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Abstract

Image-based breast tumor classification is an active and challenging problem. In this
paper, a robust breast tumor classification framework is presented based on deep fea-
ture representation learning and exploiting available information in existing samples.
Feature representation learning of mammograms is fulfilled by a modified nonnegative
matrix factorization model called LPML-LRNMEF, which is motivated by hierarchical
learning and layer-wise pre-training (LP) strategy in deep learning. Low-rank (LR)
constraint is integrated into the feature representation learning model by considering
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the intrinsic characteristics of mammograms. Moreover, the proposed LPML-LRNMF
model is optimized via alternating direction method of multipliers and the correspond-
ing convergence is analyzed. For completing classification, an inverse projection sparse
representation model is introduced to exploit information embedded in existing sam-
ples, especially in test ones. Experiments on the public dataset and actual clinical
dataset show that the classification accuracy, specificity and sensitivity achieve the
clinical acceptance level.

Keywords Breast tumor classification - Mammogram - LPML-LRNMF - Inverse
space sparse representation - ADMM

Mathematics Subject Classification 68T10

1 Introduction

Breast tumor has become the most common malignant neoplasm for women. About
37.3% of breast tumor can be cured, especially in the case of early detection [1].
Effective breast tumor classification plays an important role in clinical diagnosis and
treatment. The commonly used diagnostic techniques include mammography, mag-
netic resonance imaging (MRI) and near-infrared scanning [2]. Mammography is a
common and effective breast tumor screening method [3], which can visualize non-
palpable and small tumors [4]. However, the performance of mammogram-based breast
tumor classification may be decreased due to noise [5], and the distinction between
cancerous and non-cancerous tumors may be subtle.

Feature extraction of mammograms will greatly improve the readability of these
original data [4, 6-8]. Feature learning can further explore the more essential informa-
tion. Deep learning is a popular feature representation learning method [9, 10]. Some
preliminary results in recognizing benign and malignant tumor have been obtained
[11]. However, the success of deep learning relies on complex network structures,
high-performance GPU devices and optimized parallel algorithms. As a data-driven
feature learning method, deep learning relies heavily on large number of effective
training samples. However, tumor classification is a typical small sample problem.
The nonnegative matrix factorization (NMF) is a feature learning method that does
not pay attention to category information, and explores useful information contained in
all available samples simultaneously, even if there are only a small number of training
samples. In recent years, NMF [12] and its improved methods [13—19] have achieved
good results for image-based tumor classification. Liu et al. [15] applied NMF to
extract both appearance- and histogram-based semantic features of images. Li et al.
[20] proposed a nonnegative low-rank matrix factorization (NLMF) method for image
clustering. However, NMF is affected by the initial value of the iteration. Our previous
work [21] proposed a layer-wise pre-training multilayer sparse NMF (LPML-SNMF)
method by integrating NMF and deep representation learning. The LPML-SNMF
is demonstrated effective for breast tumor classification based on microarray gene
expression data, which has the characteristic of sparsity. It is certainly interesting and
promising if we can complement advantages of different approaches.
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For image-based tumor data, low rank (LR) is an important prior information for
feature representation model. The optimization problem with low-rank regularization
constraint is NP hard. A typical approach is to relax the problem by replacing the rank
constraint with a nuclear norm I, regularization [22]. There are many ways to optimize
an [, regularization problem [23-26]. The alternating direction method of multipliers
(ADMM) [27] has attracted a great deal of attention in biostatistics. It mainly deals
with convex optimization problems with constraints. The ADMM framework divides
a problem into multiple subproblems that can be solved simultaneously.

From the viewpoint of tumor classification, there are commonly used methods
for mammography classification, such as artificial neural networks [28, 29], near-
est neighbor [30] and support vector machine (SVM) [31]. However, most of these
methods rely on learning model parameters. Sparse representation-based classifi-
cation (SRC) was originally proposed by Wright et al. [32] for face recognition.
Recently, SRC and its improved methods have been used in image-based tumor clas-
sification [33, 34]. It is worth noting that the success of SRC depends on enough
training data of the same category. For tumor classification, however, it is difficult
to acquire sufficient and effective unlabeled samples. On the other hand, the dis-
crimination ability of SRC will be reduced when there is a small disturbance on
representation error [35]. Our previous work [36] proposed an inverse projection-based
pseudo-full-space representation classification (PFSRC) method and successfully
used it for robust face recognition. PFSRC focused on exploiting complementary
information between training samples and test samples by utilizing existing avail-
able face images. Our another previous work [21] proposed an inverse space sparse
representation (ISSR) model for microarray gene expression data-based tumor clas-
sification.

