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Abstract

Image-based breast tumor classification is an active and challenging problem. In this

paper, a robust breast tumor classification framework is presented based on deep fea-

ture representation learning and exploiting available information in existing samples.

Feature representation learning of mammograms is fulfilled by a modified nonnegative

matrix factorization model called LPML-LRNMF, which is motivated by hierarchical

learning and layer-wise pre-training (LP) strategy in deep learning. Low-rank (LR)

constraint is integrated into the feature representation learning model by considering
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the intrinsic characteristics of mammograms. Moreover, the proposed LPML-LRNMF

model is optimized via alternating direction method of multipliers and the correspond-

ing convergence is analyzed. For completing classification, an inverse projection sparse

representation model is introduced to exploit information embedded in existing sam-

ples, especially in test ones. Experiments on the public dataset and actual clinical

dataset show that the classification accuracy, specificity and sensitivity achieve the

clinical acceptance level.

Keywords Breast tumor classification · Mammogram · LPML-LRNMF · Inverse

space sparse representation · ADMM

Mathematics Subject Classification 68T10

1 Introduction

Breast tumor has become the most common malignant neoplasm for women. About

37.3% of breast tumor can be cured, especially in the case of early detection [1].

Effective breast tumor classification plays an important role in clinical diagnosis and

treatment. The commonly used diagnostic techniques include mammography, mag-

netic resonance imaging (MRI) and near-infrared scanning [2]. Mammography is a

common and effective breast tumor screening method [3], which can visualize non-

palpable and small tumors [4]. However, the performance of mammogram-based breast

tumor classification may be decreased due to noise [5], and the distinction between

cancerous and non-cancerous tumors may be subtle.

Feature extraction of mammograms will greatly improve the readability of these

original data [4, 6–8]. Feature learning can further explore the more essential informa-

tion. Deep learning is a popular feature representation learning method [9, 10]. Some

preliminary results in recognizing benign and malignant tumor have been obtained

[11]. However, the success of deep learning relies on complex network structures,

high-performance GPU devices and optimized parallel algorithms. As a data-driven

feature learning method, deep learning relies heavily on large number of effective

training samples. However, tumor classification is a typical small sample problem.

The nonnegative matrix factorization (NMF) is a feature learning method that does

not pay attention to category information, and explores useful information contained in

all available samples simultaneously, even if there are only a small number of training

samples. In recent years, NMF [12] and its improved methods [13–19] have achieved

good results for image-based tumor classification. Liu et al. [15] applied NMF to

extract both appearance- and histogram-based semantic features of images. Li et al.

[20] proposed a nonnegative low-rank matrix factorization (NLMF) method for image

clustering. However, NMF is affected by the initial value of the iteration. Our previous

work [21] proposed a layer-wise pre-training multilayer sparse NMF (LPML-SNMF)

method by integrating NMF and deep representation learning. The LPML-SNMF

is demonstrated effective for breast tumor classification based on microarray gene

expression data, which has the characteristic of sparsity. It is certainly interesting and

promising if we can complement advantages of different approaches.
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For image-based tumor data, low rank (LR) is an important prior information for

feature representation model. The optimization problem with low-rank regularization

constraint is NP hard. A typical approach is to relax the problem by replacing the rank

constraint with a nuclear norm l∗ regularization [22]. There are many ways to optimize

an l∗ regularization problem [23–26]. The alternating direction method of multipliers

(ADMM) [27] has attracted a great deal of attention in biostatistics. It mainly deals

with convex optimization problems with constraints. The ADMM framework divides

a problem into multiple subproblems that can be solved simultaneously.

From the viewpoint of tumor classification, there are commonly used methods

for mammography classification, such as artificial neural networks [28, 29], near-

est neighbor [30] and support vector machine (SVM) [31]. However, most of these

methods rely on learning model parameters. Sparse representation-based classifi-

cation (SRC) was originally proposed by Wright et al. [32] for face recognition.

Recently, SRC and its improved methods have been used in image-based tumor clas-

sification [33, 34]. It is worth noting that the success of SRC depends on enough

training data of the same category. For tumor classification, however, it is difficult

to acquire sufficient and effective unlabeled samples. On the other hand, the dis-

crimination ability of SRC will be reduced when there is a small disturbance on

representation error [35]. Our previous work [36] proposed an inverse projection-based

pseudo-full-space representation classification (PFSRC) method and successfully

used it for robust face recognition. PFSRC focused on exploiting complementary

information between training samples and test samples by utilizing existing avail-

able face images. Our another previous work [21] proposed an inverse space sparse

representation (ISSR) model for microarray gene expression data-based tumor clas-

sification.

Motivated by these works, a mammogram-based breast tumor classification

scheme is proposed in this paper. The main contributions are as follows: (1) An

LPML-LRNMF-based feature learning method is proposed by effectively combin-

ing complementary strengths from NMF and deep learning. (2) The LPML-LRNMF

model is optimized by ADMM, and the corresponding convergence is analyzed.

(3) The ISSR model is firstly used for mammogram-based breast tumor classifica-

tion.

The remainder of this paper is organized as follows: Section 2 describes the method-

ology of the presented breast tumor classification, which consists of LPML-LRNMF

model-based feature representation learning and the ISSR-based classification. Exper-

iments and discussions are shown in Sect. 3. Finally, conclusions are discussed in

Sect. 4.

