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Abstract. We construct solutions to the heat equation on convex rings showing that
quasiconcavity may not be preserved along the flow, even for smooth and subharmonic
initial data.

1. Introduction

Let Ω0 and Ω1 be convex open sets with smooth boundary in Rn with Ω1 ⊂ Ω0.
Assume that Ω1 contains the origin. Denote by Ω = Ω0 \ Ω1 the open convex ring. We
say that a function u(x) on Ω is quasiconcave if the sets

{x ∈ Ω | u(x) ≥ c} ∪ Ω1

are convex subsets of Rn for every c ∈ R. Fix T with 0 < T ≤ ∞. A function u = u(x, t)
on Ω× [0, T ) is called space-time quasiconcave if the sets

{(x, t) ∈ Ω× [0, T ) | u(x, t) ≥ c} ∪ (Ω1 × [0, T ))

are convex subsets of Rn+1 for every c ∈ R. Note that space-time quasiconcavity of
u(x, t) implies that x 7→ u(x, t) is quasiconcave on Ω for each t.

It is a classical result that if u is a harmonic function on Ω satisfying the Dirichlet
boundary conditions

(1.1) u|∂Ω0 = 0, u|∂Ω1 = 1

then u is quasiconcave [1, 17, 29]. This result has been extended to solutions u of more
general elliptic PDEs, where there is a general principle that convexity properties of
Ω0 and Ω1 imply convexity of the superlevel sets of u. These results are proved via
“macroscopic” approaches involving functions of two points which could be far apart,
or “microscopic” approaches using functions of the principal curvatures of the level sets
together with constant rank theorems. See for example [2, 3, 4, 5, 7, 8, 9, 10, 11, 24, 25,
26, 30, 31, 32, 33] and the references therein. On the other hand, convexity properties
fail for solutions to some elliptic PDEs [19, 34].

There has been considerable interest in parabolic versions of these classical results.
Parabolic constant rank theorems in rather general contexts have been established by
Hu-Ma [20], Chen-Hu [12] and Chen-Shi [13]. An older result of Borell [6] assumes
that the initial data is identically zero and shows that the solution u(x, t) to the heat
equation with boundary conditions (1.1) is space-time quasiconcave. This result has
been extended to more general parabolic equations by Ishige-Salani [22, 23]. However,
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the assumption of identically vanishing initial data is rather restrictive. This begs
the question: what assumption on the initial data is necessary to ensure space-time
quasiconcavity of the solution to the heat equation? Ishige-Salani [21] gave examples
to show that quasiconcavity of the initial data is not sufficient. A natural condition
considered in [14, 15] is that u0 in addition be subharmonic (with sufficient regularity),
namely ∆u0 ≥ 0. In this paper we provide a counterexample to show that this is still
not sufficient to ensure quasiconcavity of the solution to the heat equation.

More precisely, we consider a classical solution u of the following problem:

(1.2)


∂u/∂t = ∆u, on Ω× (0, T )
u(x, 0) = u0(x), x ∈ Ω
u(x, t) = 0, (x, t) ∈ ∂Ω0 × [0, T )
u(x, t) = 1, (x, t) ∈ ∂Ω1 × [0, T ),

for 0 < T ≤ ∞. Here u0 is a smooth function on Ω which satisfies the conditions

u0 = 1 on ∂Ω1, u0 = 0 on ∂Ω0, x · ∇u0(x) ≤ 0 on Ω

∆u0 ≥ 0 on Ω but not identically zero.
(1.3)

We call such a function u0 admissible.
We consider the following question: if an admissible u0 is quasiconcave on Ω, does it

follow that the solution u(x, t) to (1.2) is space-time quasiconcave on Ω× [0, T )? If not,
is x 7→ u(x, t) quasiconcave on Ω for each t > 0?

We construct a counterexample to show that the answer to both of these questions
is negative.

