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Understanding ion transport in membrane materials is key to engineering and development of desalination and
water purification technologies as well as electro-membrane applications. To date, modeling of ion transport has
mainly relied on mean-field approaches, originally intended for weak inter-ionic interactions, i.e., high reduced
temperature T*. This condition is violated inmanymembranes, which could explain disagreement between pre-
dicted trends and experiments. The paper highlights observed discrepancies and develops a new approach based
on the concept of ion association, more adequate in the low-T⁎ limit. The new model addresses ion binding and
mobility consistently within the same physical picture, applied to different types of single and mixed salts. The
resulting relations show a significantly weaker connection between ion partitioning and permeability than the
standard ones. Estimates using primitive model (PM) of ions in a homogeneous dielectric suggest that non-PM
mechanisms, originating from the molecular structure of the ion-solvating environment, might enhance ion as-
sociation in membranes. PM analysis also predicts that ion solvation and association must be rigidly related, yet
non-PM effectsmay decouple these phenomena and allow a crossover to non-trivial regimes consistent with ex-
periments and simulations. Despite the crude nature of the presented approach and some questions remaining
open, it appears to explain most available experimental data and presents a step towards predictive modeling
of ion-selective membrane separations in water-, environment- and energy-related applications.
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1. Introduction

Today reverse osmosis (RO) and nanofiltration (NF) are mature
technologies widely utilized to desalinate and purify water fromnatural
reservoirs as well as wastewater to millions of people worldwide [1,2].
Its core element is the polymeric thin-film composite membranes that
pass water yet reject ions. RO usually removes all ions to a high degree,
while NF is similar and uses essentially the same type ofmembranes but
may separate different ions as well as ions and non-ionic components.

Ion selectivity in RO has not been a major concern in process engi-
neering, however, NF requires models that can predict ion separation
for ion mixtures that may widely differ in salinity and ion composition.
Development of such models is intimately related to understanding the
physics underlyingdifferent rejection of specific ions. Unfortunately, the
currently usedmodels still leavemanyquestions open anddonot offer a
treatment fully consistent with observations [3,4]. The main purpose of
this paper is to highlight and address themajor gaps and inconsistencies
of the currently used physical models of NF and RO. Another purpose is
to propose reasonably simple picture that may help to improve the cur-
rent models and move closer to predictive modeling.

The presently used models commonly rely on so-called mean-field
relations [5], such as the Poisson-Boltzmann (PB) equation or simpler
Donnan and related models, to compute averaged potentials and con-
centrations [6,7]. In the present context, such relations pertain to a re-
gime where the reduced temperature T* is high, i.e., the relevant
interaction energy is always small on the thermal kBT scale. We will
see, however, that such an assumption is inconsistentwith typical phys-
ical characteristics of most RO, NF, as well as many ion-conducting
membranes. As a result, effects not amenable to mean-field treatment
and thus missing in the current models, most notably, ion association
[8], become important andmay profoundly change the physical picture.

In this paper, we develop a more appropriate type of models using
the approach pioneered by Bjerrum for ionic solutions [9]. The resulting
general relations are reasonably simple but suit better the low-T⁎ re-
gimes. This is shown to yield trends that, in contrast to current models,
may explain the experimental data. As a further insight, we also com-
pute relevant parameters of the model, affinities and association con-
stants, based on representative physical characteristics of the
membrane and ions, using the primitive model (PM), i.e., treating the
membrane phase as a homogeneous dielectric continuumand ions,mo-
bile orfixed, as hard spheres [10]. This highlights limitations of using PM
and emphasize the need to address complex mechanisms that go be-
yond simple PM electrostatics, which will have to be clarified in the
future.

The paper is organized as follows. Sections 2 and 3 review the stan-
dard phenomenological equations of ion transport relations and
treatment of ion exclusion in homogeneous membranes along mean-
field lines and highlight the major inconsistencies. Section 4 reviews
the main relations for ion association. Section 5 develops the new gen-
eral approach to modeling ion partitioning and permeation. Section 6
analyzes the model relations based on PM and highlights discrepancies
between its predictions and experimental results. Finally, Sections 7
outlines extension of the approach to multi-salt mixtures and Section
8 presents summary and outlook, including the relation of the present
treatment to the ion transport in nanopores.

2. Ion permeation inNF andRO: general relations and representative
results

2.1. Basic phenomenological relations: extended Nernst-Planck equation

The general basis of most currently used models of RO and NF is
the extended Nernst-Planck (ENP) equation that describes steady-
state transport of an ionic species through a membrane [11]. For a
homogeneous membrane of uniform thickness, the problem is reduced
to one-dimensional. For practical calculation, when membrane thick-
ness is uncertain, it is convenient to convert intrinsic permeability to
permeance and scale the normal coordinate x by the membrane thick-
ness Δx, i.e., define x = x/Δx, thus the ENP equation for ion i is written
as follows [12].

Ji ¼ −PiCi
dμ i

dx
þ zi

dφ
dx

� �
þ JV 1−σ ið ÞCi

¼ −ωiCi
dμ i

dx
þ zi

dφ
dx

� �
þ JV 1−σ ið ÞCi:

ð1Þ

where Ji and zi are flux and charge of ionic species i, μi is the dimension-
less chemical potential if i (in units of thermal energy kBT),φ the dimen-
sionless electric potential (in units of thermal potential kBT/e), JV the
volume flux, and ωi, Pi, and σi are, respectively ion permeance (often
called permeability), intrinsic (thickness-normalized) permeability,
and reflection coefficient.1

When the membrane is viewed as a homogeneous “black box”, ωi

andσi are phenomenological coefficients, relating ionfluxes to so-called
virtual or corresponding concentration of the ion Ci. The latter are de-
fined as the hypothetical solution concentrations that would be in equi-
libriumwith the state of the membrane at the specific location x. For an
by dividing the number quantities by the Avogadro number NA = 6 × 1023 1/mol.
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ideal solution, the virtual concentration will be identical to ion activity
(Ci = ai), thereby chemical potential is μi = ln ai = ln Ci.2 For real
solutions, virtual concentrations Ci offer a simple and transparent way
to gauge the local thermodynamic state within the membrane in
termsof equilibriumsolution composition that continuously vary across
membrane-solution interfaces. Note that non-ideality in solution is
nearly always much smaller than within the membrane. The use of Ci
in place of ai, i.e., assuming μi≈ lnCi, is then a reasonable approximation
that marginally affects the accuracy of modeling and will be used
throughout this paper.

We may express ion fluxes in Eq. (1) through permeate concentra-
tions Ci″= Ji/JV, i.e., the value of Ci at the downstream side of the mem-
brane. Eq. (1) then becomes

C″
i ¼ −

ωiCi

JV

dμ i

dx
þ zi

dφ
dx

� �
þ 1−σ ið ÞCi ≈ −

ωi

JV

dCi

dx
þ ziCi

dφ
dx

� �
þ 1−σ ið ÞCi:

ð2Þ

The “black box” ofωi and σimay be opened to some degree by relat-
ing the actual local concentration in the membrane ci to virtual concen-
tration Ci through the local partitioning (sorption) coefficients Si= ci/Ci.
In addition, the ion mobilities and coupling of ion fluxes Ji to pressure-
driven water flow JV may be expressed through ion diffusivities (mobil-
ities) Di or, alternatively, friction coefficients fi = kBT/Di. Since there are
at least 3 kinds of species involved, namely, membrane (m), solvent
(water, w) and ions (i), full phenomenological description of ion trans-
port in presence of moving water requires at least two friction coeffi-
cients, namely, ion-membrane fim and ion-water fiw.. Ultimately, this
yields the phenomenological relations for Pi, ωi and σi [12]:

ωi ¼
DiSi
Δx

¼ 1
Δx

kBTSi
f im þ f iw

; Pi ¼ ωiΔx ¼ DiSi ¼
kBTSi

f im þ f iw
;

1−σ i ¼
Si
ϕw

f iw
f im þ f iw

;

ð3Þ

where ϕw is the volume fraction of water in the membrane. Note
that both diffusive (ωi) and convective (1-σi) coefficients are propor-
tional to Si. Since partitioning is in general concentration- and composi-
tion-dependent, so are the coefficients ωi and σi. However, Si and its
concentration dependence are cancelled out in the so-called Péclet
coefficients, defined as follows [12].

Ai ¼
1−σ i

ωi
¼ f iwΔx

kBTϕw
: ð4Þ

Ai is then a purely frictional parameter; for this reason, it could
replace either ωi or σi for analysis of frictional characteristics, such as
effective pore size of the membranes. The product Pei = AJV is the
well-known membrane Péclet number that indicates which contribu-
tion to the ion transport, convective (Pe NN 1) or diffusive (Pe bb 1), is
dominant. Note that, unlike Ai, Pei is not a constant and depends on JV,
which varies with the applied pressure.

Since A and Pe are proportional to the membrane thickness Δx
(Eq. (4)), for a very thin membrane AJV bb 1 may hold in all reasonable
situations [13,14]. This is apparently the case for ion permeation in
today's composite NF and RO membranes, in which

Δx b b 1 μm and the usable fluxes JV are limited by concentration
polarization (CP), i.e., mass transfer in the adjacent unstirred solution
layer. In such a case, Eqs. (1) and (2) may be simplified to have only
the diffusion term on the r.h.s.

Note, the condition AJV bb 1 alone is insufficient to simply drop the
convective term in Eqs. (1) or (2). In general, elimination of the convec-
tive term also requires that ωi be replaced with a composite parameter
2 The constant chemical potential of the reference state is dropped here as inessential,
since it cancels out in all subsequent relations.
ωi/σi, thereby σi is not totally eliminated from the equation. However, if
in addition to AJV bb 1, the membrane is selective enough, thereby σi

≈ 1, the reflection coefficient disappears entirely from Eqs. (1) and
(2) [14]. Both conditions are well satisfied for ionic solutes in today's
NF and RO membranes, in which case only ωi‘s are required for
predicting separation performance [6,13,14]. The resulting equation is
fully analogous to the regular NP equation for ion transport in solutions
[15], except that ion diffusivities are replaced with permeabilities ωi or
Pi, i.e., to a good approximation,

C″
i ≈ −

Pi

JV

dCi

dx
þ ziCi

dφ
dx

� �
¼ −

ωi

JV

dCi

dx
þ ziCi

dφ
dx

� �
: ð5Þ

Steady-state transport for a solution of N ionic species through a
membrane is modeled by linking a set of such ENP (Eq. (2)) or, approx-
imately, NP equations (Eq. (5)) for individual ions to two conditions of
electroneutrality (charge stoichiometry), one for local composition
and one for ionic fluxes, as follows

X þ
XN
i¼1

zici ¼ X þ
XN
i¼1

ziSiCi ¼ 0; ð6aÞ

JV
XN
i¼1

ziC
″
i ¼ I=e: ð6bÞ

Here X is the fixed (immobile) charge density of the membrane and I is
the electric current density, which is zero, unless a non-zero current is
imposed on the system by applying an external potential gradient.
Given the feed composition C′ (a vector containing concentrations of
all ions) and dependence of coefficients ωi and σi on virtual solution
composition (C), the full set of NP or ENP equation (Eqs. (2) or (5)) sub-
ject to electroneutrality (Eqs. (6)) is solved for a given JV to yield C″ and
ionfluxes J= JVC”. In general, this requires numerical integration,which
usually starts from guessing the permeate composition C″ followed by
iterative integration of Eqs. (2) or (5) backward from permeate (C″) to
feed side (C′) and correction of C″ until compositions converge. (Note
that the iterative forward integration from feed to permeate is often
unstable.)

In some important cases, the ENP equations may be solved analyti-
cally. One such case is the feed containing a single salt Mz−Az+ of a cat-
ionMz+and an anionA–z− of absolute charges z+ and z−. The respective
virtual ion concentrations are related to that of the salt Cs as C+ = z−Cs
and C– = z+Cs. For zero current, the potential gradient is eliminated to
yield a single equation for salt transport

C″
s ¼

C″
−
zþ

¼ C″
þ

z−
¼ −

ωs

JV

dCs

dx
þ 1−σ sð ÞCs: ð7Þ

Eq. (7) is identical to thewell-known Spiegler-Kedem (SK) equation for
transport of neutral solutes [16], in which the “salt” chemical potential
μs and coefficientsωs and σs and are related to ionic counterparts as fol-
lows

μs ¼ zþμ− þ z−μþ ¼ zþ ln zþCsð Þ þ z− ln z−Csð Þ; ð8Þ

ωs ¼ ωþω− zþ þ z−ð Þ
ωþzþ þω−z−

; σ s ¼ σ−
ωþzþ

ωþzþ þω−z−
þ σþ

ω−z−
ωþzþ þω−z−

: ð9Þ

For constantωs and σs, a well-known analytical solution of the SK equa-
tion, Eq. (7), is

C″
s

C0
s
¼ 1−σ s

1−σ s exp −Pesð Þ; ð10Þ
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where Pes = JV(1-σs)/ωs. This solution predicts a monotonic increase of
solute passage Cs″/Cs′with JV, with an initial slopeωs/σs at small Pes and
approach to a plateau value 1-σs at large Pes.

An analytical solution may also be obtained, though with more ef-
fort, for mixtures of one dominant salt with dilute trace ions [17,18].
In this situation, the trace ions have a negligible effect on the electric po-
tential profile φ(x) that is fully determined by the dominant salt. The
passage of the dominant salt is then computed in the same manner as
for a single salt (Eq. (7)), while for trace ions Eq. (2) is solved for fixed
φ(x). The solution for trace ions may lead to non-linear and non-mono-
tonic dependence on JV, much different from Eq. (10). This feature al-
lows evaluation of ionic permeabilities from filtration data, despite the
fact that the problem is ill-posed in general (see next). This solution
was also found useful for analyzing practical problems, such as pH var-
iations in desalination, which results from transport of protons H+ or
hydroxyls OH−, behaving as trace ions, superimposed on transport of
dominant NaCl salt [19].

2.2. Ionic and salt permeabilities from filtration data: experimental results

Modeling NF using an appropriate set of ENP or NP equations re-
quires knowledge of phenomenological coefficients for all ions. Even
when the reflection coefficients are redundant (Eq. (5)), this still re-
quires all ion permeabilities as input parameters. Unfortunately, they
cannot be adequately predicted at present and, therefore, need to be
assessed from filtration experiments by fitting them to the NP model
as adjustable parameters.

