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ABSTRACT

Theory predicts that a supermassive black hole binary (SMBHB) could be observed as a luminous

active galactic nucleus (AGN) that periodically varies on the order of its orbital timescale. In X-rays,
periodic variations could be caused by mechanisms including relativistic Doppler boosting and shocks.

Here we present the first systematic search for periodic AGNs using 941 hard X-ray light curves (14–195
keV) from the first 105 months of the Swift Burst Alert Telescope (BAT) survey (2004-2013). We do not

find evidence for periodic AGNs in Swift-BAT, including the previously reported SMBHB candidate

MCG+11−11−032. We find that the null detection is consistent with the combination of the upper-

limit binary population in AGNs in our adopted model, their expected periodic variability amplitudes,

and the BAT survey characteristics. We have also investigated the detectability of SMBHBs against
normal AGN X-ray variability in the context of the eROSITA survey. Under our assumptions of

a binary population and the periodic signals they produce which have long periods of hundreds of

days, up to 13% true periodic binaries can be robustly distinguished from normal variable AGNs with

the ideal uniform sampling. However, we demonstrate that realistic eROSITA sampling is likely to be
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insensitive to long-period binaries because longer observing gaps reduce their detectability. In contrast,
large observing gaps do not diminish the prospect of detecting binaries of short, few-day periods, as

19% can be successfully recovered, the vast majority of which can be identified by the first half of the

survey.

Keywords: Active galaxies— Surveys — X-ray sources

1. INTRODUCTION

Supermassive black hole binaries (SMBHBs) are ex-

pected as the result of galaxy mergers (e.g. Begel-
man et al. 1980), and yet compelling evidence for close-

separation SMBHBs has been elusive. Several studies in

the past few years have searched for periodically vary-

ing quasars as possible SMBHBs in optical time domain

surveys, and numerous candidates have been reported

(Graham et al. 2015a,b; Charisi et al. 2016; Liu et al.
2015, 2016, 2019). These SMBHB candidates typically

have (observed) variability periods of ∼ a few hundred

days – thousand days. Assuming circular, Keplerian or-

bits, their masses (log(MBH/M�) ∼ 8− 10) and periods

correspond to binary separations of ∼ centi- to milli-
pc, which are several orders of magnitude more compact

than the scale that very long baseline interferometry ob-
servations are able to resolve currently (e.g. the radio
galaxy 0402+379; Rodriguez et al. 2006) or in the fu-

ture (D’Orazio & Loeb 2018; Burke-Spolaor et al. 2018).

These searches for AGN periodicities have been mo-

tivated by hydrodynamic and magneto-hydrodynamic

simulations which show that accretion onto an SMBHB

varies periodically on the order of the binary orbital
timescale (e.g. MacFadyen & Milosavljević 2008; Shi

et al. 2012; Noble et al. 2012; D’Orazio et al. 2013; Far-

ris et al. 2014; Gold et al. 2014; Bowen et al. 2018, 2019):

the torque exerted by the binary opens up a cavity in

the disk in which the binary is embedded (“circumbi-

nary disk”), and the gas instead crosses the gap from

the inner edge of the circumbinary disk in the form of
narrow streams. The gas eventually feeds the individual
accretion disks formed around the black holes (“mini-

disks”) at a rate that is modulated on the binary or-

bital timescale. Another possible mechanism is when

the steady emission from the minidisk is relativistic

Doppler boosted for a highly-inclined, close-separation

binary system (D’Orazio et al. 2015), which modulates
the apparent flux on the binary orbital period. In both

mechanisms, periodicities occur for a wide range of mass

ratios (q) expected from major mergers: hydrodynamic

variability is strongest when q & 0.1, as the binary is

able to create an overdensity in the inner edge of the

circumbinary disk which interacts with the black holes
(e.g. Farris et al. 2014). The Doppler boost model fa-

vors small mass ratios; however, even in an equal mass

binary, periodicity still manifests since the enhancement

and the suppression do not cancel.

In the X-ray regime, an SMBHBmay also display peri-

odic variability. Similar to the UV/optical, X-ray emis-

sions from the gas bound to the black holes may also

experience Doppler boosting (Haiman 2017). Periodic-

ity may also be produced by shocks, when the streams

crossing the gap are flung toward by the black holes and

hit the cavity wall of the circumbinary disk twice per

orbit (Tang et al. 2018). When the stream joins a mini-

disk, it shock-heats its outer edge and produces bright
X-ray emission at tens – hundreds keV by inverse Comp-
ton scattering (Roedig et al. 2014, see also Farris et al.

2015), which is also modulated on the orbital timescale.

Despite these predictions, the X-ray variability sig-

natures of SMBHBs remain largely unexplored. Only

recently was an SMBHB candidate reported by Sev-

ergnini et al. (2018) in the center of a Seyfert 2 galaxy
at z = 0.0362, MCG+11−11−032. Its light curve1 from

the Burst Alert Telescope (BAT, Barthelmy et al. 2005)

onboard the Neil Gehrels Swift Observatory (Gehrels

et al. 2004) was claimed to show a quasi-periodic vari-

ation with a period of about 25 months over the 123-

month baseline, suggesting an orbital velocity of the

putative SMBHB: v ∼ 0.06c. Interestingly, its X-ray
spectrum is best described by an absorbed power law

with a reflection component plus two narrow Gaussian
components for Fe Kα. While the energy of the second

component is less well constrained, their separation in
energy ∆E is consistent with the velocity derived from

the variability period, assuming they are produced in
either the minidisks or the inner region of the circumbi-
nary disk.

Swift-BAT has been observing the hard X-ray sky in
the 14–195 keV energy range since its launch. The fifth
and the most recent catalog (Oh et al. 2018) includes

105 months of observations from 2004 December to 2013

August and reports 1632 sources, 947 of which are un-

beamed active galactic nuclei (AGNs). This is cur-

rently the largest sample of hard X-ray selected AGNs

with long-temporal-baseline, regular observations, and

1 The yet-unpublished data independently analyzed by the
Palermo BAT team at Istituto Nazionale di Astrofisica (e.g. Seg-
reto et al. 2010).
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it presents a unique opportunity to study the hard-X
ray variability of AGNs.

Previous AGN variability studies with Swift-BAT

(Beckmann et al. 2007; Caballero-Garcia et al. 2012;

Shimizu & Mushotzky 2013; Soldi et al. 2014) have
measured the fractional flux variability, structure func-

tion, or power spectral density (PSD) of BAT AGNs
and studied the correlation of variability with physi-
cal properties such as black hole mass and X-ray and

bolometric luminosities, AGN type, or energy bands.

