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Abstract—Localization of wireless transmitters based on finger-
printing finds growing use in indoor as well as outdoor scenarios.
Fingerprinting localization first builds large databases contain-
ing channel state information (CSI) associated with measured
location information. One then searches for the most similar
CSI in this database to approximate the position of wireless
transmitters. In this paper, we investigate the efficacy of locality-
sensitive hashing (LSH) to reduce the complexity of the nearest
neighbor-search (NNS) underlying most fingerprinting localiza-
tion systems. We propose low-complexity and memory efficient
LSH functions based on the sum-to-one (STOne) transform and
use approximate hash matches, which enables low-complexity
fingerprinting localization with the same accuracy as methods
relying on exact NNS. We evaluate the accuracy and complexity
(in terms of the number of searches and storage requirements)
of our methods for line-of-sight (LoS) and non-LoS channels.

I. INTRODUCTION

Localization of wireless transmitters in indoor and outdoor
scenarios has received growing interest over the past decades.
Conventional methods for outdoor localization are mainly based
on triangulation or trilateration methods, which map time-of-
flight (ToF), angle-of-arrival, or received signal strength (RSS)
features to a specific location using geometric models [1]-[4].
All of these methods require line-of-sight (LoS) connectivity
to multiple basestations, access points, or satellites. A popular
instance of such methods are global navigation-satellite systems
(GNSS) that rely on ToF measurements and geometric models.
In situations that lack LoS connectivity (e.g., indoor scenarios)
or systems in which GNSS is unavailable (e.g., ultra-low-power
sensors), alternative positioning methods are required.

A. Localization using CSI-Fingerprinting

Location fingerprinting is a prominent method to enable
wireless positioning in challenging propagation environments,
such as non-LoS scenarios or channels with complex multi-
path propagation; see, e.g., [2], [5]-[8] and the references
therein. The principle of location fingerprinting is as follows.
In a first phase, one tabulates a large number of measured
channel-state information (CSI), which includes RSS [6], [7]
or other measured channel features in the time or frequency
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domain [9]-[11] or at multiple receive antennas [12], with
associated location information in a given area—the resulting
CSI-fingerprint/location tuple is stored in a database. In a
second phase, a new CSI-fingerprint is extracted from a wireless
transmitter and the most similar CSI fingerprints in the database
are retrieved. The stored locations associated with the nearest
fingerprints are then used to generate an estimate of the
transmitter’s location. While a nearest neighbor search (NNS)
in the CSI-fingerprint database can provide a simple (often
accurate) estimate of the transmitter’s location', the complexity
of NNS in large fingerprinting databases can quickly become
a computational complexity bottleneck.

More recently, localization approaches based on deep neural
networks have been proposed in [15]-[17]. Such methods
replace the NNS step and directly map measured CSI-
fingerprints to location, which requires a large number of CSI
measurements at fine resolution in space (often of the order
of a few wavelengths) in order to train these neural networks.
Furthermore, the large number of network parameters can easily
be of the same order as the CSI-fingerprint/location database.

B. Contributions

In this paper, we reduce the complexity of the NNS step
in traditional fingerprinting localization by using locality-
sensitive hashing (LSH) [18]-[21]. We design a computationally
efficient LSH function that builds upon the sum-to-one (STOne)
transform [22] and use approximate hash matches that reduce
the complexity of the NNS and the size of the hash tables. We
evaluate the accuracy and complexity (in terms of the number
of searches and storage requirements) of our method for LoS
and non-LoS channels in a massive multiuser (MU) multiple-
input multiple-output (MIMO) wireless system. Finally, we
compare our approach with neural-network-based localization
methods in [15]-[17].

II. FINGERPRINTING LOCALIZATION VIA LSH

We now introduce the principles of fingerprinting localization
and summarize the basics of LSH. We then detail our approach
for low-complexity LSH with approximate hash lookups.

'More sophisticated methods, such as neural networks [13] or Bayesian
methods [14] can be used to improve the nearest neighbor search estimate.