2 Methodology

2.1 Layer-Wise Pre-trainingMultilayer Low-Rank NMFModel

In this subsection, an improved NMF method, LPML-LRNMF, is proposed and

used for feature representation learning of mammograms.
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Lee and Seung [12] proposed an NMF based on multivariate analysis and linear

algebra. Suppose V ∈ R
p×q is a nonnegative matrix, which is decomposed into

nonnegative basis matrix W ∈ R
p×r and coefficient matrix H ∈ R

r×q .

V ≈ W H .

It is worth noting that V is a collection of training samples and test samples in this

paper. The conventional approach to find W and H is to minimize the error between

V and W H [37], and the object function to be optimized is as follows:

min
W�0,H�0

p
∑

i�1

q
∑

j�1

(Vi j − (W H )i j )
2 � min

W�0,H�0
‖V − W H‖2

F , (2.1)

where ‖·‖F is the Frobenius norm and Vi j , i � 1, · · · p, j � 1, · · · , q, represent the

elements in matrix V . Each column of H is an encoding correspondence with V . The

rank r of the factorization is generally chosen so that (p + q)r < p × q.

The original NMF, however, doesn’t consider data characteristics or actual problem

requirements into the model and doesn’t fully dig the useful information hidden in

feature matrix H . A priori information based on the characteristics of the data can be

added as a regularization constraint of the model.

The proposed feature representation learning model aims to deal with the following

three issues: (1) layer-wise pre-training strategy is introduced to mitigate the effect of

the initial value on the NMF model; (2) low-rank constraint is added into the model

based on intrinsic characteristic of mammogram data; (3) multilayer decomposition

is performed to further mine deep representation feature information hidden in data.

The objective function of the LPML-LRNMF can be written as follows:

min
W1�0,H1�0

‖V − W1 H1‖
2
F + ‖H1‖∗, (2.2a)

min
W2�0,H2�0

‖H1 − W2 H2‖
2
F + ‖H2‖∗,

... (2.2b)

The model (2) is based on the fact that the optimal output of the former layer is as

the input of the latter layer, and so on. Suppose the decomposition level is L , model

(2.2) can be simplified as the following form:

min
Wl�0,Hl�0

‖Hl−1 − Wl Hl‖
2
F + ‖Hl‖∗, l � 1, · · · , L, (2.3)

where the initial matrix H0 represents V , Wl ∈ R
rl−1×rl and Hl ∈ R

rl×q represent the

corresponding basis matrices and coefficient matrices of each layer, respectively. rl

(l � 1, · · · , L) represent the matrix decomposition dimensions, r0 represents p, and

rl � min{rl−1, q}. Equations (2.2) and (2.3) are called the LPML-LRNMF model.
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2.2 Optimization of LPML-LRNMFModel by ADMM

In this subsection, the LPML-LRNMF model is optimized by ADMM. From the

optimization point of view, each layer of the model is similar, where the layer-wise

pre-training technique means that the obtainable optimal solution of the previous layer

is regarded as the input of the latter layer.

The optimization process for the each layer of LPML-LRNMF [Eq. (2.3)] can be

rewritten as

min
Wl�0, Hl�0

‖Hl−1 − Wl Hl‖
2
F + ‖Zl‖∗

s.t. Zl − Hl � 0, (2.4)

where l � 1, · · · , L .

Let J (Wl , Hl ,Zl ) � ‖Hl−1 − Wl Hl‖
2
F + ‖Zl‖∗, the augmented Lagrangian func-

tion of the problem (2.4) is defined by

L(Wl , Hl ,Zl ) � J (Wl , Hl ,Zl ) + 〈Φl ,Zl − Hl〉 +
σ

2
‖Zl − Hl‖

2
F , (2.5)

where σ > 0 is the penalty parameter, Φl ∈ R
rl×n is the Lagrange multiplier and 〈., .〉

is the inner product.

The ADMM scheme of Eq. (2.5) takes the following iteration:

W k+1
l � arg min

Wl�0

L(Wl , H k
l ,Zk

l ), (2.6a)

H k+1
l � arg min

Hl�0

L(W k+1
l , Hl ,Z

k
l ), (2.6b)

Z k+1
l � arg min

Zl�0

L(W k+1
l , H k+1

l ,Zl ), (2.6c)

Φk+1
l � Φk

l + σ (Zk+1
l − H k+1

l ). (2.6d)

Firstly, Wl is optimized for a given Hl . The subproblem W k+1
l can be approximated

by Eq. (2.6a):

W k+1
l � arg min

Wl�0

∥

∥

∥
Hl−1 − Wl H k

l

∥

∥

∥

2

F
.

Since the objective function (2.6a) is quadratic with respect to Wl , and the feasible

region Wl � 0 is convex, we can guarantee that there exists local minimum.