However, no study has so far systematically searched

for periodic variability that may be indicative of close

SMBHBs at sub-pc separations. Such a search would

complement previous ones with ground-based, optical

time domain surveys in two important aspects. First,

abundant gas is funneled in during (gas-rich) galaxy

mergers and thereby powers the SMBHs as luminous

quasars (e.g. Di Matteo et al. 2005; Hopkins et al.
2008), but the SMBHs are likely to be enshrouded by

gas and dust, resulting in substantial obscuration in
the optical, UV, and even soft X-ray bands (e.g. Ricci

et al. 2017a). Very hard X-ray (> 10 keV) photons, on

the other hand, have a high penetrating power through

the obscuring material with column densities upward

of 1024 cm−2 (e.g. Ricci et al. 2015; Koss et al. 2016)
and can therefore potentially reveal SMBH duals and

binaries that are inaccessible in the UV/optical (e.g.

Koss et al. 2012; Satyapal et al. 2017; Ricci et al. 2017a;

Koss et al. 2018).

Second, while previous numerical simulations of SMB-

HBs show that the accretion rate from the circumbinary

disk onto the minidisks is periodically modulated, it may

not directly translate to a periodic photon luminosity

due to the buffering effect of the minidisk, when its gas
inflow timescale is longer than the modulation timescale
(e.g. Farris et al. 2014). However, binary-modulated X-

ray emission produced by shocks is immune to this effect

due to the short timescale of Compton cooling compared

to the orbital timescale (see also discussions in e.g. Shi
& Krolik 2016 and Krolik et al. 2019).

The ability of Swift-BAT to study the full variable X-
ray sky in general and variable AGNs in particular will

be unmatched until the extended ROentgen Survey with

an Imaging Telescope Array (eROSITA; Merloni et al.

2012). It will be much more sensitive to (unobscured)

AGNs, many of which will be visited at a high cadence

as a result of its scanning strategy.
This paper has the dual goal of performing the first

systematic search for periodic AGNs in the X-rays and

investigating the prospects for detecting SMBHBs with

eROSITA and is organized as follows: in Sections 2, we

search for periodic signals in the 105-month BAT catalog

by first modeling the underlying normal AGN variabil-
ity, which is characterized by higher variability power
at lower frequencies (“red noise”). We also revisit the

binary candidate MCG+11−11−032 reported by Sev-

ergnini et al. (2018). In Section 3, we investigate the

detectability of periodic SMBHBs with the eROSITA

survey by first adopting a daily temporal sampling rate

over the course of the survey and then proceed to inves-

tigate the effects of non-uniform sampling by inserting

a gap every 6 months. We further investigate the de-

tectability of short periods with more realistic sampling

as a function of the total length of observations. We

summarize our results in Section 4.

2. BAT AGNS

2.1. The 105-month Swift-BAT Catalog

Swift-BAT has a wide field-of-view (FOV ∼ 60◦ ×

100◦) and is designed to monitor a comparatively large

fraction of the sky for gamma-ray bursts (GRBs). While
it is scanning the sky for GRBs and other hard X-ray
transients, BAT is also effectively performing a survey

of the full sky with a nearly uniform coverage, with 90%

of the sky covered at the 11 Ms level over the period of

105 months, and the median 5σ sensitivity limit corre-
sponds to 7.24 × 10−12 erg cm−2 s−1 (Oh et al. 2018).

By comparison, the International Gamma-Ray Astro-

physics Laboratory (INTEGRAL; Ubertini et al. 2003)

has primarily observed the Galactic plane with its Im-

ager on Board the INTEGRAL Satellite (IBIS; Winkler

et al. 2003) in the 17−100 keV range with shorter overall

exposure time (Bird et al. 2010; Krivonos et al. 2010).
NuSTAR (Harrison et al. 2013) has a superior sensitiv-

ity in the hard X-ray band (3σ sensitivity at 10−14 erg
cm−2 s−1 in the 10–30 keV range), however it has a

smaller field of view (12’.2×12’.2) and mostly performs

pointed observations.

Following the earlier survey catalogs (Markwardt et al.

2005; Tueller et al. 2008, 2010; Baumgartner et al. 2013),

the fifth Swift-BAT catalog2 (Oh et al. 2018) contains
1632 sources observed during the 105 months between

2004 December and 2013 August, 328 of which are

newly-identified sources since its last version, the 70-

month catalog (Baumgartner et al. 2013). After making

a blind source detection at the 4.8σ level and fitting
for the source position, a cross-search using a fixed ra-

dius is made in the archive for counterparts observed by
other telescopes/instruments such as Swift-XRT, Chan-

dra, and XMM-Newton. The X-ray sources are also

searched for optical counterparts in the NED and SIM-

2 https://swift.gsfc.nasa.gov/results/bs105mon/
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BAD databases. Sources with known types in their op-
tical counterparts are further divided into classes, and

the 105-month catalog includes 947 un-beamed AGNs,

i.e. classified as Seyfert 1, Seyfert 2, or LINER based

on their emission lines as well as “Unknown AGNs” .

A detailed description of the BAT hard X-ray survey

data can be found in Oh et al. (2018) and references
therein. One of the main data products is the light

curves of BAT-detected sources spanning the duration

of the survey. Instead of “snapshot” light curves from

individual observations, the 105-month catalog presents

the monthly-binned light curves, by adding individual

snapshot images from each month of the survey and

measuring the source flux from the total-band mosaic

image.

Follow-up observations and studies of BAT-detected

sources are actively being carried out. Among them

is the BAT AGN Spectroscopic Survey3 (BASS; Koss
et al. 2017), a large effort to measure optical spectra for

this hard X-ray selected, uniquely-unbiased sample of
AGNs with complete estimates for black hole mass, ac-
cretion rate, and bolometric luminosity using dedicated
spectroscopic observations. In addition to optical spec-

tra, BASS also presents careful determination of the X-

ray properties of BAT AGNs by combining Swift-BAT
data with observations from a variety of soft X-ray tele-

scopes (Ricci et al. 2017b). The BASS sample consists
of the brightest (L2−10keV &1042 erg s−1) and the near-

est (90% are at z < 0.2) AGNs, allowing detailed stud-

ies of nearby AGNs while serving as a benchmark for

X-ray surveys of a large sample of high-redshift AGNs,

such as the upcoming eROSITA and the planned spec-
troscopic follow-up of eROSITA-detected AGNs with

SDSS-V (Kollmeier et al. 2017) and 4MOST (Merloni
et al. 2019).

2.2. Variability Analysis

Our parent sample consists of 941 un-beamed AGNs in

the 105-month catalog that are classified as ‘Seyfert 1’,
‘Seyfert 2’ or ‘Unknown AGN’. Their source IDs, names,

and coordinates are listed in Table 1. We first calculate
the excess variance (Nandra et al. 1997; Edelson et al.

2002; Vaughan et al. 2003) for each light curve, which

removes the apparent variation due to measurement er-

rors: σ2
xs = S2 - σ2

err, where S2 is the variance of the
light curve, and σerr is the measurement error. To se-

lect intrinsically variable AGNs4, we compare their σ2
xs

3 http://www.bass-survey.com
4 We assume that all AGNs are likely intrinsically variable at

some level. Here we will exclude any AGN whose observed vari-
ability is largely due to measurement uncertainties.

with those of galaxy clusters, which are constant hard
X-ray sources (e.g. Wik et al. 2011). We have inspected

the Swift-XRT and XMM-Newton data of each clus-

ter, in order to exclude those with contamination from

variable AGNs in the BAT FOV. We have also used

the detailed analysis of BAT clusters by Ajello et al.

