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Abstract

Diabetic Retinopathy (DR) represents a highly-prevalent complication of diabetes in which indi-
viduals suffer from damage to the blood vessels in the retina. The disease manifests itself through
lesion presence, starting with microaneurysms, at the nonproliferative stage before being character-
ized by neovascularization in the proliferative stage. Retinal specialists strive to detect DR early so
that the disease can be treated before substantial, irreversible vision loss occurs. The level of DR
severity indicates the extent of treatment necessary - vision loss may be preventable by effective
diabetes management in mild (early) stages, rather than subjecting the patient to invasive laser
surgery. Using artificial intelligence (AI), highly accurate and efficient systems can be developed
to help assist medical professionals in screening and diagnosing DR earlier and without the full
resources that are available in specialty clinics. In particular, deep learning facilitates diagnosis
earlier and with higher sensitivity and specificity. Such systems make decisions based on minimally
handcrafted features and pave the way for personalized therapies. Thus, this survey provides a
comprehensive description of the current technology used in each step of DR diagnosis. First, it
begins with an introduction to the disease and the current technologies and resources available in
this space. It proceeds to discuss the frameworks that different teams have used to detect and
classify DR. Ultimately, we conclude that deep learning systems offer revolutionary potential to
DR identification and prevention of vision loss.
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1. Introduction

Diabetic Retinopathy (DR) is a complica-
tion of diabetes that can lead to blindness if
untreated Watkins (2003). Patients who have
diabetes must undergo frequent screenings that
are limited by resources and can put high strain
on patients and ophthalmologists. DR is classi-
fied as either non-proliferative (NPDR), which is
characterized by lesions such as microaneurysms
(MAs) and exudates, or proliferative (PDR),
in which neovascularization of weak blood
vessels occurs Yun et al. (2008). More accurate
systems would allow DR to be diagnosed early,
such that patients can undergo treatment and
avoid blindness. Manual diagnosis has difficulty
meeting the eighty percent sensitivity that is
recommended in Britain, and less developed
areas particularly suffer from an imbalanced
patient-to-specialist ratio. Studies estimate that
by twenty years after diabetes onset, nearly all
of patients with type I diabetes and sixty per-
cent of those with type II diabetes will have DR.

Automated processing techniques have risen
to prominence to address issues in DR classifica-
tion, enabling screening to distinguish those who
require further referral from those who are clas-
sified as low-risk. Machine learning (ML) algo-
rithms extract image features which are feed into
statistical classifiers Litjens et al. (2017). Pat-
tern recognition is facilitated using training sets,
which allows the algorithms to optimize deci-
sions in the high-dimensional feature space. Sys-
tems vary in the level of hand-crafted features.
Deep learning (DL) processes, most notably
Convolutional Neural Networks (CNNs), deter-
mine the features and rules that optimize clas-
sification accuracy with minimum handcrafted
components Krause et al. (2018a).

Treatments such as laser surgery (i.e. pan-
retinal photocoagulation) or intravitreous injec-
tions of anti-vascular endothelial growth factor
provide effective means of halting vision loss
from DR or diabetic macular edema (DME) if
the disease is detected sufficiently early; how-
ever, many individuals cannot undergo timely
screenings due to limited resources in personnel
and technology Williamson and Keating (1998);
Wong and Bressler (2016). Traditional imag-
ing methodologies rely on expensive or non-
transportable technologies and thus limit a non-
local approach to DR screening and diagno-
sis Williamson and Keating (1998). Therefore,
the rise in digital cameras and scanning oph-
thalmoscopes have increased the feasibility of
a telemedicine approach to addressing DR. Un-
der such a system, digital images can be trans-
ported to remote or cloud-based storage systems
for subsequent review. However, this increasing
availability would also be likely be accompanied
by reduced image quality and image field-of-view
(FOV). This, along with limitations in expert
personnel, increases the need for computer-aided
diagnostic (CAD) systems.

The 1990’s saw the first modern advances in
DR diagnosis and grading with the introduction
of a new clinical standard in the ETDRS scale
ETDRS Research Group (1991) and the results
of artificial neural networks (ANN) in DR de-
tection Gardner et al. (1996b); Williamson and
Keating (1998). Interestingly, ANNs seemed to
fall in popularity in this space in the early 2000s.
Rather, processing methods focused more on im-
age processing methods and different statistical
classifiers. This may have been due to a belief
that the current NNs were insufficient for detect-
ing specific features of DR, like DR lesions Lee
et al. (2001). Many methods strayed away from



image-level diagnosis during this time. This may
perhaps be due to a fear that NNs learn risk fac-
tors of DR, or even meaningless features, rather
than the underlying disease Wong and Bressler
(2016). At the same time, digital imaging and
other rapid screening tools have also heightened
the prevalence of statistical and machine learn-
ing classifiers in this space, as in Bayesian, Ma-
halanobis, KNN, SVM, and other systems Ege
et al. (2000).

Deep learning systems rose to prominence in
the computer vision space with the success of
AlexNet and the ImageNet challenge Krizhevsky
et al. (2012). In particular, Google’s work in DR
classification and grading shifted the focus of this
space to deep learning algorithms Gulshan et al.
(2016a). Recent works show potential for tak-
ing DR prediction in increasingly complex and
clinically relevant directions. For instance, a re-
cent work in Nature achieved promising results
to pave the way for longitudinal DR prediction
and tracking Arcadu et al. (2019). Despite this
advances, there has been slow progress in terms
of the acceptance and implementation of these
systems in widespread use. The United States
Federal Drug Agency (US FDA) only approved
the first Al system for DR detection, IDx-DR, in
2018 Stark. Even so, the system’s approval was
limited in use. For example, those with other
eye diseases or severe DR were not included in
its approved use cases.

Researchers must consider the advances in DR
imaging methodologies when designing appropri-
ate Al systems for DR diagnosis and grading.
The golden standard for DR detection has tradi-
tionally been the ETDRS seven standard fields
Aiello et al. (2019). This standard uses seven 30-
degree stereoscopic images that encompass the
optic disc, macula, area temporal to the macula,

and the four vascular arcades Li et al. (2011).
While this method correlates well to DR detec-
tion, it only covers approximately a 75-degree
field-of-view (FOV) and was established before
digital fundus imaging was possible Bae et al..
In fact, a recent study on ultra-wide field pho-
tography (above 200 FOV) found that at least
0.11 of eyes with DR may be at least two stages
more severe than that found using the ETDRS
standard Aiello et al. (2019). This is likely due to
the importance of the peripheral retina in detect-
ing retinopathy signs like microvascular abnor-
malities, neovascularizations, vessel leakage, and
nonperfused areas Rabiolo et al. (2017). There-
fore, there has been increasing evidence that di-
agnostic systems need to compensate for a wider
view of the retina, particularly in grading tasks.
Currently, retinal specialists primarily diagnose
DR on the basis of color stereographic photogra-
phy, fluorescein angiography, and optical coher-
ence tomography (OCT) Cicinelli et al. (2019).
However, new technologies, such as fundus aut-
ofluorescence and OCT angiography (OCTA),
are emerging as interest areas in the field. These
technologies, and compatible computer-aided di-
agnostic (CAD) systems, show great promise for
capturing the intricacies of the disease. At the
same time, an increasing need for DR screening
in lower access areas has raised an interest in use
of lower quality imaging devices. This movement
has correlated to increase interest in CAD sys-
tems that compensate for lower FOV (i.e. single
field, 20-50 FOV) with technologies such as im-
age stitching and montage Palacios et al. (2019).