Theorem 1.1. For any n ≥ 2, let Ω1 and Ω0 be balls in Rn centered at the origin, of
radii 1 and 2 respectively, so that Ω is the annulus 1 < r < 2. There is an admissible
quasiconcave function u0 with the following properties:

(i) The solution u(x, t) to (1.2) is smooth on Ω × (0,∞) and continuous on Ω ×
[0,∞).

(ii) There exists t0 > 0 such that the function x 7→ u(x, t0) fails to be quasiconcave
on Ω.

This example implies that the statement of [15, Theorem 3] (see the discussion in
[22, Section 7]) requires additional hypotheses.

Our construction in Theorem 1.1 is based on the simple observation that the union of
interiors of a sphere and a non-spherical ellipsoid is non-convex unless one is contained
in the other. We use this observation as follows. We first find a radially symmetric
admissible function V which is close to 1 near the boundary of Ω1 and drops off rapidly
to zero. For every positive time, the level sets of the heat flow solution starting from
V will then give a foliation of Ω by spheres. We then construct an admissible function
W whose level sets are spherical near the boundary of Ω1 but non-spherical ellipsoids
as one goes outwards. We choose u0 = (1− ε)V + εW , for ε > 0 small, as initial data.
The relatively large radially symmetric heat distribution of (1 − ε)V quickly emanates
out and interacts with the ellipsoidal level sets of εW to give a non-convex superlevel
set after some positive time. The proof of Theorem 1.1, given in Section 2, makes this
heuristic argument precise.
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Note that by necessity our counterexample is not radially symmetric, and must have
dimension n > 1. If radial symmetry is imposed for u0, which implies quasiconcavity
of x 7→ u(x, t) for each t (since the superlevel sets are balls in Rn) it is natural to
ask whether the stronger condition of space-time quasiconcavity follows. Our next
counterexample shows that the answer to this is again negative for any n ≥ 1.

Theorem 1.2. For any n ≥ 1, let Ω1 and Ω0 be balls in Rn of radii R and R + 1
respectively, for a constant R > 1. For R sufficiently large, there is an admissible
function u0 on Ω = {R ≤ r ≤ R+ 1} ⊂ Rn with the following properties:

(i) u0 is radially symmetric and hence if u(x, t) solves (1.2) then x 7→ u(x, t) is
quasiconcave on Ω for every t ≥ 0.

(ii) u(x, t) is smooth on Ω× [0,∞).
(iii) u(x, t) is not space-time quasiconcave on Ω× [0, T ) for any T > 0.

In Theorem 1.2 any space-time level set ∂Ωc := {(x, t) ∈ Ω× [0,∞) | u(x, t) = c} for
c ∈ (0, 1) will be given by a graph t = f(|x|) where f(r) is a smooth strictly increasing
function defined on some interval [r0, r1) where f(r0) = 0. In particular, f is defined
implicitly by u(r, f(r)) = c and differentiating this and using (1.2) gives

f ′′(r) =
−1

ut
(urr + 2urtf

′ + utt(f
′)2)

We show that by solving an ordinary differential equation, we may choose the function
u0 so that the right hand side above is negative at (r0, 0), implying f ′′(r0) < 0 and thus
∂Ωc is not convex. The details of this argument are given in Section 3 where we prove
Theorem 1.2.

Finally, in Section 4 we give a different counterexample to space-time quasiconcavity
using a “two-point function” as in [35] and inspired by the work of Rosay-Rudin [30].
It satisfies properties (i), (ii) of Theorem 1.2, but (iii) must be replaced by

(iii)* u(x, t) is not space-time quasiconcave on Ω0 × [0, T ) for some T > 0.

The argument using the two-point function is perhaps slightly more intuitive than that
of Theorem 1.2 and the counterexample is defined on the annulus {1 < r < 2}.

Acknowledgements. The authors thank the referee for correcting some inaccuracies
in a previous version of this paper.

2. A counterexample to quasiconcavity

Let Ω0, Ω1 and Ω be as in the introduction. We first gather some well-known facts
about solutions to (1.2).