(2009) and Ajello et al. (2010). This process removed
8/26 clusters. As we show in Figure 1 (upper panel),

the distribution of AGNs closely mimics that of clusters

at the σ2
xs < 1.5 × 10−7 level, indicating possible re-

maining systematic effects; above this level, the fraction
of galaxy clusters declines to zero. Therefore, we use

σ2
xs = 1.5 × 10−7 as the variability threshold and select

220 AGNs (23% of the sample) for further analysis. We

show the σ2
xs values of the full sample in Table 1 and

denote those that meet our variability threshold.

We have also calculated the fractional variability,
which is normalized to the average flux of the source:

fvar = (σXS/
〈

F
〉

)× 100% (Table 1). It is similar to the

SV parameter used by Soldi et al. (2014), where their σQ

parameter reduces to σXS for uniform measurement er-

rors. As we show in Figure 1 (lower panel), most AGNs
in this sample are variable at the 30 − 40% level on

the ∼month timescale, similar to the sample from Soldi
et al. (2014), although with a heavy tail for AGNs with

fractional variability & 100%. We find that those high-

variance values (fvar > 50%) tend to be associated with

low count rates. Additionally, visual inspection of their

light curves reveals a number of outliers, and thus we

only show fvar ≤ 200% in Figure 1 for presentation pur-

poses. We confirm that by using σ2
xs instead of fvar as

the variability threshold, we do not systematically bias

against faint sources, as the mode count rates of the se-

lected variable AGNs and those of “non-variable” AGNs

are both ≈ 5× 10−4 cts s−1

Since the 105-month light curves are uniformly sam-

pled on monthly timescales, we compute the peri-

odogram, which is defined as the modulus squared of

the Fourier transform and is normalized to have units of

(rms/mean)2 Hz−1. We ignore the point at the Nyquist

frequency5 and fit a simple linear function to the pe-

riodogram in log-space and estimate the power law

continuum of the power spectrum, where here we have

corrected for the bias between the periodogram and the
power spectrum by adding 0.25068 to the best fit lin-

ear function (see Papadakis & Lawrence 1993; Vaughan

2005).

We confirm the goodness-of-fit using the Kuiper’s test,

since the periodogram should scatter around the true

5 Because the periodogram at this frequency is χ2
1-distributed

(e.g. Vaughan 2005).
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Table 1. Variability Properties of the BAT AGN Sample

IDa Nameb R.A.c Decl.d σ2
xs (10−7)e Variable?f fvar(%)g Typeh

1 SWIFT J0001.0-0708 0.228 -7.164 10.6620 Y 202.09 red

2 SWIFT J0001.6-7701 0.445 -77.000 0.0296 N - -

3 SWIFT J0002.5+0323 0.613 3.365 0.0000 N - -

4 SWIFT J0003.3+2737 0.856 27.643 1.2593 N - -

5 SWIFT J0005.0+7021 0.934 70.358 0.5252 N - -

6 SWIFT J0006.2+2012 1.596 20.242 0.0000 N - -

7 SWIFT J0009.4-0037 2.305 -0.639 0.0000 N - -

10 SWIFT J0021.2-1909 5.289 -19.162 0.0000 N - -

13 SWIFT J0025.8+6818 6.432 68.403 0.2152 N - -

14 SWIFT J0026.5-5308 6.709 -53.151 2.0127 Y 88.70 red

Note—Table 1 is published in its entirety in the machine-readable format. A portion is shown here for guidance regarding its
form and content.
aSwift-BAT 105-month catalog ID

bBAT name of the source

cBAT right ascension of the source

dBAT declination of the source

eExcess variance σ2
xs = S2 - σ2

err. (A negative value is forced to be zero.)

fWhether the source is classified as intrinsically variable

gFractional variability fvar = (σXS/〈F 〉)× 100%

hWhether the intrinsic variability can be characterized by red noise or white noise

PSD following a χ2 distribution with two degrees of free-

dom (e.g. Vaughan 2005). By the same token, a possible

feature with a power below − ln[1− (1− ε)1/n]P (f) can

be rejected as a spurious peak at the (1−ε) level, where ε

is the chosen false alarm probability, and the trial factor

n is the number of frequency points in the range where
the periodogram is fitted.

By fitting a simple linear function to the periodogram,

we have assumed that the underlying red noise power

spectrum is described by a single power law in the fre-

quency range of interest, and here we show that it is in-

deed a reasonable assumption. Since the break timescale

of the X-ray power spectrum is found to correlate with

black hole mass (McHardy et al. 2006; González-Mart́ın

& Vaughan 2012), we can use the best-fit correlation

in González-Mart́ın & Vaughan (2012) to estimate the

expected break timescale6: log(Tbr) = 1.09 log(MBH) −

1.70, where Tbr is in units of days and MBH is in units of

106M�. We use black hole masses from the internally-
released BASS DR2 (which is soon to be publicly avail-

6 Here we have assumed there is no significant difference in the
PSDs in the soft (< 10 keV) and hard (> 10 keV) X-ray bands
(e.g. Shimizu & Mushotzky 2013).

able), which has a higher completion percentage for

black hole mass measurements (≈90%) than the pub-

lished DR1 (Koss et al. 2017). Assuming this sam-

ple is representative of all BAT AGNs, we expect the

majority (> 98%) to have break timescales Tbr < 2

month, which corresponds to frequencies that are higher

than the Nyquist frequency in our BAT data (Figure
2). This is also consistent with the lack of detection of

PSD breaks and the lower limit at 10−6 Hz reported by

Shimizu & Mushotzky (2013).

Shimizu & Mushotzky (2013) also showed that the

brightest AGNs do not become white noise-dominated

until the ∼ 5-day timescale, and their power spectra
can be well described by single power laws over the full

frequency range. However, the fainter sources in our

sample show evidence of white noise beginning to domi-

nate at a much lower frequency, and thus we should only

fit for the power law continuum in the frequency range

where red noise dominates in order to estimate its slope.

Hence, for each of the 220 AGNs in our variable sample,

we will also consider a “power law+constant” model, in

addition to a single power law fit (Section 2.4). Ideally,
the constant power level should be consistent with the

level of Poisson noise estimated from measurement er-
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Figure 1. Upper panel: the excess variance of the galaxy
cluster sample (dashed histogram) versus the full AGN sam-
ple (solid histogram). Those with negative excess variance
are defined as σ2

xs = 0. The variability threshold is marked
with a dotted line. Lower panel: the fractional variabil-
ity distribution of the variable AGN sample. AGNs with
fractional variability larger than 200% are defined to have
fvar = 200% (see text).

rors: PN =
2∆Tσ2

err

µ2 (Vaughan et al. 2003), where µ is the

mean count rate and ∆T = 1 month for the 105-month

BAT light curve. (For example, the power spectrum of
a constant X-ray source such as a galaxy cluster should

be approximately flat and at a level that is consistent
with PN.)