A. Basics of Fingerprinting Localization

Fingerprinting localization proceeds in two phases. In the first
phase, CSI-fingerprints {f,,}Y_; = F and associated positions
{x,}N_, = X are measured in a given area and stored in
a database. Here, the vector f,, € RP corresponds to a D-
dimensional CSI-fingerprint at position x,, € R?, where D
is typically high-dimensional and d is either two or three
dimensions. Depending on the application, CSI-fingerprints
can represent RSSs acquired at multiple receivers, power-delay
profiles, angle-of-arrival, and many others; see [2] for a survey.

In the second phase, one wants to estimate the location x,,» of
a new transmitting device with index n’. First, a CSI-fingerprint
f, is extracted. Second, the indices associated with the K
most similar fingerprints in the database {f,, })\_, are identified

Nig={n:|t, -t <nrf, e F,n=1,...,N},
where r > 0 ensures that [Nx| = K. One then approximates
the location of transmitter n’ from the set of similar locations
Xk = {Xn}nenx- If K =1, then one can simply pick the
location associated with the nearest channel feature; more
sophisticated approaches are discussed in [13], [14].

B. Locality-Sensitive Hashing (LSH)

Finding the K nearest neighbors in a large dataset containing
high-dimensional vectors suffers from the curse of dimension-
ality, which implies that carrying out an exhaustive search
results in high complexity [19]. Locality-sensitive hashing
(LSH) is a powerful method to perform an approximate nearest
neighbor search in such large datasets [18]-[21]. In general, a
hash function projects a value from a set with potentially
infinite elements to a value from a set with fewer or a
finite number of elements. The principle behind LSH is to
construct locality-sensitive hash functions for which similar
datapoints have matching hashes and dissimilar datapoints have
mismatched hashes. More concretely, we are interested in LSH
functions h : RP? — S for which the collision probability
Pr[h(p) = h(q)] = Py of any two datapoints p,q € R” is
large if ||p — q|| < R and Pr[h(p) = h(q)] = P> is small if
lp — al| > ¢R with R being an application-dependent radius
and ¢ > 1, i.e., we are interested in the case P; > P,. Here,
the finite-cardinality set S contains so-called buckets (unique
hash values).

Approximate NNS via LSH is carried out in two phases. In
the first phase, one computes the hash values for all points in the
dataset, i.e., {h(f,)}2_,. In the second phase, for a given query
point f,,/, one computes h(f,,/) and compares the resulting hash
value to those in the dataset. One can then compare the true,
high-dimensional CSI feature distance ||f,,, — f,,/|| associated
to only those indices m € {n : h(f,) = h(f,),n=1,...,N}
for which there was a collision. By using a set of " distinct and
carefully crafted LSH functions (instead of just one function),
we can guarantee to find at least one nearest neighbor while
often significantly reducing the complexity of approximate
NNS, even for very large datasets.

C. Fast LSH via the a Randomized STOne Transform

The literature describes a number of ways to construct LSH
functions with the desired properties [19]. In what follows, we
are interested in LSH functions that can be computed at low
complexity and with low memory footprint with the goal of
reducing the complexity of LSH-based location fingerprinting.

Our approach builds upon prominent LSH functions for
normalized datapoints [23] and uses methods from [24] and
[22] to lower the complexity of these hash functions. In
[23], the authors introduce a family of hash functions called
cross polytope LSH for applications in which data points are
differentiated by angular distance. In cross polytope LSH, we
hash a point x € R¥ that lies on the unit sphere by computing
y = Ax/||Ax||, where A € RP*P is a random matrix with
i.i.d Gaussian entries. The closest standard basis vector of RP
to y is then used as the hash of x. To make cross polytope hash
functions more practical, [23] suggests using pseudo random
rotations. Instead of multiplying an input vector x by a random
Gaussian matrix, we can fake multiply it with HD, where H
is Hadamard and D is diagonal with +1 entries [24].