Proposition 2.1. Let u0 be an admissible function on Ω. Then there exists a unique
continuous solution u(x, t) to (1.2) on Ω × [0,∞) which is smooth on Ω × (0,∞) and
satisfies the following conditions for (x, t) ∈ Ω× (0,∞)

(i) 0 < u(x, t) < 1.
(ii) ut(x, t) = ∆u(x, t) > 0.

(iii) x · ∇u(x, t) < 0.

Moreover, as t→∞, u(x, t) converges smoothly on Ω to the harmonic function u∞ with
boundary conditions u∞|∂Ω0 = 0 and u∞|∂Ω1 = 1.
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Proof. The existence of a unique solution u(x, t) to (1.2) with the stated regularity,
and the convergence as t → ∞ are classical, see for example [16]. From (1.3) we have
0 ≤ u0 ≤ 1 and then (i) follows from the strong maximum principle for parabolic
equations. Parts (ii) and (iii) are proved in [15, Lemma 1] and are also consequences of
the maximum principle. �

We now start the proof of Theorem 1.1. Let Ω = {1 < r < 2} be as in the statement
of the theorem and we assume for the rest of this section that n ≥ 2. Part (i) of Theorem
1.1 is a consequence of the above proposition. For part (ii), we begin by defining two
auxiliary functions Vρ and W .

Lemma 2.1. For any ρ ∈ (1, 3/2], define a radially symmetric function Vρ = Vρ(r) on

Ω by

Vρ(r) =

{
exp

(
n
r−ρ −

n
1−ρ

)
, 1 ≤ r < ρ

0, ρ ≤ r ≤ 2.

Then Vρ is an admissible function.

Proof. We drop the ρ subscript. Observe that V (r) ≥ 0 is smooth, decreasing on [1, 2],
satisfies V (1) = 1 and

(∆V )(r) = V ′′(r) +
(n− 1)V ′(r)

r

= nV (r)

(
2r(r − ρ) + nr − (n− 1)(r − ρ)2

r(r − ρ)4

)
≥ n

4r(r − ρ)4
V (r) ≥ 0

(2.1)

where the second-to-last inequality follows from the inequalities |r − ρ| ≤ 1/2 and
1 ≤ r ≤ 3/2 when r < ρ. �

We now use Vρ to define a non-radially symmetric function W .

Lemma 2.2. Fix r0, r1 with 1 < r0 < r1 ≤ 3/2. There exists an admissible function W
on Ω with the following properties.

(i) W is radially symmetric on 1 ≤ r ≤ r0.
(ii) There exists a smooth strictly decreasing function b on [r0, r1] with b(r0) = 1

and b(r1) ∈ (0, 1) such that if we define ER to be the ellipsoid with equation

(2.2) b(R)2x2
1 + x2

2 + · · ·+ x2
n = R2, for R ∈ [r0, r1],

then the level sets {W = c} for 0 < c < W (r0) are the non-spherical ellipsoids
ER for R ∈ (r0, r1).

(iii) W vanishes outside the ellipsoid Er1.

Proof. Let V = Vr1 be as in Lemma 2.1 defined with ρ = r1. Regarding V as a function
of x1, . . . , xn we compute for any i, j = 1, ..., n:

Vxi = −V (r)
nxi

r(r − r1)2

and

Vxixj = V (r)

(
n2xixj

r2(r − r1)4
+

2nxixj
r2(r − r1)3

− n(r2δij − xixj)
r3(r − r1)2

)
.
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It follows from this and (2.1) that for some constant β = β(n),

(2.3) ∆V +
∑
i,j

ci,jVxixj +
∑
i

ciVxi ≥ 0

as long as |ci,j |, |ci| ≤ β.
Fix a smooth non-decreasing function a(r) : [1, 2]→ [0, 1] with a(1) = 0 and a(2) = 1

and with {r | a′(r) > 0} = (r0, r1). Let b(r) = 1− κa(r) for some constant κ ∈ (0, 1) to
be determined. Treating b as a rotationally symmetric function of x1, . . . , xn consider
the map (y1, . . . , yn) = (x1/b, x2, . . . , xn), which we will write as y = Ψ(x). Note that Ψ
is invertible and Ψ(x)→ Id as κ→ 0 where the convergence is uniform in any Ck norm
on Ω. It follows from the inverse function theorem that we likewise have Ψ−1(y)|Ω → Id

uniformly in any Ck norm on Ω as κ→ 0.
The map Ψ(x) is the identity on {1 ≤ r ≤ r0} and takes the sphere x2