Similar to [38], an iterative update rule is given as follows:

W k+1
l � W k

l − μ(W k
l H k

l − Hl−1)(H k
l )T, (2.7)
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where μ > 0 is iteration step. In order to satisfy the nonnegative constraints Wl � 0,

projection operators can be constructed as follows, and any negative values in W k+1
l

are set to zero:

(ŵk+1
l )i j �

{

(wk+1
l )i j , if (wk+1

l )i j � 0,

0, otherwise,
(wk+1

l )i j ∈ W k+1
l , (2.8)

where (wk+1
l )i j are elements in W k+1

l .

Subproblem H k+1
l can be approximated by Eq. (2.6b):

H k+1
l � arg min

Hl�0

∥

∥

∥
Hl−1 − W k+1

l Hl

∥

∥

∥

2

F
+

〈

Φk
l ,Zk

l − Hl

〉

+
σ

2

∥

∥

∥
Z

k
l − Hl

∥

∥

∥

2

F

� arg min
Hl�0

∥

∥

∥
Hl−1 − W k+1

l Hl

∥

∥

∥

2

F
+

σ

2

∥

∥

∥

∥

∥

Z
k
l − Hl +

Φk
l

σ

∥

∥

∥

∥

∥

2

F

. (2.9)

Similar to W k+1
l , the feasible region Hl � 0 is convex, which guarantees that there

exists local minimum.

Let

F(Hl ) �
∥

∥

∥
Hl−1 − W k+1

l Hl

∥

∥

∥

2

F
+

σ

2

∥

∥

∥

∥

∥

Z
k
l − Hl +

Φk
l

σ

∥

∥

∥

∥

∥

2

F

,

then

H k+1
l � arg min

Hl�0

F(Hl ).

Let
dF (Hl )

dHl
� 0, similar to [37, 38], an iterative update rule is given as follows:

H k+1
l � H k

l . ∗ [(W k+1
l )T Hl−1 + σ Z k

l + Φk
l ]./[(W k+1

l )TW k+1
l H k

l + σ ], (2.10)

where .∗ and ./ denote element-wise multiplication and division, respectively. The

subtraction of the scalar σ is done to every element of the matrix (W k+1
l )TW k+1

l H k
l .

For the nonnegative constraints Hl � 0, similar to Eq. (2.8), the projection operators

can be constructed as follows:

(ĥk+1
l )i j �

{

(hk+1
l )i j , if (hk+1

l )i j � 0,

0, otherwise,
(hk+1

l )i j ∈ H k+1
l , (2.11)

where (hk+1
l )i j are elements in H k+1

l .

Subproblem Zk+1
l can be approximated by Eq. (2.6c):

Z
k+1
l � argmin

Zl�0

‖Zl‖∗ +
〈

Φk
l ,Zl − H k+1

l

〉

+
σ

2

∥

∥

∥
Zl − H k+1

l

∥

∥

∥

2

F
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� argmin
Zl�0

‖Zl‖∗ +
σ

2

∥

∥

∥
Zl − (H k+1

l − Φk
l /σ )

∥

∥

∥

2

F

� D1/σ

(

H k+1
l − Φk

l /σ

)

, (2.12)

where D(·) is the singular value threshold operator [39]. For Zl � 0, similar to

Eqs. (2.8) and (2.11), the projection operators can be constructed as follows:

(ẑk+1
l )i j �

{

(zk+1
l )i j , if (zk+1

l )i j � 0,

0, otherwise,
(zk+1

l )i j ∈ Z
k+1
l , (2.13)

where (zk+1
l )i j are elements in Zk+1

l .

Stopping criterion: max
{
∥

∥W k+1
l − W k

l

∥

∥

2
,
∥

∥H k+1
l − H k

l

∥

∥

2
,
∥

∥Z k+1
l − Z k

l

∥

∥

2

}

� ε1,

and
∥

∥Z k+1
l − H k+1

l

∥

∥

2

F
� ε2.

Algorithm 1  Optimization of LPML-LRNMF.

Input: A non-negative matrix V . Given 
1 2, 0ε ε > , and 0σ > , 1min{ , }l lr r q− , 

the stopping criterion is 
max 500k = .

Initialize 0 0,l lW H as non-negative matrix, 0k = .

while stopping criteria not satisfied do

Step 1. Update the variable 1k

lW + according to Eq. (2.7) and Eq. (2.8);

Step 2. Update the variable 1k

lH + according to Eq. (2.10) and Eq. (2.11);

Step 3. Update the variable 1k

l

+ according to Eq. (2.12) and Eq. (2.13);

Step 4. Update the Lagrange multiplier according to Eq. (2.6d);

Step 5. 1k      k : =    + , and go on Step 1.

end while

Output: An optimal solution can be obtained.

2.3 Convergence Analysis

Convergence analysis is crucial to optimization. Please see “Appendix A” for the

corresponding convergence lemmas and theorems, and refer to [26] for the detailed

proof of Theorem A.1. In Sect. 3.2, experiments will further demonstrate the conver-

gence.