Our survey differs from past work, as we include novel DL pipelines, overview imaging and ML
processes, and discuss all tasks for grading DR (i.e. optic disc, blood vessels, lesions, and grading).
This discussion facilitates clinical implementation of state-of-the-art systems. Our inter-disciplinary
material will provide one source for research teams to find and understand these systems. Ulti-
mately, DL frameworks offer particular promise for customizable and patient-specific diagnostic
and therapeutic care. Section 2 overviews current resources for studying DR. Sections 3-4 describe
the imaging modalities and automated frameworks for retinal imaging and classifying DR, respec-
tively. Finally, section 5 outlines different methodologies that address aspects of DR detection and
grading, and sections 6-7 provide our insights.
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Figure 1: Examples of the different eye structures and lesion types that are important to diagnose DR,



2. Overview of Literature Resources

2.1. Datasets

Dataset Modality Task Year | Country Total # Labels Camera FOV ()
Images
Color Fundus image registration 2017 | Thessaloniki 129 Nidek AFC-210 5
Color Fundus vessel segmentation USA 400 (overall) = o 4
40 (vessels)
DRIVE Color Fundus vessel segmentation 2004 | The Netherlands | 40 0-1 Canon CR5 45
non-mydriatic 3CC
o Canmon 60 UV,
REVIEW Ao ot a1 aoony Color Fundus vessel segmentation 2008 | United Kingdom | 16 width (m) Zeiss FF 450 50-60
and JVC 3CCD
TRF Tmage Database sviv < oo Color Fundus vessel segmentation 2013 5 01 Canon CR-1 5
Topcon NW 100,
ROC siemeier e a1 o) Color Fundus MA 2010 | USA 100 0-1 NW 200 or Canon 15
CR5-45NM non-mydriatic
MA:3SI, Topcon TRC
E-Ophtha Color Fundus 1A, EXU 2014 | France EXUso 0-1 NWE momemydriatic 15
DIARETDB0 © Color Fundus EXU, MA, HEM, NV 2006_| Finland 130 01 - 50
DIARETDBI v2, Color Fundus 2009 | Finland 89 01 50
HELMED (DMED) Gionesrao v a1 (o12) Color Fundus 2012 | USA 169 0-1 Zeiss Visucam PRO fundus | 45
DRIDB - Color Fundus . 2013 | Croatia 100 0-1 VISUCAM 200 15
and grading
o DR grading o . DR: 0-4 2 types, mainly "
DDR: Color Fundus MA, EXU, HEM 2019 | China 13,673 Lesions: 0-1 | Topeon, Nikon, and Canon |
I y ) ] : . - TopCon non-mydriatic
VICAVR Color Fundus DR detection 2010 | Spain 58 0-1 o NW100
Messidor peesive e a1 it Color Fundus DR gradin 2014 | France 1200 03 Topcon TRC 15
* * grading i - . NWG6 non-mydriatic °
Color Fundus DR grading 2015 | USA 10,000+ 01 B
DR: 0-1, Kowa VX 10
) Color Fundus DR/DME Grading 2018 | India 516 DEM: 01 alpha digital fands 50
Dutke Farsiu SD-OCT ™ OCT AMD detection 2013 | USA 381 01 Bioptigen, Inc. SD-OCT | 70
P (deare
OCT Image Database Ghotsms et a. @a0a oCT DR, AMD, MH grading 2018 | India 4500 0-3 (each) Cirrus HD-OCT machine | 120 (degree
8 g not. provided)
Unnamed Noor Eye Hospital dataset wo =2 o) OCT Dry AMD, DME detection | 2018 | Tran 118 0-1 (cach) Heidelborg SD-OCT 30x30, optional 55 lens
Kaggle Retinal OCT weoney 201s) 0CT CNV, DME, Drusen detection | 2018 USA, China 84,495 0-1 (all) Spectralis OCT 55
Feiz ospital FA photographs ™ on 2003 | v - o~
of patients with Diabetes
Fundus FA Photographs
Colour Fundus FA and color fundus | DR 2012 | Tran 60 per modality | 0-2
Images of Patients with Diabetes
) ; FA videos and ; - ) Heidelberg Spectalis -
; 2 ] 24 per modality | area of leakage ‘
Duke Farsiu FA data e e DME 2015 | USA 24 per modality | area of leakage | o €% TR 5

Table 1: The retinal databases available for DR study. EXU: Exudates, MA: Microaneurysms, HEM: Hemorrhages,
NV: Neovascularization, DME: Diabetic macular edema, CWS: Cotton wool spots, DRU: Drusen, AMD: Age-related
Macular Degeneration, MH: Macular Hole, CNV: Choroidal neovascularization, FOV: field-of-view in degrees

Table 1 shows publicly-available retinal
databases that are used to study DR. These
databases focus primarily on DR classifica-
tion and grading and on segmentation of le-
sions, blood vessels, and the optic disc. These
databases facilitate direct comparison between
competing DL frameworks and model validation
across research teams. Such databases com-
pensate for issues underlying local or private
databases that may impair the model training.
For instance, general clinical data may suffer
from incomplete or inaccurate labeling or from

small size. As such, public databases supple-
ment this data with large image collections with
consistent labeling. Commonly, research teams
apply this data to pretrain their models and ad-
just network weights to smaller datasets through
transfer learning.

Key considerations when selecting a database
depend on (1) the task you are focusing on and
(2) your intended subject population. Task se-
lection involves the overall task (i.e. grading
versus lesion detection) and the target results
(binary versus scaled grading). Different pop-
ulation considerations encompass total number



of images, population base (i.e. country or re-
gion, interest ”group” of focus), and technical
classes like camera type and FOV. Additionally,
you should consider the computational strength
of your operating system(s) when selecting a
database, especially in terms of number of im-
ages. Rights to certain databases depend on
participation in eye diagnosis competitions, or
other affairs that involve petitioning member-
ship or use on the owner’s site. Keep in mind
that certain publishers may restrict use of their
databases; for instance, they may require data
not be shared to outside parties and/or that a
group cites their original works when publishing.

2.2. Literature Trends

Figs. 2-4 display literature trends for DR over
time in reference to general search (fig. 2), ma-
chine learning search (fig. 3), and deep learning
search (fig. 4). These figures indicate that in-
terest surrounding DR has increased over time,
likely due to increased prevalence. DR studies
using Al have only emerged in recent years -
DL studies in particular have increased dramat-
ically since 2015. While AI methods for DR di-
agnosis and grading comprise a small percentage
of the total DR publications, these articles in-
clude landmark studies published by sources like
JAMA, MICCAI, Ophthalmology, and IEEE.
Section 5 surveys key publications that follow
each step of DR analysis for comprehensive eval-
uation of retinal images. These sources provide
clinicians and researchers with insight into DR
research to pave the way to future progress in
DR diagnosis and therapies.
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Figure 2: Publications that reference DR by year according to PubMed search.
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Figure 3: Publications that reference DR and ML by year according to PubMed search.
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Figure 4: Publications that reference DR and DL (keyword: ”Deep”) by year according to PubMed search.
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3. Overview of Imaging Modalities

3.1. Single-field imaging
3.1.1. General Single-field imaging

Single-field fundus images capture the optic
nerve and macula under 20-50 degrees of FOV.
Use of this method relies on the assumption that
they capture the most prevalent pathologies, but
this method risks missing important fundus le-
sions within the periphery Witmer and Kiss
(2013). Traditional systems rely on single-field
montages, with seven standard 30-degree images
from the Early Treatment Diabetic Retinopa-
thy Study (ETDRS) representing the standard
for DR detection since 1991 ETDRS Research
Group (1991). Montage images show results in
DR detection and classification, but collection
relies on skilled procedures that are inconvenient
and time-consuming in practice.