1 + · · ·+x2
n = R2

to the ellipsoid b(R)2y2
1 + y2

2 + · · · + y2
n = R2 which is non-spherical exactly when R ∈

(r0, 2]. We choose κ sufficiently small so that the ellipsoid (1−κ)2y2
1+y2

2+· · ·+y2
n = (r1)2

is contained inside the sphere of radius 2.
Define W : Ω→ R by W (y) = V (x(y)) for x(y) = Ψ−1(y). Note that W = 0 outside

the ellipsoid (1− κ)2y2
1 + y2

2 + · · ·+ y2
n = (r1)2. Thus W (y) satisfies (i), (ii) and (iii) of

the Lemma.
To see that y · (∇W )(y) ≤ 0 we compute,

y · (∇W )(y) =
∑
i,j

yiVxj (x(y))
∂xj
∂yi

= −(1 + E)
nr

(r − r1)2
(x(y))V (x(y))

where E is an “error” term which converges uniformly to zero as κ tends to zero. Hence
y · ∇W ≤ 0 for κ sufficiently small.

All that remains is to show now is that ∆W ≥ 0 in Ω. We compute

(∆W )(y) =
∑
i,j,k

Vxixj (x(y))
∂xi
∂yk

∂xj
∂yk

+
∑
i,k

Vxi(x(y))
∂2xi
∂y2

k

= (∆V )(x(y)) +
∑
i,j

ci,jVxixj (x(y)) +
∑
i

ciVxi(x(y)),

for ci,j and ci which converge uniformly to zero as κ tends to zero. From (2.3) it follows
that ∆W ≥ 0 for κ sufficiently small. �

Next we have an elementary lemma about radially symmetric subharmonic functions.

Lemma 2.3. Let f = f(r) be a smooth radially symmetric function on Ω with f(1) = 1,
f(2) = 0, fr ≤ 0 and ∆f ≥ 0. Fix r0, r1 with 1 < r0 < r1 < 2. Then

f(r1) ≤ (1− σ)f(r0),

for σ = (r1 − r0)/(2 + r1 − 2r0) > 0.

Proof. We begin by showing

(2.4) −fr ≥
1

2− r0
f, on [r0, r1].
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Indeed the condition ∆f ≥ 0 implies that rn−1(−fr(r)) is nonincreasing in r. Hence for
s ∈ [r0, r1] we have

(2− s)sn−1(−fr(s)) ≥
∫ 2

s
rn−1(−fr(r))dr ≥ sn−1

∫ 2

s
(−fr(r))dr = sn−1f(s),

where for the final equality we used f(2) = 0, and (2.4) follows.
Next compute

f(r0)− f(r1) =

∫ r1

r0

(−fr(r))dr ≥
1

2− r0

∫ r1

r0

f(r)dr ≥ (r1 − r0)

2− r0
f(r1),

where we recall for the last inequality that f is decreasing in r. The result follows. �

We can now complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Let V = V5/4 be as in Lemma 2.1. Let W be as in Lemma 2.2
with r0 = 5/4 and r1 = 3/2. We will write v(t) and w(t) for the solutions to (1.2) with
initial conditions V and W respectively. For ε ∈ (0, 1) to be determined, define

u0 = (1− ε)V + εW,

so that u(t) = (1 − ε)v(t) + εw(t) is the solution of (1.2) starting at u0. Clearly u0

is an admissible function. In addition, note that for {1 < r ≤ 5/4} the level sets of
u0 are spheres and, since V vanishes for r > 5/4, the level sets for u0 on {r > 5/4}
are the same as those of W . In particular, the level sets of u0 are convex and so u0 is
quasiconcave.