Motivated by these works, a mammogram-based breast tumor classification
scheme is proposed in this paper. The main contributions are as follows: (1) An
LPML-LRNMF-based feature learning method is proposed by effectively combin-
ing complementary strengths from NMF and deep learning. (2) The LPML-LRNMF
model is optimized by ADMM, and the corresponding convergence is analyzed.
(3) The ISSR model is firstly used for mammogram-based breast tumor classifica-
tion.

The remainder of this paper is organized as follows: Section 2 describes the method-
ology of the presented breast tumor classification, which consists of LPML-LRNMF
model-based feature representation learning and the ISSR-based classification. Exper-
iments and discussions are shown in Sect. 3. Finally, conclusions are discussed in
Sect. 4.

2 Methodology
2.1 Layer-Wise Pre-training Multilayer Low-Rank NMF Model

In this subsection, an improved NMF method, LPML-LRNMEF, is proposed and
used for feature representation learning of mammograms.
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Lee and Seung [12] proposed an NMF based on multivariate analysis and linear
algebra. Suppose V € RP*? is a nonnegative matrix, which is decomposed into
nonnegative basis matrix W € R”*" and coefficient matrix H € R"*4.

V~WH.

It is worth noting that V is a collection of training samples and test samples in this
paper. The conventional approach to find W and H is to minimize the error between
V and W H [37], and the object function to be optimized is as follows:

P q
i Vii —(WH);;)? = i V- WH|3%, 2.1
w§8}2202 -21( = (WH)? = | min_ | 17 2.1)
i=1 j=
where |||  is the Frobenius norm and Vij,i=1,---p, j=1,---,q,represent the

elements in matrix V. Each column of H is an encoding correspondence with V. The
rank r of the factorization is generally chosen so that (p + g)r < p x q.

The original NMF, however, doesn’t consider data characteristics or actual problem
requirements into the model and doesn’t fully dig the useful information hidden in
feature matrix H. A priori information based on the characteristics of the data can be
added as a regularization constraint of the model.

The proposed feature representation learning model aims to deal with the following
three issues: (1) layer-wise pre-training strategy is introduced to mitigate the effect of
the initial value on the NMF model; (2) low-rank constraint is added into the model
based on intrinsic characteristic of mammogram data; (3) multilayer decomposition
is performed to further mine deep representation feature information hidden in data.

The objective function of the LPML-LRNMEF can be written as follows:

min ||V — Wi H |3+ | Hill,, (2.2a)
W1 20,H 20

. 2
min _ ||Hy — W2 Ha || + | Hall,
W220,H >0

(2.2b)

The model (2) is based on the fact that the optimal output of the former layer is as
the input of the latter layer, and so on. Suppose the decomposition level is L, model
(2.2) can be simplified as the following form:

min H_{ — WHI|>+ || H Jl=1,---,L, )3
g min W Hi— = WiHi [+ | Hill 03

where the initial matrix Hy represents V, W; € R"=1*"l and H; € R"7*9 represent the
corresponding basis matrices and coefficient matrices of each layer, respectively. 7;
(I =1,---, L) represent the matrix decomposition dimensions, rg represents p, and
r; < min{r;_1, q}. Equations (2.2) and (2.3) are called the LPML-LRNMF model.
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2.2 Optimization of LPML-LRNMF Model by ADMM

In this subsection, the LPML-LRNMF model is optimized by ADMM. From the
optimization point of view, each layer of the model is similar, where the layer-wise
pre-training technique means that the obtainable optimal solution of the previous layer
is regarded as the input of the latter layer.

The optimization process for the each layer of LPML-LRNMF [Eq. (2.3)] can be
rewritten as

. 2
min _ ||Hj—1 — W H|% + 12
W20, H >0

s.t. Z1— H =0, 2.4)

wherel =1,---, L.
Let 7 (W, Hy, Z)) = |Hi—1 — Wi H] ||2F + | Z ||, the augmented Lagrangian func-
tion of the problem (2.4) is defined by

o
LWy, Hi, 21) = T (Wi, Hy, 20) + (@1, 21— H) + 11 21— Hl%, (2.5)

where o > 0 is the penalty parameter, @; € R""*" is the Lagrange multiplier and (., .)
is the inner product.
The ADMM scheme of Eq. (2.5) takes the following iteration:

W = argmin L(W,, Hf, Z25), (2.6a)
w; >0
HF! = argmin LWL, H), 2, (2.6b)
H; >0
Zf*! = argmin LW, B 2)), (2.6¢)
Z; >0
o[ = @f + (2 — B, (2.6d)

