q + sv/—1900u > 0.

Proof. Suppose first that the metric w = w(s) satisfies w = wy — s Ric(w).
Define u by u = log(w"/Q). Then Ric(w) = —v/—199log Q — v/—100u and

SO

(3.1)

w = wy + sx/jﬁglogﬁ + sv/—100u > 0,
as required.
Conversely, if u satisfies (3.1) then it is straightforward to check that
w = wp + sv/—199log Q + sy/—100u satisfies w = wy — s Ric(w). O

An immediate consequence of the above proposition is the uniqueness of
solutions to the continuity equation.

Corollary 3.2. If w' and w are two metrics solving the continuity equation
(1.8) for the same s in [0,T) then ' = w.

Proof. For s = 0 there is nothing to prove. For s € (0,7, the result follows
from uniqueness of solutions u of the equation (3.1), a consequence of the
maximum principle. O

We now proceed to the proof of Theorem 1.1. First note that (3.1) is
trivially solved when s = 0 by taking u = logwy /€. Fix s € (0,7]. Define
a new function ¢ = su, a Hermitian metric @ by

@& = wo + sv/—100log Q,
and a function F' =log(£2/@™). Then the equation (3.1) becomes

Chi V@_nlaa“o) = %tp +F, &++v/—100p > 0.

Recall that s here is fixed. Then Theorem 1.1 follows from the following
result.

log

Theorem 3.3 (Cherrier [4]). Let (M,&) be a compact Hermitian manifold,
F a smooth function on M and X > 0 a constant. Then there exists a unique
solution @ to the equation

o (@ ++/—190¢p)"
won

(3.2) lo =Xp+F, @©++V—100p > 0.
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Proof. The complex Monge-Ampere equation (3.2) is a well-known one in
the special case when & is Kéhler, and was solved by Aubin [1] and Yau
[35]. In the Hermitian case, its solution is due to Cherrier [4] (note that
here M is strictly positive: for A = 0 see [35] and [4, 27]). For the sake of
completeness, we include here a brief sketch of the proof.

We introduce a parameter t € [0, 1] and consider the family of equations

~ n

(3.3) log (Chs \/;88@) =Ap+tF, &++/—100¢ > 0.
for ¢ = p(t). Let E denote the set of those ¢ € [0, 1] for which (3.3) has a
solution. Note that 0 € E since ¢ = 0 is trivially a solution. It suffices to
show that F is both open and closed.

For the openness of F, fix o € (0,1) and consider the map

(@ + /—=100¢p)" B
d)’n

T :[0,1] x C*Y(M) — C*(M), V(t,p) =log

Ap — tF.

Assume ty € E, and that (3.3) has a corresponding solution ¢g. Write
wo = & + /=190y and g for the corresponding Hermitian metric. The
derivative of ¥ in the second variable at (tg, @) is the linear operator L :
C?*(M) — C*(M) given by

Lf=Aof = A,

for Ag the Laplacian of wg. The maximum principle implies that L is injec-
tive. By the Implicit Function Theorem, the surjectivity of L is sufficient
to show the openness of E. Following an argument similar to that of [26],
we compute the L? adjoint of this operator with respect to a specific vol-
ume form on M, making use of a theorem of Gauduchon [8]. Let o be a
smooth function such that wg := e%wyp is a Gauduchon metric, namely that
85wg_1 = 0. Then compute for a smooth function h,

V—=10h A dwi !
/ (Ao f)hel" V7w = / f (th + 2nRe ( e )) Do,
M M

n—1)o, n
6( ) wO

Hence the adjoint of L with respect to e(”_l)“wg is given by

_1 h a n—1
V=10h A B )_M’

n—1)o, n
(=D

L*h = Aogh + 2nRe (

and the maximum principle implies that L* is injective. By the Fredholm
alternative, L is surjective.

For the closedness of E we need a priori estimates on ¢ solving (3.3),
independent of ¢t. A uniform bound |p| < C follows immediately from the
maximum principle. Here and henceforth, C' will denote a uniform constant
that may change from line to line.

Write w’ = & + v/—100¢p, and let ¢’ be the associated Hermitian metric.
We will bound trgg" from above. By the bound on |¢|, the equation (3.3)
and the arithmetic-geometric means inequality this will imply the uniform
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equivalence of the metrics g and g’. We follow the argument of [28, Section
9] which uses a trick of Phong-Sturm [16] and consider the quantity

Q =logtrgg’ — Ap +

p—infpro+1’
for A a constant to be determined. As in (9.4) of [28],

(3.4) A'Q > A'logtryg' + Atry g + An —n.

(p—infyrp+1)3
Next we apply Proposition 2.1 with f = Ap + tF to obtain
2 s )

(3.5) Allogtryg' > mRe(g/q 17 Vatrgg') — Ctryg — C,
noting that Af > —C' since Ago > —n.