Let η1, η2 ∈ (0, 1/4) be small constants to be determined and write R− = 3/2 −
η1. Then on the non-spherical ellipsoid ER− with equation given by (2.2), W takes a
constant value, W = s > 0, say, which depends on η1. We have W = 0 on and outside
the ellipsoid E3/2. Define R+ = 3/2 + η2 and write SR+ for the sphere of radius R+.
Observe that for η2 sufficiently small we can find X ∈ SR+ and Y ′ ∈ E3/2 such that
(X + Y ′)/2 lies outside both SR+ and E3/2. Next by choosing η1 sufficiently small we
can find a point Y ∈ ER− close to Y ′ so that Z = (X +Y )/2 lies outside both SR+ and
E3/2. See Figure 1. Note that now η1 is chosen, s is a fixed positive number.

Since V (X) = W (Z) = 0, and using Proposition 2.1, there exist continuous functions
α(t), β(t) which vanish at t = 0 and are positive for t > 0 such that

v(X, t) = sα(t), w(Z, t) = β(t).

Next we use Lemma 2.3 to see that there exists a constant σ > 0 independent of t such
that

v(Z, t) ≤ s(1− σ)α(t).

Indeed, the radially symmetric function v(·, t) satisfies the conditions of Lemma 2.3 and
Z lies at a fixed distance outside the sphere SR+ which contains X.

Next note that since W (Y ) = s and wt ≥ 0, we have

w(Y, t) ≥ s

for all t ≥ 0. Choose a small time t0 > 0 such that

ε := α(t0) < 1/2, and β(t0) <
σs

2
.
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X

Z=(X+Y)/2

Y

SR+

E3/2

ER−

Figure 1. Schematic diagram showing the ellipsoids ER− and E3/2, the
sphere SR+ and the points X,Y, Z.

Compute that

u(Z, t0) ≤ (1− ε)s(1− σ)ε+
εσs

2
< (1− ε)sε.

But

u(X, t0) ≥ (1− ε)sε, u(Y, t0) ≥ εs > (1− ε)sε.
Hence X and Y lie in the superlevel set {P | u(P, t0) ≥ (1− ε)sε} but Z = (X + Y )/2
does not, showing that this superlevel set is not convex. �

3. A radially symmetric example

In this section we give the proof of Theorem 1.2. First, define a smooth function
h : [0, 1]→ R to have the following properties

(a) 1/10 ≥ h(r) > 0 for r ∈ (0, 1).
(b) h(r) = 1/10 for r ∈ [1/4, 3/4].

(c) h(k)(0) = 0 = h(k)(1) for all k = 0, 1, 2, . . ..

Next, for a constant R > 1, define vR : [0, 1] → R to be the solution of the Dirichlet
problem

(3.1) v′′R(r) + (n− 1)
v′R(r)

r +R
= h(r), 0 < r < 1, vR(0) = 1, vR(1) = 0.

We will determine the constant R later. By standard elliptic estimates [18] we have
that vR(r) and its derivatives are bounded on [0, 1] uniformly with respect to R > 1.

Remark 3.1. In fact in what follows we only need that |v′R(r)| ≤ C for a constant C
independent of R. In this case we can actually write down the solution vR explicitly
and prove this directly. For example, when n = 2, vR(r) is given by

vR(r) =

∫ r

0

1

x+R

(∫ x

0
(y +R)h(y)dy

)
dx+ c1 log(r +R) + c2
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for constants c1 and c2 given by

c1 =
−1−

∫ 1
0

1
x+R

(∫ x
0 (y +R)h(y)dy

)
dx

log((1 +R)/R)
, c2 = 1− c1 logR.

To see that |v′R(r)| ≤ C for a constant C independent of R, note that as R → ∞ the
term ∣∣∣∣ c1

r +R

∣∣∣∣ = O

(
1/R

log(1 + 1
R)

)
remains bounded.

