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A handheld near-infrared optical scanner (NIROS) was recently developed to map for effective changes in oxy-
and deoxyhemoglobin concentration in diabetic foot ulcers (DFUs) across weeks of treatment. Herein, a coreg-

istration and image segmentation approach was implemented to overlay hemoglobin maps onto the white light
images of ulcers. Validation studies demonstrated over 97% accuracy in coregistration. Coregistration was further
applied to a healing DFU across weeks of healing. The potential to predict changes in wound healing was observed
when comparing the coregistered and segmented hemoglobin concentration area maps to the visual area of the

wound. © 2020 Optical Society of America
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1. INTRODUCTION
A. Lower-Extremity Ulcers

Lower-extremity ulcers are one of the most common com-
plications that has increased over the past few years [1]. The
prevalence of lower-extremity ulceration is 0.18% to 2%, and
in patients over 65 years of age, it is up to 5% [2]. In the United
States, at least 4.6 million workdays are lost and over $1 billion
is spent every year only for chronic venous ulcers [3]. During the
long-term wound-healing process, an objective and quantitative
determination of the wound-healing rate plays a crucial role in
assessing the efficacy of treatments.

To date, lower-extremity ulcers are visually inspected by cli-
nicians as a gold-standard approach, in order to determine if the
ulcers are healing or not. The parameters used to assess wound
healing include wound size reduction, change in wound color,
and epithelization. Wound size is determined by measuring
the largest width and length of the wound and determining the
rectangular area. Many times the wounds are not rectangular,
and hence there is an error and subjectivity in determining
wound size. According to the Wound Healing Society (WHS),
a reduction in wound size by ~50% in 4 weeks relates to a
healing wound. Hence, accurate quantified measurements of
wound area are important for objective assessment. There are
various image segmentation approaches that are appropriate for
medical applications [4-9], many of which have been developed
and applied for digitizing accurate wound size measurements
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[10,11]. Digitized wound size measurements remove subjectiv-
ity to a large extent, but they do not provide any physiological
information to subclinically assess the progress of healing.

B. Imaging Technologies to Assess Wound Healing

The gold-standard clinical approach of visually assessing the
wound and its size is complemented by physiological assessment
for tissue oxygenation changes. It has been demonstrated that
oxygen is vital for wound healing [12]. Imaging techniques such
as hyperspectral imaging (HSI) [4,5,11], multispectral imaging
(MSI) [4], and near-infrared spectroscopy (NIRS) [4,13] have
been developed by various research groups to obtain tissue
oxygenation changes in the wound compared to its immediate
surroundings. The wound-imaging technologies that employ
near-infrared (NIR) light are capable of subsurface imaging.
Researchers have employed Monte Catlo simulations of light
propagation to simulate the detection limits (up to 3 mm) of
these NIR-based technologies [14,15].

From past wound imaging studies, it was observed that
increased oxygenation at the wound site (compared to the
background) and its reduction with time (as the wound moves
away from the inflammatory phase of healing) correlate to a
healing wound [4]. These tissue oxygenation maps are visually
correlated to the white light (i.e., visual) images of the wound. In
some cases, researchers apply image segmentation techniques to
the color and/or RGB images of wounds obtained from HSI [5]
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in order to obtain digitized wound size measurements. However,
to date, the tissue oxygenation maps have not been registered
onto the white light images nor segmented to quantify the area
ofincreased or decreased oxygenation.

C. Medical Segmentation Techniques on Wound
Images

Various segmentation techniques such as graph cut, active
contour or grow cut, and regions growth have been applied for
medical images. While active contour models (ACMs) are sen-
sitive to the location of the initial contours [16,17], the region
growth technique [4] relies on the seed points and maximum
intensity distance to allow precise segmentation. Graph cut is
a combinatorial optimization technique [18], where optimal
pixel labeling can be efficiently computed by max-flow/min-
cut algorithms automatically. In the area of wound imaging,
most image segmentation approaches were related to apply-
ing a threshold or one of the above segmentation techniques
on the RGB images of the wounds obtained from white light
[4,6-10,19] or HSI images [4,5,11]. There have been no studies
to date where segmentation of oxygenation maps was carried out
to quantify the regions of increased or decreased oxygenation or
hemoglobin concentrations.