3.1.2. Mobile Screening Systems

Despite increasing rates of DR globally, fi-
nancial and practical resources impair access
to treatment in developing areas Sengupta
et al. (2019). Lower income areas often lack
proper ophthalmic resources for active screen-
ing, therein individuals often miss adequate
follow-up due to financial and travel restrictions.
A portable fundus camera could mitigate this
health barrier by providing a mobile screening
system at low cost. Ideally, these devices would
deliver high-quality images that are compara-
ble to results using tabletop systems in terms
of gradability and alignment. The Remidio Fun-
dus on Phone (FOP) represents a current im-
plementation that delivers smartphone-based re-
sults with a 45-degree FOV, three fields, and
mydriatic or non-mydriatic modes. Further, the
system offers a HIPAA-compliant, cloud-based
storage system for off-site clinical viewing and

ophthalmic evaluation. However, FOP still poses
challenges concerning user variability and lim-
ited FOV as compared to current standards in
DR screening and treatment. Thus, current
studies integrate systems like FOP with web-
based deep learning systems to offset user vari-
ability, specialist availability, and limitations in
FOV and gradability.

3.2. Wide-field Imaging

Wide-field imaging (WFI) presents important
information regarding disease manifestations in
the peripheral retina Falavarjani et al. (2017).
The advent of modern technologies allows field-
of-view (FOV) up to 200-degrees, therefore fa-
cilitating significant advance in retinal imaging.
WFTI modalities include WF' color imaging, aut-
ofluorescence, fluorescein angiography, and indo-
cyanine green angiography.

WFI refer to systems with FOV capabilities
above 30-degrees, based on historical standards.
FOV denotes the external angle of the light
source hitting the eye—a camera’s FOV depends
directly on lens power and indirectly on focal
length. Using a confocal scanning laser ophthal-
moscope, the Optos camera offers large scan an-
gles and separable green and red laser light com-
ponents (for focus on specific structures). The
Optos system maximally allows a 200-degree
FOV, representing eighty-two percent of the reti-
nal surface. Despite its many advantages, the
Optos system carries some limitations pertain-
ing to ora-to-ora capabilities, imaging of ante-
rior pathologies to the equator in all quadrants,
distortion and decreased resolution of peripheral
images on the two-dimensional scale, and arti-
facts created by anterior objects. However, cur-
rent equipment addresses these issues, including
combining steered-ultra field images for full reti-



nal viewing and stereographic projection soft-
ware for combat of image warp.

Retcam imaging systems maximally provide
a 130-degree FOV Witmer and Kiss (2013). It
consists of a portable camera system that it lit
by a fiberoptic cable. Such systems yield high
use with younger patients. Spectalis represents
a noncontact ultra-wide-field system with a max-
imum 102-degree FOV.

Ultra-wide field (UWF') images present higher
detection of severe non-PDR and PDR than
in clinical study, with higher level classification
than in ETDRS fields in ten percent of eyes.
Non-mydriatic Optos UWF color images yield
high agreement to mydriatic UWF color images.
Further, predominantly peripheral lesions ap-
pear outside of standard ETDRS fields in over
fifty percent of cases; hence lesion types that help
detect DR may go undetected—these lesions in-
clude microaneurysms (MAs), hemorrhages, ve-
nous beading, and microvascular abnormalities.

8.2.1. Fluorescein Angiography

Fluorescein angiography provides ultra-wide
field potential; it offers advantages surround-
ing diseases which require tracking and detection
of peripheral neovascularization, vessel develop-
ment, and/or obliterative vasculitis Falavarjani
et al. (2017).

WFTI initially was applied in DR screening,
later Friberg proposed WF studies to predict
PDR by correlating peripheral capillary non-
perfusion to neovascularization (NV). Fluores-
cein angiography shows high potential concern-
ing detection of microaneurysms (MAs) AND
NV, to screen for initial or mild DR and PDR
respectively. Ultra-wide field imaging provides
3.2 times the retinal surface coverage compared
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to convention seven standard fields; thus, ultra-
wide-field angiography provides changes indica-
tive of PDR with higher accuracy, including
peripheral vessel leakage (PVL), NV, periph-
eral nonperfusion, and macular edema. Wide-
field angiography facilitates superior treatment
of PDR as well, via targeted laser photocoagula-
tion.

8.2.2. Auto-Fluorescent Imaging

In auto-fluorescent imaging, 532nm (green)
light excites particles and the emitted signal is
detected in the 570-780nm range using a raster
scan and detector Falavarjani et al. (2017). The
technology scans the eye for fluorophores, which
fluoresce when exposed to specific wavelengths of
light. Auto-fluorescent imaging differs from flu-
orescein angiography, as the former records fluo-
rescence that occurs in the eye naturally or as a
by-product of disease. Natural fluorescence oc-
curs due to optic nerve drusen, astrocytic hamar-
tomas, lipofuscin pigments, and the aging crys-
talline lens. Since this imaging modality mea-
sures natural fluorescence, it does not require dye
injection.

Auto-fluorescent imaging primarily centers on
lipofuscin deposited in the retinal pigment ep-
ithelium (RPE). Structures like the optic nerve,
retinal blood vessels, and the fovea appear dark
compared to the RPE (and thus easily visual-
ized). This is due to the absence of RPE, block-
ing of RPE fluorescence, or absorption of the ex-
citation wavelengths, respectively.

3.8. Optical Coherence Tomography (OCT)

3.3.1. General OCT

Optical Coherence Topography (OCT) fa-
cilitates noninvasive examination for diabetic



retinopathy with high accuracy, such that pa-
tients can be treated before irreversible vision
loss Cheung and Wong (2018). OCT applies
low-coherence interferometry to produce two-
dimensional images of optical scattering from tis-
sue microstructures Huang et al. (1991). It re-
solves structures with spatial resolutions within
a micrometer range, thus detecting signals that
are significantly smaller than the incident op-
tical power. Specifically, this method mea-
sures cross-sections of tissues by applying low-
coherence light and measuring the resulting re-
flections off tissue surfaces.
flectometry uses time-of-flight delay from reflec-
tion boundaries and backscattering sites to de-
termine the longitudinal location of these sites.
Multiple longitudinal scans are captured at lat-
eral locations. OCT shows superior optical sec-
tioning capabilities that are not limited by depth
or spatial resolutions.

Low-coherence re-

3.8.2. OCT-angiography (OCTA)

OCTA offers a noninvasive alternative to flu-
orescein angiography and has gathered substan-
tial interest concerning detection of DR Cheung
and Wong (2018). Recent trials have focused on
advanced stages of DR, including leading causes
of blindness such as the following: severe non-
proliferative DR, PDR, diabetic macular edema
(DME), and diabetic macular ischemia (DMI)
without DME. In comparison to fluorescein an-
giography, which particularly captures changes
in the superficial capillary plexus, OCTA in-
dependently captures three capillary plexuses:
superficial, intermediate, and deep. Numerous
OCTA metrics, such as foveal avascular zone
(FAZ) size and vessel density in the different
plexus (i.e deep), may influence DR severity and
patient visual acuity. Therefore, many OCTA
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metrics may prove useful in detection and moni-
toring of DR. However, studies must first estab-
lish parameters to normalize these metrics such
as to limit the interference of other factors like
age, comorbidities, and duration of diabetes.

4. Overview of Processing Methods

4.1. Image Processing

Image processing methods address limitations
in DR screening that emerge due to image qual-
ity, an imbalance in patients-to-specialists, and
inter-grader inconsistencies Winder et al. (2009).
Grading images for DR is performed through
pattern recognition, but features such as mi-
croaneurysms, hemorrhages, and exudates can
be difficult to distinguish from the background
retina. Processing steps may include normal-
ization of sharpness and illumination, contrast
enhancement, and noise and artifact reduction
Walter et al. (2002). Mass screening procedures
and the need for consistency in the screening
quality mandate use of these procedures; they
may aid in human interpretation or in prepro-
cessing stages for automatic algorithms. Addi-
tionally, image processing increases accuracy in
DR tracking. For example, longitudinal regis-
tration of retinal scans facilitates more careful
tracking of precise quantity and spatial changes
to lesions and other relevant features.

