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Abstract—Localization of wireless transmitters based on finger-
printing finds growing use in indoor as well as outdoor scenarios.
Fingerprinting localization first builds large databases contain-
ing channel state information (CSI) associated with measured
location information. One then searches for the most similar
CSI in this database to approximate the position of wireless
transmitters. In this paper, we investigate the efficacy of locality-
sensitive hashing (LSH) to reduce the complexity of the nearest
neighbor-search (NNS) underlying most fingerprinting localiza-
tion systems. We propose low-complexity and memory efficient
LSH functions based on the sum-to-one (STOne) transform and
use approximate hash matches, which enables low-complexity
fingerprinting localization with the same accuracy as methods
relying on exact NNS. We evaluate the accuracy and complexity
(in terms of the number of searches and storage requirements)
of our methods for line-of-sight (LoS) and non-LoS channels.

I. INTRODUCTION

Localization of wireless transmitters in indoor and outdoor

scenarios has received growing interest over the past decades.

Conventional methods for outdoor localization are mainly based

on triangulation or trilateration methods, which map time-of-

flight (ToF), angle-of-arrival, or received signal strength (RSS)

features to a specific location using geometric models [1]–[4].

All of these methods require line-of-sight (LoS) connectivity

to multiple basestations, access points, or satellites. A popular

instance of such methods are global navigation-satellite systems

(GNSS) that rely on ToF measurements and geometric models.

In situations that lack LoS connectivity (e.g., indoor scenarios)

or systems in which GNSS is unavailable (e.g., ultra-low-power

sensors), alternative positioning methods are required.

A. Localization using CSI-Fingerprinting

Location fingerprinting is a prominent method to enable

wireless positioning in challenging propagation environments,

such as non-LoS scenarios or channels with complex multi-

path propagation; see, e.g., [2], [5]–[8] and the references

therein. The principle of location fingerprinting is as follows.

In a first phase, one tabulates a large number of measured

channel-state information (CSI), which includes RSS [6], [7]

or other measured channel features in the time or frequency
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domain [9]–[11] or at multiple receive antennas [12], with

associated location information in a given area—the resulting

CSI-fingerprint/location tuple is stored in a database. In a

second phase, a new CSI-fingerprint is extracted from a wireless

transmitter and the most similar CSI fingerprints in the database

are retrieved. The stored locations associated with the nearest

fingerprints are then used to generate an estimate of the

transmitter’s location. While a nearest neighbor search (NNS)

in the CSI-fingerprint database can provide a simple (often

accurate) estimate of the transmitter’s location1, the complexity

of NNS in large fingerprinting databases can quickly become

a computational complexity bottleneck.

More recently, localization approaches based on deep neural

networks have been proposed in [15]–[17]. Such methods

replace the NNS step and directly map measured CSI-

fingerprints to location, which requires a large number of CSI

measurements at fine resolution in space (often of the order

of a few wavelengths) in order to train these neural networks.

Furthermore, the large number of network parameters can easily

be of the same order as the CSI-fingerprint/location database.

B. Contributions

In this paper, we reduce the complexity of the NNS step

in traditional fingerprinting localization by using locality-

sensitive hashing (LSH) [18]–[21]. We design a computationally

efficient LSH function that builds upon the sum-to-one (STOne)

transform [22] and use approximate hash matches that reduce

the complexity of the NNS and the size of the hash tables. We

evaluate the accuracy and complexity (in terms of the number

of searches and storage requirements) of our method for LoS

and non-LoS channels in a massive multiuser (MU) multiple-

input multiple-output (MIMO) wireless system. Finally, we

compare our approach with neural-network-based localization

methods in [15]–[17].

II. FINGERPRINTING LOCALIZATION VIA LSH

We now introduce the principles of fingerprinting localization

and summarize the basics of LSH. We then detail our approach

for low-complexity LSH with approximate hash lookups.

1More sophisticated methods, such as neural networks [13] or Bayesian
methods [14] can be used to improve the nearest neighbor search estimate.