In general, such a fitting is an ill-posed problem, since ion fluxes are
coupled by electroneutrality (Eqs. (6)). This coupling eliminates one de-
grees of freedom and, as a result, ionic permeabilities cannot be
uniquely determined. For instance, for a single salt, cation and anion
must permeate at the same rate to keep electroneutrality. The measur-
able parameter is then only the salt permeability, ωs, defined in Eq. (9),
but individual values ofω+ andω−may assume virtually any values, as
long as they yield the same ωs.

Similarly, in a ternarymixture, e.g., of NaCl and CaCl2, the total anion
flux carried by chloride has tomatch exactly the total cationic fluxmade
up by Na+ and Ca2+. This is highlighted in Fig. 1, mapping the fitting
error obtained when Ca2+ permeability was fitted to ternary
Fig. 1. The error map produced by fitting the Ca2+ permeability to NF filtration data for
NaCl and CaCl2 mixtures for prescribed values of Na+ and Cl− permeabilities shown on
vertical and horizontal axes, respectively. Membrane NF270, all solutions contain 0.1 M
total chloride. After reference [4].
permeation data for NF270 membrane, while Na+ and Cl− permeabil-
ities were prescribed fixed values [4]. The valley colored in dark blue
designates various combinations of Na+ and Cl− permeabilities, for
which the fitting error has aminimal and virtually the samemagnitude.
However, the uncertainty becomes much smaller, if one considers salt
permeabilities of NaCl and CaCl2, defined as follows (cf. Eq. (9))

ωNaCl ¼
2ωNaωCl

ωNa þωCl
; ωCaCl2 ¼ 3ωCaωCl

2ωCa þωCl
: ð11Þ

Along the valley, all combinations of Na+ and Cl− permeabilities yield
about the same fitted values of ωNaCl and ωCaCl2, therefore the two salt
permeabilities are determined with a much larger certainty than indi-
vidual ion permeabilities.

Thus deduced salt permeabilities would be insufficient for NF
modeling. Yet, their values and observed dependence on concentration
(for single salts) or on total composition (for mixtures) may be useful
for comparing with theoretical predictions and serve as fingerprints of
specific physical models. Such comparison may help gain valuable in-
sights and discriminate or rule out possible mechanisms, as discussed
next.

2.3. NF: representative results and trends for single salts and mixtures

Fig. 2A presents typical dependences deduced fromNFfiltration data
for several single salts [3]. A few points are immediately notable. First,
salt permeability varies with the feed salt concentration, while the var-
iation may be both increasing and decreasing, depending on the salt
type. Increasing trends are observed for salts of monovalent cations
(Na+, K+), yet for salts of divalent cations (Ca2+, Mg2+) a decreasing
trends is observed, as reported in other studies as well [13,20]. Note
the valence of anion seems to have no effect on the trend, though it
may strongly affects the values of permeability (cf. NaCl versus
Na2SO4). The decreasing trends of Ca2+ and Mg2+ salts contradict the
Fig. 2. (A) Variation of salt permeability with salt concentration estimated from filtration
data for single salts and NF200 membrane [3]; (B) Variation of NaCl and CaCl2
permeabilities through NF270 membranes for NaCl/CaCl2 mixtures at two different pH
for different Na fraction in the feed. All mixtures contain 0.1 M total chloride.
Permeabilities are deduced by fitting the NP model with constant ion permeabilities to
the filtration data [4].
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standard mean-field relations (see next section), which predict that a
single salt permeabilitymust always increasewith concentration.More-
over, even for more “regularly” behaving permeabilities of NaCl in Fig.
2A, the slope is smaller than the theoretical value 1. It also becomes
smaller at low salt concentrations, which is opposite of what the
mean-field models anticipate.

Fig. 2B highlights further discrepancies inconsistent with common
models. It displays fitted permeabilities of NaCl and CaCl2 in for mixed
feed solutions, of total 0.1 M chloride but different ratios of Ca2+ and
Na+, at two different pH [4]. A lower pH (more H+) must always sup-
presses permeation of cations and promotes that of anions. This is sup-
posed to increase salt permeability, since one expects that salt
permeation in a negatively charged membrane would be controlled by
anions. Indeed, in the present case, NaCl permeability is higher at
lower pH, i.e., Cl− is the less permeable ion in NaCl, however, for CaCl2
it is opposite, indicating that Cl− is the more permeable ion in CaCl2.

The results in Fig. 2B further indicate that Ca2+ and Na+ affect each
other's permeability in a manner resembling competitive binding or ad-
sorption on some sites. Such sites might well be the negative fixed
charges of NF-270, as they should bind divalent Ca2+ more strongly
than monovalent Na+. Indeed, addition of a small fraction of Ca2+

seems to have an immediate effect on NaCl permeation, which quickly
plateaus as more Ca2+ is added. Similarly, addition of Na+ increases
CaCl2 permeability, yet in a more moderate monotonic manner across
the entire composition range. Unfortunately, the concept of ion binding
or association is absent in the commonmodels of NF and is incompatible
with theirmean-field nature. A notable exception is themodel by Bandini
and Mazzoni that added specific ion binding in ad hoc manner [21].

These and other observations mentioned later on point to funda-
mental flaws in the current picture of ion exclusion and permeation.
To see that systematically, the following sections briefly review com-
monly usedmean-field relations. Their defining feature is that the vary-
ing potential imposed by the fixed charges within the membrane is
replaced with some average or weakly varying smeared effective poten-
tial, known as Donnan potential [22]. We will show that such replace-
ment results in inherent inconsistencies, which is the main reason for
their failure. Thereafter, in Section 5 we will outline an approach that
can eliminate such inconsitencies, in linewith up-to-date views on elec-
trolyte solutions [8,10], and apply it to analyzing ion transport in
membranes.

3. Ion permeation through a homogeneous membrane: mean-field
relations

3.1. Permeability: partitioning and diffusivity factors

Based on Eq. (3), computation of ion permeabilities Pi required for
NF modeling usually involves independent assessment of diffusivities
Di and partitioning coefficients Γi. The simplest approach, dominating
in membrane literature, employs two major approximations [7,23–37].

(1) Eachmobile ion is assigned a single value of diffusivity or, equiv-
alently, mobility throughout the membrane phase;

(2) The potential within the membrane phase is approximated with
a uniform or slowly varying “mean-field” potential profile, also
known as Donnan potential, whose value ensures themembrane
phase electroneutrality (Eq. (6a)).

In a uniform force or concentration gradient fields, diffusivity of an
ion reflects its friction with the medium, which may be evaluated
using various approaches. Most common has been the hindered trans-
port theory (HTT) that assumes rigid pores of fixed uniform size and a
rigid solute particle [38]. Apart from the questionable extension of con-
tinuum hydrodynamics to ions in nanopores, another shortcoming is
that this dictates a sharp drop in mobility when the solute size ap-
proaches the pore size, while experiments show a more moderate
variation. As a remedy, it was proposed to consider a distribution of
pore sizes, at the expense of a larger number of parameters [39–41].
An alternative approach to modeling diffusivity in membanes, uncom-
mon in NF or RO but common in gas separation, is to consider elastic
or dynamic pores that may undergo thermal fluctuations around an
equilibrium size and occasionally pass solutes larger than this size
[42,43]. Nevertheless, within all these approaches, the diffusivities Di

are viewed as a frictional property, unrelated or weakly related to ther-
modynamics and contributing only a constant prefactor to Pi. This
means that most of the concentration dependence must be related to
ion partitioning Si, reviewednext. However, we return to the diffusivities
in Section 5, for the case when the mean-field no more applies.

3.2. Partitioning in a charged homogeneous membrane: Donnan and SDE
models

The simplest model of ion partitioning, widely employed in the
membrane literature, is the Donnan model that considers a homoge-
neous membrane that bears a fixed charge of a uniform density X [22].
For concreteness, we assume X is negative thus anions and cations are,
respectively, co- and counter-ions.

In the classical Donnan model, the sole role of the fixed charge is to
break the stoichiometry between counter- and co-ions. Apart from
that, ions in the membrane phase behave ideally with activity
coefficient γi= ai/ci=1. Settingφ=0 for the external solution, broken
stoichiometry in themembrane is equivalent to imposing a Donnan po-
tential φ= φD on the entire membrane phase. This potential uniformly
raises the concentration of counter-ions and reduces that of co-ions,
resulting in an overall exclusion of invading salt.

The classical Donnan model ignores ion-specific effects other than
ion charge (valence). To introduce ion specificity, the next-level approx-
imations include ionic activity coefficients γi that may incorporate non-
idealities, such as steric constraints and solvation. Ion solvation reflects
the dielectric properties, i.e., medium polarizability, which increases the
enthalpy of a single ion in a low-dielectric membrane compared with
high-dielectric aqueous solution [44–46]. Steric exclusion similarly in-
creases γi, but its origin is entropic; reflecting restrictions on translation,
rotation and vibration of ions confined in pores [42]. These effects raise
ion's excess partial free energy in the membrane gi

E. If expressed in kBT
units, it is related to the activity coefficient as follows

γi ¼ exp gEi
� �

: ð12Þ

Following Yaroshchuk [47], it may be more intuitive to use a non-
Donnan partitioning coefficient or affinity ki instead of γi. When the so-
lution phase is assumed nearly ideal (gi, solE ≈ 0, γi, sol ≈ 1), ki and γi are
related as

ki ¼
γi;sol

γi
¼ exp − gEi − gEi;sol

� �h i
≈

1
γi

¼ exp −gEi
� �

: ð13Þ

Given k's or all ions, the ion partitioning is found by requiring equal elec-
trochemical potential of each ion ψi in the solution and membrane
phases. The (dimensionless) electrochemical potential is defined as

ψi ¼ μ i � ziφ; ð14Þ

where the sign corresponds to the ion charge.
Since φ is unknown a priori, it might be easier to define and solve

equilibrium relations for independent salts rather than ions. For example,
in a mixture of Na+, Ca2+, and Cl−, such independent salts will be NaCl
and CaCl2. Since salts are neutral, electric potential cancels out and the
chemical and electrochemical potentials of a salt become identical. For
a binary salt Mz-Az+ one then obtains

μs ¼ zþμ− þ z−μþ ¼ zþ lnC− þ z− lnCþ
¼ zþ ln c−=k−ð Þ þ z− ln cþ=kþð Þ ð15Þ
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or

c−zþcþz− ¼ k−C−ð Þzþ kþCþð Þz− : ð16Þ

For a single salt in a charged membrane, the electroneutrality further
dictates that c− = z+cs and c+ = z−cs + X/z+, where cs is the concen-
tration of the invading free salt, thereby

cszþ cs þ X=z−zþð Þz− ¼ k−Csð Þzþ kþCsð Þz− ; ð17Þ

Solving Eq. (17) yields the relation between cs and Cs and free-salt
partitioning coefficient Ss = cs/Cs.

An alternative procedure is through explicit use of the Donnan
potential φD, which is cancelled out in Eq. (16) but appears in the rela-
tions for individual ions, i.e.,

ci ¼ kiCi exp −ziφDð Þ: ð18Þ

Combining such relations for all ions with electroneutrality, yields φD

and cs.
It is straightforward to generalize the solution to any number of ions

and salts by writing down and solving either Eq. (17) for all indepen-
dent neutral salts or Eq. (18) for all ions along with electroneutrality
(Eq. (6)). Solving the resulting set of non-linear equations will yield
both φD and partitioning Si = ci/Ci of each ion. Note that analytical solu-
tion for mixed salts may not be possible in general. One important case
amenable to analytical solution is a mixture of a dominant salt with
dilute trace ions [17–19].

3.3. The excess free energy and ion affinities: PM relations

Practically, the affinities ki = γi, sol/γi ≈ 1/γi may be treated as ad-
justable parameters, but there is much interest to compute them using
appropriate physical relations. The commonly used one that combines
steric exclusion and solvation is

ki ¼ Φi exp −ΔWið Þ; ð19Þ

where Φi is the (entropic) Ferry steric exclusion factor and ΔWi is the
difference in the dimensionless (in kBT units) self-energyWi, the solva-
tion energy of an ion, between the membrane and solution phases.

The solvation energyWi is often approximated using the Born equa-
tion, based on PM, i.e., the view of ions as charged solid spheres in a di-
electric continuum [10,48].When inter-ion interactions are ignored, the
dimensionless Born self-energy of an ion is

Wi ¼
z2i e

2

8πε0εrikBT
¼ z2i

λB

2ri
; ð20Þ

where ri is the ion radius, ε the dielectric constant (relative permittiv-
ity), and λB is the Bjerrum length of the membrane phase defined as
the distance between monovalent ions, at which the electrostatic
interaction energy equals kBT. λB is essentially a characteristic of the
membrane only, given by

λB ¼ e2

4πε0εkBT
: ð21Þ

Eqs. (12)–(20) define amean-fieldmodel of ion exclusion, hereafter
referred to as the Steric-Donnan-diElectric (SDE) model [3]. It is the
generic basis of many transport models of NF and RO, as well as in
electro-membrane processes, such as electrodialysis, membrane elec-
trolysis, and fuel cells [49].
3.4. SDE model: the neutral and charged membrane regimes

Real membranes often contain fixed charges, however, if their con-
tent is small, the membrane may behave essentially as a neutral one
that bears no fixed charge. The distinction between charged and neutral
membranes depends on how the fixed charge density X compares with
the concentration of the invading salt cs. Eq. (17) gives the general
solution; however, it is expedient to consider two limiting regimes.
For clarity, we limit the analysis to the case of a single salt.

The “neutral” regime is obtained when cs NN X. In this case, Eq. (17)
predicts a constant salt partitioning coefficient Ss [3].

Ss ≡
cs
Cs

≈ S0 ¼ kþ

z−
zþ þ z−k−

zþ
zþ þ z−

:

ð22Þ

Wewill refer to the parameter S0, defined by Eq. (22), as salt injection co-
efficient that determines overall affinity of the membrane to salt and will
be used extensively below. For instance, the condition of a “neutral”mem-
brane cs NN X is redefined for the solution concentration as Cs NN X/S0.

Another limiting regime of a “charged” membrane, also known as
“good co-ion exclusion” [11,33], is obtained in the opposite case when
the fixed charge largely exceeds the invading salt, i.e., cs bb X or Cs bb X/
S0. Eq. (17) then predicts a concentration-dependent salt partitioning [3].

Ss ≈ k− kþzþz−
Cs

X

� 	z−=zþ
: ð23Þ

Eq. (17), as well as Eqs. (22) and (23), indicate that Ss should either
stay constant or increase with Cs, butmay never decrease. Since the salt
permeabilityωs is proportional to Ss (cf. Eq. (2)), the samemust hold for
salt permeability. Unfortunately, ωs often exhibits a Cs dependence that
contradicts this and other conclusions, as highlighted in Section 2.3.
There are also a few other inconsistencies, such as large discrepancies
between fitted and independently measured physical characteristics
of the membrane, most notably, X and ε [50–55].