Recently, a noncontact NIRS-based imaging device was
developed to obtain hemoglobin concentration maps (includ-
ing tissue oxygenation maps) of lower-extremity ulcers
and assess potential to heal based on oxygenation based on
wound:background (W:B) contrasts [13]. Herein, a graph-cut-
based image segmentation approach has been implemented to
segment the regions of increased (or decreased) hemoglobin
concentration maps of diabetic foot ulcers, via longitudinal
NIR imaging studies across weeks of treatment. Additionally, a
combined coregistration and image segmentation approach was
developed to coregister these hemoglobin concentration maps
onto the color images of the wounds, along with demarcating
and quantifying the area of increased (or decreased) hemoglobin
concentration.

2. MATERIALS AND METHODS
A. NIRS-Based Imaging
A handheld near-infrared optical scanner (NIROS) was

employed for noncontact, portable imaging of lower-extremity
ulcers (here, diabetic foot ulcers). This handheld device
performs multiwavelength (725 nm and 797 nm) continuous-
wave-based imaging to obtain diffuse reflectance signals of
the wound and its surrounding regions [13]. The chosen
wavelengths and system were tested for their probing depth
by employing Monte Carlo simulations on five-layer skin
tissue phantoms, which demonstrated probing depths up to
3 mm. The source distribution is calibrated using a uniform
diffused white calibration sheet and in turn applied during
the evaluation of the hemoglobin concentration maps from
the dual-wavelength diffuse reflectance images (described
further in Section 2.B.1) [13]. The calibration also accounts
for the varying distance between the device and the wound
during consecutive imaging studies of the wound across weekly
treatment. A separate endoscopic/digital camera is employed
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alongside NIROS to acquire digital white light (or color)
images apart from NIR images. Extensive details on the NIROS
instrumentation are described in detail elsewhere [13].

1. InVivoImaging Study

A Florida International University International Review Board
(FIU-IRB) approved study (IRB approval #13-0092) was car-
ried out at Podiatry Care Partners (Miami, FL) for imaging
lower-extremity ulcers (here, diabetic foot ulcers, DFUs). A
written consent and HIPAA authorization was obtained from
all subjects. Although many subjects were recruited for our NIR
imaging study, a single DFU case imaged across weeks of treat-
ment (i.e., imaged intermittently across 23 weeks from the first
imaging visit) was used in the current studies. In this DFU case,
appropriate fiducial markers were placed around the DFU dur-
ing imaging in order to facilitate coregistration apart from NIR
imaging. The region of interest (DFU) was imaged thrice from
different angles of the wound during each visit. One of these
three images with the least skewness in the fiducial marker was
selected for coregistration. This sample in vivo imaging case was
used to demonstrate the implementation of the coregistration
and segmentation approach onto hemoglobin concentration
maps of the DFUs.

B. Image Analysis Approach

Image analysis of the dual-wavelength diffuse reflected (NIR)
images and white light (or color) images of the wound followed a
series of steps as illustrated in Fig. 1. Initially the diffuse reflected
images [Figs. 1(a) and 1(b)] acquired at two wavelengths

A\
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Fig. 1.  Flowchart of the image processing approach. (a),(b) Diffuse
reflectance acquired from NIROS. (c) White light image acquired from
endoscopic camera. (d),(e) Effective hemoglobin concentration maps
as obtained from NIR images. (f) Registered white light image with
respect to the hemoglobin concentration maps. (g),(h) The demar-
cated region of changed hemoglobin concentration around the wound
region. (i) The coregistered image of the demarcated boundaries of the
segmented hemoglobin concentration maps onto the registered white
light image. The red and the blue outlines represent the segmented
boundaries of AHbO and AHDR, respectively. A DFU case (during
week 16 of their visit) was used as a sample for this flowchart.