2.3. MCG+11−11−032 Revisited

We first demonstrate this procedure by testing for

the reported periodicity in MCG+11−11−032. Since its

light curve presented by Severgnini et al. (2018) was in-
dependently analyzed by the Palermo team, we retrieved

the light curve from their published Third Palermo BAT

Catalog (3PBC) instead of the 105-month catalog (Fig-

-2 -1 0 1 2 3
Break timescale (log-day)

1

10

100

N
u

m
b

er

Figure 2. The expected PSD break timescales in units
of log-day derived from the relation in González-Mart́ın &
Vaughan (2012) for the BAT AGNs with black hole mass
measurements from BASS DR2. Note that the y-axis is log-
scale for clarity. The majority (98%, or 845/861 AGNs) of
break timescales are shorter than the variability timescales
probed by BAT (> 2 months, to the right of the dashed line).

ure 3). We consider the source red-noise dominated,

since its power spectrum is significantly above the esti-

mated noise level and the power law slope is not flat

after taking into account its uncertainty. Thus, we

measure its power spectrum in the full frequency range

and are able to reject signals in the full range at the

> 90% level, including the putative period of 25 months
(log[f/Hz] = −7.8) reported by Severgnini et al. (2018)

(Figure 3). However, we note several differences that

may result in our different conclusions: Severgnini et al.

(2018) adopted a different method, where the periodic

function is only superimposed for visual purposes, and
no systematic search or power spectral analysis was per-

formed. Second, their data were independently pro-
cessed and were not available to us, so our comparison
is not a direct one. Finally, their light curve was from

the first 123 months of the survey (which has not been

published), and thus robustly detecting two cycles of the

signal in the 66-month 3PBC light curve is more diffi-

cult.

2.4. The BAT 105-month sample: Power spectrum

fitting

We then apply the method to the full sample of 220

variable AGNs in the 105-month dataset. We first

naively fit a single power law in the full frequency range

and obtain the best-fit power law slope, normalization,

and their uncertainties. If the slope is steeper than its
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Figure 3. Upper panel: the BAT light curve of
MCG+11−11−032 since beginning of the mission (Month
= 0). The Third Palermo BAT Catalog (3PBC) publishes
light curves from the first 66 months of the survey. Lower
panel: its power spectrum. Solid line represents the best
fit power law continuum, and dashed lines represent model
uncertainties, which are determined from the propagation of
the uncertainties of the power law slope, normalization, and
their covariance (see Vaughan 2005). The estimated noise
level is marked with a dotted line. There is no peak at 25
months (black tick mark) even at the modest 90% level (blue
solid line). The four outlying points in the upper panel were
not removed in our analysis.

uncertainty, then we tentatively classify the power spec-
trum as “red”, and “white” otherwise. We find that
all 220 AGNs can be reasonably described by either a

white power spectrum (124/220), or a red single power

law power spectrum (96/220 ; see Table 1).

However, for the fainter sources, the level of white

noise becomes comparable to, or even dominates over,

the power law red noise at high frequencies. Hence, in

cases where the estimated PN is comparable to the com-

puted power spectrum at high frequencies, we model the

power spectrum by fitting it to a power law+constant:

we use the naive single power law best-fit normalization

parameter and the estimated PN level as respective ini-
tial guesses and vary by a step size of 0.1 (in logarithmic

space); we vary the power law slope in the range of [0,

3] in a step size of 0.1.

We note that since we are effectively “de-reddening”

the power spectrum by first fitting it to a power law and

do not aim to measure the “true” PSD slope, we refrain

from directly comparing our distribution of the best-fit

power law slopes with those measured by Shimizu &

Mushotzky (2013), except for noting that, qualitatively,

our distribution of slopes would contain more flatter

slopes than the Shimizu & Mushotzky (2013) distribu-
tion, due to the high level of white noise of the fainter

sources in our sample.

2.5. The BAT 105-month sample: Upper limits on

periodic signals

After obtaining reasonable fits to the power spectra,

we proceed to apply the method in Section 2.2 to test

for periodic signals. We have chosen 99.7% as the sig-

nificance level, since we do not expect any source in our

sample to have peaks above this threshold (i.e. as a false

positive). We hence reject the presence of any periodic

signal at this level in this sample.

The null-detection nevertheless allows us to put

upper-limit constraints on periodic amplitudes in the

BAT volume as a function of frequency. As we show

in Figure 4, the most stringent upper limit in log-

power units is given by NGC 7214 (represented by

the solid line). While the periodogram is convention-

ally normalized to have fractional rms units, we can

also calculate the variability power in terms of “abso-

lute” units and convert to an upper limit in physical

units, as the BAT count rate is normalized to the Crab

(f14−195keV = 2.33 × 10−8 erg cm−2 s−1). Hence, the

best upper limit in physical flux units is provided by

NGC 2110, which is also one of the brightest AGNs

in the sample (dashed line in Figure 4). We note that

those upper limits apply to a strictly periodic signal,

rather than a “quasi-periodic” signal, which has a finite

width in Fourier frequency.
Given the upper limit of ∼ 1 periodic source per 104

AGNs in optical surveys out to a higher redshift (Liu
et al. 2019), a null detection in ∼ 1000 BAT AGNs at

lower redshifts was to be expected. As we will also show

in Section 3.1, the null detection in BAT is consistent

with the small amplitudes of binary-induced periodic

variability and the large measurement uncertainties of

BAT.
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Figure 4. The 99.7% upper limit on a periodic signal deter-
mined from the two best sources in the BAT AGN sample,
represented here in fractional rms and flux units (black solid
and blue dashed lines, respectively). The significance levels
are computed based on the best power spectrum fit (see text
for details).

Finally, we note that another previously reported

SMBHB candidate in the BAT sample, PKS 1302-102

(or PG 1302-102; hereafter PG 1302), was not recovered

in our periodicity search. PG 1302 was proposed as a

binary candidate for its smooth, sinusoid-like variation

in the optical light curve with a ∼ 5 yr observed pe-

riod over ∼ 2 cycles (Graham et al. 2015a), which was
attributed to the relativistic Doppler boost from an un-

equal mass binary (D’Orazio et al. 2015; however see

Vaughan et al. 2016 and Liu et al. 2018; see also Duffell

et al. 2019 for an alternative interpretation). Since PG

1302, which is classified as a “beamed AGN” in the BAT
105-month catalog, was not included our parent sample,

we have performed our light curve analysis separately on

this source. We find that its power spectrum shows no

evidence for peaks or features and is well-characterized

by white noise which is consistent with the expected

Poisson noise level.

3. DETECTION PROSPECTS FOR EROSITA

While we do not find periodicities in the BAT sam-

ple, the upcoming eROSITA mission is likely to trans-

form the search for SMBHBs in the X-rays, thanks to

its high sensitivity in the 0.5–10 keV band and its all-

sky scanning strategy. In this section, we will attempt

to investigate the detectability of SMBHBs as periodic

AGNs with eROSITA.