Walter et al. (2002), Lowell et al. (2004), Mah-
fouz and Fahmy (2009), Youssif et al. (2008),
Aquino et al. (2010), and Zheng et al. (2013)
segment the Optic Disc (OD) based on the in-
tensity and geometry of the OD and surrounding
blood vessels. Common image processing strate-
gies include morphological operations, template
matching, circular hough transform, and graph



cut. Traditional methods often depend on im-
age processing to extract candidate lesions be-
fore classifying them using machine learning or
rule-based systems. For example, Spencer et al.
(1996) uses bilinear top-hat and matched filter-
ing (MF) and feeds the outputs to a region-
growing algorithm. Other papers transform
image-based features to another space, includ-
ing wavelet transform in Quellec et al. (2008a)
and Abramoff et al. (2010) and radon transform
in Giancardo et al. (2011). Many such algo-
rithms have achieved desirable results while re-
maining computationally efficient; however, sys-
tems that rely heavily on user specifications
and simple processing methods remain function-
ally challenged. For instance, intensity-based
algorithms may confuse structures like microa-
neurysms (MAs) and hemorrhages (HEMs) or
bright lesions and the OD.

4.2. Traditional Machine Learning (ML) Algo-
rithms

4.2.1. Support Vector Machine (SVM)

SVMs use pattern recognition to establish a
rule to separate classes using feature expression
profiles Noble (2006). For example, a line might
separate DR classes by lesion presence/quantity.
When many features are present, classes are sep-
arated based on maximizing distance to a high-
dimensional boundary. However, this method
is limited in the following respects: it assumes
training and test data are derived from similar
distributions, requires user-specified parameters,
and may overfit with too many input variables.

Welikala et al. (2014) and Goatman et al.
(2011) applied SVMs to detect blood vessels and
identify cases of PDR. Akram et al. (2013) de-
tects microaneurysms (MAs) by feeding image
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priors into a hybrid ensemble based on SVM,
Gaussian Mixture Models (GMM), and multi-
model mediod based modeling. SVM classified
MA turnover Xu et al. (2018) and measured
changes in red lesions to grade DR Adal et al.
(2018). While this method allows complex fea-
ture representations and efficient class separa-
tion, it requires prior feature extraction and still
represents a degree of user manipulation that
may breed errors in complex tasks.

4.2.2. K-Nearest Neighbors (KNN)

KNN classifies objects in unseen images by
distance to “K” training samples in the feature
space Keller et al. (1985). Traditional KNN
classifiers may suffer in cases of class imbalance
due to equal weighting between labeled samples.
Classification may be uncertain during ties be-
tween classes, which may be solved in “crisp”
(traditional) KNN by reducing K or by mini-
mizing sum of distances to each neighbor with
a tied class. Fuzzy-KNN addresses uncertainty
by assigning an input vector to multiple classes;
it decides based on strongest membership.

Niemeijer et al. (2005) and Abramoff and
Suttorp-Schulten (2005) apply KNN to detect
red lesions for web-based DR screening. In
Niemeijer et al. (2007a), KNN receives filter re-
sponses from candidate lesions and identifies ex-
udates and cotton wool spots (CWSs). Tang
et al. (2013) segments retinal images into splat
partitions, selects the optimal features using a
filter and wrapper sequence, then classifies can-
didate hemorrhages using KNN. Niemeijer et al.
(2009) combined KNN with likelihood distribu-
tion normalization. KNN serves as a nonspe-
cific classifier that works well across tasks; how-
ever, it suffers from potential issues in compu-
tational efficiency and generalizability. Thus,



diverse patient populations would mandate (1)
storing very large training data or (2) training
on new data across different population uses.

4.2.3. Random Forest (RF)

Random forest combines decision trees in a
learning ensemble, such that accuracy combines
individual trees and the correlation between
trees Breiman (2001). Tree ensembles are grown
through random subsamples of the training set
(i.e. through bagging and random split selec-
tion). A number of random attributes is selected
at each node; the algorithm computes entropy
of each to select the optimum attribute to clas-
sify remaining training examples Sanroma et al.
(2016). Independent trees use these decisions to
vote for class label for later aggregation.

Acharya et al. (2017) used a series of radon,
discrete wavelet, and discrete cosine transforms
to extract features from retinal images. They
found that a decision tree classified DME with
the highest performance based on MESSIDOR
data. More complicated classification systems
use random forests to make decisions; for exam-
ple, Casanova et al. (2014) and Sanroma et al.
(2016) detect binary DR based on RFs. RFs
may also separate lesions from non-lesions, which
is accomplished using candidate morphology in
Zhang et al. (2014). This method can provide
decisive class separations; however, it requires
hand-tuning and may suffer from difficulties con-
cerning less-clear class distinctions (i.e. mild
from moderate).

4.2.4. Neural Networks (NNs)

NNs learn mathematical weights that specify
the probabilities of an inputs belonging to cer-
tain output classes Gardner et al. (1996a). To
accomplish this, the NNs recognize significant
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features in determining output class (i.e. DR
severity) in input samples of known class. Some
handcrafting is necessary to set parameters. Al-
ternately, NNs may be used to extract features
and fed them to a subsequent classifier.

An Artificial NN (ANN) can extract image
features to identify lesion candidates, which will
be labeled by a clinical rule-set or subsequent
classifier. Alternatively, ANNs may predict le-
sions or disease labels based on input features.
In Gardner et al. (1996a) and Usher et al., ANNs
differentiate signs of DR like lesions and new
vessels from background pixels for subsequent
DR detection. The algorithm in Hatanaka et al.
(2012) uses rule-based and ANN methods to pre-
dict microaneurysms based on double-ring fil-
ter responses. Marin et al. (2011) computes a
seven-dimensional (7D) vector of intensity and
moment invariant features. Then, it feeds this
information to a NN to label pixels as blood
vessel or non-blood vessel. In Osareh et al.
(2009), an algorithm detects exudates by ex-
tracting candidate features using fuzzy c-means
clustering, ranking feature importance under a
genetic-based algorithm, and feeding the fea-
tures into a multilayer NN to output the final
labels. Usher et al. classifies lesions at the pixel-
level using wavelet signatures and an ANN, then
it feeds these results through rule-based stages
at the region, area, and image levels. Herliana
et al. (2018) extracted features from retinal im-
ages using particle swarm optimization (PSO),
then they fed them to a NN to classify DR.

4.3. Deep Learning (DL)

DL selects increasingly higher-level features to
map input data to output labels, using training
data to weigh features relevance Litjens et al.
(2017). The most successful DL methods are



constructed using deep convolutional neural net-
works (CNNs), which rose to prominence with
AlexNet Krizhevsky et al. (2012). CNNs use
convolution filters to transform inputs and allow
weights to be shared spatially. DL algorithms re-
quire less user specification than traditional ML
systems, but it can be unclear as to which fea-
tures influence their classifications.