2.4 Inverse Space Sparse Representation ClassificationModel

2.4.1 Inverse Space Representation

Suppose X � [x1, · · · , xs1 , · · · , xsc ] ∈ R
d×sc is a training sample set, X j �

[xs j−1+1, · · · , xs j
] ∈ R

d × (s j −s j−1) are the j th category samples, where j � 1, · · · , c

is the index of category. Y � [y1, · · · , yk] ∈ R
d×k is a test sample set.
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SRC [32] assumes that each test sample yt ∈ Rd , t � 1, · · · , k can be linearly

represented by the training samples from the same category:

yt � γ1,1x1 + · · · + γt,i xi + · · · + γsc,i xi �

sc
∑

i�1

γt,i xi � Xγt , (2.14)

where γt � [γt,1, · · · , γt,sc ]T is the corresponding coefficient vector. Without caus-

ing confusion, the corresponding projection way and representation space of SRC

are called positive projection and positive space. PFSRC [36], by contrast, repre-

sented each training sample xi by its corresponding pseudo-full-space Vi � {X , Y }−

{xi }, i � 1, · · · , sc, where the projection way is inverse to SRC and called inverse pro-

jection. It is worth noting that the PFSRC aims to explore complementary information

contained in available face samples. However, there is no such obvious complementar-

ity between tumor image data, and there are few effective labeled patient samples. To

tackle this problem, an inverse space representation is proposed in our previous work

[21]. The inverse space representation means that a training sample xi is represented

by its corresponding test sample space Y .

xi � αi,1 y1 + · · · + αi,t yt + · · · + αi,k yk �

k
∑

t�1

αi,t yt � Yαi , (2.15)

where αi,t ∈ R are representation coefficients and αi � [αi,1, · · · αi,t , · · · , αi,k]T rep-

resents coefficient vector. By comparing Eqs. (2.14) and (2.15), one can observe that

the differences between standard sparse representation and inverse space representa-

tion are projection ways and representation spaces.

Comparing Figs. 1(a) and (b), it is easy to notice that inverse space representation

addresses the column coefficients before the test samples, rather than the row coef-

ficients of training samples for standard sparse representation. Different projection

ways make the inverse space representation less sensitive to the number of training

samples than that of standard sparse representation [36].

(a) (b)

= x
cs

tγ
1X jXty

=

1y

ix

x k

iα

2y
3y

ky

Y

Fig. 1 Comparison of different representation ways: (a) standard sparse representation; (b) inverse space

representation
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Considering the sparsity between categories, the sparsity constraint can be

introduced into the inverse space representation called the inverse space sparse repre-

sentation (ISSR):

min
αi

‖xi − Yαi‖
2
2 + λ‖αi‖1, (2.16)

where λ > 0 is regularization parameter and αi is the representation coefficient vector

of xi .

2.4.2 Feasibility Analysis of ISSR Model

The feasibility of the ISSR model is verified similar to [32]; for the simplicity

of analysis, the regular term in Eq. (2.16) is removed, and then, the representation

becomes a least square problem:

α̂i � argmin
αi

‖xi − Yαi‖
2
2.

Let x
j

i represent a training sample that belongs to category j and can be represented

by the test sample space. Suppose Y j denotes test sample subspace that belongs to the

same category with xi , the associated representation x̂
j
i �

∑

j Y jδ j (γ̂i ) is actually the

perpendicular projection of xi onto the test sample full space Y . The reconstruction

error by each category e j � ||x
j
i − Y jδ j (α̂i )||

2
2 is used for classification. It can be

readily derived by

e j � ||x
j

i − Y jδ j (α̂i )||
2
2� ||x

j

i − x̂
j

i ||22+||x̂
j

i − Y jδ j (α̂i )||
2
2.

Obviously, it is the amount e∗
j � ||x̂

j

i −Y jδ j (α̂i )||
2
2 that works because ||x

j

i − x̂
j

i ||22
is a constant for all categories.

Denoted by χ j � Y jδ j (α̂i ) and χ̂ j �
∑

m 
� j Y mδm(α̂i ), m � 1, · · · , c, m 
� j ,

since χ̂ j is parallel to x̂
j
i − Y jδ j (α̂i ), one can readily have

||x̂
j

i ||2

sin(χ j , χ̂ j )
�

||x̂
j

i − Y jδ j (α̂i )||2

sin(χ j , x̂
j

i )
,

where (χ j , χ̂ j ) is the angle between χ j and χ̂ j , and (χ j , x̂
j

i ) is the angle between χ j

and x̂
j
i .

So, the representation error can be represented by

e∗
j � ||x̂

j
i − Y jδ j (α̂i )||

2
2�

sin2 (χ j , x̂
j
i )||x̂

j
i ||22

sin2 (χ j , χ̂ j )
. (2.17)
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Equation (2.17) shows that the ISSR is effective and robust by a “double check-

ing,” because we need not only consider if sin (χ j , x̂
j
i ) is small, but also consider if

sin (χ j , χ̂ j ) is large. If x
j
i has a strong correlation with a test sample.