Firstly, W is optimized for a given H;. The subproblem W/‘Jrl can be approximated
by Eq. (2.6a):

k+1 : k|
W = argmmH H;_ | — WH, H .
W =0 F

Since the objective function (2.6a) is quadratic with respect to W, and the feasible
region W; > 0 is convex, we can guarantee that there exists local minimum.
Similar to [38], an iterative update rule is given as follows:

W = W — wWEHS — Hio)HD', 2.7)
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where © > 0 is iteration step. In order to satisfy the nonnegative constraints W; > 0,
projection operators can be constructed as follows, and any negative values in W/‘“

are set to zero:

Wiy, if (Wi =0

Ak+ly. , k+1y .. k+1
Wi = {O, otherwise, (wi™ij € Wi (2.8)

where (wf‘*l)i ; are elements in Wlk”.
Subproblem Hlk‘“1 can be approximated by Eq. (2.6b):

2 o 2
H}' = arg minH Hi_y — W H + <q>l’<, zk H,) + —HZ}‘ s H
H >0 F 2 F

k

— aremi Cwkti g | L O 2k 2

=argmin|H; | — W/ H, F+ 2 Z; — H+— 2.9)
o

H>0

Similar to Wlk”, the feasible region H; > 0 is convex, which guarantees that there
exists local minimum.
Let

2 o ok
F(H) = ”Hl_l — W H H +—|ZF—H L
F 2 o

’

F

then

Hlk+1 = arg min F(H)).
H; >0

Let d{:gf ) = 0, similar to [37, 38], an iterative update rule is given as follows:
HYY = HE o« (WYY H .y + 0 ZF + F1 /1WA YT Wi B, + 61, (2.10)

where .x and ./ denote element-wise multiplication and division, respectively. The
subtraction of the scalar o is done to every element of the matrix (Wl]‘”)T Wl]‘+1 Hlk .
For the nonnegative constraints H; > 0, similar to Eq. (2.8), the projection operators
can be constructed as follows:

(R, if (5D > 0,

0 otherwise (hgwl)"f e H, (2.11)

(ilfm)ij = {

where (hf“rl )ij are elements in Hlk”.
Subproblem Zlk” can be approximated by Eq. (2.6¢):

. o 2
2k = argmin]| 2|, + <q>lk, z - H,"“) +Z ‘z, — H
Z>0 2 F

@ Springer



Layer-Wise Pre-Training Low-Rank NMF Model for Mammogram... 521

. o 2
= argmin|| Z; ||, + — HZI — (H,k+1 — d5lk/c7)H
220 2 F

= Dijo (Hf*' = 0f /o). 2.12)

where D(-) is the singular value threshold operator [39]. For Z; > 0, similar to
Egs. (2.8) and (2.11), the projection operators can be constructed as follows:

k+1 : k+1
Akl (" )ij> it (277 )i 2 0, x4 K+
i = . i € 2, 2.13
@™ g { 0, otherwise, @ ij ! (2.13)
where (zé‘“)i j are elements in Zlk“.
Stopping criterion: max/{ | Wi — wk Hz’ H}* — HF 5 zit — 7k ||2} < e,

and | 21 — B}V L < e

Algorithm 1 Optimization of LPML-LRNMEF.
Input: A non-negative matrix V. Given g,¢,>0, and o>0,r <min{r_,q},
the stopping criterionis k__=500.

Initialize W',H; as non-negative matrix, k=0.
while stopping criteria not satisfied do
Step 1. Update the variable "' according to Eq. (2.7) and Eq. (2.8);

Step 2. Update the variable H,™' according to Eq. (2.10) and Eq. (2.11);

Step 3. Update the variable Z*' according to Eq. (2.12) and Eq. (2.13);
Step 4. Update the Lagrange multiplier according to Eq. (2.6d);
Step 5. k:=k+1, and go on Step 1.
end while
Output: An optimal solution can be obtained.

2.3 Convergence Analysis
Convergence analysis is crucial to optimization. Please see “Appendix A” for the
corresponding convergence lemmas and theorems, and refer to [26] for the detailed

proof of Theorem A.1. In Sect. 3.2, experiments will further demonstrate the conver-
gence.