A. Basics of Fingerprinting Localization

Fingerprinting localization proceeds in two phases. In the first

phase, CSI-fingerprints {fn}
N
n=1 = F and associated positions

{xn}
N
n=1 = X are measured in a given area and stored in

a database. Here, the vector fn ∈ R
D corresponds to a D-

dimensional CSI-fingerprint at position xn ∈ R
d, where D

is typically high-dimensional and d is either two or three

dimensions. Depending on the application, CSI-fingerprints

can represent RSSs acquired at multiple receivers, power-delay

profiles, angle-of-arrival, and many others; see [2] for a survey.

In the second phase, one wants to estimate the location xn′ of

a new transmitting device with index n′. First, a CSI-fingerprint

fn′ is extracted. Second, the indices associated with the K
most similar fingerprints in the database {fn}

N
n=1 are identified

NK = {n : ‖fn − fn′‖ < r, fn ∈ F , n = 1, . . . , N},

where r > 0 ensures that |NK | = K. One then approximates

the location of transmitter n′ from the set of similar locations

XK = {xn}n∈NK
. If K = 1, then one can simply pick the

location associated with the nearest channel feature; more

sophisticated approaches are discussed in [13], [14].

B. Locality-Sensitive Hashing (LSH)

Finding the K nearest neighbors in a large dataset containing

high-dimensional vectors suffers from the curse of dimension-

ality, which implies that carrying out an exhaustive search

results in high complexity [19]. Locality-sensitive hashing

(LSH) is a powerful method to perform an approximate nearest

neighbor search in such large datasets [18]–[21]. In general, a

hash function projects a value from a set with potentially

infinite elements to a value from a set with fewer or a

finite number of elements. The principle behind LSH is to

construct locality-sensitive hash functions for which similar

datapoints have matching hashes and dissimilar datapoints have

mismatched hashes. More concretely, we are interested in LSH

functions h : RD → S for which the collision probability

Pr[h(p) = h(q)] = P1 of any two datapoints p,q ∈ R
D is

large if ‖p − q‖ ≤ R and Pr[h(p) = h(q)] = P2 is small if

‖p− q‖ ≥ cR with R being an application-dependent radius

and c > 1, i.e., we are interested in the case P1 > P2. Here,

the finite-cardinality set S contains so-called buckets (unique

hash values).

Approximate NNS via LSH is carried out in two phases. In

the first phase, one computes the hash values for all points in the

dataset, i.e., {h(fn)}
N
n=1. In the second phase, for a given query

point fn′ , one computes h(fn′) and compares the resulting hash

value to those in the dataset. One can then compare the true,

high-dimensional CSI feature distance ‖fm − fn′‖ associated

to only those indices m ∈ {n : h(fn) = h(fn′), n = 1, . . . , N}
for which there was a collision. By using a set of T distinct and

carefully crafted LSH functions (instead of just one function),

we can guarantee to find at least one nearest neighbor while

often significantly reducing the complexity of approximate

NNS, even for very large datasets.

C. Fast LSH via the a Randomized STOne Transform

The literature describes a number of ways to construct LSH

functions with the desired properties [19]. In what follows, we

are interested in LSH functions that can be computed at low

complexity and with low memory footprint with the goal of

reducing the complexity of LSH-based location fingerprinting.

Our approach builds upon prominent LSH functions for

normalized datapoints [23] and uses methods from [24] and

[22] to lower the complexity of these hash functions. In

[23], the authors introduce a family of hash functions called

cross polytope LSH for applications in which data points are

differentiated by angular distance. In cross polytope LSH, we

hash a point x ∈ R
D that lies on the unit sphere by computing

y = Ax/||Ax||, where A ∈ R
D×D is a random matrix with

i.i.d Gaussian entries. The closest standard basis vector of RD

to y is then used as the hash of x. To make cross polytope hash

functions more practical, [23] suggests using pseudo random

rotations. Instead of multiplying an input vector x by a random

Gaussian matrix, we can fake multiply it with HD, where H

is Hadamard and D is diagonal with ±1 entries [24].