We can now start the proof of Theorem 1.2.

Proof of Theorem 1.2. Define our radially symmetric function u0 on Ω by

u0(r) = vR(r −R), for R ≤ r ≤ R+ 1,

which satisfies the boundary conditions u0(R) = 1, u0(R+1) = 0. Moreover, from (3.1)
we have

∆u0(r) = h(r −R), for R ≤ r ≤ R+ 1.

Now notice that by the definition of h we have for r = R or r = R+ 1,

∆ku0(r) = 0, for every k ≥ 1.

Let u(r, t) be the rotationally symmetric solution to (1.2) on Ω with initial condition
u0. Then from [28, Theorem 5.2] (or [27, Theorem 10.4.1]) it follows that the function
u(r, t) extends to a smooth function on Ω× [0,∞).

Next we show that for sufficiently large R, the function u0 satisfies the hypotheses of
Proposition 2.1.

Lemma 3.1. For sufficiently large R we have

(i) u0(r) is strictly decreasing in r.
(ii) u′′0(R+ 1/2) ≥ 1/10.

(iii) ∆u0 > 0 for R < r < R+ 1.

Proof. For (i), note that for all r ∈ [R,R+1] we have |u′0(r)| ≤ C for some C independent
of R as observed above. Thus for all r ∈ [R,R+ 1] we have

|u′′0(r)| ≤ |∆u0(r)|+ (n− 1)|u′0(r)/r|
= |h(r −R)|+ (n− 1)|u′0(r)/r|
≤ 1/10 + (n− 1)C/R ≤ 1/5

as long as R is larger than 10C(n− 1). On the other hand, by the boundary conditions
on u0 we have by the Mean Value Theorem that u′0(r0) = −1 at some point r0 in
[R,R+ 1]. Hence u′0(r) ≤ −1 + 1/5 for all r ∈ [R,R+ 1], giving (i).

For (ii), we have

u′′0(R+ 1/2) = ∆u0(R+ 1/2)− (n− 1)u′0(R+ 1/2)/(R+ 1/2)

≥ ∆u0(R+ 1/2)

= h(1/2) = 1/10
8



where in the second inequality we have used part (i) and in the third inequality we have
used the definition of u0 and the property (b) of h.

Finally (iii) follows from the definition of h. �

We now fix R as in the lemma above. Define c = u0(R + 1/2) and let u(x, t) be the
solution to (1.2). We consider the space-time superlevel set

Ωc := {(x, t) ∈ Ω× [0,∞) : u(x, t) ≥ c} ∪ (Ω1 × [0,∞)).

As noted above, u(x, t) is smooth on Ω× [0,∞) while from Lemma 3.1 and Proposition
2.1, ut(x, t) is smooth and strictly positive on Ω × [0,∞). By the Implicit Function
Theorem, we may write ∂Ωc = {(x, t) ∈ Ω× [0,∞) : u(x, t) = c} as the radial graph of
the equation t = f(r) where u(r, f(r)) = c and f(r) is a smooth increasing function on
[R + 1/2, R + 1/2 + ε) for some ε > 0. Note that f(R + 1/2) = 0. Differentiating the
defining equation for f we obtain

(3.2) f ′(r) = −ur
ut

where the functions above are evaluated at (r, f(r)), and

f ′′(r) =
−1

ut
(urr + 2urtf

′ + utt(f
′)2)(3.3)

where again these are all evaluated at (r, f(r)). Now evaluating the above at (r, f(r)) =
(R+1/2, 0), and noting that ut(r, 0) = ∆u0(r) = h(r−R) = 1/10 in some neighborhood
of r = R+ 1/2, hence utr(R+ 1/2, 0) = utt(R+ 1/2, 0) = 0, we get

f ′′(R+ 1/2) = −10u′′0(R+ 1/2) ≤ −1 < 0(3.4)

by Lemma 3.1. This contradicts that ∂Ωc, which is defined by t = f(r), is convex in
Rn+1. �

4. Two-point functions

In this section we discuss a different way to find a counterexample to space-time
quasiconcavity using a two-point function as in [35] (see also [30]). We work in dimension
n ≥ 1 with the domain Ω = {1 < r < 2}. Let u(x, t) be a smooth function on Ω× [0,∞).
Consider the two-point function

H((x, s), (y, t)) = (Du(y, t)−Du(x, s)) · (y − x) + (ut(y, t)− ut(x, s))(t− s),
restricted to (x, s), (y, t) ∈ Ω × [0,∞) with u(x, s) = u(y, t). If u(x, t) is space-time
quasiconcave then H ≤ 0. Indeed, note that for a smooth function w in Rn+1, if the
superlevel set {w > c} is convex with a smooth boundary that contains two points X
and Y then (Dw(Y )−Dw(X)) · (Y −X) ≤ 0 since the vectors Dw(X), Dw(Y ) point in
the inward normal direction. Applying this to X = (x, s) and Y = (y, t) in Ω× (0,∞)
with u(x, s) = u(y, t), and using the continuity of H, we have H ≤ 0 on its domain of
definition.

For our counterexample, we construct a radially symmetric admissible function u0

such that the corresponding solution u(x, t) of the heat equation (1.2) is smooth on
Ω× [0,∞) and has H strictly positive somewhere.

Let ε > 0 be a small constant to be determined and let g : [1, 2]→ [0,∞) be a smooth
function with the following properties:
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(a) g(r) = 1/(2ε) for 1 ≤ r ≤ 1 + ε, and g(r) = 0 for 2− ε ≤ r ≤ 2.
(b) g is decreasing on [1, 2].

(c)

∫ 2

1
r1−ng(r)dr = 1.

We then define a smooth function u0 on [1, 2] by

u0(r) = −
∫ r

1
s1−ng(s)ds+ 1, r ∈ [1, 2].

It is straightforward to check that u0 is an admissible function. Moreover, ∆u0 vanishes
identically in a neighborhood of r = 1 and r = 2. Let u(x, t) be the corresponding
solution of (1.2), which by [28, Theorem 5.2] is smooth on Ω× [0,∞). From Proposition
2.1 we know that u(x, t) converges smoothly as t → ∞ to the harmonic function u∞
given by

u∞(r) =


2− r, n = 1

1− log r
log 2 , n = 2

(2/r)n−2−1
2n−2−1

, n > 2.

We now choose our points (x, s) and (y, t). We choose x and y to lie in the line
x2 = · · · = xn = 0. Pick x = (1 + ε/2, 0, . . . , 0) and s = 0. By the definition of u0

we have u(x, 0) = u0(1 + ε/2) ≈ 3/4. Let γ solve u∞(1 + γ) = u(x, 0), which satisfies
γ > c(n) for a constant c(n) ∈ (0, 1) depending only on n. Writing y(t) = (y1(t), 0, . . . , 0)
solving u(y(t), t) = u(x, 0) we have y1(t) → 1 + γ and ur(y(t), t) → (u∞)r(1 + γ) as
t → ∞. Then for t sufficiently large and ε > 0 sufficiently small we have y1 > 1 + ε/2
and |ur(y(t), t)| ≤ C for a uniform C. Writing y for y(t) we have

H((x, s), (y, t)) = (ur(y, t)− ur(x, 0))(y1 − (1 + ε/2)) + (ut(y, t)− ut(x, 0))(t− 0).

From the definition of u0 we have ur(x, 0) ≈ −1/(2ε) and ut(x, 0) = ∆u(x, 0) = 0. On
the other hand, from Proposition 2.1, ut(y, t) > 0. Hence for ε sufficiently small, H > 0.

Remark 4.1. As in [35] one can show that a maximum principle holds for the quantity H
using a parabolic version of a Lemma of Rosay-Rudin [30]. This rules out H obtaining a
positive interior maximum. However, it does not rule out a positive maximum occuring
at a point ((x, s), (y, t)) with s = 0 which would be needed to prove that quasiconcavity
is preserved for the heat equation.
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