2.4 Inverse Space Sparse Representation Classification Model

2.4.1 Inverse Space Representation

Suppose X = [x1, -+, X5, ", X5, ] € RY4%se ig a training sample set, X; =
[xs,-,1+1, e, xsj] € RI>Gj=5j-1) are the Jjth category samples, where j = 1,---, ¢
is the index of category. Y = [y1, - - -, yx] € R?*¥ is a test sample set.
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SRC [32] assumes that each test sample y; € Rt =1, ---,k can be linearly
represented by the training samples from the same category:

Sc
VoS VLKL YiXi b X = ) Veixi = X1, (2.14)
i=1
where yr = Vi1, V1. SC,]T is the corresponding coefficient vector. Without caus-

ing confusion, the corresponding projection way and representation space of SRC
are called positive projection and positive space. PFSRC [36], by contrast, repre-
sented each training sample x; by its corresponding pseudo-full-space V; = {X, Y} —
{x;}, i =1,---,s., where the projection way is inverse to SRC and called inverse pro-
jection. It is worth noting that the PFSRC aims to explore complementary information
contained in available face samples. However, there is no such obvious complementar-
ity between tumor image data, and there are few effective labeled patient samples. To
tackle this problem, an inverse space representation is proposed in our previous work
[21]. The inverse space representation means that a training sample x; is represented
by its corresponding test sample space Y.

k
Xi =YLy R g = Y iy = Ya, (2.15)
=1
where «; ; € R are representation coefficients and o; = [otj 1, - - i s, - - -, ai,k]T rep-

resents coefficient vector. By comparing Egs. (2.14) and (2.15), one can observe that
the differences between standard sparse representation and inverse space representa-
tion are projection ways and representation spaces.

Comparing Figs. 1(a) and (b), it is easy to notice that inverse space representation
addresses the column coefficients before the test samples, rather than the row coef-
ficients of training samples for standard sparse representation. Different projection
ways make the inverse space representation less sensitive to the number of training
samples than that of standard sparse representation [36].

# 1

Yy

1 j X

(a) (b)

Fig. 1 Comparison of different representation ways: (a) standard sparse representation; (b) inverse space
representation
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Considering the sparsity between categories, the sparsity constraint can be
introduced into the inverse space representation called the inverse space sparse repre-
sentation (ISSR):

minlx; — Yo 3 + Aot 1. (2.16)

where A > 0 is regularization parameter and ¢; is the representation coefficient vector
of x i

2.4.2 Feasibility Analysis of ISSR Model

The feasibility of the ISSR model is verified similar to [32]; for the simplicity
of analysis, the regular term in Eq. (2.16) is removed, and then, the representation
becomes a least square problem:

Q; = argmin||x; — Yozill%.
o

Let xl.j represent a training sample that belongs to category j and can be represented
by the test sample space. Suppose Y/ denotes test sample subspace that belongs to the
same category with x;, the associated representation )?l] => Y s (i) is actually the
perpendicular projection of x; onto the test sample full space Y. The reconstruction

error by each category e; = ||xi/ - Yjéj(&,-)H% is used for classification. It can be
readily derived by
J o VIS ANIP— e — 2011200180 _ vis. (812
ej = |lx} —Y78;(&)llz= llx] — %] 115+I1%] — Y78;@l)3.
Obviously, it is the amount e}‘f = ||)2ij —yJ 8@l |% that works because ||xij —)?ij | |%

is a constant for all categories.
Denoted by x; = Y/8;(&;) and x; = Zm#j Y8 (0;),m =1,---,c,m # j,

since ¥ is parallel to £/ — ¥/8;(&;), one can readily have
j nj A
181 18— YIs;@lh

sin(x;, X;) sin(y, )?ij)

where (x;, X;) is the angle between x; and ¥, and (x;, )?l.j) is the angle between
and %/
So, the representation error can be represented by

sin (x;, 2117113
sin? (x;, %)

et =18 — ¥/5;@I3= (2.17)

@ Springer
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Equation (2.17) shows that the ISSR is effective and robust by a “double check-
ing,” because we need not only consider if sin (x;, )2{ ) is small, but also consider if
sin (x;, X;) is large. If xi] has a strong correlation with a test sample.

2.4.3 Stability Analysis of ISSR Model

Theorem (Classification Stability of ISSR) Suppose x; and x; are the ith and jth
training samples, and the relationship between x; and x; is xj; = x; + A(x;), where
A(x;) is a disturbance of x;. Based on the test samples Y, the inverse space repre-
sentations of x;,xj are as follows: x; = Ya; and x; = Y, where a; and o are
representation coefficients, respectively. Let A(Y) represent the disturbance corre-
sponding to A(x;). If

_ { IAGHIL TAT)I, } or(Y)
£ = max , < ,
llx; 1l Y1l o1(Y)

and sin(0) = prs/||xilly # 1, where prs = ||YaLs, — xill2, ars;, = argmin,, ||x; —
Yailla, then

S 2ic5(Y
[l — ailla { ) | tan(@)/cz(Y)2} + 0@, (2.18)
[lei [l2 cos(9)
where k(Y) (k2(Y) = |Y |- 1Y) YT o, k2(Y)? = 1Y[13-11(YTY) 7)) is the
l>-norm conditional number of 'Y and 0 is angle between x; and its projection vector
onY.