2.4.3 Stability Analysis of ISSR Model

Theorem (Classification Stability of ISSR) Suppose xi and x j are the i th and j th

training samples, and the relationship between xi and x j is x j � xi + 
(xi ), where


(xi ) is a disturbance of xi . Based on the test samples Y , the inverse space repre-

sentations of xi , x j are as follows: xi � Yαi and x j � Yα j , where αi and α j are

representation coefficients, respectively. Let 
(Y ) represent the disturbance corre-

sponding to 
(xi ). If

ε � max

{

‖
(xi )‖2

‖xi‖2

,
‖
(Y )‖2

‖Y‖2

}

�
ϕk(Y )

ϕ1(Y )
,

and sin(θ) � ρL S/‖xi‖2 
� 1, where ρL S � ||YαL Si
− xi ||2, αL Si

� arg minαi
||xi −

Yαi ||2, then

||α j − αi ||2

||αi ||2
� ε

{

2κ2(Y )

cos(θ )
+ tan(θ )κ2(Y )2

}

+ O(ε2), (2.18)

where κ2(Y ) (κ2(Y ) � ||Y ||2·||(Y
TY )−1Y T||2, κ2(Y )2 � ||Y ||22·||(Y

TY )−1||2) is the

l2-norm conditional number of Y and θ is angle between xi and its projection vector

on Y .

The conclusion indicates that the distance between αi and α j is very small when

xi is similar to x j (in other words, Y has a small disturbance 
(Y )). From Eq. (2.18),

one can see that coefficients are more sensitive to a small disturbance 
 than that of

reconstruction error because, for nonzero residual problems, it is the square of the

condition number that measures the sensitivity of coefficients. Moreover, it is worth

noting that we focus on the column coefficient vector α1,1, α1,2, · · ·, αsc,1 before each

test sample when we calculate the category contribution rate (CCR) similar to [36]. The

difference lies in the representation coefficients α of different representation spaces.

The larger the CCR is, the higher the correlation is. However, it has been demonstrated

that disturbance will affect row coefficients rather than column coefficients. Moreover,

the effect on column coefficients is a positive impact when CCRs of different categories

are calculated.

Please see “Appendix B” for the detailed proof of the classification stability theorem.

And the classification stability of inverse space representation is verified more stable

than reconstruction error [36].

2.5 Breast Tumor Classification Based on LPML-LRNMF and ISSRC

Because the coefficient matrix obtained by the NMF feature representation learn-

ing has sparse characteristics [12]. LPML-LRNMF is an improved method of NMF,
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and the obtained coefficient matrix also has sparse features. A mammogram-based

tumor classification scheme is proposed by integrating LPML-LRNMF feature rep-

resentation learning and ISSRC. It is worth noting that the V � [X , Y ] ∈ R
d×(sc+k)

is a collection of training samples and test samples in LPML-LRNMF model, where

q � sc + k. Equation (2.16) can be rewritten as Eq. (2.19) when the samples are

replaced by the corresponding LPML-LRNMF features. Suppose the feature matrix

Hl of LPML-LRNMF is divided into the training set H train
l and the test set H test

l . For

any htrain
l ∈ H train

l , ISSR represents htrain
l by H test

l as follows:

min
α

∥

∥

∥
htrain

l − H test
l α

∥

∥

∥

2

2
+ λ‖α‖1, (2.19)

where H train
l � [(htrain

l )1, · · · , (htrain
l )sc ], i � 1, · · · , sc.

Algorithm 2  Mammograms-based breast tumor classification algorithm

Input: Training sample set 1[ , , ]
csX x x= , training label set 1 2[ , , ]

csL l l l= and test 

set 1 2[ , , , ]kY y y y= .

1) By Eqs. (2.7)-(2.13),  l = 1, the first layer of LPML-LRNMF-basedfeature 

learning is realized, and the corresponding local optimal

characteristics 1H is obtained.

2) Then the output 1H from the first layer is imported to the second 

LPML-LRNMF. Similar to the optimization process at the first layer, by

Eqs. (2.7)-(2.13), 2l = , the second layer of LPML-LRNMF feature representation

learning is realized.

3) By Eq. (2.19),  the LPML-LRNMF feature results are imported into the 

where 2

trainX H= , 2 2 1 2[( ) , , ( ) ]
c

train train train

sH h h= . 

2

testY H= , 2 2 1 2[( ) , , ( ) ]test test test

kH h h= .

4) The CCR matrix is obtained, and by normalizing the CCR matrix, relationships  

each test sample and all categories are obtained.

Output: Each test sample is classified into the category with the maximal CCR.

sample 

representation  

between

ISSR model,

layer of 

Algorithm 2 is the mammogram-based breast tumor classification algorithm based

on LPML-LRNMF-based feature representation learning and ISSRC. The correspond-

ing flowchart is shown in Fig. 2.

3 Experiments and Discussions

In this subsection, the performance of the proposed method is demonstrated on

the three aspects: (1) the convergence of LPML-LRNMF by ADMM optimization

is verified, (2) the feature representation learning performance of LPML-LRNMF is

tested and (3) the classification performance of ISSRC is compared with classical

classification methods and the state-of-the-art results. Without loss of generality, the

tenfold cross-validation and two-layer LPML-LRNMF for feature learning are used in

all experiments. Experiments are carried out using MATLAB R2016a and R-3.4.1 on a
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Fig. 2 Proposed mammogram-based breast tumor classification framework

3.30-GHz machine with 4.00 GB RAM. It is noted that LPML-LRNMF-based feature

representation learning scheme can be done multilayer. In fact, some information will

be lost as the number of decomposition layers increases. Therefore, it is not that the

more the layers are decomposed, the better the feature classification effect will be.