We argue that the actual reason is the mean-field nature of SDE
model that ignores the local variations of the inter-ionic potential and
thus greatly underestimates the ion-ion interaction energy. As ex-
plained below, mean field fails when this energy is large. Since both
Wi and ion-ion interactions are governed by essentially the same phys-
ical parameters, i.e., ion sizes and membrane dielectric constant, a situ-
ation in which bothWi is large and local potential variations are small is
impossible. The SDEmodel is then fundamentally flawed in charged low-
dielectric membranes, which includes most membranes used in RO, NF
and many electro-membrane separations.

4. When the mean-field breaks down: ion association

4.1. Characteristic length scales analysis

The concept of a uniform Donnan potential implies that, if overall
electroneutrality is satisfied, the entropy or thermal energy kBT domi-
nates over all inter-ionic interactions and smears potential variations.
Whether this condition is satisfiedmay be directly tested by comparing
relevant length scales [56,57]. One natural length scale is set by the
Bjerrum length λB, a membrane characteristic (Eq. (21)). The dimen-
sionless Coulomb energy U(x) of interaction between two ions i and j
is the ratio of λB or, for multivalent ions, zizjλB, to the ion-ion distance x

U xð Þ ¼ ziz jλB

x
≅
λB

x
: ð24Þ

Thedistance xhas natural lower and upper bounds. The former is the
distance of closest approach b= ri+ rj, where ri and rj are the ionic radii.
The upper bound L is determined by the average inter-ion spacing, ap-
proximately equal to c−1/3, where c is the characteristic ion



Fig. 3.Maps of Na+ and Cl− concentration in a polyamide membrane, presented as time-
averaged ion charge per pixel, obtained inMD simulation of a polyamide network exposed
to a NaCl solution. After reference [61].
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concentration in themembrane. The natural choice is c= cs= S0Cs for a
neutral membrane and c = X for a charged one.

Another often used length scale is the Debye screening length λD,
which is the distance, belowwhich an ion significantly perturbs the sur-
rounding ionic “atmosphere” [58]. However, this length is not indepen-
dent and related to L and λB [56]. Indeed, after inserting the ion, the
change in entropy of the atmosphere would just balance the change in
electrostatic energy. The unperturbed atmosphere of radius λD contains
on average N0 = λD

3/L3 ions, which increases to N0 + 1 after inserting
the central ion thus entropy changes by Δs = ln [(N0 + 1)/N0] = ln
(1+ L3/λD3)≈ L3/λD3 (in kBunits). The corresponding gain in electrostatic
energy in kBT units is (up to a numerical factor) λB/λD, since the
atmosphere's charge is on average λD away from the central ion. Equat-
ing the two yields λD, as follows.

Δs ≈ L3=λ3
D ≅ λB=λD orλ2

D ≅ L3=λB: ð25Þ

Note this analysis and the very notion of λD are only meaningful
when the atmosphere contains many ions, i.e., L3/λD

3 bb 1 [58], which
means λD NN L or, equivalently, λB bb L.

We see that the three length scales b, L and λB fully define the system
and set themaximal and minimal values of electrostatic energy relative
to the thermal energy. Three cases are possible:

1. When λB ~ b bb L, the thermal energy dominates over electrostatics
and effectively “stirs” the system so that majority of ions dissociate.
This is the typical situation in water, as well as strongly hydrated
membranes or hydrogels, where λB = 0.7 nm is commensurate
with the diameters of most inorganic ions (0.2–0.7 nm) and is
much smaller than L (at least a few nm for Cs ~ 1 M). The concept
of smeared Donnan potential is then applicable. Dissociated ions
behave as nearly free species, but there still may be some weak
collective effects addressed by the Debye-Hückel (DH) theory.

2. In another extreme, λB N L, the ions are spaced so closely that the
thermal energy becomes weaker than ion-ion electrostatic interac-
tions. Majority of ions should associate, forming ion pairs, triplets
etc., and only very few ions will be able to move freely. In these
regime,mean-field-typemodels (SDE, PB etc.), as well as the DH the-
ory and the very notions of Debye length and Donnan potential, will
break down entirely. For instance, Eq. (25) indicates that in this
regime λD bb L, i.e., the Debye “atmosphere” occupies a volume
unphysically smaller than the average volume per ion, i.e., will
contains less than one ion. Such regime will require a non-mean-
field treatment.

3. Between the above regimes, i.e., within the range b b λB b L, the situ-
ationmaybe viewed as coexistence of two states, free and associated.
Approximate self-consistent theories for this case, also called “chem-
icalmodels” [10],were first advanced by Bjerrum for ion solutions [9]
and later by Katchalsky et al. [59] and Manning [60] for
polyelectrolytes.

It is expedient to redefine cases 2 and 3 for a strongly chargedmem-
brane in terms of membrane characteristics. In a charge membrane,
L ≈ X−1/3 and the condition λB N L may be expressed as

ε b
e2

4πε0kBT
X1=3: ð26Þ

For typical fixed charge densities in ion-selective and desalination
membranes, X ~ 0.5 M, case 2 will occur when ε b 20–30. Except for
highly swollen hydrogels, mostmembranematerials [37], even contain-
ing a few 10% of water, should have average ε in this range. Mobile ions
in suchmembranes will be subject to a strong non-uniform potential of
fixed charges, which cannot be adequately replaced with a smeared
Donnan potential. As an illustration, Fig. 3 shows the time-averaged
ion concentration obtained in MD simulations of membrane-NaCl
solution equilibrium [61]. It is seen that, except for largest water-filled
cavities, Na+ and Cl− ions in a polyamide matrix tend to become local-
ized around fixed charges, which bears little resemblance to the
smeared Donnan-like distribution.

A crucial observation is that for λB N b (case 3) or more so for λB N

L NN b (case 2), the thermal energy will be small compared not only
with the inter-ionic electrostatic energy, but with the Born solvation
energy as well, as easily seen by comparing Eqs. (20) and (24). This
means that the SDE model, simply combining the Born energy and
a uniform Donnan potential, becomes physically inconsistent and ex-
ceedingly poor for many NF, RO and ion-selective membranes, most
of which are both charged and low-dielectric. A correct model must
address the fact that the actual potential around fixed charges within
such membranes will be highly non-uniform, promoting a strong ion
association in the form of pairs, triplets etc. The “chemical-model”
approach, originated by Bjerrum, that self-consistently treats ion as-
sociation is briefly reviewed in the next section.

4.2. Ion association in pairs, triplets and larger associates

Bjerrum considered the probability dp(x) of finding two ions, a cen-
tral one of charge z+ and a closest “satellite” of charge z−, at a distance
between x and x + dx in the following form [10,48].

dp xð Þ
dx

¼ 4πx2 e−U xð Þ
 �
R L
b 4πx2 e−U xð Þh idx

≈
x2 exp

zþz−λB

x

� �
R L
b x

2 exp
zþz−λB

x

� �
dx

: ð27Þ

The exponent in Eq. (27) is the Boltzmann factor containing the di-
mensionless (in kBT units) electrostatic energy of the satellite ion U(x)
averaged over the spherical shell 4πx2dx. The denominator in Eq. (27)
is the partition function or phase integral of a satellite ion over the aver-
age volume L3 per ion (L NN b).

In dilute solutions, the probability of finding more than one satellite
sufficiently close to the central ion is small and interaction with the
other ions (multi-body interactions) may be ignored thus the potential
may be approximated by the spherically symmetric Coulomb potential
U(x) ≈ −z+z−λB/x. It is easy to see that for point-like charges, i.e.,
b = 0, the phase integral diverges, which means the solution will col-
lapse to point-like neutral associates. Bjerrum pointed out that a finite
b is crucial for preventing the association collapse [5].

The numerator in Eq. (27) has a minimum at q= z+z−λB/2. On this
basis, Bjerrum proposed to divide the total phase space b ≤ x ≤ L to the
“free” (x N q) and “associated” (x b q) states. He treated associates as
neutral species and applied the DH theory to the free ions only. The
distinction between associated and free species in the Bjerrum theory
seems somewhat arbitrary, yet Bjerrum's choice of q was found to be



Fig. 4. Schematic maps of probability density of finding the center of a second and a third
ions (shown in light blue), respectively, in a pair (A) and a triplet (B) composed of hard-
sphere ions of the same diameter in a dielectric continuum. Darker grey shade
corresponds to larger probability. The first ion in pair and triplet is shown in red and
second ion in triplet in dark blue; their position is assumed to be fixed in ground-state
arrangement relative to the last-added ion.
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reasonable inmost cases [62]. It was also shown that contribution of ion
pairs to the electrostatic energy (ion-dipole interactions), ignored by
Bjerrum, cannot be ignored for concentrated systems, close to the con-
densation transition of free ion “gas” to a dense ionic “liquid” [57]. Yet,
Bjerrum's approach may reasonably describe the present case of dilute
free ions.

The treatment is easiest for a symmetric 1:1 electrolyte formingneu-
tral pairs. In this case z+ = z− =1 and q= λB/2. In water q bb L (dilute
solutions), the free-ion part of the phase integral (q b x b L) covers most
of the solution volume, in which 〈e−U(x)/kT〉 ≈ 1. This part is then
roughly the average volume per cation or anion L3 = 1/c+ = 1/c−.
Using the Coulomb potential for computing the phase integral over
the associated state (b b x b q) yields the association constant, analogous
to association constants of weak electrolytes, as follows

K2 ¼ c2
cþc−

≈ 4π
Zq
b

e−U xð Þ
D E

x2dx ≈ 4π
ZλB=2

b

eλB=xx2dx

¼ Q2 � 4πb3
b
λB

eλB=b ð28Þ

where c2 is the concentration of pairs.
Eq. (28) ismademore compact by defining the reduced temperature

T⁎= b/λB, as the thermal energy kBT scaled by the electrostatic energy of
the ion pair at tight contact (“ground state”) [57,62]. Eq. (28) then
becomes

K2 ¼ Q2 b; T�ð Þ � 4πb3T�e1=T� ≈ 101b3T�e1=T�: ð29Þ

The factor Q2 approaches 1 when T⁎ bb 1, which corresponds to the
low-temperature ground state, and reaches a maximum of 3.36 at T⁎=
0.176. The ground-state expression may then be a reasonable approxi-
mation, even if T⁎ is not very small. Eq. (29) can be generalized to sym-
metric (neutral) or asymmetric (charged) pairs of ions with charges z+
and z− in a dilute solution, inwhich caseλB is simplymultiplied by z+z−
(Eq. (21)) and T⁎ is divided by the same factor.

The association constants for triplets, quadruplets etc. may be ob-
tained by generalizing Bjerrum's analysis for pairs. Agua et al. derived
the association constant for triplets composed of a central ion of abso-
lute charge z and two satellite counter-ions of unit charge [62]. The re-
sult can be similarly presented as a product of the ground-state
expression and a correcting termQ3 that approaches 1 for T* bb 1, as fol-
lows

K3 ¼ Q3
32π2

z−1=4ð Þ2
b6

b
λB

� �3

exp
2z−1=2
λB=b

� 	
≈ 102b6T�3 exp

α3

T�
h i

: ð30Þ

The structure of expressions for pairs and triplets, Eqs. (29) and (30),
may be understood as follows. The exponential factors of the form exp.
(α/Τ⁎), with α2 = z for pairs or α3 = 2z−½ ≅ 1 for triplets, reflects the
gain in the electrostatic energy (enthalpy) for the ground-state arrange-
ment (Fig. 4). Conversely, the prefactors V2 ≅ 10b3T ∗ or V3 ≅ 102b6T ∗3/V2
≅ 10b3T ∗2 may be understood as volumes, within which the second and
third ions may still undergo residual thermal motion, relative to the
other ions in the associate. The volumes determine the entropy loss
upon association,Δs2= −kB ln (csV2),Δs3= −kB ln (csV3). For the sec-
ond ion, this volume is a thin spherical shell of area 4πb2 and thickness
bT⁎ bb b (dark-shaded region in Fig. 4A). For the third ion, this volume
(dark-shaded region in Fig. 4B) is asymmetric and still smaller ~ b3T⁎2.
For T* bb 1, the volumes V2 and V3 are much smaller than the volume
of the ion pair (~b3), that is, the ions are strongly immobilized, but re-
duced entropy is compensated by the gain in electrostatic energy.

It is uncommon to consider still larger multiplets, since the concen-
tration of n-plets is proportional to Cs

n and should fall off rapidly below
the salt solubility. However, the derivation can be generalized to larger
multiplets [62]. The association constant of an n-plet will differ from its
predecessor (n−1)-plet by a factor

θn ¼ Kn=Kn−1 ¼ Vn exp Δαn=T
�ð Þ; ð31Þ

where 0 b Δαn = αn − αn−1 b 1 and Vn~10b3T ∗m with 1 ≤ m ≤ 2 for
monovalent ions of equal size. The analysis presented in Appendix
shows that Vn and Δαn hence θn vary fairly slowly with n and may be
roughly seen as constants. We may then crudely view the association
constants of increasingly large associates as a geometric series, where
each subsequent term differs from its predecessor by a similar factor.
This approximation will be used below.

5. Ion partitioning and association in a low-T⁎ membrane: general
relations

5.1. Phase behavior of ionic fluids: general PM behavior

General features of ion fluid thermodynamics have been established
using PM; most commonly the restrictive primitive model (RPM), in
which all ions are of the same size and absolute charge. Fisher et al. sum-
marized phase diagrams in reduced variables T⁎ and b3c obtained for
RPM by several analytical theoretical models and Monte Carlo (MC)
simulations [57,62]. They showed that different models lead to fairly
similar temperature-density phase diagrams, qualitatively resembling
gas-liquid equilibria of regular fluids, with critical temperature Tcr

∗ ≈
0.05 − 0.1 and critical ion concentration ccrb

3 ≈ 0.05 − 0.1.
The region T ∗ NN Tcr

∗ in the phase diagram represents situations far from
formation of a dense condensed phase. In this regime, ions approach ideal
solution-like behavior, when the Donnan model may well apply. Some
weak corrections of mean-field type, such as the DH theory, or account
for moderate Manning condensation, may improve accuracy [37,63,64].
Unfortunately, the deviations are expected to become exceedingly strong
inNF, RO andmanyother ion-containingmembranes,which are not exces-
sively swollen and for which T⁎ ~ 0.05 to 0.2 is typical. We then focus here
on this T⁎ range, for which ion association comes strongly into play.