AHDR Seg.
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were employed to generate effective hemoglobin concentra-
tion maps in terms of oxy- (AHbO) and deoxy- (AHbR)
hemoglobin [Figs. 1(d) and 1(e)] and total hemoglobin
(AHbT = AHbO + AHDbR). The obtained concentra-
tion maps were further segmented to isolate regions of
increased/decreased hemoglobin concentrations [Figs. 1(g)
and 1(h)]. In parallel, the digital white light image [Fig. 1(c)]
was spatially aligned with respect to the diffuse reflected NIR
images of the wound [Fig. 1(f)] to obtain a registered image. As
a final step, the demarcated boundaries (or traces) of the seg-
mented hemoglobin regions are overlaid (i.e., coregistered) onto
the registered white light images [Fig. 1(i)]. This was carried
out to quantify the areas of increased/decreased hemoglobin
concentrations in comparison to the visual (white light) wound
size that was measured by the clinician.

1. Hemoglobin Concentration Maps

The modified Beer—Lambert’s law (MBLL) was employed
to determine effective changes in oxy- (AHbO) and
deoxy- (AHbR) hemoglobin concentrations using the dif-
fuse reflectance images obtained at both the wavelengths. A
calibration image (using a uniformly diffused white sheet)
at each wavelength was used as a reference image during
hemoglobin concentration analysis [13]. Dark current noise was
also accounted for during imaging studies. Further details of
the hemoglobin concentration map analysis are provided else-
where [13]. The effective hemoglobin concentrations (AHbO,
AHDbR, and AHbT) were estimated during each imaging visit
by the subject and compared across weeks of treatment. An
example of a 2D hemoglobin concentration map of the DFU
case (week 16) is given in Figs. 1(d) and 1(e).

2. Registration Approach

The registration technique was applied using a transformation
matrix approach employing specific markers across both the
white light image and the hemoglobin concentration maps.
Fiducial markers were placed around the wound region to
assist in the registration process and also to quantify area of the
segmented regions. Since both the white light image and the
NIR image contain the same shapes (i.e., fiducial markers),
the transformation matrix can be created using “nonreflective
similarity.” The transformation matrix was further employed to
align the moving white light image with respect to the 2D spatial
references of the hemoglobin concentration maps. Figure 1(c)
demonstrates an example of the white light image of a DFU case
(week 16 of the imaging study) [Fig. 1(f)], whose size and ori-
entation were aligned to that of the corresponding hemoglobin
map(s) [Figs. 1(a) and 1(b)]. The white light image that was
registered with respect to the hemoglobin concentration map
tends to lose some of its pixel data from the transformation and
change in pixel resolution.

3. Validation of the Registration Technique

Phantom and 7z vive studies were performed to validate the
accuracy of the developed coregistration technique. Three ideal
scenarios were designed to test the accuracy of the technique.
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In study 1, a flat surface phantom was imaged using a flat white
sheet of thin paper. In study 2, a curved surface solid phantom
(mimicking the surface of the skin) was imaged using a white
cylindrical surface of diameter 10 cm. In study 3, registration
study was performed iz vivo on the right leg (IRB approved)
under normal conditions.

In all three studies, fiducial markers of various shapes and sizes
were placed onto the respective surface and imaged to obtain the
diffuse reflected NIR image (at a single wavelength) and white
light image. The white light image was spatially aligned (or
registered) with respect to the NIR image. Each imaging study
was repeated thrice. The markers were segmented using the
kernel graph-cut technique (described further in Section 2.B.3)
in both the registered white light image (also termed as color or
RGB) and NIR image(s).