We have done experiments on Zhejiang Cancer Hospital (ZCH) dataset to select the

optimal decomposition level. The classification accuracies from one layer to four layers

are 72.86%, 90.89%, 85.47% and 74.42%, which show that two layers can achieve

good result in our work. Hence, the subsequent experiments are all based on two layers.

3.1 Breast Tumor Datasets

Experiments have conducted on two datasets: one is the public test dataset provided

by the Mammographic Image Analysis Society (MIAS) [40] (http://peipa.essex.ac.

uk/info/mias.html), and the other is the actual clinical dataset provided by Zhejiang

Cancer Hospital (ZCH). The MIAS dataset has 322 mammograms with size of

1 024 × 1 024 from 161 samples. ZCH dataset has 688 mammograms with size of

3 328 × 2 560 from 172 samples. Without loss of generality, we randomly select

104 normal samples, 31 benign samples and 26 malignant samples from the MIAS

dataset and 68 normal samples and 17 malignant samples from the ZCH dataset. For

the convenience of experiment and calculation, these samples have been cut out the

non-breast background area and adjusted to 512 × 306 and 303 × 128, respectively.

Some examples are shown in Fig. 3.

3.2 Convergence Analysis of LPML-LRNMF

In Sect. 2.2, optimization of LPML-LRNMF model by ADMM. Here, the corre-

sponding convergence is analyzed. The results are shown in Fig. 4, Fig. 4(a) shows the
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Fig. 3 Some examples of mammogram images: (a) MIAS dataset, (b) ZCH dataset

iteration error between exact and iterative solutions, and Fig. 4(b) shows the iteration

error between the adjacent iterations. And Fig. 4(c) shows the trend graph, which shows

that the solution gradually becomes stable and converges to the numerical solution.

It can be seen from Fig. 4(a) that the convergence error between exact and iterative

solutions of ADMM is about 1e−5, and iteration time is about 50 s. Figure 4(b) shows

that the convergence error between the adjacent iterations is about 0.02, and iteration

time is about 100 s. The experiment verifies that ADMM optimization achieves good

convergence of LPML-LRNMF model.

3.3 Representation Performance of LPML-LRNMFModel

In this subsection, the effectiveness and efficiency of the proposed feature rep-

resentation learning method, LPML-LRNMF, are demonstrated by analyzing mean,

variance, feature expression level line chart and entropy. Without causing confusion, V

represents the original image matrix, H1 and H2 represent the first- and second-layer

feature matrix of LPML-LRNMF. The decomposition dimensions corresponding to

the first and second layers are r1 � 50 and r2 � 15 by experience.

In order to verify the feature representation performance of LPML-LRNMF, the

correlation analysis is done between normals and the mean correlation coefficient of

all 17 malignants. Figure 5 shows the correlation coefficients of normals and the mean

sample. In Fig. 5, blue line and red line correspond to original data and multilayer

feature, respectively. It can be seen that the correlation coefficients of normals and the

mean sample of malignants are generally smaller than those of normals. It is also can be
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Fig. 4 Convergence analysis of LPML-LRNMF by ADMM optimization: (a) iteration error between the exact and iterative solutions, (b) iteration error between the adjacent

iterations, (c) optimization solution trend graph
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Fig. 5 Correlation coefficients of normals and the mean sample of malignants on ZCH dataset. (Color figure

online)

observed that the correlation coefficients between normals and malignants gradually

decrease as the decomposition layers increase.

The expression profiles of features for the normals and malignants are analyzed

in Fig. 6. Figure 6(a) represents the original matrix V , and Figs. 6(b) and (c) show

the first- and second-layer hidden components matrices H1 and H2. In Fig. 6, the red

curves denote the feature expression levels of the normals and the blue curves express

those of the malignants. The horizontal straight lines indicate the mean values of fea-

ture expression levels in the corresponding category. In the case of H2, the difference

in the mean values is large. For V , the difference in the mean values is basically 0.

Moreover, considerable fluctuation can be seen between the binary category and the

irrelevant features in terms of standard deviation (std). It is implied that feature obtained

by LPML-LRNMF is easier to distinguish normals and malignants than original

data.

For further verifying the classification performance of LPML-LRNMF, the entropy

analysis is done. Entropy is a measure of uncertainty. The smaller the entropy

is, the lower the uncertainty of representation is, and the better the feature is. In

Fig. 7, blue line, green line and red line correspond to original data V , the first-

layer feature H1 and the second-layer feature H2, respectively. One can observe that

the entropy of all samples gradually declines as the decomposition layers increase.

This implied that the features obtained by LPML-LRNMF are more conductive to

classification.

3.4 Classification Performance of LPML-LRNMFModel

For further accessing the classification performance, experiments are conducted on

ZCH and MIAS datasets from aspects. Firstly, the classification performance of the

LPML-LRNMF is compared with different feature representation learning methods.

And then, the classification performance of ISSRC is compared with different clas-

sifiers. Finally, our finally classification result is compared with the latest published

classification results.
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Fig. 6 Comparison of feature expression levels for normals and malignants on ZCH dataset. (a) V , (b) H1 and (c) H2 are original gene data, the first- and the second-layer

feature matrix. (Color figure online)
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Fig. 7 Comparison of entropy for original image (V ) and different layer features (H1, H2) on ZCH dataset.