It is expedient to stress the distinction between computing phase
diagrams and ion partitioning in a membrane. The former has the ion
concentration predetermined, whichmay be arbitrarily large and result
in condensed states. In contrast, for the latter it is the activity or virtual
concentration in the external phase that is fixed and determines the
actual ion concentration in themembrane. Since affinity of low-T⁎mem-
brane phase to ions is small, a non-charged (neutral) membrane should
take up only a small concentration of free ions, which would associate
negligibly and are unlikely to form a condensed state (see next section).

However, if a membrane contains a large fixed charge of density X, it
will impose ion concentrations otherwise non-attainable in themembrane
phase in the low-T⁎ regime. Such excessive ion concentrations must pro-
mote ion “condensation” or association on fixed sites at ion activities that
would not produce condensation in a neutral medium. (In a sense, this is
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analogous to water uptake from unsaturated vapor by a hydrophilic sor-
bent.) This may greatly enhance ion uptake by a charge membrane.

However, in the context of ion permeation, a large uptake promoted
by fixed charges may not be translated to proportionally larger perme-
ability, since ions in free and asscotiated states of ions may significantly
differ in effective mobility. This complicates the relation between
ion-partitioning Si and permeability ωi (Eq. (3)). A treatment that con-
sistently addresses both uptake and mobility of associated species
within the same physical picture will be developed below.

5.2. Non-charged membrane: PM analysis

Consider first a membrane with a negligible charge X ≈ 0. In the
low-temperature regime T* bb 1 the association constants are large,
however, the ion self-energy Wi is also large. This is immediately seen
by re-writing the Born equation (Eq. (20)) in terms of T*,

Wi ¼
z2i λB

2ri
¼ z2i b

2ri

1
T� ≅

1
T� NN 1: ð32Þ

Since Wi is large, salt injection coefficient S0 is small and so is the free
salt concentration in the membrane cs. This is supposed to make con-
centration of n-plet associates, proportional to cs

n, small as well. Associ-
ation should then insignificantly affect salt permeation.

For example, let us use PM and consider a salt, not necessarily sym-
metric, made of a cation of charge z+ and anion of charge z− of equal
radii r+ = r− = b/2 and ignore non-ideality in external solution
phase and steric exclusion. Combining Eqs. (19), (20), and (22), the
salt injection coefficient is obtained as

S0 ¼ exp −
zþz−
T�

� �
: ð33Þ

The concentration of free salt and ions in the membrane is then

cs ¼ S0Cs; cþ ¼ z−cs ¼ z−S0Cs; c− ¼ zþcs ¼ zþS0Cs; ð34Þ

and the concentration of ion pairs c2 (Eq. (28))

c2 ¼ K2cþc− ≅ b3
T�

zþz−
exp

zþz−
T�

� �
� zþz−C2

s exp −
2zþz−
T�

� �
¼ b3C2

s T
� exp −

zþz−
T�

� �
: ð35Þ

The associated ion fraction is then

c2
cs

≅ b3CsT
�: ð36Þ

This fractionmust be small, since T* is small and b3Cs is the volume frac-
tion of ions in solution, usually small aswell (for instance, b3Cs≈ 0.1 for
saturated ~6MNaCl solution.). The ions pairs are then supposed to con-
tribute negligibly to salt partitioning and permeation, as was concluded
long ago in the context of lipid membranes [45,65].

As another way to confirm negligible association within PM, wemay
also verify that the distance q= z+z−λB/2 = z+z−b/2T ∗ separating free
and associated states ismuch smaller than the average distance between
free ions in the membrane L= cs

−1/3. Indeed, from Eq. (34), the ratio

q
L
¼ bc1=3s

zþz−
2T� ≈ bC1=3

s
zþz−
2T� exp −

zþz−
3T�

� �
ð37Þ

must be small, since bcs
1/3 = (b3cs)1/3 is small (see above), whereas

zþz−
2T� expð−zþz−

3T� Þ may never exceed 1.5/e ≈ 0.55 (maximum at

T⁎ = z+z−/3) and is small as well for T⁎ bb 1. We conclude that,
within PM, mean-field approximation may work reasonably well in
neutral low-T⁎ (i.e., low-dielectric) membranes.
Nevertheless, PM may not always represent the real situation and
this conclusion should be taken with caution. Even in water, certain
salts are known to associate more strongly than PM predicts [8,10]. In a
low-dielectric membrane, where electrostatics is enhanced and compli-
cated by microheterogeneities and other effects, both S0 and association
constants are likely to deviate from PM (see Section 6.4). As a result, for-
mation and permeation of pairs or even larger associates may become
non-negligible. The consequences of non-PM behavior may become
even more dramatic for charged membranes. For this reason, in the
rest of this section, focused on chargedmembranes, wewill first develop
general relations and thereafter re-analyze them using PM in Section 6.

5.3. General equilibrium relations for a charged membrane

As already emphasized in Section 5.1, substantial fraction of fixed
ionizable groups in a charged low-T⁎ membrane is expected to form
associates with mobile ions. Consider first a membrane of fixed charge
density X in equilibrium with solution of an MA salt, such as NaCl. Let
us subdivide themembrane to unit near-spherical cells, each containing
a fixed charge, spaced on average by a distance L= (6×/π)−1/3≈ X−1/3,
as schematically shown in Fig. 5. The cells may either remain empty, i.e.,
contain only the dissociated fixed charges X− or contain mobile anions
and/or cations as well. Since the cell radius L/2 is typically commensu-
ratewith or smaller than the distance q= λB/2, in the spirit of Bjerrum's
theory we may refer to different non-empty states of a cell as neutral
XM pairs, charged triplets XM2

+ and XMA− etc.
Since for small T⁎ the interaction with the fixed charge within a cell

dominates over interactions with ions outside the cell, we may approx-
imately consider each cell as independent and sum up the different
states of a cell in a one-site grand partition function, as follows [58].

ξ ¼ 1þ KXM Mþ� 
þ KXM2 Mþ� 
2 þ KXMA Mþ� 

A−½ � þ… ð38Þ

whereK's are appropriate binding constants that are essentially one-cell
phase integrals (partition functions) for the corresponding states. [M+]
and [A−] are the hypothetical concentrations that would be obtained in
the membrane phase, subject to ion self-energy and electroneutrality
but far from (i.e., not interacting with) any fixed charge. They play the
role of electrochemical activities of the ions in themembrane or free-ion
concentrations, if the membrane had room for free ions. Roughly, these
concentrations should be measured at the boundaries (dashed lines)
between the cells occupied by neutral XM pairs depicted as solid
green circles in Fig. 5A. At these boundaries, the average potential
directly imposed on the free ions by the fixed and mobile ions in the
neighboring cells is presumably small, yet some residual Donnan-like
background potential is possible, similar to a neutral membrane.
Equilibrium with external solution requires that (cf. Eq. (16))

Mþ� 

A−½ � ¼ S0Csð Þ2; ð39Þ

where S0 = (kMkA)1/2 is the salt injection coefficient (cf. Eq. (33)).
The K's in Eq. (38) are similar to respective association constants

(Section 4.2), except that the integration is over the entire cell volume,
i.e., the upper limit is the cell radius x= L/2 rather than x= q. However,
for small T* the difference is negligible, since the integral is dominated
by small distances x ~ b bb L.

As a further approximation, restrict the summation in Eq. (38) to the
states (“associates”) with charges −1, 0 and + 1, since more charged
states should be too few due to large uncompensated self-energy and/
or the need to associate toomanymobile ions (cf. csn dependence of con-
centration of n-plets). These three groups of associates will form three
“homologous” series formed by adding neutral pairs M+A− to either
X−, XM0 or XM2

+. The K constants for any such “homologue” may be
represented as the product of the association constant of the predeces-
sor homologue and a factorθMA, for instance, KXM 2A = θMAKXM (see
Eq. (31)). By arguments of Eq. (30), the factors θMA = θMθA may



Fig. 5. Schematic snapshots of a chargedmembrane in equilibriumwith solutions of anMA (A, C) orMA2 (B, D) salt. Panels A and B are for low salt and C and D for high salt concentrations.
Dashed line-encircled regions are unit cells, spaced at distance L, each containing a fixed charge. Small empty circles are dissociated fixed charges, medium-sized circles are XM pairs and
largest circles are XM2 or XMA triplets. Negative species are solid redwith aminus sign, positive species are solid bluewith a plus sign, and neutral ones are solid green. In panel A, aminor
fraction of XMA− triplets is not shown for simplicity.
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somewhat vary between the three series and individual homologues
but all are likely to be commensurate. Therefore, the term contributed
to Eq. (38) by each homologue will differ from its predecessor in the se-
ries, e.g., XM2A versus XM, by a factor

Θ ¼ θMA Mþ� 

A−½ � ¼ θMAS

2
0C

2
s ≅ Csb

3
� �2

T�3 exp
ΔαM þ ΔαA−2

T�

� �
: ð40Þ

Based on PM relations, Eqs. (20), (29) and (31), and Eq. (16), the last
expression is expected to be small, since Csb

3, T*3 and the exponential
factor must all be small (note Δα b 1, cf. Eq. (31)). This means we
might truncate Eq. (38) to just three first three terms (first homologues
in each series). However, such truncationwould leave no cells that con-
tain A− ions, which would be unphysical. Therefore, we keep in ξ the
four terms shown in Eq. (38), which we now use as an approximation.

The average number of cations and anions per cell, expressed as the
function of K's and S0 and solution concentration Cs, may then obtained
from ξ using the standard relation of statistical thermodynamics along
with overall electroneutrality and Eq. (39). First, the electroneutrality
dictates that the average charge per cell must be zero, i.e., −1 + KXM2

[M+]2 − KXMA[M+][A−] = 0 therefore (Eq. (39))

Mþ� 
2 ¼ 1þ KXMA S0Csð Þ2
KXM2

: ð41Þ

The average number of M+ and A− ions per cell is then

nM ¼ Mþ� 
 ∂ lnξ
∂ Mþ� 
 ≈ KXM Mþ� 
þ 2KXM2 Mþ� 
2 þ KXMA Mþ� 


A−½ �
ξ

≈ 1þ KXMA S0Csð Þ2
ξ

;

ð42aÞ

nA ¼ nM−1 ≈
KXMA S0Csð Þ2

ξ
; ð42bÞ

where

ξ ≈ KXM
1þ KXMA S0Csð Þ2

KXM2

 !1=2

þ 2 1þ KXMA S0Csð Þ2
h i

: ð42cÞ

Eq. (42) are the key result of the present model that describes ion
partitioning in the case of MA salts. Relations for an MA2 salt of a
divalent cation M2+ and a monovalent anion A−, such as CaCl2, are ob-
tained similarly. The primary states of charge −1, +1 and 0 will be
charged cells X− and XM+ and a neutral triplet XMA0. Their homo-
logues will be formed by adding neutral MA2 combinations to primary
states, but such large associates will be rare and again ignored here.
The analogues of Eq. (38) and (39) will then be

ξ ≈ 1þ KXM M2þ
h i

þ KXMA M2þ
h i

A−½ � ð43Þ

M2þ
h i

A−½ �2 ¼ 4 S0Csð Þ3; ð44Þ

where S0 = (kMkA2)1/3. Electroneutrality further requires that−1+ KXM

[M2+] = 0, then

M2þ
h i

¼ 1=KXM : ð45Þ

The average number of ions per cell will then be (note double charge
of M2+ in Eq. (46b))

nM ¼ M2þ
h i ∂ lnξ

∂ M2þ
h i ≈ KXM M2þ

h i
þ KXMA M2þ

h i
A−½ �

ξ
≈ 1−

1
ξ
; ð46aÞ

nA ¼ 2nM−1 ≈ 1−
2
ξ
; ð46bÞ

where

ξ ≈ 2 1þ KXMA
S30C

3
s

KXM

 !1=2
2
4

3
5: ð46cÞ

Eqs. (42) and (46) define adsorption isotherms ofmobile ions on the
fixed charges as a function of Cs. Since the overall concentration of ion i
in the membrane is ci ¼ niX, the overall ion partitioning coefficients for
MA salts are.

SA ¼ nAX
Cs

¼ X
Cs

KXMA S0Csð Þ2
ξ

; SM ≈
nMX
Cs

¼ X
Cs

1þ KXMA S0Csð Þ2
ξ

" #
; ð47Þ



Fig. 6. Computed variation of co-ion (solid lines) and counter-ion (dashed lines)
partitioning with salt concentration in solution: (A) MA salts, (B) MA2 salts. Parameter
used are X = 0.5 M, b = 0.3 nm, and T* = 0.15 for computing salt injection coefficient
S0 using PM. Curves 1 to 4 correspond to PM values of association constants computed
using T* = 0.15, 0.10, 0.07, and 0.05 for fixed S0. SDE predictions for the same S0 are
shown for comparison. Some dashed lines are not visible due to line overlap.
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with ξ given by Eq. (42c). The corresponding expressions for MA2

salts are

SA ¼ nAX
2Cs

¼ X
Cs

1
2
−
1
ξ

� �
; SM ¼ nMX

Cs
¼ X

Cs
1−

1
ξ

� �
; ð48Þ

with ξ given by Eq. (46c).
The above relations may be used to analyze ion partitioning data,

such as ion exchange followed by spectroscopies such as ICP, RBS, XPS,
scintillation, and UV–vis, or micro-weighing, that count overall ion con-
tent in the membrane [50,51,66–69]. However, Eqs. (47) and (48)may
not be combined in Eq. (3) with the free ion mobilities DA and DM to
compute permeabilities. The reason is that the mobile ions cease to be-
have as free ones when they bind to the fixed charges [63,70,71]. The
appropriate general relations for mobilities and permeabilities will be
developed in the next section.

It is expedient to highlight the trends predicted by Eqs. (47) and (48)
in more detail. First, Eqs. (42c) and (46c) show that for dilute solutions
(low salt), i.e., small Cs, ξ will approach a constant, ξ ≈ 2 + KXM

(KXM2
)−1/2 for MA salts and ξ ≈ 2 for MA2 salts. The resulting situation

is schematically depicted in Fig. 5A and B, respectively. Remarkably, it
is distinctly different for the two salt types, as MA will convert most of
the fixed charges to neutral XM pairs (Fig. 5A), while MA2 will result
in about equal amounts of dissociated fixed charges X− and oppositely
charged XM+ pairs (Fig. 5B). In either case, the membrane will contain
very few triplets and co-ions, but the number of counter-ions per fixed
chargewill then approach 1 forM+and½ forM2+ cations (cf. Eqs. (42a)
and (46a)). This is in excellent agreement with RBS data by Coronell et
al., who reported that, after wash of excess salt at different pH (which
alters X), uptakes of Ag+ and Ba2+ ions by the selective layer of RO
membranes show a ratio very close to 2:1 for all pH values [67]. Obvi-
ously, this agreement may not be viewed as evidence of association,
since it is dictated by electroneutrality and is predicted by the Donnan
or SDE models as well. Yet it does indicate that uptake of co-ions (an-
ions) from a dilute solution will always be small, regardless of whether
association is or is not included in the model.