Accuracy of the registration (or spatial alignment and overlay
of images) was calculated from the percentage overlap of the
segmented regions across the NIR and white light images by
employing a subtraction technique. The segmented fiducial
markers obtained from the registered white light image were
subtracted from the segmented markers from the NIR image:
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A; ; and B; ; denoted the logical matrix created for the NIR
image and registered white light image, respectively. R is the
domain of pixels that were segmented. x; and y; denote the
pixel value and location within the NIR and registered image.
The segmented markers of the registered white light image were
subtracted from the segmented markers of the NIR image (i.e.
Al‘, i Bl‘, ])

The pixel indices with matching pixels (MP) will result in a
value of zero:

MP; ;= (A —B; ; ==0). ©)

All indices with a 1 value imply that the pixel values were
matching across both images at the specific location (7, j).
The overlap percentage depended on how much of the seg-
mented region spatially aligned across the NIR image (at a single
wavelength) and the registered white light image, which thus
determined the accuracy of registration:
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4. Segmentation Approach

Various segmentation techniques such as graph-cut, active
contour, or growcut region growth have been applied for medi-
cal images [4-9]. In this study, the kernel-based graph-cut
algorithm that was developed by prior researchers for other
applications [20,21] was employed to segment hemoglobin
concentration maps. Graph cut is a useful tool for accurately
segmenting any type of image that guarantees a global solution
since it is independent of a chosen initial center point. This
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semi-automated algorithm exploits similar gray values of pixels
that are close neighbors and groups them into nodes. A weight
is provided between different regions of similar pixel values or
nodes. The segmentation partitions the image using combinato-
rial optimization to ensure a globally minimum cut of the image.
A cutis defined by the sum of the weights of the edges that it sev-
ers [20]. A schematic of the kernel graph-cut technique example
ona3 X 3 pixel region is shown in Fig. 2. The pixels are grouped
into two special nodes called terminals (background and object
terminal). Similarity between terminals defines the weight of
their edges. In Fig. 2, the thickness of the lines increases with an
increase in the difference between the nodes. A minimum cost
cut is generated based on the weight of the edges between the
terminals’ resistance. Upon employing a multiregion graph-cut
segmentation technique and applying the kernel-mapping
formulation, several regions will be segmented depending on
their pixel values [21].

The graph-cut algorithm suits the needs of wound segmenta-
tion because it can be easily manipulated to see small degrees of
changes in hemoglobin concentrations. The segmentation proc-
ess can isolate several regions or layers of increased (or decreased)
hemoglobin concentration within or around the wound.
Furthermore, quantifying the area of these segmented regions
(representing regions of increased or decreased hemoglobin
concentrations) can assist in correlating the area of physiological
changes to visual wound size reduction during healing. Other
rudimentary segmentation techniques employ pixel grayscale
thresholds at different percentages (20%, 40%, etc.) in order to
segment a wound. The threshold-based technique can be flawed
due to subjectivity in choosing the threshold value, which can
possibly remove necessary information or alternatively retain
noise.

The graph-cut technique requires two input parameters: the
2D hemoglobin concentration data and a kernel value. The

Background
Terminal

Low
Oxygenation

High
Oxygenation

Terminal

Fig.2. Schematic of the kernel graph-cutalgorithm ona3 x 3 pixel
region. Pixels are grouped into special nodes called terminals. The bold
black arrows link the pixels to their corresponding terminals.
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Fig. 3. Kernel graph cut of AHbO for a DFU case (from week 4
of the imaging study). (a) The AHbO map prior to segmentation;
(b)—(f) segmented regions for various input kernel numbers. The
segmented region close to the wound region is labeled “1,” and the
adjacent segmented region is labeled “2.” This labeling is used in kernel

selection.

kernel value will affect the number of regions of the hemoglobin
concentration image (a pseudo-color plot of the 2D data)
that will be segmented into depending on the weight between
the pixel value groups. Figure 3 is an example case of a DFU
(week 4 of the imaging study), wherein the effect of various
kernel values on the segmented areas in both the hemoglobin
concentration maps (AHbO and AHbR) are given. Regions
of increased AHbO and decreased AHDbR are segmented in
the current example case. With a smaller kernel number, the
background noise (i.e., region outside the imaged foot) and the
fiducial markers were segmented. The later kernels segmented
the regions of changed hemoglobin concentration as seen in
Figs. 3(d)-3(f). The region that most encompasses the wound
(observed from white light images) is chosen and isolated for
analysis. The choice of the kernel number may vary for each
image, requiring operator dependency in its choice during seg-
mentation. Hence, a method to automate the kernel selection
was developed.