The conclusion indicates that the distance between «; and o is very small when
x; is similar to x; (in other words, Y has a small disturbance A(Y)). From Eq. (2.18),
one can see that coefficients are more sensitive to a small disturbance A than that of
reconstruction error because, for nonzero residual problems, it is the square of the
condition number that measures the sensitivity of coefficients. Moreover, it is worth
noting that we focus on the column coefficient vector o 1, v 2, - - -, &g, ,1 before each
test sample when we calculate the category contribution rate (CCR) similar to [36]. The
difference lies in the representation coefficients « of different representation spaces.
The larger the CCR is, the higher the correlation is. However, it has been demonstrated
that disturbance will affect row coefficients rather than column coefficients. Moreover,
the effect on column coefficients is a positive impact when CCRs of different categories
are calculated.

Please see “Appendix B” for the detailed proof of the classification stability theorem.
And the classification stability of inverse space representation is verified more stable
than reconstruction error [36].

2.5 Breast Tumor Classification Based on LPML-LRNMF and ISSRC

Because the coefficient matrix obtained by the NMF feature representation learn-
ing has sparse characteristics [12]. LPML-LRNMF is an improved method of NMF,
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and the obtained coefficient matrix also has sparse features. A mammogram-based
tumor classification scheme is proposed by integrating LPML-LRNMF feature rep-
resentation learning and ISSRC. It is worth noting that the V = [X, Y] € RZ*(c+h)
is a collection of training samples and test samples in LPML-LRNMF model, where
q = s + k. Equation (2.16) can be rewritten as Eq. (2.19) when the samples are
replaced by the corresponding LPML-LRNMF features. Suppose the feature matrix
H; of LPML-LRNMF is divided into the training set H/™" and the test set H**'. For
any h{™in e H™in JSSR represents 7™ by H/*! as follows:

. 2
h;ram _ Hltesta Hz +Allelly, (2.19)

min
o
where ™" = [(hFM)y, -, (WM 10 =1, s

Algorithm 2 Mammograms-based breast tumor classification algorithm
Input: Training sample set X =[x,,---,x, ], training label set L=[/,/,---,/, ] and test
sample set Y =[y,»,,-,»,].

1) By Egs. (2.7)-(2.13), /=1, the first layer of LPML-LRNMF-basedfeature
representation learning is realized, and the corresponding local optimal
characteristics H, is obtained.

2) Then the output H , from the first layer is imported to the second
layer of LPML-LRNMEF. Similar to the optimization process at the first layer, by
Egs. (2.7)-(2.13), 1=2, the second layer of LPML-LRNMF feature representation
learning is realized.

3) By Eq. (2.19), the LPML-LRNMF feature results are imported into the
ISSR model, where X =Hy™ , Hy™ =[(A™),,--,(h™), ] .

Y=HE HS =), (),

4) The CCR matrix is obtained, and by normalizing the CCR matrix, relationships

between each test sample and all categories are obtained.

Output: Each test sample is classified into the category with the maximal CCR.

Algorithm 2 is the mammogram-based breast tumor classification algorithm based
on LPML-LRNMF-based feature representation learning and ISSRC. The correspond-
ing flowchart is shown in Fig. 2.

3 Experiments and Discussions

In this subsection, the performance of the proposed method is demonstrated on
the three aspects: (1) the convergence of LPML-LRNMF by ADMM optimization
is verified, (2) the feature representation learning performance of LPML-LRNMF is
tested and (3) the classification performance of ISSRC is compared with classical
classification methods and the state-of-the-art results. Without loss of generality, the
tenfold cross-validation and two-layer LPML-LRNMEF for feature learning are used in
all experiments. Experiments are carried out using MATLAB R2016a and R-3.4.1 ona
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LPML-LRNMF first layer feature learning LPML-LRNMF multi-layer feature
learning
| i i
o I 5 i
. i N ]
% RE T .. — > I
\ | LP :
N — ] I
m, , H,
Input original -
mammography data : |
\LTraining samples \LTest samples
e—— <k
oo . !
= (") y n I LK
K o, X b e |t
VRN o))
e e e T B ¢ T test
Classification o i )V‘ - .
result CCR | Coefficient matrix
Classification Inverse projection sparse representation

Fig. 2 Proposed mammogram-based breast tumor classification framework

3.30-GHz machine with 4.00 GB RAM. It is noted that LPML-LRNMF-based feature
representation learning scheme can be done multilayer. In fact, some information will
be lost as the number of decomposition layers increases. Therefore, it is not that the
more the layers are decomposed, the better the feature classification effect will be.
We have done experiments on Zhejiang Cancer Hospital (ZCH) dataset to select the
optimal decomposition level. The classification accuracies from one layer to four layers
are 72.86%, 90.89%, 85.47% and 74.42%, which show that two layers can achieve
good result in our work. Hence, the subsequent experiments are all based on two layers.