More specifically, we will test for periodic signals pro-

duced by a mock population of binaries that are super-

imposed on red noise. Assuming a fixed variance for the

red noise PSD (see Section 2.2 and discussions below),

only two parameters are needed to generate a light curve

— the amplitude and period of the signal. These two

elements will then be determined by binary parameters

from the mock population. While the eROSITA sky is

divided by half between the German and Russian con-
sortia, we refer to a full-sky SMBHB population when-
ever applies.

3.1. A Mock SMBHB Sample

eROSITA will be located at the L2 Lagrangian point

and scan the sky in great circles, completing one circle
in four hours. As its survey plane progresses around the
sun by ∼ 1 deg per day, eROSITA will complete a scan
of the full sky every 6 months and eight full-sky scans

during its survey lifetime (eRASS1 – eRASS8). As a re-

sult of this scanning strategy, the ecliptic poles are more

frequently visited than lower latitudes (more details can

be found in Merloni et al. 2012). Its observing cadence

in this region of the sky, combined with the survey sensi-

tivity, could probe a wide range of variability timescales

and thus possible binary parameters.

To investigate this prospect, we first construct a full-

sky binary population. We adopt the mock eROSITA

AGN catalog of Comparat et al. (2019). The method

populates dark matter halos with galaxy stellar masses

and then AGNs using an abundance matching tech-

nique and reproduces the observed AGN X-ray lumi-

nosity function. For the remainder of the section, we
adopt the full mock catalog (“eRASS8”), which includes
2.6 million AGNs at 0 < z < 6. To convert the

galaxy stellar mass to the black hole mass, we use the

Mstellar−MBH relation from Reines & Volonteri (2015)7:

log(MBH/M�) = 7.45 + 1.05 log(Mstellar/10
11M�), and

the resulting range of MBH is ∼ 106 − 108M� (we will

further discuss this scaling relation and our black hole
masses below).

For this study, we only focus on those AGNs near the

ecliptic poles which are better sampled than those at

lower latitudes. We choose areas that are no more than

2 degrees away from the poles and select AGNs from the

Comparat et al. (2019) catalog that are in those regions

using a grid: ∆RA = 0.05 h and ∆dec = 0.5 deg. Our
parent sample contains ∼ 6× 103 AGNs.

To compute an upper limit on the number of SMB-

HBs that could exist in this AGN sample, we assume
a one-to-one correspondence between an AGN and an
SMBHB. This is motivated by the match between the

7 Here we have not considered the possible redshift evolution of
the Mstellar −MBH relation.
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AGN lifetime of tAGN ∼ 107 yr and the timescale for a
binary to evolve from the outer edge of the circumbinary

disk to coalescence (Haiman et al. 2009). We further

assume: (1) all binaries in the footprint have evolved

into the gravitational wave-emitting regime where the

time (“residence time”) a binary spends at an orbit

that corresponds to the orbital timescale torb is tres =
1.11×107 yr q−1

s M
−5/3
7 t

8/3
orb (Haiman et al. 2009), where

qs = 4q/(1 + q)2 with q = M2/M1 being the mass ra-

tio, M7 = MBH/10
7M�, and torb is in units of yr; (2)

all residence timescales can be probed by either Case A

or Case B, i.e. tres,min ∼ 105yr and tres,max ∼ 107yr,

and each binary is assigned a residence time according

to the linear dependence of the binary number rate on

tres: f(tres) = tres/tAGN (Haiman et al. 2009). The up-

per bound of 107yr is motivated by the binary evolution

timescale as we previously discussed, above which the

binaries can no longer be active as AGNs during their

entire lifetimes, and our assumptions are no longer valid.

The lower bound is such that the expectation number of
binaries with the shortest tres is at least a few in a sam-

ple of 103 − 104 AGNs. While in principle, the absolute

lower limit on tres is where the separation a = rISCO, we

note that our results should be insensitive to the lower
bound on tres, since binaries with very short residence
timescales are exceedingly rare.

We then “sample” this binary population by consid-
ering three elements: temporal constraints, flux limit
of the survey, and column density of the AGN. Since
tres = tres(torb,MBH, q), we are able to calculate torb
and therefore the observed variability timescale of each
mock binary: tvar = torb(1+z). Here we assume q = 0.1,
as it strikes a balance between the mass ratio expected

in a major merger and the one that can cause strong
periodic modulations (see below). We then only con-
sider those with tvar that can be probed with the data

length and sampling, i.e. tvar = [2, 730] days, where

tvar,max is based on the assumption that at least two cy-

cles are needed for periodicity detection and tvar,min is
determined by the cadence (see Section 3.3). Second,

we impose a soft X-ray band flux limit at 4.4 × 10−14

erg s−1cm−2 (Merloni et al. 2012). Finally, we only con-

sider column densities NH < 1023 cm−2, to which the

soft X-ray band is sensitive. A total of 64 binaries met

these criteria. As we show in Figure 5, their black hole

mass distribution strongly peaks at 107−7.5M�. We also
find that while this sample probes the full range of in-

put periods, longer periods between ∼ 400 − 600 days

are overall preferred.

We note a few caveats associated with our binary pop-

ulation: first, the Mstellar−MBH relation from Reines &

Volonteri (2015) is systematically below that of elliptical

galaxies and galaxies with classical bulges, and given the
strong mass dependence of the binary residence time,
our final mock binary population is also dependent on

our particular MBH prescription. If an Mstellar − MBH

relation for ellipticals is adopted instead, so that

log(MBH/M�) = 8.95 + 1.04 log(Mstellar/10
11M�)

(Reines & Volonteri 2015), the number of observable

binaries decreases by a factor of ∼ 10, due to the shorter

time for a binary to evolve through the observable

timescales. Additionally, since the true Mstellar −MBH

relation for AGNs is still an active area of inquiry, the

aforementioned decrease is likely only a conservative

estimate. Second, we have assumed the binary evolu-

tion is primarily gravitational wave-driven, so that the
residence time has a simple power-law dependence on
the orbital period (α = 8/3). However, in general, α

is dependent on the physical mechanism driving the

binary evolution, and α < 8/3 for other processes such

as gas interaction (Haiman et al. 2009). However, those
mechanisms are beyond the scope of this work.

3.2. Periodic Variability Properties

To calculate the expected periodic variability ampli-

tude of each AGN, we first consider the relativistic

Doppler boost model (D’Orazio et al. 2015). In this

model, the line-of-sight velocity of the black hole directly

translates to an apparent fractional flux variability of

its minidisk emission8: ∆f/f = (3 − α)(v2/c) sin(i),

where here we adopt α = 1 as the spectral index in
the X-ray band (or a photon index of Γ = 2), v2 is

the velocity of the secondary black hole: v2 = (2π/1 +

q)(GM/4π2P )1/3, and we assume random orientations

of the binaries on the sky.