5. Kernel Selection

Kernel selection can be manual or automated. The subjectiv-
ity in segmentation can be avoided by automating the kernel
selection process. A method was developed to determine the
optimal kernel number to segment a given wound image. The
effective hemoglobin concentration difference between the first
and second segmented regions (as shown in Fig. 3, numbered
as 1 and 2) for the different cases of kernel number selection
were determined and plotted against the kernel number. More
specifically, a5 x 5 pixel area was extracted from these two adja-
cent segmented regions (1 and 2), and their averaged effective
hemoglobin concentration subtracted from each other. The
differences were calculated at three random locations within
these two segmented regions (1 and 2), and the average effec-
tive hemoglobin concentration differences (or simply, average
hemoglobin contrast) were compared to that acquired from
similar analysis using different kernel values during segmenta-
tion of the same data set. Figure 4 shows (sample case of DFU
from week 16) that as the kernel number increases, the average
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Fig.4. Plotof average hemoglobin contrast (or differences between

segmented regions 1 and 2) and the respective error bar versus kernel
values obtained from the AHbO map of the DFU case (week 16 of the
imaging study). The error bar represents the standard deviation across
the three random contrast values obtained from three random trials
within segmented regions 1 and 2.

hemoglobin contrast levels off from kernel 5 onwards. The
error bar in Fig. 4 was obtained from the three random locations
selected for averaging the effective hemoglobin contrast within
the regions for each kernel. A similar trend was observed when
segmenting both the AHbO and AHDbR maps of the DFU case
(across all weeks), where the average hemoglobin contrast did
not change after a certain kernel number. This kernel number
where average hemoglobin contrast variations diminished was
different for each map and data set.

A sample pseudo-color image of the segmented AHbO
(DFU case, week 4 of the imaging study) depicting only the first
segmented boundary (that is, within the visual wound region)
when employing kernel numbers 3, 4, 5, and 6 is shown in
Fig. 5. In this case, beyond kernel number 6, the segmented area

AHbO Kernel 4

Kernel 3

@ i
Kernel 5

Fig. 5. AHbO maps of the DFU case (week 16 of the imaging
study), with (a) no segmentation applied; (b), (c), (d), and (f) ker-
nel values 3, 4, 5, and 6, respectively, utilized to segment the maps.
The red demarcated boundary is that of the first segmented region
(encompassing the visual wound) for each kernel value chosen.
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Fig.6. Boxplot of average hemoglobin concentration from the first
segmented region when choosing different kernel values during kernel
graph-cut segmentation. Here the hemoglobin concentration is that of

AHbO from week 16’s data of the DFU.

of the first region did not change. In other words, the average
hemoglobin contrast variations diminished beyond kernel
number 6. The approach described via these pseudo-color plots
(Fig. 5) and average hemoglobin contrast plots (Fig. 4) can be
used to automate the kernel selection process during segmenta-
tion. This approach was also quantified to further validate the
kernel selection process via a statistical approach.

The statistically relevant quantitative approach for operator-
independent kernel selection is using the average and standard
deviation across a single segmented region in the hemoglobin
concentration map. A boxplot of the average and standard devi-
ation of the hemoglobin concentration from the first segmented
region was plotted for each kernel value in Fig. 6 (sample DFU
case from week 16 of the imaging study). As the kernel value
increases, the average concentration across the kernels varies
minimally. The optimal kernel value for each data was chosen
when this average concentration varied <5%, when comparing
the first segmented region across each chosen kernel value. In
the sample case shown in Fig. 5, qualitatively the optimal kernel
value was 4, which was further confirmed from the statistical
analysis in Fig. 6. By employing an objective approach to kernel
selection (contrast and statistical analysis), operator dependency
can be removed. This automated kernel selection process, along
with other attributes, can be implemented in machine learn-
ing algorithms (in the future) to further automate the entire
segmentation and coregistration approach.