The partitioning of co-ions A− at small Cs may be obtained by
expanding Eqs. (42b) and (46b), which gives.

SA ≈ S20Cs
XKXMA

2þ KXMK
−1=2
XM2

MAð Þ; SA ≈ S3=20 C1=2
s

XKXMAK
−1=2
XM

2
MA2ð Þ: ð49Þ

These expressions may be compared with the SDE relation, Eq. (23),
that predict that SA ≈ S0

2Cs/X for MA and SA ≈ S0
3/2(Cs/X)1/2 for MA2. It

is seen that the SDE dependence of salt partitioning on Cs and S0 is
similar to Eq. (49), however, the membrane charge X is replaced
with expressions that has an entirely different value and physical
interpretation!

When Cs increases, the salt partitioning will first increase, following
Eq. (49). However, upon further increase, the situation and observed
trendsmay cross over to a different regime, whereby an increasing frac-
tion of fixed charges may be converted to XMA or XM2 triplets, as
depicted in Figs. 5C and D. (Note that for MA salts, Fig. 5C, triplets are
charged and for MA2, Fig. 5D, they are neutral.) With increasing triplet
formation, nA and nM may eventually saturate and salt partitioning
may decrease, in total contradiction with SDE relations, but in qualita-
tive agreement with RBS data by Zhang et al. [66].

It is important to stress that, in order that ion uptake approach such
saturation,KXMA and S0 should be large enough to let ξ increase substan-
tiallywithin the realistic range of Cs (e.g., up to 1M). Note that in the PM
picture, KXMA and S 0 are coupled through T⁎ in a way that, when one in-
creases, another one decreases, which precludes crossover to a different
regime (see Section 6). Therefore, possibility of another regime, sug-
gested by experimental data, is only realistic when KXMA (association)
and S0 (solvation) are nomore coupled or are determined by different ef-
fective T⁎ values. Fig. 6 illustrates this point by plotting the ion uptake as
a function of Cs according to Eqs. (47) and (48) for the same S0, corre-
sponding to T⁎ = 0.15, and a few values of KXMA, corresponding to the
same T⁎ and a few lower T⁎ values. For comparison, SDE predictions
are shown as well. It is seen that curve 1 (the same T⁎ for both KXMA

and Γ0) is qualitatively similar to SDE. However, as KXMA is increasingly
decoupled, a cross-over to a decreasing trend appears. It is also seen
that MA2 more readily departs from the SDE-like behavior than MA.
Themechanisms that may cause such deviations from PM and decouple
association from solvation are discussed in Section 6.4.

5.4. Ionmobility versus binding: trade-off relations in a chargedmembrane

5.4.1. Generalized interaction potential
Given PM may not supply accurate estimates of association con-

stants (K values), they may have to be viewed as effective ion-specific
parameters for practical modeling. However, such parametrization
must not ignore the inherent connection between ion binding and
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mobility, therefore both need to be analyzed in a consistent manner. To
keep the relations reasonably general, we will first derive relations that
relax the most problematic ingredient of PM, namely, purely electro-
static short-range interactions within the region x b q defining the asso-
ciated state.

Consider therefore a more general spherically symmetric dimen-
sionless potential U(x) that becomes predominantly electrostatic at dis-
tances x NN b, yet may involve non-PM shortest-range effects at
distances x ~ b with just two key features:

(a) the energy U(b) at contact x = b is strongly attractive, i.e., nega-
tive and large, thus T# = 1/|U(b)| is small, and

(b) U(x) rapidly decays away from x= b, with the attenuation length
|U(b)/U′(b)| = b# much smaller than the distance L between the
binding sites (fixed charges).

These assumptions are consistent with the short-range nature of
physical mechanisms that modify the inter-ionic Coulomb potential
(see Section 6.3). Like for PM at small T⁎, for such a potential the integra-
tions involved in the derivation of both association constants andmobil-
ities may be performed approximately.

5.4.2. Permeability of MA salts
First, define the self-diffusivityD0 of a free ion in a uniform potential

field, based only on its friction with the medium,. In a non-uniform po-
tential field, featuring potential barriers and/or wells, the effective mo-
bility or self-diffusivity D will have a different value, usually lower
than D0 [70,72]. Since the potential field depends on the type of associ-
ate, this effective value will differ for different types of associates, even
for the same ion. If an ion forms different associates, the overall ion
partitioning coefficients of the previous section will have to be split up
to contributions by each associate, and the permeability P has to appro-
priately combine partitioning coefficients S and mobilities D (see Eq.
(3)) of each type.

Derive first the contribution of XM pairs to M+ permeability using
the above generalized potential U(x), starting from the generalized ex-
pression for association constant KXM. The phase integral, Eq. (28), has
to be evaluated now over the entire range b b x b L/2. At short distances
x ~ b, it will still be dominated by the large and rapidly decaying expo-
nential factor, while the other, more slowly changing terms may be re-
placed with their ground-state values at x = b. By approximating the
potential asU(x)≈U(b)+U′(b)(x− b), Eq. (28) gives the pair constant

KXM ¼ 4π
ZL=2
b

e−U xð Þx2dx ≈ 4πb2e−U bð ÞþU0 bð Þb
Zq=2
b

e−U0 bð Þxdx ≈ K2

¼ 4πb2b#T#e1=T
#
: ð50Þ

When L is smaller or commensuratewith λB and they are bothmuch
larger than b#, to a good approximation, the result is independent of the
cell size L and KXM is well approximated by the constant K2, obtained by
integration up to Bjerrum's cutoff q = λB/2 instead of L/2. It is easy to
verify that for Coulomb potential U(x) = −λΒ/x, the result is identical
to Eq. (28).

On the other hand, if L NN q, the region q/2 b x b L/2 with a
negligible potential, i.e., e−U(x) ≈ 1, will add to KXM roughly the volume
1/~X ≈ π(L3 − q3)/6. For very small fixed charge density, ~X ≈ Xbb1=K2,
the value 1=~X ≈ 1=X represents the small-X limit for KXM, while K2 rep-
resents the opposite large-X limit of KXM. To cover all cases, the two
may be combined in one simple approximate relation KXM ≈ K2 + 1/X.
However, for values of X and T* relevant here, this correctionwill be ines-
sential and Eq. (50), i.e., KXM≈ K2 is adopted as an approximation below.

To compute the ion diffusivity consistent with the same potential U
(x), we will employ general relations presented by Lifson and Jackson
[70]. They relate self-diffusivity in a cell to the average escape time t
that takes the ion to reach the cell boundary. In the present case of an
ion escaping from the ground state at x= b bb L/2 to the cell boundary
at x = L/2 in a spherically symmetric potential field U(x), it takes the
following form

t ¼ 1
D0

Z L=2

b
dx0x0−2 exp U x0ð Þ½ �

Z x0

b
dx″x″

2
exp −U x″

� �� 

: ð51Þ

The short-range region x” ~ b with the large and rapidly decaying
exponential exp[−U(x″)] dominates the inner integral, which
then depends weakly on x’ for x’ NN b. On the other hand, the term exp
[+U(x′)] in the outer integral is vanishingly small for x’ ~ b. We then ap-
proximate the escape time for M+ escaping an XM pair. i.e., interacting
with remaining X− fixed charge, as follows

tM XMð ÞD0M ¼
Z L=2

b
dx0x0−2eU x0ð Þ

Z x0

b
dx″x″

2
e−U x″ð Þ ≈ b2b#T#e−U bð Þ

Z L=2

b
dx0x0−2eU x0ð Þ ≈

KXM

4π

Z L=2

b
dx0x0−2eU x0ð Þ

ð52Þ

To evaluate the last outer integral, it may be reasonable to approxi-
mate U(x) beyond the short range x ~ b with the Coulomb potential U
(x) ≈ −λΒ/x, thereby

tM XMð Þ ≈
KXM

4πD0M

Z L=2

x¼b
de−λB=x ¼ KXM

4πD0MλB
e−2λB=L−e−λB=b
� �

≅
KXM

4πD0MλB
:

ð53Þ

In the last expression we dropped e−λB/b bb 1 and e−2λB/L ≅ 1 as ines-
sential. As for Eq. (50), we also ignore the case of L NN q; otherwise, this
would require adding to Eq. (53) a free-diffusion correction term ap-
proximately equal to L2/24 in the small-X limit. Eq. (53) then expresses
the large-X limit for tMðXMÞ.

The relations for binding of M+ ions to or escaping from a charged
triplet XM2

+ are derived along the same lines. M+ will now be in the
field of a neutral pair XM. Beyond the shortest range x ~ b, the potential
of the third ion may then be approximated by the ion-dipole potential
U3(x) ~ −bλΒ/x2, assuming the XM dipole and M+ are most favorably
aligned. (A better approximation may have to average over different
orientations, inwhich caseU3will decay fasterwith x.) The result is then

KXM2 ≈ KXM

ZL=2
b

4πx2e−U3 xð Þdx ≈ K3 ¼ 10b2b#T#e1=T
#
KXM : ð54Þ

Note the short-range interaction parameters b# and T# in general dif-
fer for K2 and K3. For instance, for the Coulomb potential, T# ≈ T* for K2,
but T#≈ 2 T* for K3. Also, once again, we disregard the 1/X correction to
the integral for L NN q, inwhich caseKXM2

≈K3+2K2/X+1/X2would be
a simple approximate expression with correct small- and large-X limits.
Ignoring this 1/X correction in Eq. (54) could be a cruder approximation
than for Eq. (50), since the second M+ ion does not bind as strongly as
the first one, thereforeK3 b K2

2. Besides, the minimum of x2e−U3(x) ≈
x2ebλB/x2 at the distance q3 ≈ (bλΒ)1/2 = λΒT*1/2 that separates the free
and associated states for the third ion is smaller than Bjerrum's q =
λΒ/2 for the second ion. Yet, q3 is probably still commensurate with L,
which justifies KXM2

≈ K3.
Derivation of the escape time of M+ from a XM2

+ triplet will follow
Eqs. (51)–(53). In the last integral in Eq. (52) we may again neglect
the shortest-distance contribution and drop the factor exp.[U3(x)] ≈ 1
for larger distances, thus the outer integral is approximately 1/b. This
ultimately yields the escape time

tM XM2ð Þ ≈
KXM2

4πD0MbKXM
: ð55Þ



1

M XM2ð Þ

2 XM2
þ� 


Cs

!
≈ D0M

4 1þ KXM Mþ� 
� �
λB Mþ� 
þ bKXM Mþ� 
2� �
Lξ2Cs

; ð58Þ
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To exhaust all possibilities, note that M+ may also be found in XMA
triplets, however, it contributes negligibly to M+ permeation. Indeed,
M+ ion escaping from an XMA triplet will leave behind a double-
charged pair XA2−, whose association energy is highly unfavorable
hence KXA ≈ 0. The escape time tMðXMAÞis then very long, which means
M+ mobility within XMA is negligible.

Let us now combine all above contributions and compute the overall
permeability of M+. Consider its diffusion as a random Poisson process
of ion hopping between different cells. Over a differential time dt, the
fraction of ions that have escaped their original cells will be dt=t. Note
that the escape from the region of the strong attractive potential is
slow, since the ion has to diffuse upfield, while the opposite downfield
process, i.e., return to the ground state, is fast. Once an escaping M+

ion enters the binding potential of a neighboring cell, X− or XM, it will
rapidly fall into the new ground state, XM or XM2

+, respectively,
completing a hop (displacement) by a distance L. The time of this down-
fall will be very short, therefore the escape time from the previous state
t may reasonably approximate the average time of the entire hop.

For the sake of completeness, note this argumentwould not apply to
the diffusion across the free-ion-like region in case L NN q, which would
add to Eqs. (53) and (55) a term ~L2/24. Since for an entire hop (and not
just escape from the original cell) the free diffusion distance is doubled
from L/2 to L, the added free-diffusion time for the entire hop will be 4
times larger, i.e. the total hop timewould be roughly t þ L2=6. As before,
the L2/6 correction is regarded inessential here, since, typically, L ~ q.

Note that some escapes towards the cell boundarywill not result in a
hop to a neighboring cell. If an escaping M+ ion hits an XM2

+ or XMA−

cell that – according to the assumptionsmade - is unlikely to accommo-
date another ion, the ion is most likely to return to the original ground
state and end up with a zero displacement. As yet another approxima-
tion, let us ignore the correlations between neighboring cells and as-
sume they are distributed randomly according to their equilibrium
fractions. The average mean-square displacement (MSD) of an M+ ion
then has to weigh “successful” hops to XM or XM2

+ cells (MSD = L2)
and “unsuccessful” ones, hitting XM2

+ or XMA− cells (MSD = 0), with
appropriate equilibrium fractions. MSDwill then increasewith time ap-
proximately as

dMSDM

dt
≈

1
tM

X−½ � þ XM½ �
X

L2 þ XM2
þ� 
þ XMA−½ �

X
0

� �

¼ L2
1þ KXM Mþ� 


ξ
1
tM

; ð56Þ

whence the mobility (self-diffusivity) is obtained using the Einstein
relation as

DM ¼ 1
6
dMSDM

dt
¼ L2

6
1þ KXM Mþ� 


ξ
1
tM

ð57Þ

Finally, sinceM+ ions can be released from states XMandXM2
+, total

average MSD of an M+ ion has to add up MSDs for respective states
weighed by their contributions to M+ partitioning. Since MSD and D
are linearly related (Eq. (57)), the macroscopic permeability PM is
obtained by similarly weighing ion diffusivities in different states, as
follows

PM ¼ DM XMð ÞSM XMð Þ þ DM XM2ð ÞSM XM2ð Þ ≈
L2

6
X−½ � þ XM½ �

X
1

tM XMð Þ

XM½ �
Cs

þ
t

 

where [M+] and ξ are given by Eqs. (41) and (42c), and we also used
Eqs. (53) and (55) and relation X = 6/πL3. (Note the factor 2 before
[XM2

+] because it contains two M+ ions.)
The permeability of co-ions A− is derived along the same lines. A− is

present only in XMA− triplets and may escape only towards XM pairs.
The expression for its escape time is then similar to Eq. (55),

tA XMAð Þ ≈
KXMA

4πD0AbKXM
; ð59Þ

and its permeability is

PA ¼ DA XMAð ÞSA XMAð Þ ≈
L2

6
XM½ �
X

1
tA XMAð Þ

XMA−½ �
Cs

≈ D0AS
2
0Cs

4bK2
XM Mþ� 

Lξ2

:

ð60Þ

Ultimately, the salt permeability is obtained using Eq. (9), PMA = 2
(1/PM + 1/PA)−1

.