In the right panel of Figure 5, we show the resulting

distribution of the variability amplitudes. We find the

periodic signals produced by this sample of binaries due

to Doppler boost are at the modest level of a few percent,

where only ∼ 20% of the SMBHBs vary at the > 5%

level. It can also be seen that the distribution slightly

increases towards large amplitudes, but none at the >
6% level are produced by this sample.

While Doppler boosting is inevitable regardless of the
details of the emission, it is expected to give only a con-

servative estimate of the number of detectable binaries

due to its strong dependence on binary parameters and

the orbital inclination. Thus, we will also consider a

second periodic variability model in the following sec-

tion, where we assume fvar = 10% as an optimistic case.

8 Here we assume the emission is dominated by the secondary
black hole. See Farris et al. (2014) for an accretion prescription of
individual members of the binary.
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Figure 5. From left to right: the distributions of black hole masses, variability periods, and variability amplitudes of the mock
binary sample.

While this variability amplitude is higher than the high-

est amplitude of the Doppler-boosted periodic binaries

in our sample, it may be more consistent with an alter-

native mechanism that could produce X-ray periodicity

due to the outflung gas hitting the cavity wall (see Tang

et al. 2018). Unlike Doppler boosting, the periodic am-

plitude in this model cannot be calculated analytically;

thus, we will fix fvar at 10% for all binary parameters

and inclination angles. However, we will adopt the same

tvar distribution, since it is the output of the same binary
population.

Working under the same upper-limit assumption that

binaries already exist the BAT volume, we also revisited

the null detection of periodic AGNs with BAT by adopt-

ing the black hole mass and redshift measurements from

BASS DR2. While BAT spans a baseline that is at least

twice longer (and thus samples a wider range of tvar), its
measurement uncertainty is much larger than the frac-

tional periodic variability (. 8% level) of any SMBHBs,
and a signal can not be detected even without the un-

derlying red noise. This suggests that our null detection

in BAT is consistent with our chosen toy model for the

(upper limit) binary population.

3.3. Light Curve Simulations

To investigate the detectability of a periodic signal

of period tvar and amplitude fvar superimposed on red

noise, we will simulate mock light curves sampled at a

given cadence. We first assume an ideal, uniform ca-

dence that the object is visited daily for the duration

of the survey. However, it should be noted that this

is not the actual sampling of eRASS1 – eRASS8. Dur-
ing each 6-month-long full-sky scan, a given sky loca-
tion will be paid several consecutive visits, which are
separated by 4 hours, before eROSITA returns to it in

the next eRASS. Since the current eROSITA scanning

strategy is not yet publicly available, we have made a

few assumptions about the sampling pattern: (1) we as-

sume the scanning law does not evolve between eRASS1

– eRASS8; (2) We assume that a more-densely sam-

pled light curve can be re-binned to a daily cadence. A

continuous and uniform sampling is expected to give us

an upper-limit estimate of the detectability of periodic

signals in red noise, and we will explore the erosion of

detectability with uneven sampling in Section 3.5.

To produce a mock light curve of a given PSD, we use

the method of Timmer & Koenig (1995). Here we again

adopt a single power law, since the expected PSD break

Tbr ∼ day is shorter than the timescales probed by the

daily cadence, given the black hole masses of the sample
(see Section 2.2). We draw the value of the PSD slope

α from a normal distribution of µ = 0.9 and σ = 0.2,
which is consistent with previous studies of the PSD (e.g.

Shimizu & Mushotzky 2013). The normalization A of

the single power law is such that the fractional variabil-

ity is ∼ 30%, which is also consistent with our variable

AGN sample (Section 2.2 and Figure 1) and largely in-
dependent of black hole mass (Shimizu & Mushotzky

2013). To mitigate possible spectral leakage, the parent
light curve is ∼ 20 times longer than the duration of the

survey, i.e. ∼ 80 yr.

Next, we inject a periodic signal, so that its period

and sinusoidal amplitude are given by tvar and fvar of

the mock binary, respectively. However, we only con-
sider those with fvar > 5% as our minimum signal-to-

noise case, where the periodic signal has an amplitude
of fvar as previously defined. Hence, the conservative

Doppler model includes 13 periodic AGNs. We have

also added Poisson noise in the light curve: we assume

that the measurement uncertainty between visits is neg-

ligible compared to the intrinsic stochastic variability;

this corresponds to a fractional uncertainty of ∼ a few

percent (see Section 2.2). We note that this fraction is

likely an underestimate for the fainter sources.

Finally, we down-sample the light curve to the cadence

of each mock binary to produce the final periodic AGN

mock dataset. To fully take into account the effect of red
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Figure 6. Two mock light curves down-sampled from the same parent light curve (in which a periodic signal of P = 276 days
was injected), representing two sampling cases under consideration: (a) no gap, (b) ∼ 15% gap. The observation times have
been normalized to the first day of observations.

Table 2. Number of recovered periodic AGNs (without gaps)

Conservative Optimistic

Realization Ntot Ncand Nrecover Ntot Ncand Nrecover

1 13 0 0 64 8 8

2 13 1 0 64 11 9

3 13 1 0 64 11 10

4 13 0 0 64 7 6

5 13 1 0 64 13 13

6 13 0 0 64 10 9

7 13 0 0 64 7 6

8 13 1 0 64 9 8

9 13 1 0 64 9 9

10 13 0 0 64 5 4

Average number 13 0.5 0 64 9 8.2

Average fraction · · · 3.8% 0% · · · 14.1% 12.8%

noise fluctuations, we have simulated ten realizations of

this sample.

We then repeat the above light curve simulation pro-

cedure for the optimistic case, which includes 64 AGNs.

We do not require a signal-to-noise threshold in this

case, since all amplitudes are fixed at 10%. We show

an example light curve in the upper panel of Figure 6.

3.4. Detectability of Periodic AGNs with Uniform

Sampling

We then apply the method in Section 2.2 and search

for a periodic signal at the 98% level, which corresponds

to less than one expected false positive for our sample

size. We quantify the detectability with two numbers:

Ncand is the number of light curves that are identified as

having peaks at this level. In a systematic search where

a significance level threshold is applied, they would be

selected as “periodic candidates”. However, most of

them are false positives due to red noise fluctuations,

which is indicated by a high-significance peak located at
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the wrong frequency. Thus, if the injected periods are
correctly identified (within a 0.1 dex uncertainty from

the injected value) at the > 98% level , we refer to the

number of those as Nrecover.

We summarize the results in Table 2: under the con-
servative periodic variability model, only one candidate

can be identified in 5/10 realizations, but none of them
are identified at the correct frequency. This is perhaps
non-surprising, since the conservative case only contains

13 binaries; neither does it sample a sufficient number of

binaries with large amplitude periodic variations, mak-

ing it challenging to identify them against red noise. In

the optimistic case, where fvar is fixed at 10% regard-

less of the mock binary parameter, the recovered number

has significantly increased: 5-13 periodic candidates are

identified in each realization of the 64 binaries, corre-

sponding to a candidate rate of 14.1±3.7%. What is

also noteworthy is the low false positive rate of ∼ 10%
(represented here by 1−Nrecover

Ncand

), which leads to the com-

paratively high recovery rate of 12.8±3.9%. This may

be due to the combination of large periodic amplitudes
and the even sampling that we have adopted.