Zilly et al. (2015) segments the optic disc (OD)
using entropy-based sampling and a boosted
CNN. The algorithms in Yu et al. (2017), Haloi
(2015), Chudzik et al. (2018b), Chudzik et al.
(2018a), Hatanaka et al. (2018), Dai et al.
(2018), and Tan et al. (2017) use CNNs to de-
tect exudates, MAs, and HEMs. Yu et al.
(2017) focuses on an off-line classifiers to enhance
computational efficiency while classifying pix-
els, whereas Chudzik et al. (2018b) and Chudzik
et al. (2018a) stress the importance of transfer
learning and layer freezing. Transfer learning
allows CNNs to learn lower-level features from
public datasets, thus compensating for limited
data. Hatanaka et al. (2018) uses a two-step
DCNN that detects MAs and filters false posi-
tives. Dai et al. (2018) compensates for weakly-
supervised images by natural language process-
ing (NLP). During training, the multi-sieving
CNN relates the supervised information in clin-
ical reports to lesion locations in retinal images.
Then, the CNN uses these learned associations
to detect lesions in test images, without the clin-
ical text. Gargeya and Leng (2017) harnesses
a CNN to extract features from images, then
it feeds them to a tree-based model that classi-
fies binary DR. Deep learning enhances learning
by extracting higher-level features that may be
missed by handcrafted systems; however, deeper
systems often suffer from limitations in inter-
pretability that may lead to clinical unaccep-

tance. Therefore, Quellec et al. (2017) gener-
ates heatmaps during DR grading. This sys-
tem involves a backpropagation method that in-
cludes three passes through the CNN to pass
second-derivatives forward. The algorithm re-
sults in image and lesion-wise predictions. A
heatmap represents all relevant pixels. Gulshan
et al. (2016a) use inception-v3 to grade images
for referable DR, DME, and image quality. Ting
et al. (2017) extend this approach to multiple
diseased types, applying VGGNet to grade for
DR, glaucoma, and AMD. Zhou et al. (2018),
Zhang et al. (2017), Ardiyanto et al. (2017), and
Roy et al. (2017) also use deep learning to grade
severity. Zhang et al. (2017) and Ardiyanto et al.
(2017) apply Residual Networks (ResNets) to the
Yang et al. (2017) detects lesions and
grades DR using a two-stage DCNN with imbal-
anced weighting. Wang et al. (2017) introduces
a novel framework, Zoom-in-Net, to highlight
attention maps of lesion patches and diagnose
DR. ElTanboly et al. (2018) graded OCT im-
ages for NPDR using a joint segmentation model
and CNN trained by stacked non-negatively con-
straint autoencoders. Rasti et al. (2018) de-
tects DME and age-related macular degenera-
tion (AMD) using a multi-scale convolutional
mixture of experts (MCME) model. Shanthi and
Sabeenian (2019) modified the AlexNet model to
grade retinal images for DR severity. Wan et al.
(2018) compared popular deep CNN frameworks
(AlexNet, VGGNet, GoogleNet, and ResNet) for
grading DR in retinal images.

issue.

5. Overview of Tasks

5.1. Optic Disk (OD) Segmentation

OD removal improves bright lesion detection
due to the maximum intensity values that fre-
quently occur within this region Lowell et al.
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(2004). Also, the OD rim may impact blood
vessel detection. Alternatively, OD localization
may contribute to blood vessel segmentation, as
the major retinal vessels branch off from the OD.
Lastly, the OD might be located to establish dis-
tance to the fovea. Maculopathy, or retinopa-
thy of the macula, is particularly damaging due
to the high visual importance of this region.
Thus, severity assessment can benefit from ac-
curate localization of the macula, particularly
when it is obscured by exudates. Interestingly,
the surge in deep learning methods in the DR
space has correlated to decreased use of prepro-
cessing methods like OD segmentation and re-
moval. Ideally, this would indicate that the less
handcrafted systems can learn features that can
distinguish the OD from other structures; how-
ever, the “black box” nature of most deep learn-
ing systems causes it to be difficult to distin-
guish whether an algorithm is learning features
and feature weights correctly (i.e. OD versus le-
sions). This can be particularly troublesome due
to the natural variety of the OD across patients.
For instance, a model that learns from patients
who have darker OD appearances may mistake
a lighter OD as a lesion with greater ease. Ting
et al. (2017) point out that they did not validate
whether OD contour affected their results. On
the other hand, removing the OD prevents an al-
gorithm from concurrently learning other impor-
tant eye diseases (i.e. maculopathy, glaucoma).
Therefore, OD segmentation is important to DR
lesion detection and severity grading, whereas its
removal depends on the intended task.

Researchers have implemented machine learn-
ing in OD segmentation with high generaliz-
ability, accuracy, and computational efficiency.
Mahfouz and Fahmy (2009) projected the image
space into two orthogonal axes to localize the
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OD faster. Zheng et al. (2013) improved OD and
OC segmentation by incorporating an extended
general energy function into global optimization
based on s-t graph cut. Then, a GMM deter-
mined the posterior probability of each pixel be-
longing to each section. Abramoff and Niemeijer
(2006) applied a circular template and KNN re-
gression to localize the OD. The algorithm in
Niemeijer et al. (2004) supplied the vessel seg-
mentations. Rehman et al. (2019) proposed a
multi-parametric scheme for segmenting the OD
using region-based statistics and texture. After
preprocessing, Simple Linear Iterative Cluster-
ing (SLIC) segmented images into superpixels.
Then, the algorithm discriminated important re-
gional features according to mutual information
(MI). Finally, it fed all features into one of four
classifiers (SVM, RF, AdaBoost, or RusBoost).
Zilly et al. (2015) segmented the OC and OD us-
ing entropy-based downsampling and a boosted
CNN. A logistic regression classifier generated
the final pixel probability maps using convolu-
tional outputs, L*a*b color values, and centric-
ity. An unsupervised graph cut smoothed the
probability map, then convex hull transform con-
nected disjointed regions.

Other methods apply image processing to de-
tect the OD using features like high pixel in-
tensity, blood vessel convergence, and known
shape. These methods rely on more handcrafted
features than necessary in deep learning; how-
ever, they are often faster and more easily in-
terpreted. Aquino et al. (2010) segmented the
OD using the weighted performance of median-
filtering of the green channel, Gaussian low-
pass filtering, and Otsu thresholding of the blue
channel. Then, the algorithm removed blood
vessels and extracted the OD boundary using
morphological operators, Prewitt edge detection,



and Circular Hough Transform. Youssif et al.
(2008) combined orientation-based filters and
maximum pixel responses to generate a vessel
directional map (VDM). The minimum accumu-
lated difference in vessel directions represented
the OD center. Uribe-Valencia and Martinez-
Carballido (2019) modeled column variations in
pixel intensity to localize the OD. The algorithm
detected promising OD regions in a top-down ap-
proach. A size and weighted centroid approach
narrowed candidates. In Kar and Maity (2018)
and Akram et al. (2013), morphological oper-
ators extracted and smoothed the OD, respec-
tively. Kar and Maity (2018) and Zhang et al.
(2014) incorporated vessel structures. Contrast
in intensities also improved OD localization as
in Zhang et al. (2014) and Usher et al.. Morpho-
logical operators were sometimes combined with
other methods, as with region growing and local
phase symmetry in Yu et al. (2017).

5.2. Blood Vessel (BV) Segmentation

Segmenting BVs is essential to DR screening
for reducing false positives when detecting dark
lesions and for tracking microvascular changes
when detecting PDR. In the former, false posi-
tives could arise due to similar pixel intensities
between BVs and these lesion types, as well as
the proximity of most lesions to BVs. For the
later, PDR is characterized by angiogenesis, or
growth of, new retinal BVs that lack structural
integrity. These vessels cannot support regular
function, and they are more likely to rupture or
otherwise cause irreversible damage.