We compute at a point xg € M at which @) achieves its maximum. At zg
we have 0Q) = 0 and, assuming without loss of generality that tryg’ is large
compared to A, we obtain

012,

(trgg')? (¢ —infarp +1)3
recalling that |p| < C. Combining (3.4), (3.5) and (3.6) and choosing A
sufficiently uniformly large, we obtain that tryg < C at xp, and an upper
bound for @ follows. This implies an upper bound for tr;g’ on M and hence
the uniform ellipticity of the equation (3.3). Then C?¢ estimates for ¢

follow from the Evans-Krylov theory [5, 12, 31] or [25], and higher order
estimates for ¢ follow from a standard bootstrap procedure. O

(3.6) Re(g'™ T}, Vatrsg')| <

+ Ctry g,

4. ELLIPTIC BUNDLES

In this section we give a proof of Theorem 1.2. As in the introduction,
let m: M — S be an elliptic bundle over a Riemann surface S of genus at
least 2, and let wy be a Gauduchon metric on M.

We follow the notation used in [30], and use several important facts es-
tablished there. For convenience we restate the relevant facts here and refer
the reader to the paper for further details. Note that when comparing our
notation here with that in [30], our quantity s relates to the quantity ¢ in
that paper by the equation 1 + s = e’.

Given y € S we denote by E, := 7 !(y) the fiber over y, which by
assumption is isomorphic to a torus. There is a smooth function p: M — R
such that the form

What := wo + vV —100p
has the property that its restriction to each fiber E, is the unique flat metric

on E, in the cohomology class of wo|g,. We refer to waag as the semi-flat

form. It is not necessarily a metric since it may not be positive definite on
M.
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By abuse of notation we also denote by wg the pullback 7*wg of the Kahler
form wg of the unique Ké&hler-Einstein metric on S satisfying Ric(wg) =
—wg. This form lies in —c(M); fix the volume form  which satisfies
V—1001ogQ = wg and [, Q2 =2 [,, wo Awg. By [30, Lemma 3.2] we have

(4.1) O = 2Wgat A ws.

From the equation /—180 log = wg, every Hermitian metric has Chern-
Ricci form equal to —wg 4+ +/—100% for some function . Since wg > 0,
Theorem 1.1 immediately implies the following (cf. [28, Theorem 1.5]).

Lemma 4.1. The mazximal existence interval for the continuity equation
with any initial metric on M is [0,00).

We use the normalized continuity equation (1.5), namely w = w(s) is a
family of Gauduchon metrics solving:

(4.2) (14 s)w =wo — sRic(w), s€[0,00).
We set

(4.3 5= 5(s) = e+ o
. @ =0(s) = o What + 7w

Note that @ may not be positive definite for every s > 0, but that it will be
for every s sufficiently large. We will use @(s) as a path of reference metrics
to reduce (4.2) to a complex Monge-Ampere equation. We claim that (4.2)
is equivalent to

. — 712 -
(1+s)(w+ﬁﬁ38<ﬁ) :11:8(,0—1—%@ w=0&~+V—180¢ > 0

Indeed, if w solves (4.2) then define ¢ by

(14 sy = stog (L)

(4.4) log

and then applying v/—100 to both sides and rearranging we obtain
(1+5) (@4 V—-100¢) = wy — s Ric(w),

from which it follows that w = & ++/—100¢. Likewise, if ¢ solves (4.4) then
w =@+ /—109y solves (4.2).

We now turn to the proof of Theorem 1.2, by establishing uniform esti-
mates for w = w(s). Note that we may assume without loss of generality
that s is sufficiently large so that @(s) is positive definite.

We begin with:

Lemma 4.2. There is a uniform constant C such that

< .
= 1+ s
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Proof. We follow [21, Lemma 6.7] and [30, Lemma 3.4]. Since Q = 2wga; Awsg
we have:

(14 s)@? B wﬁat + 2swhat A wg

Q (1+5)0
(4.5) 1 (Wi,
=14 (Hat 4
* 1+s\ Q
=1+0(1/s)
Since slog(1 + O(1/s)) is bounded as s — co we obtain
1 ~2
(4.6) slog (—i_;)w <C.

Now we apply the maximum principle. Suppose ¢ achieves its maximum at
a point zg. Then at 2y we have /=190 < 0 and hence w < & and w? < &2,
Then by (4.4), at xg,

p s (1+ s)@? C
< — I <
v= 1+s+1+30g Q T 145’
by (4.6), giving the upper bound for ¢. The lower bound is similar. O

Next we show that the volume forms of w and @ are uniformly equivalent,
and in fact approach each other as s — cc.

Lemma 4.3. There is a uniform constant C > 0 such that for s sufficiently

large,
@* <1—O> <w? <@ <1+C>.
S S

Proof. From (4.5) we see that for s sufficiently large

w2 S LL)Q S W2
2= s +Q) (1 ﬁs)w? - +Q) (1+00/s)).