Concretely, we select a diagonal matrix D ∈ R
D×D in

which the diagonal entries are pseudo-random ±1 values. We

also select a pseudo-random index sets Ω ⊂ {1, 2, . . . , D},

where |Ω| = L is the length of the hash values. For H, we use

the sum-to-one (STOne) transform matrix H ∈ R
D×D, which

is a Hadamard matrix with multi-scale properties [22]. With

these three ingredients we design the following LSH function:

h(f) = [sign(HDf)]Ω. Here, the operator [·]Ω extracts the

vector whose entries are associated to the indices in Ω; sign(·)
operates element-wise on vectors. For this LSH function, each

hash value (bucket) is in the set S = {−1,+1}L. Since f̃ = Df

can be computed in linear time and the STOne transform Hf̃

in D log(D) time, computing hash values h(f) is efficient and

requires only little storage (only for diagonal entries of D and

the subset Ω). To design multiple hash tables, we generate T
pseudo-random subsets Ωt ⊂ {1, . . . , D}, t = 1, . . . , T . We

then compute T hash functions as ht(f) = [sign(HDf)]Ωt
,

t = 1, . . . , T , which requires the computation of sign(HDf)
only once.

The STOne transform matrix can be constructed using a 4

by 4 stencil matrix as shown:

S4 =
1

2









−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1









We can then form a larger transform matrix by computing the

Kronecker product of two stencil matrices, S16 = S4 ⊗ S4,

which still maintains its sum-to-one property. This STOne trans-

form matrix can then be used on points of larger dimension.

D. LSH with Approximate Matches

Our final ingredient addresses the storage requirements of

LSH-based location fingerprinting. Concretely, we declare a

match whenever the Hamming distance between h(p) and h(q)
is within a given threshold δ ≥ 0 (instead of declaring a match



only if the two hash values are equal). Note that for δ = 0,

we recover classical LSH. The key advantage of approximate

matches (i.e., δ > 0) are that fewer hash tables are sufficient

to achieve the same performance (in terms of finding the K
nearest neighbors) as conventional LSH. Furthermore, recent

advances on in-memory processing enables one to identify

approximate hash matches in a hardware efficient manner [25].

III. RESULTS

We now show results of the proposed low-complexity LSH-

based fingerprinting localization method. We provide a detailed

accuracy/complexity trade-off analysis and a comparison to

recent neural-network localization approaches [15]–[17]. Our

main goals are as follows: (i) reduce the complexity of

searching similar CSI fingerprints in large databases and (ii)

reduce the complexity at minimal storage overhead.

A. Simulated Scenario

To evaluate the efficacy of our approach, we consider a

massive MU-MIMO-OFDM localization scenario in LoS and

non-LoS scenarios with a single basestation containing 32
antennas operating at 2.68GHz with a bandwidth of 20MHz

and localizing 2000 transmitters distributed uniformly at

random in an area of 40,000 m2; the noisy channel vectors are

generated using channel models from [26]. The CSI features

are D = 256 dimensional (32 antennas and 8 maximally-

spaced subcarriers) and correspond to the absolute value of

beamspace/delay domain channel vectors as in [16]. We use

the K = 2 nearest neighbors and average their location;

we also use δ = 1. Both of these algorithm choices yield

consistently good results. Below, we provide simulation results

that confirm this claim. To assess the complexity and storage

requirements, we use the following metrics: (i) the fraction of

high-dimensional vectors that have been compared relative to

an exhaustive search; (ii) the memory area indicating the size

of the precomputed LSH tables; and (iii) the total complexity,

which is the fraction of comparisons times the memory area.

B. Results

Figure 1 shows results for a LoS and a non-LoS scenario.

As a reference, we include the performance of an exhaustive

search (denoted by “NN in feat. space”) and that of finding

the true nearest neighbors in real space (denoted by “NN in

real space”). Each curve is parametrized by the number of

hash functions T . We see in Fig. 1(a) that increasing the hash

length L can reduce the number of comparisons by 10×, while

achieving the same average distance error as an exhaustive

search (indicated by the dashed “NN in feat. space” lines).