However, we stress that the recovery rates in both

“optimistic” and “conservative” cases should be under-
stood as upper limits, since (1) we have assumed that
each AGN being sampled hosts an SMBHB, while the

actual fraction would be much lower; (2) in both cases,

we have assume that white Poisson noise is negligible

with respect to red noise on the timescales of interest;

(3) in our conservative case, we only consider those with

large periodic amplitudes, while those with fvar < 5%

would likely be missed due to red noise, thus further low-

ering the overall recovery fraction; (4) in our optimistic

case, we have fixed the periodic amplitude at 10%; it is
therefore “optimistic” in the sense that the periodic am-
plitude is more pronounced and is independent of binary

parameters.

We also note that our simple periodogram-based ap-

proach is only the preliminary step to reject a spuri-

ous peak at a low significance level and is not meant to

claim a periodic signal at a high significance level (see

Vaughan 2005). While the former is easily applicable to

a large survey dataset, in order to do the latter, better

modeling of the underlying red noise and parameter un-

certainties should be fully considered. Thus, while the

Fourier method has the great advantage of speed and

can be easily applied to a large (mock) survey dataset,

our SMBHB detectability estimates presented here are

not meant to replace detailed analyses involving the ac-

tual sampling.

Table 3. Number of recovered periodic AGNs (15% gap)

Realization Ntot Ncand Nrecover

1 64 8 7

2 64 10 9

3 64 9 8

4 64 6 4

5 64 12 11

6 64 9 7

7 64 9 8

8 64 8 7

9 64 11 7

10 64 1 1

Average number 64 8.3 6.9

Average fraction · · · 12.9% 10.8%

3.5. Mind the Gap: Detectability of Periodic AGNs

with Non-uniform Sampling

In fact, standard Fourier methods can no longer be

used for the actual sampling of eROSITA, where consec-

utive visits are followed by observing gaps, the length of

which is a function of the latitude of the sky location.

Hence, in this section, we will investigate the effects of

observing gaps on both candidate and recovery rates.

To this aim, we further down-sample the same set of
simulated light curves (Section 3.3) by inserting a 1-

month-long gap every 6 months, which corresponds to

∼ 15% of the data being replaced with gaps over the full

survey period. An example is shown in the lower panel

of Figure 6, which is down-sampled from the same light

curve in the upper panel.
Since we can not directly apply the simple Fourier

method to an unevenly-sampled light curve, we fill in the

missing data by linearly interpolating across the gaps.

The interpolated data are then given large “measure-

ment uncertainties” which are comparable to the stan-

dard deviation of the full light curve. We assume that

by replacing only 15% of the observation length with in-

terpolated data, any power spectrum distortion is neg-

ligible and our method in Section 2.2 is still valid.

We repeat the period searching procedure described

Section 3.4 for light curves in the optimistic case (i.e.

10% periodic amplitude) and report the candidate and

recovery rates in Table 3: 12.9±4.8% of the them are

identified as periodic candidates, and 10.8±4.3% are re-
covered at the correct period. We then compare these

detection rates with those from Section 3.4, where the

light curves are continuously and evenly sampled. As

Figure 7 shows, both the number of periodic candidates

and the number of recovered true periodic AGNs have
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Figure 7. We show the candidate and recovery rates (open
black and filled blue squares, respectively) versus the length
of the gap per 6-month period. The error bars represent the
standard deviations of the realizations. To guide the eye, the
dashed lines show the trend of decreasing rates with longer
gap lengths. We note that while this trend has been linearly
extrapolated to longer gaps to show the expected further
decline in detectability, it does not depict the predicted can-
didate or recovery fraction.

decreased, which is expected due to the lack of reliable

measurements during the gap periods. Further, it ap-

pears that the Nrecover fraction is decreasing at a faster

rate, which can be attributed to the higher number of

false positives.
We hence expect that with longer gaps, the mock

dataset would be less sensitive to a yet wider range of

variability periods, resulting in even fewer detections. In

Figure 7, for visual purposes only, we extrapolate both

rates to cases with longer gaps, showing the expected

further decline in the number of candidates and the

number of recovered periodic sources. Unfortunately,
we are unable to draw reliable conclusions about the ex-
pected detectability with long gaps, since their effects

on detectability would behave in a non-linear manner

for data with > 15% gaps and likely render even fewer

recoverable sources than the linearly-extrapolated val-

ues. We hence expect that realistic eROSTIA sampling,

which is in the severely gappy regime, is unlikely to be

sensitive to SMBHBs of periods of hundreds of days.

3.6. Detectability of Short Periods

However, with 5-month gaps occurring every 6

months, we expect the sampling to be more sensitive to

shorter timescales which can be probed with continuous

sampling for ∼weeks. Hence, in this section, we will in-

Table 4. Number of recovered periodic AGNs (short peri-
ods)

Realization Ntot Ncand Nrecover

1 70 17 9

2 70 20 15

3 70 14 9

4 70 22 15

5 70 18 14

6 70 17 15

7 70 17 14

8 70 23 11

9 70 15 12

10 70 24 16

Average number 70 18.7 13

Average fraction · · · 26.7% 18.6%

vestigate the sensitivity of our sampling to short periods

between 2 and 15 days. Instead of an astrophysically-

motivated tvar distribution as we adopted in Section

3.1, we simply apply a uniform distribution, as our as-

sumptions about the binary population only produce a
statistically meaningful number of mock binaries with
periods of hundreds of days. While our mock population

no longer applies in the short-period case, many of the

mechanisms that are expected to produce periodicities

(Section 1) are still valid in this regime, since the black
holes are expected to carry their mini-disks until right

before merger (e.g. Tang et al. 2018). Since the orbital
period at ISCO for a non-spinning black hole of mass

107 M� is ∼ hr, we assume that binaries of periods of

days are far from the inspiral stage and that their orbits

are stationary over the course of the survey.

As an optimistic estimate, we will again adopt the
same fixed periodic amplitude of 10% as in Section 3.2.

We then followed the same procedures as we described
in Section 3.3 and generated 70 light curves for each

of the ten realizations. To search for periods, we have

modified our method in Section 3.4: we split the 4-yr-

long light curve into 8 segments, each one during which

the object is observed daily for one month, and each

segment is treated as an independent experiment. We
then stack the observations by computing the average
log-periodogram after N = 1, 2 ... 8 segments, which
is the analog of eRASS1–8. We further require that an

object is selected as a periodic candidate or a recovered

periodic source if the respective condition is met for at

least two consecutive “eRASSes”.