But from (4.4) and Lemma 4.2

(1+s)w? l+s  p\ _
—g = exp . gp—l—s =140(1/s),

and the result follows. O

We now turn to proving that trzg is uniformly bounded, where g, g are
the Hermitian metrics associated to w,@. This, together with the previous
lemma, will show that w and & are uniformly equivalent. We denote by V
the Chern connection of g. Similarly we will write ’f’ﬁi and Riﬂ for the

torsion and curvature tensors of §, and |T|;, |RTn|§ for their norms with
respect to g. We begin with a technical lemma from [30].
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Lemma 4.4. For s sufficiently large,
Tl < C, [VT|;+ |VT]; + [Rm|; < Cv/s,
for a uniform constant C.

Proof. See [30, Lemma 4.1]. O

In order to apply the maximum principle to trzg we will use the following
lemma (cf. [30, Lemma 5.2]).

Lemma 4.5. For s sufficiently large,

2 N i
Alogtrgg > W Re (qu i’kvgtr§g> — C/stryg.
g

Proof. Write (4.4) as

(@ +/—100¢)? _

1
0g 2 I
for
1+s 1
= - log ———.

f g ettt 8 1 5
Compute

1+s5+

>
kﬁ
Il

1- .
Ay + gAp—i-tr;st +R

1 2(1 1 ~
= + S(tr@w — 2) + M — —trgpwo + R,
S S

S

where we used v/—199p = (1 + 8)& — sws — wWo.
Applying Proposition 2.1 we obtain

Alogtrgg

1 ) i 1 e L
> oo g (7 TiTatr) € = L + 79T
b PG, — 7 09T — Fg™) - 5T e}

for a uniform constant C'. From the definition of © we see that for s suffi-
ciently large, wy < Cs@ and hence %tr@wo < C. Note that by Lemma 4.3,
tryg > c for a uniform ¢ > 0 and tryg is uniformly equivalent to trzg. The
proof is completed by applying Lemma 4.4. O

We can now obtain the bound on trzg.

Lemma 4.6. We have
trgg < C,

and hence w and W are uniformly equivalent.
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Proof. As in [30, Theorem 5.1], define
1
Q =logtrzg — AVsp + =————
! C+se

where C is chosen so that C+4/5 ¢ > 1 (see Lemma 4.2). Now Ap = 2—tr,g
and so

1 210(v/s )2
< A‘”’*mf > (‘A_<é+¢§¢>2>““§“@”<é+ﬁ¢>3

210(Vs )5
> —CAVs+ AVstryg +(C+\[¢)

At the point zg where @) achieves a maximum we have 9;Q = 0 so that

(477 O evers™ IS0

! 7(Vs9)],

Re( T Vg trgg> =

(tr 9)? trgg

4A
trgg

- e L[ €+ v -

craz rawégo)\f,

tr39 (O +/sp)*

where we have used Lemmas 4.2 and 4.4. Then, at xg, from Lemma 4.5,
0>AQ>—-CA%+ (A—C)strgg— CAs > —CA? + Vstrgg — CAVs

if we choose A > C + 1. So at this point tryg, and hence trzg is bounded
from above and the result follows. O

qk:z

Y

0(v/59)],
(C+Vsp)?

l

|97

Next we show that g and g approach each other as s — oo.

Lemma 4.7. For every o with 0 < o < 1/4 there is a constant C' such that
for s sufficiently large,

(a) trgg —2 < Cs™

(b) trgg —2<Cs™ @

(¢) (1=Cs™)g<g<(1+Cs™/?)3.
Proof. We use the idea from [30, Proposition 7.3|, but in our case the argu-

ment is slightly easier. Now that g and g are uniformly equivalent, it follows
from Lemma 4.5 that

Vitrzgl?
Atrgg = trggAlogtrzg + ﬂ > —C/s,
trgg
where we always assume s is sufficiently large. Define 5 = 1/2+2a < 1 and
Q = 5%(trgg — 2) — s°p. Compute

AQ > —CsTY2 L Btryg —2) > —Cs* T2 4 $P(trzg — 2) — C'sP7L,
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where for the last inequality we used
det g

(4.7) trgg = trgg + <detg - 1> trgg = trgg + O(1/s),

which follows from Lemma 4.3.
Hence at the point where () achieves a maximum,

s%(trgg — 2) < Cs?0+Y278 4 027t < 2C.

But from Lemma 4.2, s°|¢| is bounded, and hence @ is bounded, giving (a).
Part (b) follows from (a) and (4.7). Part (c) is an elementary consequence
of parts (a) and (b) (see [30, Lemma 7.4]). O

Now part (i) of Theorem 1.2 follows from part (c) of this lemma and the
definition of @. Part (ii) is a consequence of (i) (see [30, Lemma 9.1]). The
next result completes the proof of Theorem 1.2.

Lemma 4.8. For Ric(w) the Chern-Ricci curvature of w = w(s), we have
—Cw < Ric(w) < Cw
for a uniform constant C'.

Proof. From the continuity equation (4.2) we have

Ric(w) = lwo — Mw

S S

Hence Ric(w) > _(18;8)% giving immediately the lower bound of Ric(w).

For the upper bound we have for s sufficiently large,
1
Ric(w) < —wp < Cw,
S
since wy < Cs@ and @ and w are equivalent. O
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