As shown in Fig. 1(b), we see that increasing L increases the

storage requirements for the hash values. This tradeoff between

reduced complexity but increased memory area is a result of

the increase in the number of hash tables needed but sparser

hash buckets. The total complexity is defined as fraction of

comparisons times memory area and is shown in Fig. 1(c),

which reveals that the best trade-off in terms of fraction of

comparisons and memory area is achieved by relatively small

hash values, i.e., with L = 12 bits. Figures 1(d,e,f) show results

for a non-LoS scenario. The trends are analogous to that of

the LoS case, which confirms that the proposed method is able

to reduce the NNS complexity of LSH-based fingerprinting

localization under different propagation conditions.

Figure 2 shows results for the same LoS scenario in which

we use different thresholds, δ, for finding approximate matches.

We see that increasing δ from 0 to 1 achieves lower average

distance error at the same total costs as δ = 0. Increasing δ to

2 only provides a marginal improvement in average distance

error, confirming that the δ = 1 threshold is the optimal choice.

C. Comparison to Neural Network

We compare the performance of our LSH-based approach

to that of a neural network in terms of search complexity and

memory area. We use fully connected neural networks (FCNN)

with 6, 5, 4, 3, 2, and 1 layer to compare performance. The

six layer FCNN has 512, 256, 128, 64, 32, and 2 activations

per layer, and we then remove the layer with the most nodes

to form the following smaller networks. Each layer except the

final layer uses rectified linear unit (ReLU) activations with

the last layer using a linear activation.

To evaluate the search complexity of each approach, we

compute the total number of multiplication and addition

operations needed to evaluate a single test point. In our LSH-

based approach we compute the search complexity using the

average number of comparisons needed for a given test point.

The memory area for both the LSH-based approach and FCNN

is computed in terms of how many numbers need to be stored

for each approach.

Figures 3(a,b,c,d) show results for a LoS and a non-LoS

scenario. As a reference, we again show the performance of an

exhaustive search and that of finding true nearest neighbors in

real space. For the LoS scenario, Fig. 3(a,b) show that the LSH-

based approach can achieve a lower average distance error with

lower complexity than the neural network based approach. In

terms of memory area, we observe that the FCNN consistently

performs better since it will only need to store weight and bias

values, whereas the LSH-based approach requires the entire

dataset to be stored in memory so that comparisons can be made

to points in real space. For the non-LoS scenario, Fig. 3(c,d)

show that the LSH-based approach no longer outperforms

the neural network in terms of search complexity. The neural

network can produce slightly better average distance error with

about the same complexity as the LSH-based approach. We see

similar trends in memory area as we did in the LoS scenario.

IV. CONCLUSIONS AND OUTLOOK

We have shown that the complexity of fingerprinting-based

localization can be reduced significantly by using locality-

sensitive hashing (LSH). We have proposed computationally

efficient LSH functions that build upon the sum-to-one (STOne)

transform which requires a complexity of only D log(D),
where D is the dimension of the channel-state information

(CSI) fingerprint vector. Furthermore, we have shown that

approximate hash matches enable one to reduce the storage
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Fig. 1. Accuracy of LSH-based location fingerprinting for LoS and non-LoS massive MU-MIMO scenarios. "NN in feature space" are the nearest neighbors
found through an exhaustive search and "NN in real space" are the true nearest neighbors in real space.
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Fig. 2. Total complexity of LSH-based location fingerprinting with approximate
matches for a LoS scenario.

requirements of conventional LSH. We have shown that the

proposed method achieves the same accuracy as an exhaustive

search over the CSI fingerprinting database for line-of-sight

(LoS) and non-LoS scenarios—this is a first step towards

demonstrating the robustness of our approach. Finally, we

have demonstrated that our proposed LSH-based method

can outperform neural network-based approaches for a LoS

scenario, but does not show an advantage over neural networks

for a non-LoS scenario. This implies that the approach with

better performance will depend on the channel scenario.

There are many opportunities for future work. The develop-

ment of CSI features that reduce a location in real space to

a single hash bucket in an LSH table can potentially reduce

the average distance error. In addition, further improvement of

LSH hash functions can produce better performance.
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