5.4.3. Permeability of MA2 salts
The permeability for MA2 salts is derived similar to the previous sec-

tion, assuming that X−, XM+ and XMA0 are the dominant states. Oppo-
site to MA salts, pairs are now charged and triplets are neutral. In
this picture, the cations M2+ only hop from XM+ to X− cells, while
anionsA− hop fromneutral XMA triplets to XM+pairs, i.e., both ions es-
cape from the field of a charge, not a dipole. Disregarding free diffusion
(L ~ q), the average hop times are

tM XMð Þ ≈
KXM

8πD0MλB
; ð61Þ

tA XMAð Þ ≈
KXMA

4πD0AλBKXM
; ð62Þ

and MA2 counterparts of Eqs. (58) and (60) for ion permeabilities are

PM ¼ DM XMð ÞSM XMð Þ ≈
L2

6
X−½ �
X

1
tM XMð Þ

XMþ� 

Cs

≈ D0M
8λB

Lξ2KXMCs

; ð63Þ

PA ¼ DA XMAð ÞSA XMAð Þ ≈
L2

6
XMþ� 

X

1
tA XMAð Þ

XMA½ �
2Cs

≈ D0AS
3=2
0

4λB KXMCsð Þ1=2
Lξ2

:

ð64Þ

where ξ is given by Eq. (46c), KXM and KXMA given by Eqs. (50) and (54)
with K2 ≈ 4πb2b#T#e1/T

#
and K3 ≅ 10b2b#T#e1/T

#
K2, and we also used

electroneutrality condition [M2+] = 1/KXM. As before, the short-range
interaction parameters b# with T# in general differ for KXM and KXMA.
For instance, their values for the Coulomb potential are T# ≈ T*/2
for KXM and T# ≈ 2 T*/3 for KXMA. Ultimately, the salt permeability is
PMA2

= 3(1/PM + 2/PA)−1.

5.5. Discussion: interpretation of permeabilities and limiting regimes

Expressions for PM and PA of the last sections are products of the free
ion diffusivity D0 and several dimensionless factors. Let us clarify their
meaning, taking the Eq. (63) as an example, which we may rewrite as
follows

PM ≈ D0M
8λB

L
X−½ �
X

� �2 M2þ
h i
Cs

; ð65Þ
The first factor, proportional to λB/L or b/L, reflects the average non-
uniformity of the long-range part of the binding potential within a cell,
which is what makes D deviate from D0 over the long range. Thus, the
ion-ion potential, which falls off more slowly, produces a larger factor



Fig. 7. Computed variation of salt (solid lines) and co-ion (dashed lines) permeabilitywith
salt concentration in solution: (A)MA salts, (B)MA2 salts. Permeabilities are normalized to
D0, assumed to be the same for co- and counter-ions. Parameter used are X= 0.5 M, b=
0.3 nm, and T* = 0.15 for computing salt injection coefficient S0 using PM. Curves 1 to 4
correspond to PM values of association constants computed using T* = 0.15, 0.12, 0.10,
and 0.08 for fixed S0. SDE predictions for the same S0 are shown for comparison. In
panel B, dashed lines moving above the solid lines indicate that salt permeability
becomes dominated by M2+ counter-ions.
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~λB/L than the ion-dipole potential that falls off faster and more weakly
affects the long range (factor ~b/L). This factor is fairly similar for ions of
the same charge and might be of limited importance for overall trends.

The second factor is the squared ratio [X−]/X=1/ξ, which is the frac-
tion of precursor cells, capable of binding themobile ion and also the cell
type left behind after a hop. In a sense, it is analogous to the “porosity-
tortuosity” factor in porousmaterials or normalized conductivity in con-
ductor-insulator composites [73]. If it is small, there are fewer sites that
can release the ion and fewer neighboring sites to hop to (“smaller po-
rosity”), which also forces the ions to follow a more tortuous trajectory.
This factor may become important when association is very strong and
binding sites saturate, leaving only a few precursor cells.

The last, perhaps most important factor [M2+]/Cs should be under-
stood as the effective partitioning of free ions regulated by association.
In Eq. (63), it originates from the expression for the XM+ pair concen-
tration [XM+] ∝ KXM[M2+]. The constant KXM enters ion diffusivity and
partitioning in a reciprocal manner and ultimately cancels out in the
final expression for permeability, leaving only [M2+].

We see that the ion permeability in charged low-T⁎ membranes is
mainly controlled by the free ion release from fixed charges and availability
of precursor cells for ion hopping, both regulated by association. This is
principally different from the SDE model, where [M2+] is identified
with the nominal charge X. Instead, in the present model, it is replaced
with an effective charge that has a totally different value and physical
meaning! Also note that the effective charge is ion-specific and differs
for the permeability and partitioning (e.g., compare Eqs. (49) and
(60)). This is fully consistent with much lower estimates of ion
partitioning deduced form transport measurements, e.g., ion conductiv-
ity by impedance technique, as compared to direct ion-content mea-
surements [55].

Similar to analysis of partitioning (Section 5.3), it is expedient to
consider limiting regimes for permeability, starting from small Cs.
For MA salts, both [M+] and ξ are about constant [M+] ≈ KXM 2

−1/2

and ξ≈ KXMKXM2

−1/2 + 2 (cf. Eqs. (41) and (42c)). It is straightforward
to see that Eqs. (58) and (60) predict a limiting behavior of PM and PA
that has the same dependence on D0, Cs and S0 as SDE expressions for
good co-ion exclusion PM = D0MSM ≈ D0MX/Cs and PA = D0ASA ≈
D0AS0

2Cs/X. This similarity obviously comes from the fact that in the
low-Cs regime both the present model and SDE predict an about con-
stant [M+],which inevitably results in a similar dependence on salt con-
centration for [A−] = S0

2Cs
2/[M+]. This leads to a Cs-dependence

qualitatively similar to SDE, different only in the effective values of
membrane charge and ion mobility. Similarly, for MA2 salts the limiting
low-Cs values are [M2+]= KXM

−1 and ξ=2 (Eqs. (45) and (46c)), thereby
Eqs. (63) and (64) become reminiscent of the SDE expressions PM ≈
D0MX/2Cs and PA ≈ D0AS0

3/2(Cs/X)1/2.
However, as Cs increases, the qualitative similarity between the

present model and SDE may eventually disappear. This will occur
when a significant fraction of fixed charges is converted to triplets,
XM2

+ and XMA− for MA salts and XMA0 for MA2. In this regime, the
co- and counter-ion concentrations in the membrane will become
commensurate, resembling a “neutral membrane” regime of SDE with
a negligible fixed charge (Section 5.2). The crucial difference is that
the SDE model will tend to approach at high Cs a constant ion
partitioning (Eq. (22)), while the present model will approach a
constant ion concentration in the membrane thereby ion partitioning
may decrease with Cs. The binding saturation and decreasing “poros-
ity-tortuosity” factor may also add to such trend reversal. In addition,
the co-ion permeability PA could also become larger than PM thereby
the co-ion cedes to the counter-ion the control of salt permeability
and its pH dependence, especially, for asymmetric MA2 salts, for
which cation binds more strongly. This is illustrated in Fig. 7 that plots
the computed dependence of salt and co-ion permeability for MA and
MA2 salts. As in Fig. 6, S0 is fixed for all curves by setting T⁎ = 0.15 in
Eq. (33), but several progressively smaller values of T* are used to com-
pute association constants in order to allow for their possible non-PM
behavior (Section 6). It is seen that, compared to MA salts (Fig. 7A),
MA2 salts are more prone to transitioning a qualitatively different be-
havior, when association is determined by the same T⁎ (Fig. 7B). This
could explain both the decreasing dependence of Ps on Cs for CaCl2
and MgCl2 salts and the unexpected effect of pH on CaCl2 permeability,
highlighted in Fig. 2. To demonstrate that transition to a different
high-Cs regime, explaining experimental results, requires association
constants far above PM predictions, the next section analyzes what is
expected within PM.

6. Primitive model and beyond

Previous section presents general relations that contain ion- and
membrane-specific association constants (K) and affinities (k and,
ultimately, S0). In general, PM may be a poor model to predict these
parameters, since they may involve physical effects inherently absent
in PM. However, it would be instructive to examine PM predictions, to
highlight its limitations as well. For numerical estimates, we will use
below a “toy model” that assumes that all ions, including fixed charges,
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are of equal diameter b and the membrane is a dielectric continuum
with a fixed Bjerrum length λB and T* = b/λB. We presume b =
0.3 nm (b3 = 0.016 M−1) reasonably represents many ions as well as
fixed charged groups, while T* = 0.15 (ε ≈ 30 and λB ≈ 2 nm for
above b) and X = 0.5 M and L = (6/πX)1/3 ≈ 1.85 nm, commensurate
with λB, are representative of NF membrane characteristics. In fact, the
average dielectric constant for the selective layer must be in the range
6 to 10, i.e., T*=0.04 to 0.06, based on water fraction in the membrane
and structure-property-composition correlations [74–76], as well as
impedance measurements [54]. However, we prefer T* = 0.15 as a
conservative estimate that is probably more characteristic of the water
in the NF nanopores, i.e., the medium solvating the ions [53]. For sim-
plicity, we also ignore steric exclusion (Φ = 1), which may somewhat
overestimate S0.

6.1. Degree of association and co-ion partitioning

To appreciate the extent of association, let us first estimate what
fraction of the fixed charges remains in the dissociated X− form. In
terms of the one-site grand partitioning function ξ (Eqs. (38) or (44)),
this fraction is simply 1/ξ, but the numerical value depends greatly on
the salt type. In all cases, ξ increases with salt concentration, therefore
the low-Cs limit of ξ gives the maximal possible fraction. For MA salts
this gives

X−½ �
X

� �
max

¼ 1
ξmin

¼ 1

2þ KXM KXM2

� �−1=2 ≈
1

2þ T�−1=2e1=4T
� ; ð66Þ

where we used Eqs. (29) and (30) in the last expression. For T⁎= 0.15,
the result is that at most only 6.4% of the nominal fixed charge is disso-
ciated. As long as the fraction of [XMA−] triplets is negligible (as ex-
pected for dilute solutions), about the same fraction will be converted
to XM2

+ triplets, while the remaining 87.2% will be neutral XM pairs,
as schematically shown in Fig. 5A.

The situation will be quite different for MA2 salts, due to double
charge of the cation. Here, the low-Cs limit is

X−½ �
X

� �
max

¼ 1
ξmin

¼ 1
2
; ð67Þ

which corresponds to 50% dissociated charges and 50% XM+ pairs,
when the fraction of neutral XMA triplets is negligible, as
illustrated in Fig. 5B. This result does not depend on T⁎, as long as
it is low enough to keep λB larger or commensurate with the cell
size L.

When salt concentration Cs increases,more tripletswill form and the
above numbers will decrease. The content and permeability of A− ions
will first vary in the manner of SDE model in the good co-ion exclusion
regime, with an appropriate effective fixed charge replacing X (see
Section 5). The next question is whether, within practical Cs range,
this behavior may eventually cross over to the high-Cs regime, when
the fraction of XMA triplets is no more negligible. It is straightforward
to see from Eq. (43) that, for MA salts, it would require that KXMA

(S0Cs)2 be of the order 1. We may use PM relations, Eqs. (30) and (33),
to convert this condition to the following one

KXMA S0Csð Þ2 ≅ 102 b3Cs

� �2
T�3e−1=2T� � 1: ð68Þ

To satisfy this condition for b=0.3 nm and T⁎=0.15, Cs will have to be
about 560 M.

Similarly, Eq. (47) along with PM relations, Eqs. (29), (30) and (33),
yield the analogous condition for MA2 salts

KXMA
S30C

3
s

KXM

 !1=2

≅ 103=2 b3Cs

� �3=2
T�5=2e−1=2T� � 1; ð69Þ
which requires even higher Cs ~ 1300 M. These concentrations are
far beyond the practical Cs range, usually, about 10−4 to 1 M. PM
then rules out that the low-Cs regime ever crosses over to a different
one, unless the terms KXMAS0

2 in Eq. (68) or KXMA(S03/KXM)1/2 in
Eq. (69) exceed the PM predictions by at least 3–4 orders of magni-
tude. Plots in Fig. 6 illustrate this point and show behavior qualita-
tively different from SDE, only when T⁎ used to compute association
constants is reduced to about half the value for S0, which is equiva-
lent to about 3–4 orders of magnitude discrepancy.

Nevertheless, RBS partitioning data reported by Zhang et al. for RO
membranes [66], do show unexpectedly large partitioning, commensu-
rate for co- and counter-ions and decreasing with salt concentration.
Based on Eqs. (47) and (48), such behavior is only possible, when a sig-
nificant fraction of fixed charged is converted to XMA triplets or still
larger aggregates. Even if these results might be amenable to a different
interpretation and the actual deviations from PMmight not be as large,
large deviations are indeed possible and likely, as discussed in Section
6.4. Even if they are still insufficient to change the low-Cs trend
for partitioning, they can more readily affect the salt permeability
(see next).

6.2. Ion permeability: low- and high-concentration regimes

As shown in the previous section, PM anticipates a negligible frac-
tion of XMA triplets, in which case equations simplify significantly,
since [M] and ξ are well approximated by their constant minimal
values. This defines the low-Cs regime that resembles the charged
membrane regime of SDE. For SDE, one may anticipate a crossover
to a different regime (form charged to neutral membrane) at the
point where extrapolated low-Cs trends of PA and PM meet. We may
apply the same principle to the present model and compute the
ratio of PA and PM contributions to Ps, i.e., PA/PM for MA and PA/2PM
for MA2 salts to see when they equal 1. To facilitate calculations,
also assume D0A = D0M.