Traditional machine learning has been highly
effective for segmenting BVs. Orlando and
Blaschko (2014) harnessed a discriminatively
trained, fully-connected conditional random field
(CRF). A 1-slack SOSVM with margin-rescaling

learned the resulting pairwise potentials, as well
as unary and bias features. Cai and Chung
(2006) proposed an unsupervised method us-
ing a Gaussian pyramid, gradient matrix, the
normalized cut criterion, and a tracking strat-
egy. Nguyen et al. (2011) labeled pixels us-
ing Bayesian classification with bagging. The
system classified BVs according to Gabor filter
responses and pixel-wise gray levels. Welikala
et al. (2014) used standard and modified op-
erators to distinguish new BVs from old BVs
and non-vessel edges, respectively. Then, a lin-
ear SVM integrated features from both binary
vessel maps to make PDR classifications. Goat-
man et al. (2011) segmented BV candidates us-
ing watershed transform and ridge strength mea-
surement. The Wilcoxon rank sum and Ansari-
Bradley tests weighed feature relevance and fed
the results to a radial-basis function (RBF) SVM
to assess PDR. Marin et al. (2011) detected
BVs using a four-layer feedforward NN to clas-
sify pixel. Xu et al. (2009) applied a boosting
algorithm to 3D-OCT images to segment BVs
by classifying pixels, without segmenting reti-
nal layers. Oth - 2nd order Gaussian filter re-
sponses generated 2D features from A-scans; gra-
dient magnitude and divergence were also added.
The model incorporated 3D Haar-features based
on optimization parameters and the Oth - 4th
moments of the filter responses. The LogiBoost
adaptive boosting algorithm trained on hand-
labeled A-scans.
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Paper

Focus

Method

Image features

Results

Mahfouz and Fahmy (2009)

OD localization

dimensionality reduction (1D
vectors) and edge detection

retinal vessels
orientation & OD
brightness/shape

97% accuracy on 340
images from STARE/
DRIVE) and a processing
time of 0.67s/image

Abramoff and Niemeijer (2006)

OD localization

circular template,
KNN regression

number of vessels and
vessel pixels, orientation
of the widest vessels,
average image intensity,
average vessel width

0.999 accuracy
on 1000 images

Uribe-Valencia and Martinez-Carballido (2019)

OD localization

local multi-level thresholds,
best channel selection, size
and weighted centroids,
column-wise Intensity
Profile Model

high pixel intensities and
blood vessel geometry,

Left Lobe (LL), Right

Lobe (RL), intermediary
Vasculature, and appropriate
OD diameter

0.997 accuracy
on 341 images

Youssif et al. (2008)

OD localization

morphological operators,
Otsu thresholds, Gaussian
filtering

directional pattern of
blood vessels —
minimum difference
in vessel directions

0.9877 accuracy on
STARE and 1.000
accuracy on DRIVE

Zilly et al. (2015)

OD segmentation

entropy downsampling,
boosting CNN, logistic
regression and unsupervised
graph cut algorithm

centricity, brightness

F-score of 94.7 and
overlap measure with
manual segmentation of

89.7 on DRISHTI-GS

Aquino et al. (2010)

OD segmentation

weighted average: median
filtering, Gaussian low-pass
filtering, Otsu thresholds,
morphological and Prewitt
edge detection

pixel intensities,
removed blood vessels

overlapping measure
of 0.86

Zheng et al. (2013)

OD segmentation

template-matching,
extended energy function
into s-t graph cut, Gaussian
Mixture Modeling

priors like topological
information (i.e. circularity),
adaptive priors (i.e.
minimum rim thickness)

disc area agreement
with OCT machine
software between
0.86-0.88

Rehman et al. (2019)

OD segmentation

multi-parametric scheme —
Simple Linear Iterative
Clustering (SLIC); mutual
information criterion;
Texton-map histogram and
Gabor filter bank; multilevel
Otsu thresholds; SVM, RF,
AdaBoost, RusBoost

region-based statistical
and texture features

accuracies of 0.993,
0.988 and 0.993 on
DRIONS, MESSIDOR
and ONHSD

Table 2: Sample of methods used to localize, segment, and extract the OD in retinal images
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Deep learning facilitates automatic, multi-
scale learning of BVs by combining local and
global image features. Many methods harness
U-Net-based structures to learn from multiple
receptive fields, as BVs appear at many com-
plex patterns, shapes, and sizes. This section
introduces unique CNN structures to perform
this task. Jiang et al. (2019) proposed a new
deep CNN (DCNN) structure, D-NET, with a
multi-scale information fusion module (MSIF)
during encoding. The MSIF combined parallel
convolution layers with different dilation rates.
The network’s decoding stage incorporated skip
connections. Soomro et al. (2019) approached
this problem through a strided-CNN. Prepro-
cessing improved image contrast using morpho-
logical mappings and PCA. Then, the strided-
CNN passed these contrast images through en-
coder/decoder stages with residual connections,
wherein the model replaced traditional pooling
layers with strided convolutional layers. Je-
baseeli et al. (2019) applied a Tandem Pulse
Coupled NN (TPCNN) and DL-Based SVM
(DLBSVM). The model fused data from two
source images and simultaneously operated on
the inter- and intra-channel linkings of the in-
put neurons. A DLBSVM model imputed these
features and classified vessels on a pixel-wise ba-
sis. Jin et al. (2019) introduced a Deformable
U-Net framework, DUNet, which replaced some
convolutional layers with deformable blocks.
Feng et al. (2019) proposed a cross-connected
CNN (CcNet). CcNet fused multi-scale fea-
tures through a U-net framework with two mod-
ifications: (1) equally-sized feature maps and
(2) convolution-ReLu-maxpooling (CRM) mod-
ules that linked each layer of the primary path
to all layers within the secondary path. Noh
et al. (2019) proposed a scale-space approxi-
mated (SSA) CNN (SSANet). SSANet com-

bated potential aliasing by replacing decimation
with upsampling by bilinear interpolation. The
model adapted the DRIU network as a base Sen-
gupta et al. (2019), added residual blocks, and
combined SSA and traditional decimation.

Image processing remains prevalent in seg-
menting BVs. This is particularly true in pa-
pers that focus on lesion detection and require
rapid BV removal. Zhang et al. (2014) and
Yu et al. (2017) harnessed morphological oper-
ators followed by inpainting, whereas Hipwell
et al. wused linear thresholding and Niemei-
jer et al. (2005) performed connected compo-
nent analysis. Hatanaka et al. (2012) subtracted
BVs from candidate microaneurysms by combin-
ing double-ring filtering and black-top-hat trans-
form. Aquino et al. (2010) used a linear struc-
turing element based on rotational variance and
maximum gray-levels. Shahid and Taj (2018)
combined filtering operations and Otsu thresh-
olding along a vessel location map (VLM) and
Frangi binarized image. Difficulties in these
methods largely stem from the geographical and
intensity similarities between vessels and dark le-
sions; in fact, Hipwell et al. aims to remove fea-
tures like hemorrhages. Such a procedure could
hence subtract from classification accuracy.
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Paper

Focus

Method

Image features

Results

Orlando and Blaschko (2014)

BV segmentation

conditional random fields
(CRFs), 1-slack structured
output support vector machine
(SOSVM) of pairwise potentials

unary and bias features
like 2-D Gabor wavelets,
line detectors, and
vessel enhancement

sensitivity of 0.776
and specificity of
0.973

Cai and Chung (2006)

BV segmentation

Gaussian pyramid, eigen-
decomposition of the
gradient matrix of the
Lucas-Kanade equation,
normalized cut criterion

vessel width, intensities

distance from ideal
point of 0.1823 (ROC
figure provided in paper)

Nguyen et al. (2011)

BV segmentation
and extraction

Bayesian classification with
bagging, Gabor filter responses
at different scales/orientations

pixel-wise average local
gray levels were subtracted
from maximum gray levels

The AUC obtained on
DRIVE was 0.9491

Welikala et al. (2014)

BV detection
for PDR

line operators, linear SVM

vessel edges

sensitivity of 1.00 and
specificity of 0.90 on
MESSIDOR

Goatman et al. (2011)