3.1 Breast Tumor Datasets

Experiments have conducted on two datasets: one is the public test dataset provided
by the Mammographic Image Analysis Society (MIAS) [40] (http://peipa.essex.ac.
uk/info/mias.html), and the other is the actual clinical dataset provided by Zhejiang
Cancer Hospital (ZCH). The MIAS dataset has 322 mammograms with size of
1024 x 1024 from 161 samples. ZCH dataset has 688 mammograms with size of
3328 x 2560 from 172 samples. Without loss of generality, we randomly select
104 normal samples, 31 benign samples and 26 malignant samples from the MIAS
dataset and 68 normal samples and 17 malignant samples from the ZCH dataset. For
the convenience of experiment and calculation, these samples have been cut out the
non-breast background area and adjusted to 512 x 306 and 303 x 128, respectively.
Some examples are shown in Fig. 3.

3.2 Convergence Analysis of LPML-LRNMF

In Sect. 2.2, optimization of LPML-LRNMF model by ADMM. Here, the corre-
sponding convergence is analyzed. The results are shown in Fig. 4, Fig. 4(a) shows the

@ Springer


http://peipa.essex.ac.uk/info/mias.html

Layer-Wise Pre-Training Low-Rank NMF Model for Mammogram... 527

(b)

Fig. 3 Some examples of mammogram images: (a) MIAS dataset, (b) ZCH dataset

iteration error between exact and iterative solutions, and Fig. 4(b) shows the iteration
error between the adjacent iterations. And Fig. 4(c) shows the trend graph, which shows
that the solution gradually becomes stable and converges to the numerical solution.
It can be seen from Fig. 4(a) that the convergence error between exact and iterative
solutions of ADMM is about le—5, and iteration time is about 50 s. Figure 4(b) shows
that the convergence error between the adjacent iterations is about 0.02, and iteration
time is about 100 s. The experiment verifies that ADMM optimization achieves good
convergence of LPML-LRNMF model.

3.3 Representation Performance of LPML-LRNMF Model

In this subsection, the effectiveness and efficiency of the proposed feature rep-
resentation learning method, LPML-LRNME, are demonstrated by analyzing mean,
variance, feature expression level line chart and entropy. Without causing confusion, V
represents the original image matrix, H; and H, represent the first- and second-layer
feature matrix of LPML-LRNMF. The decomposition dimensions corresponding to
the first and second layers are r; = 50 and r, = 15 by experience.

In order to verify the feature representation performance of LPML-LRNMF, the
correlation analysis is done between normals and the mean correlation coefficient of
all 17 malignants. Figure 5 shows the correlation coefficients of normals and the mean
sample. In Fig. 5, blue line and red line correspond to original data and multilayer
feature, respectively. It can be seen that the correlation coefficients of normals and the
mean sample of malignants are generally smaller than those of normals. Itis also can be
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observed that the correlation coefficients between normals and malignants gradually
decrease as the decomposition layers increase.

The expression profiles of features for the normals and malignants are analyzed
in Fig. 6. Figure 6(a) represents the original matrix V, and Figs. 6(b) and (c) show
the first- and second-layer hidden components matrices H; and H-. In Fig. 6, the red
curves denote the feature expression levels of the normals and the blue curves express
those of the malignants. The horizontal straight lines indicate the mean values of fea-
ture expression levels in the corresponding category. In the case of H», the difference
in the mean values is large. For V, the difference in the mean values is basically 0.
Moreover, considerable fluctuation can be seen between the binary category and the
irrelevant features in terms of standard deviation (std). It is implied that feature obtained
by LPML-LRNMF is easier to distinguish normals and malignants than original
data.

For further verifying the classification performance of LPML-LRNMEF, the entropy
analysis is done. Entropy is a measure of uncertainty. The smaller the entropy
is, the lower the uncertainty of representation is, and the better the feature is. In
Fig. 7, blue line, green line and red line correspond to original data V, the first-
layer feature H; and the second-layer feature H», respectively. One can observe that
the entropy of all samples gradually declines as the decomposition layers increase.
This implied that the features obtained by LPML-LRNMF are more conductive to
classification.