The demarcated boundaries of the first segmented region
(using the optimal kernel value) AHbO, AHbR, and AHbT
were coregistered onto the spatially aligned white light image
of the wound. These demarcated boundaries (or traces) of
hemoglobin concentrations were in turn quantified via area
calculations and compared to the area of the wound (from white
light images).

6. Area Calculation

The fiducial markers placed around the DFU were employed for
estimating the area of the segmented regions of the hemoglobin
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concentration maps, apart from assisting in the coregistration
process. Fiducial markers were segmented only from the white
light images for area calculation instead of the hemoglobin con-
centration maps or NIR images because the white light images
reflect the true area of the fiducial markers. The area of a contour
can be calculated using the pixel ratio between the segmented
marker(s), the segmented hemoglobin concentration map, and
the known marker size (0.635 x 0.635 cm?). Area calculations
were employed to compare the visual wound size and the area of
changed hemoglobin concentration across weeks of treatment.
The visual wound size was physically measured by the clinician
(during weekly treatment) in terms of its length and width, in
order to calculate the white light wound area.

Imaging of wounds typically occurs on a curved surface, espe-
cially when focusing on lower-extremity wounds. This makes
the placement of the fiducial marker and the angle of imaging
crucial in registration as well as area calculations. Thus, the
fiducial marker, which is on the same 2D plane as the wound, is
chosen for registration as well as area calculations to avoid errors
from curvatures.

3. RESULTS
A. Registration Validation Study

The NIR images of the fiducial markers were segmented, and
the segmented boundaries were coregistered onto the registered
white light images of the markers in all three phantom studies.
Sample data for each study (flat phantom, curved phantom, and
in vivo curved surface) of the coregistered images are shown in
Fig. 7. Qualitatively, it can be seen that the segmented bound-
aries (or traces) of the NIR images (in red) coregister accurately
with the registered white light images. The quantitative accu-
racies from each case and across three repeated studies are given
in Table 1, demonstrating an average accuracy of 98.7% across
all cases. The accuracy of registering the images was less in the
curved phantom when compared to an in vivo case (97.6%
versus 99.1%). This is possibly due to greater curvature of the
phantom than the subject’s leg, causing difficulties in matching

Fig. 7.  Coregistration of the demarcated boundaries of the seg-
mented NIR images (red color) onto the registered white light images,
for (a) a flat surface phantom, (b) a curved-surface phantom, and (c) an
in vivo curved leg surface.

Table 1. Accuracy and Standard Deviation of the
Registration Between NIR and White Light Images as
Obtained from Phantom and /n Vivo Imaging Study

Study Accuracy

99.3%=+£0.34%
97.6%=+1.10%
99.1%=0.88%

Flat-surface phantom
Curved-surface phantom
In Vivo curved leg surface
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the spatial orientation between the white light and NIR images.
Having validated the registration accuracy, the process of reg-
istration and coregistration of the hemoglobin concentration
traces are described in the following sections.

B. Segmentation of Hemoglobin Maps in DFUs

A DFU case with a healing wound was imaged at discrete weeks
(based on patient availability) across a 17-week longitudinal
study during its treatment. Imaging studies performed during
weeks 1-3 were not included because, during these initial stud-
ies, white light images of the DFU were not acquired towards
coregistration analysis. The clinician noted several changes
in the skin condition surrounding the wound throughout the
study as shown in the white light images in Fig. 8. During weeks
4 and 5, the subject had periwound erythema and localized
cellulitis that improved over weeks with treatment. During the
following weeks, the skin developed dermatitis and xerosis.
Opverall, this was a healing DFU as observed (by the clinician)
from the first week of imaging, but at a slower pace. The AHbO
and AHbR maps obtained during weeks 4, 5, 15, 16, and 17
of the imaging study are shown in Fig. 8. The hemoglobin
concentration traces (i.e., demarcated boundaries after segmen-
tation) were coregistered onto the registered white light images
as shown in Fig. 8 (as the last column) [22] (part of these results
published in SPIE conference proceedings). The area within
AHbO, AHbBR, and AHbT trace is calculated (as described
AHbO