For MA salts, we obtain from Eqs. (58) and (60)

PA

PM
≈

bS20C
2
s K

2
XM Mþ� 


λB Mþ� 
þ bKXM Mþ� 
2 ≈
S20C

2
s K

2
XM

λB=bþ KXMK
−1=2
XM2

≈ b3Cs

� �2 102T�2

T�−1 þ T�−1=2e1=4T
� :

ð70Þ

For b= 0.3 nm and T⁎= 0.15, this equals 1 at Cs ≈ 185 M. This is obvi-
ously still beyond the realistic range of Cs, but is not asmuch off-range as
for partitioning. Cross-over to high-Cs regime of permeability would re-
quire an order-of-magnitude smaller deviations from PM than for
partitioining. The required change would be mostly related to parame-
ters in the numerator of Eq. (70), since denominator would change
more slowly. Therefore, the quantity S0KXM would have to increase rel-
ative to PM value by 2–3 orders of magnitude, which may be realistic
(see Section 6.4).

Similar analysis for MA2 salts leads to the following expression

PA

2PM
≈

S0KXMCsð Þ3=2
4

≈
1
4

5T�b3Cs

� �3=2
: ð71Þ

It gives Cs ≈ 210 M for the cross-over concentration at which extrapo-
lated PA equals PM. This value would also require a 2–3 orders of magni-
tude increase of the product S0KXM above PM predictions, which is more
likely for divalent ions (see Fig. 7).

6.3. Permeability and physical characteristics of NF and RO membranes

Another, more straightforward way to see whether PM is consistent
with actual membrane characteristics is to look at the absolute values
of permeability. NF270 or its predecessor NF200 are typical NF
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membranes, for which dominant role of dielectric exclusion is
well-established [44–46,77] and permeability data as well as physical
characteristics are available. To estimate their dielectric characteristics,
we may use more “regularly” behaving permeability of NaCl (see
Fig. 2A). The experiments show that NaCl permeability of NF270 is
ωs ≈ 2 × 10−5 m/s at Cs = 0.1 M [4]. Given the active layer thickness
is about 20 nm [76], we estimate Ps ≈ 4 × 10−13 m2/s. A similar value
of Ps is obtained for twice as thick NF200 membrane, suggesting this is
an intrinsic material characteristics [35,76].

Following PM analysis above, we identify Ps with PA or, more
accurately, PA ≈ Ps/2 ≈ 2 × 10−13 m2/s. We may then use Eq. (60)
and PM relations, Eqs. (29) and (33), for association constants and
salt injection coefficient and apply low-Cs values ξ ≈ KXM[M+] and
[M+] ≈ KXM2

−1/2, as follows

PA ≈ D0AS
2
0Cs

4bK2
XM Mþ� 

Lξ2

≈ D0AS
2
0CsK

1=2
XM2

4b
L

≈
4b
L
D0A 10b3Cs

� �
T�3=2e−5=4T�

:

ð72Þ

For the water volume fraction in the membrane ϕw ≈ 0.25, tortuosity
about 1.8, and membrane pore size about 0.35 nm, D0 of Cl− is esti-
mated to be about 10−10 m2/s [35]. Unfortunately, the representative
values T⁎ = 0.15, b = 0.3 nm, and L = 1.8 nm produce PA ≈ 1.5
× 10−17 m2/s, four orders of magnitude lower than the experimental
value. Such a large discrepancy points to either inadequate values of pa-
rameters or a failure of the PM model.

Different methods used to estimated membrane charge produce
fairly consistent values of X ~ 0.5 M [50,51,66–69] and excessive adjust-
ments of the ion size bwould be unphysical. Reasonable adjustments of
these parameters reduce disagreement only marginally. It would then
be more reasonable to increase T⁎, but the one used is already quite
large and about an order of magnitude discrepancy remains even if
T⁎ = 0.42 of bulk water is used. The discrepancy then most likely
comes from the model itself and, in particular, from the expression
for the effective membrane charge that replaces X in the SDE expression
PA ≈ D0AS0

2Cs/X.
In order to examine what value of the effective charge could match

the experimental permeability, we start from its lower bound X = 0,
i.e., the neutral membrane. In this case X drops out of the equations
and the appropriate expression is PA ≈ D0AS0 = D0Ae

−1/T ∗
(see Section

5.2). Using T⁎ = 0.15, we obtain PA ≈ 1.3 × 10−13 m2/s, fairly close to
the experimental value. This suggests the membrane essentially
behaves as neutral, despite overwhelming evidence that it has a sub-
stantial content of ionizable group. A similar observation was made for
many other ion-polymer systems [37], suggesting that NaCl permeabil-
ity may be no more “regular” than CaCl2.

Once again, the most likely explanation is a non-PM behavior
whereby a significant fraction of fixed charges in the membrane is
converted to triplets. Indeed, when KXMA(S0Cs)2 NN 1, the free ion
partitioning will approach (cf. Eqs. (39) and (41))

Mþ� 

Cs

≈ S0
KXMA

KXM2

;
A−½ �
Cs

≈ S0
KXM2

KXMA
: ð73Þ

The resulting permeability would be barely distinguishable from the
genuine neutral membrane behavior, for which [M+]/Cs = [A−]/Cs =
S0, especially, if KXMA and KXM are not too different. (In fact, they are
identical in our toy PM model.) In Fig. 2A, NaCl does not plateau at
high concentration, but the slope (exponent) is noticeably smaller
than 1 [14], suggesting a possible approach to this regime. A slope
smaller than the Donnan-exclusion slope was also reported for other
ion-polymer systems [37]. Since such behavior is precluded by PM
(Section 6.1), this result is yet another indication that PM may grossly
underestimate the strength of association and overestimate the effect
of fixed nominal charge, as discussed next.
6.4. Beyond the primitive model

PMsupplies a reasonable startingpoint for analyzing thermodynam-
ics and dynamics of solvation and association. Yet, even in simple
liquids, it is a crudemodel and significant deviations are not uncommon
[8,10]. For instance, they often lead to unphysical b values, smaller than
the sum of bare ionic radii, i.e., PM underestimates the strength of asso-
ciation by ignoring various short-range effects that enhance association.

First, removal of solvating molecules from the space between the
ions, i.e., partial overlap and shedding of ion hydration shells upon
pairing, may enhance association quite significantly [10]. A direct ef-
fect comes from the reduced inter-ion distance b and more vacuum-
like space between the ions, which is equivalent to ε and T⁎ becoming
effectively smaller. However, in a polymeric membrane phase, there
may also be a strong indirect effect coming from the fact that the
polymeric membrane phase contains only a fraction of water, ϕw bb

1. To keep the ion content low, the reduced entropy per water mole-
cule within the membrane, ~kB ln ϕw, has to be exactly balanced by
the swelling pressure exerted by the matrix on water molecules
[78]. The same pressure is exerted on ion pairs, which means that,
by shedding a water molecule, an ion-pair reduces its free energy
by about kBT ln ϕw. Ultimately, release of m water molecules will
increase the association constant from its purely electrostatic
value Kel to.

lnK ≈ lnKel−m lnϕw or K ≅ Kel=ϕ
m
w : ð74Þ

Sincem between 1 and 3 per ion, i.e., 2 to 6 per ion-pair, is common
for ion association in water [8], we may takem ~ 2 to 3 per ion-pair as a
fairly likely number in a membrane. For ϕw ~ 0.1–0.2 reported for NF
and RO membranes [35,74,79,80], this increases K by as much as 2–3
orders of magnitude.

One may also anticipate that the low-dielectric environment of the
membrane phase and enhanced electrostatics may increase association
energy by promoting a partly covalent binding. The magnitude of such
effect in polymeric membranes has to be clarified in future research.
However, ab initio calculations for a NaCl pair in vacuum showed that
at b = 0.4 nm the extra non-Coulomb binding energy may be as much
as 10 kBT [56], which, according to Eq. (50), would increase the associa-
tion constant of an ion pair by a factor ~e10, i.e., by another 3–4 orders of
magnitude.

Yet another factor may be the dielectric micro-heterogeneity of the
membrane, composed of dense polymeric matrix and water-filled
nanopores [61,81–83]. In such systems, just like in many biopolymers,
the local dielectric constant next to non-polar monomer units bearing
afixed chargemay be lower than themacroscopic average [84], enhanc-
ing interaction beyond average-based PM predictions.

All above effects highlight great sensitivity of the association energy
to the microenvironment, especially, the small space between
interacting ions. In contrast, ion self-energy and salt injection coefficient
S0 are controlled by a more extended volume and may be less sensitive
to microenvironment, as long as the scale of dielectric heterogeneity is
commensurate with ion size [44,45]. The latter condition is reasonably
satisfied in NF and RO membranes, with pore radii of about 0.2–
0.4 nm. The aforementioned effectsmay then increase associationwith-
out affecting solvation (salt injection) as much. Overall, this decoupling
of association and solvation is what may lead to a behavior ruled out by
PM, in particular, enhanced formation of XMA triplets and still larger
associates, resulting in effective neutralization of the membrane charge
and non-trivial behavior of salt permeability.

7. Competitive ion binding in a charged membrane

In many practical situations, the solution contains several ions that
may compete for binding to the fixed charges. For instance, consider a
feed solution containing two 1:1 salts MA and NA with a common
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anion, such as NaCl and KCl. Considering only pairs for simplicity, ξwill
become (cf. Eq. (38))

ξ ¼ 1
X

X−½ � þ XM0
h i

þ XN0
h i

þ…
� �

¼ 1þ KXM Mþ� 
þ KXN Nþ� 
þ :…

ð75Þ

Including triplets is straightforward but tedious, as it has to consider
five different species, XM2

+, XN2
+, XMN+, XMA−, and XNA−. Yet, in prin-

ciple, given all required association constants, ion affinities and the solu-
tion composition, i.e., CM, CN, and CA = CM + CN, free ion concentrations
[M+], [N+], and [A−] may be found by combining total electroneutrality
and two equilibrium relations for MA and NA salts (Eq. (39)), from
which ξ and all other quantities may be computed. Fortunately, the ex-
pressions for co-ions are compact; in particular, partitioning will be
(cf. Eq. (47))

SA ¼ XMA½ � þ XNA½ �
CA

¼ X
KXMAS

2
0MACM þ KXNAS

2
0NACN

ξ
; ð76Þ

and co-ion permeability as (cf. Eq. (60))

PA ¼ L2

6CA

XM½ � þ XN½ �
X

XMA−½ �
tA XMAð Þ

þ XNA−½ �
tA XNAð Þ

 !
≈

4D0Ab
L

KXMS
2
0MACM þ KXNS

2
0NACN

ξ
;

ð77Þ

where in the last expression we dropped for simplicity the factor
([XM] + [XN])/X, though this may significantly overestimate perme-
ability. Note that the expression for SΑ, Eq. (76), contains triplet con-
stants KXMA and KXNA in the denominator, while that for PA (Eq. (77))
contains pair constants KXM and KXN,

As an important example, consider a somewhat special situation
of NaCl permeation when Na+ competes with proton H+. H+ affinity
to aromatic polyamide was found to be 103 times larger than that of
Na+, i.e., S0HCl/S0NaCl~103 [19,85,86]. Furthermore, H+ permeability
in a polyamide RO membrane was estimated to be at least 105

times larger than permeability of NaCl [19,85,86]. The latter may
partly come from the large S0HCl as well as exceptionally high mobil-
ity (D0) of the proton, but it may also reflect a large binding constant
of proton KXH (see Eq. (78)).When NaCl concentration is low enough,
the H+ terms in the numerator of Eqs. (76) and (77) may outcom-
pete the Na+ terms, even if proton concentration is orders of magni-
tude lower, i.e., pH is close to neutral. This should weaken the
dependence of the Cl− partitioning and permeability and, ultimately,
NaCl permeability on the salt concentration. The permeability
will then not decrease as expected for a single salt, when NaCl
concentration is reduced further, as indeed observed in Fig. 2A.
Essentially, proton increases salt partitioning and permeation,
through its own absolute permeation rate may be low due to low
H+ concentration.

Analogous though more complex competition may occur in mix-
tures of a divalent and a monovalent cation salts with a common
anion, M2+A2

− and N+A−, for instance, CaCl2 and NaCl. Up to triplets, ξ
would include six terms, as follows

ξ ¼ 1þ KXM M2þ
h i

þ KXN Nþ� 
þ KXN2 Nþ� 
2 þ KXMA M2þ
h i

A−½ � þ KXNA Nþ� 

A−½ �:
ð78Þ

Two equilibrium relations, Eqs. (39) and (44), connect free ion con-
centrations [M2+], [N+], and [A−] in themembrane to the solution com-
position,while the electroneutrality requires that all terms at r.h.s. of Eq.
(78) multiplied by their charges sum up to zero. In this way, closed
(though somewhat lengthy) analytical formulae may be derived for all
relevant quantities as a function of CM, CN, and CA = 2CM + CN. For
instance, free A− partitioning will be

A−½ �
CA

¼
KXMS

3
0;MA2

CM þ KXN2 S20;NACN

� �2
1þ KXNAS

2
0;NACACN

2
64

3
75
1=2

: ð79Þ

When the ratio of CM to CN varies in away thatCA stays constant, as in
Fig. 2B, the terms that involve more strongly associatingM2+will dom-
inate Eq. (79), except when the fraction of M2

+ in solution becomes neg-
ligible. These terms will control ion partitioning and permeation,
therefore, as long as CM and CN are commensurate, anion permeability
approximates as (cf. Eq. (60))

PA ¼ L2

6CA

XMþ� 
þ XN½ �
X

XMA0
h i
tA XMAð Þ

þ XNA−½ �
tA XNAð Þ

0
@

1
A ≈ 4D0A

λB

L
XMþ� 

X

� �2
A−½ �
CA

:

ð80Þ

It is straightforward to verify that the variation of PA with composi-
tionwill be slow, exceptwhen [M2+] is negligible. Thiswill be especially
true when there is a substantial triplet formation, in which case the last
two factors in Eq. (81) tend to compensate each other. Since A− perme-
ation controls NA salt permeability, as suggested by the effect of pH in
Fig, 2A, the NA permeablity will vary slowly with composition, up
until M2+ fraction in solution becomes negligible. This may explain
the results for NaCl in Fig. 2B.

On the other hand, the permeability of M2+ approximates as (cf. Eq.
(63))

PM ¼ L2

6CM

X−½ �
X

XMþ� 

tN XMð Þ

¼ 8D0A
λB

L
Γ30;MA2

X−½ �
X

� �2 A−½ �
CA

� �−2

; ð81Þ

Since each of the last two terms now decrease when the M2+ frac-
tion in solution increases, PM will show a monotonic decrease with CM.
The effect of pH in Fig. 2B indicates that CaCl2 permeability is controlled
by Ca2+ permeation, therefore the observed variation for CaCl2 perme-
ability in mixed solution in Fig. 2B is consistent with Eq. (81). Once
again, such unusual behavior requires an exceptionally strong associa-
tion of Ca2+ with fixed charges, far beyond PM predictions.