BV detection on
the OD for PDR

watershed transform and
ridge strength measurement,
Wilcoxon rank sum and
Ansari-Bradley tests,
radial-basis SVM

vessel intensities

Leave-one-out cross-
validation: AUC of
0.911, a sensitivity
of 0.842, and a
specificity of 0.859

Marin et al. (2011)

BV detection for
subsequent DR
classification

four-layer feedforward NN

gray-level and
moment invariants-based
features

average overall
accuracy of 0.9489 and
AUC of 0.9678 for DR
on DRIVE and STARE

Shahid and Taj (2018)

BV segmentation

multi-scale Frangi filtering,
morphological top hat,
lowpass, Otsu thresholding,
hysteresis threholding

vessel location map
(VLM), Frangi binarized
image

accuracy, sensitivity,
and specificity above
0.95, 0.73, and 0.95 on
STARE and DRIVE

Jiang et al. (2019)

BV segmentation

DCNN structure (D-Net)
with a multi-scale information
fusion module (MSIF) in the
encoding stage

multi-resolution image
and hierarchical
information

0.9864 AUC, 0.9709
accuracy, 0.8246 F-score,
0.7839 sensitivity, 0.9890
specificity, 1.5s/image

Soomro et al. (2019)

BV segmentation

morphological operators,
PCA, strided-CNN, class
balancing loss function

image-wide

sensitivity of 0.87,
0.808, 0.886 and 0.829
on DRIVE, STARE,
CHASE DB1 and HRF;
accuracies of 0.956,
0.954, 0.976 and 0.962

Jebaseeli et al. (2019)

BV segmentation

Tandem Pulse Coupled
Neural Network (TPCNN),
Deep learning based SVM
(DLBSVM)

unsupervised TPCNN
feature vectors

0.7445 sensitivity,
0.9940 specificity,
and 0.9916 accuracy

Jin et al. (2019)

BV segmentation

deformable U-Net
framework (DUNet)

fundus image inputs

accuracy of 0.9566,
0.9641, 0.9610, and
0.9651 and AUC of
0.9802, 0.9832, 0.9804,
and 0.9831 on DRIVE,
STARE, CHASE_DB1
and HRF respectively

Feng et al. (2019)

BV segmentation

cross—conncctcd
CNN (CCNet)

fundus image inputs

sensitivity of 0.7625

and 0.7709 and accuracy
of 0.9528 and 0.9633

on DRIVE and STARE,
respectively

Noh et al. (2019)

BV segmentation

scale-space approximate
CNN (SSANet)

fundus image inputs

AUC of 0.9916
on CHASE_DB1

Xu et al. (2009)

BV segmentation in 3D-OCT

Gaussian filtering, Haar
responses, LogiBoost
adaptive boosting algorithm

2D and 3D features
from A-scan projections,
magnitude, divergence

sensitivity of 0.85
and specificity
of 0.88

Table 3: Sample of methods used to segment blood vessels
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5.8. Leston Detection

Lesion detection are essential to detecting and
grading for DR. These algorithms help generate
comprehensive lesion maps; thus, they enhance
system credibility by allowing clinicians to ob-
serve what image regions factor into a DR grade.
Further, different studies also focus on differ-
ent lesions depending on their purposes. For in-
stance, most algorithms focus on detecting mi-
croaneurysms (MAs) to aid ophthalmologists in
capturing the disease before preventable vision
loss. Other methods also track lesions like ex-
udates and hemorrhages to aid in grading DR
severity. Image registration allows lesion preva-
lence and locations to be tracked across visits as
a measure of DR progression. Lesion tracking
enables key advantages over end-to-end learn-
ing DR grading. Algorithms that learn directly
from images in an end-to-end manner learn with-
out user input operate like “black boxes”, which
means that the user may not know what features
the systems are learning. Therefore, a seemingly
accurate system may learn incorrect information
during training and fail when provided unseen
images. Further, particular lesions may pro-
vide clinicians with finer information concerning
what procedures the patient might need. In fact,
works such as Li et al. (2019) show accuracies
for DR that surpass 0.80, despite poor identifi-
cations of lesions (i.e. precision below 0.05 for
MAs). This suggests that lesion detection may
be more challenging than system-wide DR detec-
tion. At the same time, systems that diagnose
DR based on lesion presence may suffer from in-
accuracies due to interpatient variability. Thus,
superior systems combine global image informa-
tion with lesion heatmaps for precise and com-
prehensive diagnosis and treatment. Keel et al.
(2019) shows how this information offers insight
into DR and how algorithms make predictions.

5.3.1. Microaneurysm (MA) Detection

Quellec et al. (2008a) matched a MA template
in sub-bands of translation invariant wavelet-
transformed images. A lifting scheme se-
lected adaptive wavelets through a genetic al-
gorithm followed by Powell’s direction set de-
scent. Akram et al. (2013) built a learning
ensemble using GMMs, SVMs, and multivari-
ate m-Mediods with Semi-Fuzzy Self-Organizing
Maps (SFSOMs). Supervised Fisher discrimi-
nant analysis (LFDA) maximized class discrim-
ination. A genetic algorithm learned relative
classifier weights. Giancardo et al. (2011) ap-
plied radon transform and a RBF SVM. Dasht-
bozorg et al. (2018) extracted local conver-
gence index features (LCFs) using multi-scale
multi-orientation gradient weighting and itera-
tive thresholding. RUSBoost imputed the LCF's
to identify MAs. Karim et al. (2019) employed
the MATLAB NN Pattern Recognition Tool
(NPRTOOL). The algorithm segmented images
using K-means clustering, removed the OD and
BVs using a canny edge detector, and classified
MAs using a NN. Selcuk and Alkan (2019) ap-
plied an ant colony algorithm. Colony filters
optimized a “pheromone matrix” for each ant’s
ideal path and aggregated results. Niemeijer
et al. (2005) used KNNs to generate pixel prob-
ability maps and classify images for red lesions.

Many works highlighted dimensionality reduc-
tion while identifying MAs. Zhou et al. (2017)
harnessed sparse lasso-based PCA and multi-
scale Gaussian correlation coefficients. Hatanaka
et al. (2012) applied PCA, a rule-based method,
and a three-layer feed-forward ANN to classify
lesions. Deepa et al. (2019) harnessed discrete
orthonormal Stockwell transform (DOST) and
local binary pattern (LBP) histograms. The
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DOST phase reduced features through Haralick
feature extraction. An ANN classified the re-
sults using the concatenated features. Cao et al.
(2018) ranked features by PCA and RF feature
importance. The raw pixels and two reduced-
feature sets were fed into three classifiers (25-tree
RF, two-layer NN, and RBF SVM).

Chudzik et al. (2018a) reduced the training
time for a fully convolutional NN (FCNN) with
interleaved freezing. The CNN sampled anno-
tated patches across all possible image locations.
It classified pixels by the ratio of positive-to-total
predictions. Haloi (2015) structured a five-layer
DCNN to generate a pixel-wise probability map.
Layers incorporated dropout and maxout acti-
vation. Chudzik et al. (2018b) pre-initialized a
FCNN by transfer learning. Overall, the CNN
included: encoder/decoder stages, eighteen al-
ternating convolutional and batch normaliza-
tion layers, three max-pooling layers, three up-
sampling layers, and four inter-path connections.
Hatanaka et al. (2018) proposed a two-step Deep
CNN based on GoogleNet to detect MAs and
three-layer, 48 feature perceptron to reduce false
positives. Processing included a double-ring fil-
ter, a Gabor filter, and shape index based on
the Hessian matrix. Dai et al. (2018) developed
a cascaded multi-sieving CNN (MS-CNN) that
utilized supervised information from clinical re-
ports to identify MAs in images. The hybrid
mining system mapped images to text to learn
lesion feature subspaces. The trained model used
these features to segment images without the
corresponding clinical notes. Each layer fed false
positives forward as negative examples.