AHbR Co-Registered

Week 5

v
—
==
3
-2

Week 16

Week 17

Fig. 8. 2D pseudo-color maps of AHbO and AHbR across weeks
of imaging a healing DFU case. The last column [(c), (f), (i), (1), (0)]
shows the coregistered images of AHbO and AHbR segmented traces
overlaid on the registered white light images for the respective weeks.
The three black (or dark) squares are the fiducial markers. The demar-
cated boundaries (or traces) for AHbO and AHbR are shown in red
and blue, respectively.
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Fig. 9.  Bar plot displaying the area of the segmented regions of

AHbO, AHbR, and AHbT, along with the visual wound area (deter-
mined by the clinician) across different weeks of imaging a healing

DFU.

in Section 2.B.4) and compared to the visual wound area
(as determined by the clinician) in Fig. 9.

4. DISCUSSION

Coregistered images containing physiological information
along with the visual wound details is essential for clinicians to
directly correlate physiology to anatomical changes in the DFUs
during treatment. Having validated the accuracy of the coreg-
istration process (over 97%) from phantom and 7z vivo studies,
the developed segmentation and coregistration technique can
be applied to wound or any tissue imaging application. In the
current study, where a healing DFU case was imaged across
multiple weeks during its treatment, the longitudinal analysis
of the physiological status of the wound along with the visual
status proved useful. From the AHbO and AHbR maps across
weeks, it was observed that the hemoglobin concentrations are
elevated around the wound site. As the wound healed, the area
of increased hemoglobin concentration reduces. Past work has
demonstrated that when wounds are in the inflammatory phase,
their hemoglobin concentrations are higher at the wound site
in comparison to the surroundings [23]. Upon healing, the
wound moves away from the inflammatory phase, and hence
its hemoglobin concentrations decrease and become closer to
that of the wound as it heals. The area of increased hemoglobin
concentrations reduces with healing as observed from Fig. 9.
From Figs. 8 and 9, it can also be seen that visual wound area
(or size) was decreasing, depicting healing. A 58.2% reduc-
tion in visual wound size was observed from week 4 to week
5 and ~85% by week 15. The wound began to open slightly
as clearly observed qualitatively from Fig. 8, but not from
quantitative measurement (as shown in Fig. 9). The ineffective
quantitative assessment is because all clinical measurements of
the wound area are based on length x width (applicable only
for rectangular or square wounds), while the current DFU is
irregular in shape. The area of increased AHbO was relatively
higher than the area of AHbR in weeks 4 and 5. From week 15
onwards, the area of AHDbR was relatively higher than the area
of AHbO. During week 16, the wound opened up, and the
area of increased AHDbR was elevated in comparison to the area
of increased AHbO. This possibly implies that an increase in
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the area of AHbR over AHbO may indicate a possible rever-
sal to healing or the wound opening up. Physiologically this
may have been indicative (in week 15) prior to the anatomical
increase in wound size (in week 16). The changes in the area of
increased AHDbT follows a similar trend to that of AHbO. This
is a preliminary observation that required application of the
coregistration and physiological area measurement approach.
The proposed approach will be applied on a large sample size of
DFUs as part of our future work.

Ongoing efforts are to fully automate the coregistration
process at various stages, including kernel value selection,
segmentation approaches to demarcate the visual area of the
wound (instead of manual length x width measurements), and
automated registration of the white light images with respect
to hemoglobin concentration maps. This automation will also
involve machine learning tools to effectively remove operator

dependency.

5. CONCLUSIONS

ANIROS was used to image for effective changes in AHbO and
AHBDR in DFUgs, across weeks of treatment. An image process-
ing approach was implemented to segment regions of increased
(or decreased) hemoglobin concentrations around the visual
wound region and coregister the traces (or boundaries) onto
the registered white light images of the wound. The developed
approach to segment hemoglobin concentration maps and
coregister them onto their digital white light counterpart has
potential to further advance the wound assessment process.
Using this physiological counterpart to the visual wound details
allows for objective and subclinical wound assessment during
weekly treatment (and, in the future, possibly lead to effective
and earlier interventions in wound care management).
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