Concretely, we select a diagonal matrix D € RP*P in
which the diagonal entries are pseudo-random 41 values. We
also select a pseudo-random index sets 2 C {1,2,...,D},
where |2 = L is the length of the hash values. For H, we use
the sum-to-one (STOne) transform matrix H € RP*P which
is a Hadamard matrix with multi-scale properties [22]. With
these three ingredients we design the following LSH function:
h(f) = [sign(HDf)]q. Here, the operator [] extracts the
vector whose entries are associated to the indices in ; sign(+)
operates element-wise on vectors. For this LSH function, each
hash value (bucket) is in the set S = {1, +1}~. Since f = Df
can be computed in linear time and the STOne transform Hf
in Dlog(D) time, computing hash values h(f) is efficient and
requires only little storage (only for diagonal entries of D and
the subset 2). To design multiple hash tables, we generate T’
pseudo-random subsets ; C {1,...,D}, t =1,...,T. We
then compute T hash functions as h:(f) = [sign(HDf)]q,,
t=1,...,T, which requires the computation of sign(HDf)
only once.

The STOne transform matrix can be constructed using a 4
by 4 stencil matrix as shown:

-1 1 1 1
1 -1 1 1
1 1 -1 1

1 1 1 -1

1
54:5

We can then form a larger transform matrix by computing the
Kronecker product of two stencil matrices, S1g = S4 ® Sy,
which still maintains its sum-to-one property. This STOne trans-
form matrix can then be used on points of larger dimension.

D. LSH with Approximate Matches

Our final ingredient addresses the storage requirements of
LSH-based location fingerprinting. Concretely, we declare a
match whenever the Hamming distance between h(p) and h(q)
is within a given threshold § > 0 (instead of declaring a match



only if the two hash values are equal). Note that for 6 = 0,
we recover classical LSH. The key advantage of approximate
matches (i.e., > 0) are that fewer hash tables are sufficient
to achieve the same performance (in terms of finding the K
nearest neighbors) as conventional LSH. Furthermore, recent
advances on in-memory processing enables one to identify
approximate hash matches in a hardware efficient manner [25].

III. RESULTS

We now show results of the proposed low-complexity LSH-
based fingerprinting localization method. We provide a detailed
accuracy/complexity trade-off analysis and a comparison to
recent neural-network localization approaches [15]-[17]. Our
main goals are as follows: (i) reduce the complexity of
searching similar CSI fingerprints in large databases and (ii)
reduce the complexity at minimal storage overhead.

A. Simulated Scenario

To evaluate the efficacy of our approach, we consider a
massive MU-MIMO-OFDM localization scenario in LoS and
non-LoS scenarios with a single basestation containing 32
antennas operating at 2.68 GHz with a bandwidth of 20 MHz
and localizing 2000 transmitters distributed uniformly at
random in an area of 40,000 m2; the noisy channel vectors are
generated using channel models from [26]. The CSI features
are D = 256 dimensional (32 antennas and 8 maximally-
spaced subcarriers) and correspond to the absolute value of
beamspace/delay domain channel vectors as in [16]. We use
the K = 2 nearest neighbors and average their location;
we also use 4 = 1. Both of these algorithm choices yield
consistently good results. Below, we provide simulation results
that confirm this claim. To assess the complexity and storage
requirements, we use the following metrics: (i) the fraction of
high-dimensional vectors that have been compared relative to
an exhaustive search; (ii) the memory area indicating the size
of the precomputed LSH tables; and (iii) the total complexity,
which is the fraction of comparisons times the memory area.