We tabulate the number of candidate and recovered
periods in Table 4: 26.7±4.9% of the simulations are
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Figure 8. Upper panel: the cumulative fraction of periods
recovered as a function of “eRASS”. ∼70% of the signals can
be recovered by the end of “eRASS2” at the earliest. By
construction, a signal is recovered in “eRASS7” at the latest
(see text). Lower panel: the distribution of the recovered
periods. Shorter periods are preferentially recovered due to
the combination of the red noise characteristic and the total
number of observed cycles.

identified as periodic candidates, and 18.6±3.7% are
recovered at the correct period, or a total number of

Nrecover = 130. Both rates are higher than those for
long periods (Tables 2 and 3); this is likely due to the

larger number of cycles for which the periodic source is

observed, which improves the chance of robustly detect-

ing the signal against red noise.

Of the 130 recovered sources, approximately 70% are
recovered by the end of “eRASS2”, while the remaining

sources are recovered as more segments are stacked (Fig-
ure 8, upper panel). This is consistent with the expec-

tation that a true periodic feature persists and its S/N

gradually improves with more observations (e.g. Liu

et al. 2018). A similar approach has also been applied

in the search for QPO features to ensure the signal is

stable and not due to a small number of spurious obser-

vations (e.g. Pasham et al. 2014). We further find that

shorter periods between 3–6 days are preferentially re-
covered (Figure 8, lower panel). In addition to the large

number of cycles for which they are observed, this is

also expected since the red noise level is lower at shorter

timescales, making it less challenging to detect a signal

of the same amplitude.

3.7. Comparison with Previous Work

The electromagnetic detectability of SMBHBs has
been investigated by several previous works. Kelley

et al. (2019) used a population of binaries from the

Illustris hydrodynamical cosmological simulation and

prescribed periodic variability amplitudes based on the

hydrodynamical simulations by Farris et al. (2014) or

Doppler boost (D’Orazio et al. 2015). They find that a
current all-sky survey with a magnitude limit of ∼ 20

mag is already capable of detecting a few binaries as

hydrodynamical periodic AGNs. More encouragingly,

they predict that the Large Synoptic Survey Telescope9

(LSST, Ivezic et al. 2008) can potentially discover more

than a hundred periodic AGNs as SMBHBs due to ei-

ther mechanism, thanks to the much larger volume that

it will probe. However, the effect of the underlying red

noise, which would strongly prohibit us from detecting
the periodicity, has not been explored in that work.

The recent work by Krolik et al. (2019) investigated

the detectability of SMBHBs either as a result of a spec-

tral notch in the UV/optical band due to the cavity in

the circumbinary disk, or an enhancement in the hard

X-rays as the accretion streams shock-heat the minidisks

(Roedig et al. 2014). Using a population of binaries sim-
ilarly “formed” in a cosmological simulation, they pre-

dict that there could be ∼ 100 binaries with X-ray flux

> 10−13 erg s−1 cm−2 under either model, and X-ray-

enhanced binaries are a factor of a few more observable

than binaries with the spectral notch feature. While the

hard X-ray enhancement should also vary periodically as

we discussed in Section 1, identifying such a signature is
also susceptible to red noise, since the Compton reflec-

tion spectrum in the hard X-ray band should also vary

in a stochastic fashion in response to the continuum.

Using an observationally-based approach, Liu et al.

(2019) adopted a quasar luminosity function and an

9 It was announced in January 2020 that the LSST will be
renamed the NSF Vera C. Rubin Observatory.
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empirical variability amplitude–luminosity relation and
“selected” variable quasars using the same pipeline as

the one applied to their systematic search in the Pan-

STARRS1 (Kaiser et al. 2010; Chambers et al. 2016)

Medium Deep Survey (PS1 MDS) and converted their
upper limit from PS1 MDS to a rate for LSST: NLSST <

3, 500. Interestingly, if the more conservative expecta-
tion value of NPS1MDS ∼ 0.06 based on the independent

predictions by Kelley et al. (2019) is adopted instead,

they also arrived at a similar rate of NLSST ∼ 200.

However, the effect of sampling on the periodicity de-

tection rate was not investigated by any previous work.
As we showed in Section 3.4, the high level of red noise

and red noise fluctuations hinder the effort to identify

periodic signals due to their modest amplitudes, and

therefore it is quite possible that of the 100−200 binaries

predicted by Kelley et al. (2019) or Krolik et al. (2019),

only a fraction can be identified observationally. The
exact fraction is strongly dependent on the amplitude

of the periodic signal, as we have discussed in Section
3.4.

The prospects for detecting SMBHBs at all are never-

theless encouraging, given the large number of predicted

SMBHBs identifiable by X-ray signatures. Assuming an

optimistic recovery fraction of 13% (Section 3.4) and
extrapolating the same fraction to the full sky, where

there are ∼ 2000 SMBHBs with enhanced hard X-ray
emissions at a few tens keV with flux f > 10−14 erg

cm−2 s−1, ∼ 10% of which have short binary periods

P . 5 yr (Krolik et al. 2019), we expect to detect ∼ 26

over ten years (we assume again that at least two cycles

are required). This would require an all-sky hard X-ray

survey with a sensitivity down to 10−14 erg cm−2 s−1

with a few percent uncertainty; however, the detection

of an enhanced hard X-ray emission, accompanied by

periodicity, would provide unambiguous evidence for an

SMBHB.

4. SUMMARY AND CONCLUSIONS

AGNs that host SMBHBs are predicted to vary pe-

riodically on roughly the binary orbital timescale from

optical to X-rays. We have performed the first system-
atic search for SMBHBs in the X-rays with Swift-BAT.

While we do not find evidence for SMBHBs in the first

105 months of BAT data, including the previously re-

ported SMBHB candidates MCG+11−11−032, we have

placed an upper-limit constraint on periodic signals in

the BAT volume. We further find that the lack of detec-

tions is consistent with the small expected periodic am-
plitudes produced by a population of SMBHBs, as well
as the upper-limit detection rates inferred from previous

searches in optical time-domain surveys.

We have also investigated the prospects of detecting
SMBHBs with the eROSITA survey by constructing an

upper-limit population model for SMBHBs and adopt-

ing prescriptions for their periodic amplitudes. We fully

take into account normal AGN X-ray variability with the

red noise characteristic and investigate the detectabil-

ity of those periodicities in red noise. For uniformally-
sampled light curves, we find that 13% of the periodic
AGNs can be robustly identified against red noise, but
the detection rate decreases with longer observing gaps.

While we are unable to make solid predictions about the

detectability with realistic eROSTIA sampling based on
our analysis in the short-gap regime, we speculate that

it is unlikely to be sensitive to bona fide SMBHBs of
hundreds-of-day periods.

By contrast, short periods of days to weeks are more

detectable (19%), having benefited from more cycles be-

ing observed and the evolution of the power spectrum

over time. In particular, 70% of the recovered periods

are identified by “eRASS2”, or first year of the sur-

vey, while the remaining ones are gradually detected as
the signal builds up over the course of the full survey.
Shorter periods of a few days are more likely to be de-

tected, as expected from the combination of the total

number of observed cycles and the AGN red noise char-

acteristic.
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