8. Summary and outlook

The classicalmean-fieldmodels of ion transport inmembraneswere
originally devised for systemswith weak ion-ion interactions, i.e., high-
T⁎ limiting regime in the present terminology. Their characteristic fea-
ture is delocalized behavior (nearly free translation) of mobile ions
and direct coupling between ion partitioning and permeation, which
permits a straightforward break up of permeability to diffusion and
sorption factors. Unfortunately, low-dielectric properties of many ion-
rejecting and ion-selective membranes are incompatible with this sim-
ple picture and represent an opposite regime, close to the low-T⁎ limit.

Admittedly, with a few exceptions [4,12,17,87], the models of NF
over last four decades has been largely developed around the view of
themembrane as an array of nanopores [7,23–37], rather than a homo-
geneous medium in the manner of this work. However, closer inspec-
tion reveals that nanopore models largely retain the mean-field
character of SDE. Even if the local potential in a nanopore is allowed to
vary radially, the common use of a uniform wall surface charge density
ignores the discrete nature of the fixed charges and essentially averages
the potential in the dimensions parallel to the pore walls. The resulting
solution, usually obtained by solving the PB equation within the pore, is
then a radially averagedmix of the regimes described by the SDEmodel.
Since for pore sizes of NF and RO, typically well under 0.5 nm, the low
dielectric matrix still strongly affects the ion self-energy [44,45], the
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use of high-T⁎ mean-field relations such as the PB equation faces the
same objections as for a dielectrically homogeneous membrane.

As more appropriate for the low-T⁎ regime, the chemical-model-like
description developed here introduces association as a key element. In
this picture, fixed charges bind mobile ions, which lowers the effective
membrane charge and reduces ion mobility, strongly modifying the re-
lations between ion partitioning, mobility and permeability. Ultimately,
the model shows that the much reduced free ion content in the mem-
brane and the fraction of sites available for binding mobile ions rather
than total ion content is what determines the salt permeability. This
leads to a puzzling behavior of permeability, precluded by mean-field
models but observed in experiments, such as salt permeability decreas-
ing with concentration or controlled by counter-ions. This is also fully
consistent with largely discrepancies between estimates of ion
partitioning obtained by direct ion-count methods and by impedance-
based membrane conductivity measurements [55].

Another conclusion is that simple continuum PM electrostatics ap-
pears to fail and underestimate the strength of ion association. Themo-
lecular structure of the medium solvating the ions is a likely reason and
it can manifest itself in several possible mechanisms, all of which may
enhance association by orders ofmagnitude. Thismay permit formation
of triplets, strongly suggested by experimental data but ruled out by PM
calculations. This may also allow ion condensation to much larger asso-
ciates, ignored for simplicity in the present model, which may explain
surprisingly large ion partitioning of both co- and counter-ions in RO
membranes reported by Zhang et al. [66]. Since PM electrostatics is
also the inherent basis for many other models of membrane transport,
in particular, the nanopore models, its accuracy in these cases may be
questioned as well.

The present model is obviously crude and should best be viewed as
representing the limiting regime that approximates low-T⁎membranes
in the same sense, as the Donnan or SDE models do for well-hydrated
high-T⁎ systems. The actual behavior may be intermediate to these
two limiting regimes and future refinements may need to address this
fact. For instance, they may need to consider the small-X corrections
to association constants and escape time discussed Section 5.4 in rela-
tion to Eqs. (51), (54) and (57), which may bridge between small-
and large-X regimes. Onemay also need to address the fact that the po-
tential at the cell boundaries imposed by adjacent cells in Fig. 4 might
not be negligible, which may have to be considered in more complete
calculations. However, the largest challenge towards predictive model-
ing will be thorough quantitative understanding of non-PM aspects of
association and solvation in membranes, as well as in nanopores.

In absence of a predictive theory, practical modeling of ion separa-
tions using the present approach will admittedly need a large number
of parameters. In general, they will have to be membrane- (ε, X etc.)
and ion-specific (r, k, K), which could require a large amount of high-
quality experimental data, especially, for multi-ion solutions. This is
however true for all models proposed so far, which need to utilize vari-
ous ad hoc adjustments to themembrane or ion characteristics to obtain
reasonable fits [88]. In this respect, a sounder physical basis of the pres-
ent model could eventually help reduce the complexity and number of
adjustable parameters. For instance, appropriate “mixing rules” could
make a few parameters evaluated from experiments with single salts
applicable to mixed solutions and properly link the model to structural
characteristics, which is where previous models have failed so far. The
resulting relation would also be capable of describing the observed
trends, which previous models were unable to explain.

A viable and attractive alternative to experimental parameters eval-
uationwould bemolecular (MD) and quantum (ab initio)molecular dy-
namic (QMD) simulations. MD simulations have already shown much
promise in RO and NF membrane research, e.g., they were capable of
correctly predicting the water permeability and analyzing membrane
interaction with foulants and neutral permeants using representative
model polyamide structures [83,89–97]. Unfortunately, there are
fewer results that address thermodynamics and transport of ions in
polyamide [61,95,98,99]. Estimates for ions also may not readily ex-
trapolate to the macroscale, since the membrane phase contains rel-
atively few ions and estimated characteristics are highly sensitive to
structural heterogeneities [61]. Nevertheless, the author is optimistic
that future development of dedicated MD model systems and
methods may help overcome these difficulties and quantify the ex-
tent of ion solvation and degree of association, including solvent-
structure and related effects. Similarly, QMD simulation may clarify
and quantify the role of quantum effects, possibly involved in ion
binding and diffusion, especially, for ions such as H+ and OH–

[100,101].
Finally, the author would like to credit the recent insightful work by

Yaroshchuk et al. [6] who also noticed disagreements between its pre-
dictions and experiments and questioned the view of membranes or
nanopores as a continuum. These authors drew attention to the
fact that, given NF membranes are very thin, electroneutrality may
be violated over a substantial part of their thickness, which offers an al-
ternative explanation to some of the experimental observations
discussed here. Nevertheless, since their analysis still relies on the
mean-field relations, the questions of applicability and possible relation
between the two approaches is open andwill have to be clarified in the
future.

Glossary and symbols

Variables
a solute activity, 1/m3

A Peclét coefficient, s/m
b inter-ionic distance at contact, m
b# attenuation length of short-range potential, m
c concentration in the membrane, 1/m3

C concentration in solution, 1/m3

C′ upstream (feed) solution concentration, 1/m3

C" downstream (permeate) solution concentration, 1/m3

C concentration vector containing concentrations of all solutes,
1/m3

D diffusion coefficient, m2/s
e electron charge, C
f friction coefficient, J s/m2

gE dimensionless excess free energy of an ion (in kBT units)
I electric current density, A/m2

J solute flux, 1/(m2 s)
JV volume flux, m/s
J flux vector containing fluxes of all solutes, 1/m3

k affinity coefficient
kB Boltzmann constant, J/K
K association constant, m3 (pairs) or m6 (triplets)
L average spacing between ions or fixed charges, m
MSD mean-square displacement, m2

n average number of ions per fixed charge
P intrinsic (thickness normalized) permeability, m2/s
Pe Peclét number
p probability of finding an ion in a given volume
q distance separating free and associated states, m
Q factor correcting association constant relative to the ground-

state expression
r ion radius, m
s dimensionless entropy per solute (in kB units)
S solute partitioning (sorption) coefficient
t time, s
t average escape time for an ion, s
T absolute temperature, K
T* reduced temperature for Coulomb interactions
T# reduced temperature for short-range interactions
U dimensionless pair-wise interaction energy (in kBT units)
W dimensionless solvation energy (in kBT units)
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x normal (across the membrane) or radial (around a charge)
coordinate, m

x normal coordinate scaled by membrane thickness
X fixed charge density, 1/m3

z absolute ion charge in units of electron charge e
αn dimensionless ground-state energy of n-plet (in T⁎ units)
γ activity coefficient
Δx membrane thickness, m
ε dielectric constant
ε0 permittivity of vacuum, C/(V m)
θn ratio of association constants of successive n- and (n−1)plet
Θ ratio of concentrations of successive homologue associates
λB Bjerrum length, m
λD Debye length, m
μ dimensionless chemical potential (in kBT units)
ξ one-site grand partition function
σ reflection coefficient
ϕ volume fraction
φ dimensionless electric potential (in kBT/e units)
φD dimensionless Donnan potential (in kBT/e units)
Φ Ferry steric exclusion factor
ψ dimensionless electrochemical potential (in kBT units)
ω diffusion permeability, m/s
[…] concentration of respective species in the membrane phase,

1/m3

Indices

i, j ions or solutes i, j

n n-plet
s salt
w water
2, 3, … pairs, triplets,…
+,− cation, anion

Ionic species

A mobile (salt) anion
M mobile (salt) cation

X fixed charge
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Appendix A. Association constants for multiplets

The procedure used to derive association constants for pairs and
triplets can be generalized to larger associates. Note that the volumes
V2, V3 etc. are obtained by integrating out relevant degrees of freedom,
i.e., displacements of ions relative to the lowest-energy ground-state ar-
rangement that increase the energy. For instance, one may move the
second ion in Fig. 4A relative to the first ion by translating it along the
radial direction x1, i.e., along the axis connecting the ions. The two
other directions x2 and x3, orthogonal to x1, produce rotations of the sec-
ond ion around the first one. Due to spherical symmetry, rotations do
not change the energy U thus they simply contribute a factor 4πb2 to
the phase integral. For small T⁎, the monotonic dependence of U on x1
may be linearized as follows

U
kBT

≈ −
α2

T� 1−β1x1ð Þ; ðA1Þ

whereα11=1 andβ1 ≅ b−1. The phase integral, Eq. (27), is then approx-
imated for small T⁎ as follow

Zq
b

e−U x1ð Þ=kBT4πx21dx1 ≈ eα2=T
�
4πb2

Z∞
0

e−α2β1x1=T
�
dx1

¼ eα2=T
�
4πb2

T�

α11β1
≅ 101b3T�eα2=T

� ðA2Þ

A similar factorization may be performed for a third ion added to a
pair to form a 2 + 1 triplet (Fig. 4B) The corresponding ground state is
the linear arrangement of all three ions. If the principal axis x1 connects
all three ions, the variation of the third ion's energy with x1 may be
linearized similar to Eq. (A1). On the other hand, for rotations in the
orthogonal directions x2 and x3 (in- and out-plane in Fig. 4B), the energy
of the third ions will show a minimum therefore rotations become
vibrations and should be approximated, to the leading order, by qua-
dratic terms. U(x1, x2, x3) of the third ion is then approximated as

U
kBT

≈ −
Δα3

T� 1−β1x1−β2x
2
2−β3x

2
3

� �
; ðA3Þ

where, when all three ions are monovalent, Δα3 = 0.5, β1 ≅ b−1 and
β2 = β3 ≅ b−2. Similar to Eq. (A2), after integrating out all degrees of
freedom, the linear term β1 × 1 will contribute a factor bT⁎, while each
quadratic term will contribute approximately a factor (cf. saddle-point
integration [102])

Z∞
−∞

e−Δα3β2x
2
2=T

�
dx2 ¼ πT�

β2Δα3

� �1=2

≅bT�1=2 ðA4Þ

Ultimately, the total factor that multiplies K2 (Eqs. (28)) to yield K3

(Eq. (29)) is of the order b3T ∗2eΔα`3/T ∗. Again, it may be represented as
the product of a ground-state Boltzmann factor exp[Δα3/T ∗] and a resid-
ual volume V3 ≅ 10b3T ∗2, to which the third ion is confined.

It is seen that, for nth ion, starting from the n = 2, the ground-state
contributes a Boltzmann factor exp[Δαn/T ∗] with αn ≅ 1, and each rota-
tional, translational and vibrational degree of freedom contributes to
the residual volume Vn a factor of the order b, bT⁎, and bT⁎1/2, respec-
tively. In addition, there is a prefactor of the order 10 for each added ion.

This may be illustrated using the general expression for 3 + 1 qua-
druplets formed by a planar symmetric arrangement of 3 monovalent
counter-ions around a central ion of charge z, derived by Aqua et al.
The result is [62].

K31 ¼ Q31
48
5
21=231=4π7=2

z−1=
ffiffiffi
3

p� �3b9 b
λB

� �9=2

exp
3z−

ffiffiffi
3

p

zλB=b

" #
≅103b9T�9=2 exp

α31

T�
h i

:

ðA5Þ

This expression contains a ground-state energy factor exp½α31

T� � and
the product of three volumes V2V3V4 ≅ 103b9T ∗9/2 made up of three
rotations (b3), three symmetric vibrations (b3T⁎3/2), and three transla-
tions (b3T⁎3) of the three ions bound to the central ions. When
compared to its linear 2 + 1 triplet predecessor (cf. Eq. (28) and
Fig. 4B), the volume V4 ≅ 10b3T ∗3/2may be understood as one contrib-
uted by one translation (a factor bT⁎) plus two vibrations (in-plane
and out-of-plane, in total a factor (bT⁎1/2)2 = b2T⁎, of the fourth ion
minus the replacement of the in-plane vibration of the third ion with a
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rotation (a factor b/bT⁎1/2 = T⁎−1/2). The latter is required to change
the symmetry, when a linear triplet (Fig. 4B) is transformed to an angu-
lar one prior to adding the fourth ion. An expressionwith somewhat dif-
ferent prefactor andα, but otherwise identical to Eq. (A5) is obtained for
symmetric 2 + 2 quadruplets composed of 2 cations and 2 anions in a
rhombic ground-state arrangement, confirming the general form.

For still largermultiplets, the parametersΔαn ~ αn/n and Vnwill vary
with n, but, apparently, not dramatically. Δαn or ground-state electro-
static energy per ion αn/nwill decrease with n, but fairly slowly. For in-
stance, for equally sized monovalent cations and anions, αn/n will have
the values 0.5, 0.5, 0.391, and 0.280, respectively, for n=2 (pair), 3 (lin-
ear triplet), 4 (22 quadruplet), and 8 (2 × 2 × 2 cubic octet). It is antic-
ipated that for still larger n, ions would tend to arrange in a quasi-
crystalline lattice arrangement, for which αn/n or Δαn would approach
an appropriate Madelung constant, while Vn would be determined
mainly by the ion vibrations within the quasi-lattice, for which Vn ≅
b3T ∗3/2. This justifies the use of an approximately constant θn in Eq.
(30) and Θ in Eqs. (39–41), as a reasonable approximation. Obviously,
the conclusion needs to be reconsidered when PM no more applies.
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