3.4 Classification Performance of LPML-LRNMF Model

For further accessing the classification performance, experiments are conducted on
ZCH and MIAS datasets from aspects. Firstly, the classification performance of the
LPML-LRNMF is compared with different feature representation learning methods.
And then, the classification performance of ISSRC is compared with different clas-
sifiers. Finally, our finally classification result is compared with the latest published
classification results.
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Table 1 Classification Methods  Accuracy  Sensitivity Specificity AUC Time /s
performance of different feature 1% 1% 1%
learning methods on ZCH
dataset Original ~ 45.89 55.00 54.05 05352 -
data
NMF 68.04 75.00 69.05 0.7782  120.9
[12]
LRNMF  72.86 75.00 71.67 0.7724 1203
[20]
LPML- 85.89 90.00 85.00 0.8910 1285
SNMF
[21]
Our 90.89 96.67 91.67 09528 126.3
method

3.4.1 Comparison of Different Feature Learning Methods

In this subsection, different feature representation learning methods, NMF [12],
LRNMF [20] LPML-SNMF [21], our method (LPML-LRNMEF) are adopted, and the
same classification method ISSRC is adopted. Table 1 gives the results of accuracy,
sensitivity, specificity, AUC and running times. Experimental results show that LPML-
LRNMF has a comparable running time and a much higher accuracy, sensitivity,
specificity and AUC than other methods.

In order to give a more intuitive comparison of different methods, box plots of
error rates, receive operating characteristic curve (ROCC) [41] analysis, precision
recall curve (PRC) [42] analysis and decision curve analysis (DCA) [43] are shown in
Fig. 8. Red line in Fig. 8(a) shows the average error rate of original data, Lee [12], Li
[20], Yang [21], and our method. The result shows that LPML-LRNMF-based ISSRC
has the lowest error rate and the best classification performance. In Fig. 8(b), the larger
the area under the higher the ROCC is, the better the model is. In Fig. 8(c), the higher
the DCA is, the better the model is. DCA is a way of evaluating models by maximizing
the clinic net benefit (NB) of profit minuses harm. In other words, the higher the DCA
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(d) DCA analysis. (Color figure online)

is, the smaller the loss of the model is. In Fig. 8(d), the closer the PRC curve is to the
upper right corner is, the better the model is. As can be seen from Fig. 8, all the four
indexes show that LPML-LRNMEF-based ISSRC is better than other methods.

3.4.2 Comparison of Different Classification Methods

In this subsection, the classification performance of ISSRC is compared with some
classic and updated classifiers, such as NN [30], SVM [31] and SRC [32], PFSRC
[36], RRC_L1 and RRC_L2 [44]. Among them, RRC_L1 and RRC_L2 are recently
proposed SRC-based RRC coding models with L; and L constraints, respectively,
PFSRC is another improved SRC method for face recognition. In Sect. 3.4.1, the
advantages of the LPML-LRNMF-based feature learning have been verified, so all
classifiers are based on LPML-LRNMF in this subsection.

In addition to the commonly used classification accuracy, the error reduction rate
[45] ERR = (ER; — ERj)/ER; x 100% is also adopted, where ER| is the error
rate of the other classifiers classification result, ER, is the error rate of our method
classification result, and ERR is denoted by a notion |.
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Table 2 Classification Methods Error rates /% ERR /% Time /s

performance of different

classifiers on ZCH dataset ISSRC 9.11 - 126.3
PFSRC [36] 15.36 140.69 124.5
RRC_L2 [44] 15.36 140.69 128.2
RRC_L1 [44] 17.86 148.99 149.8
SRC [32] 16.61 145.15 135.9
SVM [31] 19.29 152.77 167.1
NN [30] 20.89 156.39 154.7

Table 3 Classification performance with the latest published results on MIAS dataset

Experiments Methods Accuracy /%
Our method LPML-LRNMF-based ISSRC 95.45
Setiawan (2015) [46] LAWS-ANN 93.90
Kutluk (2013) [47] LVQ 90.00
Rampun (2018) [48] LQP 85.60
Herwanto (2013) [49] CPAR 83.00

Table 2 gives the comparison of ERRs and classification times. From Table 2, one
can notice that ISSRC is superior to classical classifiers and updated classifiers, which
embodies in the lowest classification error rates and almost the same running time.

3.4.3 Comparison with State-of-the-Art Results

In this subsection, the proposed method is compared with the latest published
classification results on public test MIAS dataset. Table 3 shows that the classification
accuracy rate of our method is 95.45%, which is the highest than those of latest
published results given in [46—49].