(Color figure online)

Table 1 Classification

performance of different feature

learning methods on ZCH

dataset

Methods Accuracy

/%

Sensitivity

/%

Specificity

/%

AUC Time /s

Original

data

45.89 55.00 54.05 0.535 2 –

NMF

[12]

68.04 75.00 69.05 0.778 2 120.9

LRNMF

[20]

72.86 75.00 71.67 0.772 4 120.3

LPML-

SNMF

[21]

85.89 90.00 85.00 0.891 0 128.5

Our

method

90.89 96.67 91.67 0.952 8 126.3

3.4.1 Comparison of Different Feature Learning Methods

In this subsection, different feature representation learning methods, NMF [12],

LRNMF [20] LPML-SNMF [21], our method (LPML-LRNMF) are adopted, and the

same classification method ISSRC is adopted. Table 1 gives the results of accuracy,

sensitivity, specificity, AUC and running times. Experimental results show that LPML-

LRNMF has a comparable running time and a much higher accuracy, sensitivity,

specificity and AUC than other methods.

In order to give a more intuitive comparison of different methods, box plots of

error rates, receive operating characteristic curve (ROCC) [41] analysis, precision

recall curve (PRC) [42] analysis and decision curve analysis (DCA) [43] are shown in

Fig. 8. Red line in Fig. 8(a) shows the average error rate of original data, Lee [12], Li

[20], Yang [21], and our method. The result shows that LPML-LRNMF-based ISSRC

has the lowest error rate and the best classification performance. In Fig. 8(b), the larger

the area under the higher the ROCC is, the better the model is. In Fig. 8(c), the higher

the DCA is, the better the model is. DCA is a way of evaluating models by maximizing

the clinic net benefit (NB) of profit minuses harm. In other words, the higher the DCA
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(a) (b)

(c) (d)

Fig. 8 Comparison of different methods: (a) box plots for error rates, (b) ROCC analysis, (c) PRC analysis,

(d) DCA analysis. (Color figure online)

is, the smaller the loss of the model is. In Fig. 8(d), the closer the PRC curve is to the

upper right corner is, the better the model is. As can be seen from Fig. 8, all the four

indexes show that LPML-LRNMF-based ISSRC is better than other methods.

3.4.2 Comparison of Different Classification Methods

In this subsection, the classification performance of ISSRC is compared with some

classic and updated classifiers, such as NN [30], SVM [31] and SRC [32], PFSRC

[36], RRC_L1 and RRC_L2 [44]. Among them, RRC_L1 and RRC_L2 are recently

proposed SRC-based RRC coding models with L1 and L2 constraints, respectively,

PFSRC is another improved SRC method for face recognition. In Sect. 3.4.1, the

advantages of the LPML-LRNMF-based feature learning have been verified, so all

classifiers are based on LPML-LRNMF in this subsection.

In addition to the commonly used classification accuracy, the error reduction rate

[45] ERR � (ER1 − ER2)/ER1 × 100% is also adopted, where ER1 is the error

rate of the other classifiers classification result, ER2 is the error rate of our method

classification result, and ERR is denoted by a notion ↓.
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Table 2 Classification

performance of different

classifiers on ZCH dataset

Methods Error rates /% ERR /% Time /s

ISSRC 9.11 – 126.3

PFSRC [36] 15.36 ↓40.69 124.5

RRC_L2 [44] 15.36 ↓40.69 128.2

RRC_L1 [44] 17.86 ↓48.99 149.8

SRC [32] 16.61 ↓45.15 135.9

SVM [31] 19.29 ↓52.77 167.1

NN [30] 20.89 ↓56.39 154.7

Table 3 Classification performance with the latest published results on MIAS dataset

Experiments Methods Accuracy /%

Our method LPML-LRNMF-based ISSRC 95.45

Setiawan (2015) [46] LAWS-ANN 93.90

Kutluk (2013) [47] LVQ 90.00

Rampun (2018) [48] LQP 85.60

Herwanto (2013) [49] CPAR 83.00

Table 2 gives the comparison of ERRs and classification times. From Table 2, one

can notice that ISSRC is superior to classical classifiers and updated classifiers, which

embodies in the lowest classification error rates and almost the same running time.

3.4.3 Comparison with State-of-the-Art Results

In this subsection, the proposed method is compared with the latest published

classification results on public test MIAS dataset. Table 3 shows that the classification

accuracy rate of our method is 95.45%, which is the highest than those of latest

published results given in [46–49].

4 Conclusions

In this paper, a mammogram-based breast tumor classification scheme is proposed

by integrating LPML-LRNMF feature representation learning and ISSRC. The LPML-

LRNMF is constructed by integrating hierarchical learning, layer-wise pre-training

strategy and considering the low-rank characteristics of mammogram image as a prior

constraint. Moreover, the model is solved by ADMM and the corresponding conver-

gence analysis is given. The classification is fulfilled by ISSRC model, which is firstly

used to exploit information embedded in the existing tumor mammogram images.