B. Results

Figure 1 shows results for a LoS and a non-LoS scenario.
As a reference, we include the performance of an exhaustive
search (denoted by “NN in feat. space”) and that of finding
the true nearest neighbors in real space (denoted by “NN in
real space”). Each curve is parametrized by the number of
hash functions 7. We see in Fig. 1(a) that increasing the hash
length L can reduce the number of comparisons by 10x, while
achieving the same average distance error as an exhaustive
search (indicated by the dashed “NN in feat. space” lines).
As shown in Fig. 1(b), we see that increasing L increases the
storage requirements for the hash values. This tradeoff between
reduced complexity but increased memory area is a result of
the increase in the number of hash tables needed but sparser
hash buckets. The total complexity is defined as fraction of
comparisons times memory area and is shown in Fig. 1(c),
which reveals that the best trade-off in terms of fraction of
comparisons and memory area is achieved by relatively small

hash values, i.e., with L = 12 bits. Figures 1(d,e,f) show results
for a non-LoS scenario. The trends are analogous to that of
the LoS case, which confirms that the proposed method is able
to reduce the NNS complexity of LSH-based fingerprinting
localization under different propagation conditions.

Figure 2 shows results for the same LoS scenario in which
we use different thresholds, §, for finding approximate matches.
We see that increasing ¢ from O to 1 achieves lower average
distance error at the same total costs as 6 = 0. Increasing ¢ to
2 only provides a marginal improvement in average distance
error, confirming that the 6 = 1 threshold is the optimal choice.

C. Comparison to Neural Network

We compare the performance of our LSH-based approach
to that of a neural network in terms of search complexity and
memory area. We use fully connected neural networks (FCNN)
with 6, 5, 4, 3, 2, and 1 layer to compare performance. The
six layer FCNN has 512, 256, 128, 64, 32, and 2 activations
per layer, and we then remove the layer with the most nodes
to form the following smaller networks. Each layer except the
final layer uses rectified linear unit (ReLU) activations with
the last layer using a linear activation.

To evaluate the search complexity of each approach, we
compute the total number of multiplication and addition
operations needed to evaluate a single test point. In our LSH-
based approach we compute the search complexity using the
average number of comparisons needed for a given test point.
The memory area for both the LSH-based approach and FCNN
is computed in terms of how many numbers need to be stored
for each approach.

Figures 3(a,b,c,d) show results for a LoS and a non-LoS
scenario. As a reference, we again show the performance of an
exhaustive search and that of finding true nearest neighbors in
real space. For the LoS scenario, Fig. 3(a,b) show that the LSH-
based approach can achieve a lower average distance error with
lower complexity than the neural network based approach. In
terms of memory area, we observe that the FCNN consistently
performs better since it will only need to store weight and bias
values, whereas the LSH-based approach requires the entire
dataset to be stored in memory so that comparisons can be made
to points in real space. For the non-LoS scenario, Fig. 3(c,d)
show that the LSH-based approach no longer outperforms
the neural network in terms of search complexity. The neural
network can produce slightly better average distance error with
about the same complexity as the LSH-based approach. We see
similar trends in memory area as we did in the LoS scenario.

IV. CONCLUSIONS AND OUTLOOK

We have shown that the complexity of fingerprinting-based
localization can be reduced significantly by using locality-
sensitive hashing (LSH). We have proposed computationally
efficient LSH functions that build upon the sum-to-one (STOne)
transform which requires a complexity of only D log(D),
where D is the dimension of the channel-state information
(CSD fingerprint vector. Furthermore, we have shown that
approximate hash matches enable one to reduce the storage
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Fig. 1. Accuracy of LSH-based location fingerprinting for LoS and non-LoS massive MU-MIMO scenarios.
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Fig. 2. Total complexity of LSH-based location fingerprinting with approximate
matches for a LoS scenario.

requirements of conventional LSH. We have shown that the
proposed method achieves the same accuracy as an exhaustive
search over the CSI fingerprinting database for line-of-sight
(LoS) and non-LoS scenarios—this is a first step towards
demonstrating the robustness of our approach. Finally, we
have demonstrated that our proposed LSH-based method
can outperform neural network-based approaches for a LoS
scenario, but does not show an advantage over neural networks
for a non-LoS scenario. This implies that the approach with
better performance will depend on the channel scenario.

There are many opportunities for future work. The develop-
ment of CSI features that reduce a location in real space to
a single hash bucket in an LSH table can potentially reduce
the average distance error. In addition, further improvement of
LSH hash functions can produce better performance.
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