4 Conclusions

In this paper, a mammogram-based breast tumor classification scheme is proposed
by integrating LPML-LRNMF feature representation learning and ISSRC. The LPML-
LRNMF is constructed by integrating hierarchical learning, layer-wise pre-training
strategy and considering the low-rank characteristics of mammogram image as a prior
constraint. Moreover, the model is solved by ADMM and the corresponding conver-
gence analysis is given. The classification is fulfilled by ISSRC model, which is firstly
used to exploit information embedded in the existing tumor mammogram images.
Experiments on both public test mammogram image dataset from MIAS and the
actual clinical dataset from ZCH show that the proposed breast tumor classification
framework is superior to other compared methods.
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There remain some interesting problems. One is how to further improve the feature
representation learning model by mining and integrating intrinsic characteristics of
multimodal breast data. The other is how to further optimize the model, such as
adding more targeted prior information as regular terms and considering mixed driven
of unlabeled data and model.

Acknowledgements The authors would like to thank Mammographic Image Analysis Society, London,
UK, and Zhejiang Cancer Hospital for their breast datasets.

Appendix A

p* =inf{l|Hi-1 — WiH|I7 + 1211|121 — H =0, W, >0, H >0}. (A

Assumption A.1 The augmented Lagrangian L(W;, H;, Z;) has a saddle point. Explic-
itly, there exists (W;*, Hl*, Zl*, d)l*), not necessarily unique, for which

LO(WI*’ Hl*’ 21*7 ¢l) < LO(W[*y H[*’ Z]*a ¢l*) g LO(le Hl’ ZI’ ®l*)

holds for all W;, H;, Z;, ®@;. Note that Lo (o = 0) is the standard Lagrangian for the
problem. By Assumption A.1, it follows that Lo(W}*, H, Z, ®}) is finite for any
saddle point (W}, H*, Z*, ®/"). This implies that (W}*, H*, Z[) is a solution to the
problem (2.4), so Z — H* = 0 and ” Hy_y — W/ Hf HZF + ”Zl* ”* < 00.

Theorem A.1 Suppose there exists the saddle point (W}, H", Z[", ®["), and satisfying
the Assumption A.1, let {(Wlk, Hlk, Zlk, <D[k)} be the sequence generated by Eq. (2.6),
and then,

(1) Residual convergence: ¥ = 0ask — oo, whererk = Zlk — Hlk, i.e., the iterates
approach feasibility;

(2) Objective convergence: || Hp_y — W}'Hf ”i + ”ZI* H* — p*ask — oo, ie., the
objective function of the iterates approaches the optimal value;

(3) Dual variable convergence: cblk — QDI* as k — oo, i.e., where cbl* is a dual
optimal point.

Appendix B

Proof In order to discuss the value of W, we need to find the relationship
between «; and «;. Let o; (¢) be continuously differentiable for all ¢ € [0, ], where
a; = ;(0) and o; = «;(¢). Let ¢;(¢) do the Taylor expansion at ¢ = 0:;(t) =
ai(0) + e/ (0) + O(t?). We have o = o; + £0/(0) + O(e?) when ¢ = &. Then,

lexi [2 [exi |12

llotj — eilla 8||ai(0)“2+0(52>. (B.1)
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In order to obtain ||e;(0)|2, similar to Theorem 5.3.1 in [50], one can construct
(Y +1)T(Y +tf);(t), where f = A(Y)/e; then,

Y +tHTY +1H)ai(t) = (¥ +1£) (i + 1AV )0 (1) /).
Let E = A(x;)/e, then
Y+t +1f)ai(t) = (Y +1f) T (xi +1E). (B.2)

In order to bound ||(xlf (0)|2, one can take the derivative of Eq. (B.2) and set x;,
Yo + YT fo; + YYT[(O=YTE + fTx;, ie,

o/ (0) = (YTY)ilYT(E — fai) + (YTY>7]fT(xi —Ya). (B.3)

By singular value decomposition theorem [50], we have rank (Y + 7f) = k for all
t € [0, €], where |A(Y)Il, < ¢x (Y)(@r(Y) is the largest singular value of Y). Then,

If 2= 11AXY)/ella< g (Y) < (1Y ]2,
and || E||2= ||A(xi)/ell2< [1xil2-

By substituting Eq. (B.3) result into Eq. (B.1), taking norms, the inequality can be
obtained:

lexi |2 1Y [l2flei ]2

13- ||(YTY)—1||2} + o(az).

llotj — il _ l1x:112
— L e Yy Y)Y (1

L
L PLS
17112l 12

Since YT(Yo; — x;) = 0, Yo is orthogonal to Yo; — x;, it is also known that
lxi = Yoi[13 + 1Y eril13 = I1x;113, and then, |[Y[13-lei 13> |Ixil13—0F g
The relationship between o; and «; will be

e < elan (g 1)+ G | 0@
e cos(6)

cos(9)
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