Experiments on both public test mammogram image dataset from MIAS and the

actual clinical dataset from ZCH show that the proposed breast tumor classification

framework is superior to other compared methods.
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There remain some interesting problems. One is how to further improve the feature

representation learning model by mining and integrating intrinsic characteristics of

multimodal breast data. The other is how to further optimize the model, such as

adding more targeted prior information as regular terms and considering mixed driven

of unlabeled data and model.
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Appendix A

p∗ � inf{‖Hl−1 − Wl Hl‖
2
F + ‖Zl‖∗|Zl − Hl � 0, Wl � 0, Hl � 0}. (A.1)

Assumption A.1 The augmented Lagrangian L(Wl , Hl ,Zl ) has a saddle point. Explic-

itly, there exists (W ∗
l , H∗

l ,Z∗
l , Φ∗

l ), not necessarily unique, for which

L0(W ∗
l , H∗

l ,Z∗
l , Φl ) � L0(W ∗

l , H∗
l ,Z∗

l , Φ∗
l ) � L0(Wl , Hl ,Zl , Φ

∗
l )

holds for all Wl , Hl ,Zl , Φl . Note that L0 (σ � 0) is the standard Lagrangian for the

problem. By Assumption A.1, it follows that L0(W ∗
l , H∗

l ,Z∗
l , Φ∗

l ) is finite for any

saddle point (W ∗
l , H∗

l ,Z∗
l , Φ∗

l ). This implies that (W ∗
l , H∗

l ,Z∗
l ) is a solution to the

problem (2.4), so Z∗
l − H∗

l � 0 and
∥

∥Hl−1 − W ∗
l H∗

l

∥

∥

2

F
+

∥

∥Z∗
l

∥

∥

∗
< ∞.

Theorem A.1 Suppose there exists the saddle point (W ∗
l , H∗

l ,Z∗
l , Φ∗

l ), and satisfying

the Assumption A.1, let {(W k
l , H k

l ,Zk
l , Φk

l )} be the sequence generated by Eq. (2.6),

and then,

(1) Residual convergence: r k → 0 as k → ∞, where r k � Zk
l − H k

l , i.e., the iterates

approach feasibility;

(2) Objective convergence:
∥

∥Hl−1 − W ∗
l H∗

l

∥

∥

2

F
+

∥

∥Z∗
l

∥

∥

∗
→ p∗ as k → ∞, i.e., the

objective function of the iterates approaches the optimal value;

(3) Dual variable convergence: Φk
l → Φ∗

l as k → ∞, i.e., where Φ∗
l is a dual

optimal point.

Appendix B

Proof In order to discuss the value of
||α j −αi ||2

||αi ||2
, we need to find the relationship

between αi and α j . Let αi (t) be continuously differentiable for all t ∈ [0, ε], where

αi � αi (0) and α j � αi (ε). Let αi (t) do the Taylor expansion at t � 0:αi (t) �

αi (0) + εα′
i (0) + O(t2). We have α j � αi + εα′

i (0) + O(ε2) when t � ε. Then,

||α j − αi ||2

||αi ||2
� ε

||α′
i (0)||2

||αi ||2
+ O

(

ε2
)

. (B.1)
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In order to obtain ||α′
i (0)||2, similar to Theorem 5.3.1 in [50], one can construct

(Y + t f )T(Y + t f )αi (t), where f � 
(Y )/ε; then,

(Y + t f )T(Y + t f )αi (t) � (Y + t f )T(xi + t
(Y )αi (t)/ε).

Let E � 
(xi )/ε, then

(Y + t f )T(Y + t f )αi (t) � (Y + t f )T(xi + t E). (B.2)

In order to bound ||α′
i (0)||2, one can take the derivative of Eq. (B.2) and set x j ,

f TYαi + Y T f αi + Y Y Tα′
i (0)�Y T E + f Txi , i.e.,

α′
i (0) �

(

Y TY
)−1

Y T(E − f αi ) +
(

Y TY
)−1

f T(xi − Yαi ). (B.3)

By singular value decomposition theorem [50], we have rank(Y + t f ) � k for all

t ∈ [0, ε], where ‖
(Y )‖2 � ϕk(Y )(ϕk(Y ) is the largest singular value of Y ). Then,

|| f ||2� ||
(Y )/ε||2� ϕk(Y ) � ||Y ||2,

and ||E ||2� ||
(xi )/ε||2� ||xi ||2.

By substituting Eq. (B.3) result into Eq. (B.1), taking norms, the inequality can be

obtained:

||α j − αi ||2

||αi ||2
� ε

{

‖Y‖2 · ||(Y TY )−1Y T||2·

(

||xi ||2

||Y ||2||αi ||2
+ 1

)

+
ρL S

||Y ||2||αi ||2
· ‖Y‖2

2 · ||(Y TY )−1||2

}

+ O
(

ε2
)

.

Since Y T(Yαi − xi ) � 0, Yαi is orthogonal to Yαi − xi , it is also known that

‖xi − Yαi‖
2
2 + ‖Yαi‖

2
2 � ‖xi‖

2
2, and then, ||Y ||22·||αi ||

2
2� ||xi ||

2
2−ρ2

L S .

The relationship between αi and α j will be

||α j − αi ||2

||αi ||2
� ε

{

κ2(Y )

(

1

cos(θ )
+ 1

)

+ κ2(Y )2 sin(θ)

cos(θ )

}

+ O(ε2).
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