Spencer et al. (1996) detected MAs in FAs us-
ing thresholding and region growing. Hipwell
et al. detected MAs in 50-degree digital red-
free fundus photographs. The algorithm gen-
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erated a rule set based on thirteen clinical fea-
tures like MA shape and intensity. Hatanaka
et al. (2012) improved their previous method
by adding double-ring filtering and PCA. Haloi
(2015) improved DCNN-based classification by
foveation and nonuniform sampling. Chudzik
et al. (2018b) applied Otsu thresholding and
morphological operators to the green channel of
color fundus images to remove false negatives.

5.3.2. Fzudates (Exu)

Kar and Maity (2018) maximized the MI of
the responses to Laplacian of Gaussian (LoG) fil-
ters and MF to segment exudates. This method
approximated bright lesions as edges with a zero
crossing about the LoG center. Dark lesions
were discerned using a MF kernel and a nega-
tive LoG kernel. A differential evolution (DE)
algorithm found the fuzzy parameters that max-
imized MI. Zhang et al. (2014) subtracted adap-
tive templates containing pixel maxima from im-
ages to yield bright structures. Exudate candi-
dates were found using MF and morphological
top-hat filtering. Finally, 500-tree RF algorithm
classified exudates and DR. Osareh et al. (2009)
used a color-based method based on Gaussian-
smoothed histogram analysis and fuzzy c-means
(FCM) clustering. Coarse segmentation ana-
lyzed histogram analysis, then FCM assigned
unclassified pixels. A genetic algorithm ranked
features for optimal classification using a one-
point crossover operator. Brandon and Hoover
(2003) designed a multi-level method to tune
progressively higher levels of drusen classifica-
tion. Wavelet-based equalization transformed
the image under an orthonormal wavelet basis
with a high-order coiflet. The method classified
pixels according to similarity measures between
the product of four 1D wavelet responses and
the Mexican hat wavelet. A feed forward NN



imputed the wavelet signatures to classify the
results. Finally, a rule system decided if con-
nected pixels formed lesions. Khojasteh et al.
(2019) compared a basic CNN, a pre-trained
residual network, ResNet-50, and Discrimina-
tive Restricted Boltzmann Machines (DRBMs)
for detecting exudates. The optimal system re-
placed the softmax layer of ResNet-50 with SVM
and learned from PCA-reduced data inputs.

Lokuarachchi et al. (2019) and Wisaeng
and Sa-Ngiamvibool (2019) detected exudates
through image processing. Lokuarachchi et al.
(2019) applied intensity thresholding, con-
trast limited adaptive histogram equalization
(CLAHE), and mean filtering. The method sub-
tracted the binary mask of the OD from le-
sion candidates. Wisaeng and Sa-Ngiamvibool
(2019) applied a morphology mean shift algo-
rithm (MSA) to coarsely segment candidates.
This method used a kernel density estimator
(KDE) with a Gaussian kernel function. Then,
a mathematical morphology algorithm (MMA)
finely segmented these results.

5.8.8. Multiple Lesion Types (MLT)

Lee et al. (2001) empirically trained a rule sys-
tem to grade images for lesion presence. Usher
et al. extracted lesions using recursive re-
gion growing and adaptive intensity threshold-
ing; dark lesions also required a "moat operator”
Sinthanayothin et al.. An ANN classified lesions
and graded images for lesion presence. Niemei-
jer et al. (2007b) differentiated hard exudates,
CWSs, and drusen. A KNN classified pixels by
thresholded filter responses from a set of second-
order irreducible invariants. A second KNN sup-
pressed spurious bright lesions based on features
like contrast, size, shape, and proximity to BVs.
Finally, linear discriminant analysis (LDA) sepa-

rated lesion types. He et al. (2019) harnessed the
spatial-spectral features of multispectral imaging
(MSI). The authors first extracted LBPs across
MSI channels. A generalized low-rank approx-
imation of matrices (GLRAM) framework ap-
proximated the resulting matrix as low-rank un-
der a supervised regularization term (SRT). Fi-
nally, a Gaussian-based SVM classified pixels.

Tan et al. (2017) distinguished exudates,
HEMs, and MAs using a 9-layer CNN. The
CNN consisted of five convolutional layers, max-
pooling in layer six, a 256-neuron fully-connected
seventh layer and 128-neuron fully-connected
eighth layer, and a 4-neuron output layer. Li
et al. (2019) segmented lesions in their new
dataset using two semantic segmentation mod-
els, DeepLab-v3+ Chen et al. (2018) and HED
Xie and Tu (2015). Keel et al. (2019) adapted
two validated deep learning models for referable
DR Keel et al. (2018) and glaucomatous optic
neuropathy (GON) Li et al. (2018) to visualize
CNN outputs and enhance model interpretabil-
ity. The algorithm produced feature maps using
adaptive kernel visualization, sliding windows,
and thresholding of class probabilities. Saha
et al. (2019) proposed a DCNN, SegNet, for se-
mantic segmentation to detect lesions and the
OD. SegNet included an initial 13-layer encoder
stage based on VGGNet, a corresponding de-
coder stage, and a final pixel classifier. Each
decoder stage harnessed memorized max-pooling
indices from its respective encoder feature map.
Then, the method convolved each sparse repre-
sentation with a trainable decoder filter bank
to produce dense feature maps. Costa et al.
(2019) developed EyeWeS, a weakly supervised
CNN, using multiple instance learning (MIL)
and transfer learning approaches. This frame-
work identified lesion-containing regions based

22



on bagging and image labels. First, a pre-trained
inception-v3 constrained the model’s receptive
field. Subsequent layers used 1 x 1 convolutions
to classify pixels. Image labels were constructed
by max-pooling with patch outcomes. Son et al.
(2019) screened and produced lesion heatmaps
for 12 major retinal abnormalities. The over-
all system included 12 regionally-guided CNNs
that each binarily classified one abnormality. An
overall lesion heatmap highlighted pixels that
correlated to target findings. Each CNN con-
sisted of residual layers, reduction layers, aver-
age pooling layers, an Atrous Pyramid pooling
layer, and a final 1 x 1 convolutional layer.

5.4. DR Grading
5.4.1. Screening Systems

Abramoff and Suttorp-Schulten (2005) devel-
oped EyeCheck, an ATA category 2 web-based
screening tool for DR. Measurement parame-
ters consisted of image gradability, inter-grader
agreement, need for pupil dilation, and the risk
and urgency level of DR. Risk factors included
neovascularization, higher age, diabetes type I,
and bright and red lesions. This work was fur-
thered by Abramoff et al. (2008), who screened
for DR by combining previously published algo-
rithms Abramoff and Niemeijer (2006); Niemei-
jer et al. (2004, 2005, 2007b, 2006). First, a
statistical classifier graded images for quality
based on filterbank responses and RGB hiso-
grmas Niemeijer et al. (2006). Next, a super-
vised classifier segmented BVs to reduce false-
positive red lesions Niemeijer et al. (2004). A
KNN regression model localized the OD using
prior vessel segmentation Abramoff and Niemei-
jer (2006). Finally, two algorithms detected
red lesions and other lesions Niemeijer et al.
(2005, 2007b).  Abramoff et al. (2013) as-
sessed the Iowa Detection Program (IDP) for

detecting referable DR (RDR) as compared to
an adjudicated International Clinical Diabetic
Retinopathy (ICDR) severity standard. Amer-
ican Academy of Ophthalmology (2014). IDP
combined components for assessing image qual-
ity Niemeijer et al. (2006), detecting MAs and
HEMSs Niemeijer et al. (2005); Quellec et al.
(2008a), detecting exudates and CWSs Niemei-
jer et al. (2007b), and detecting irregular le-
sions Abramoff et al. (2008); Tang et al. (2013).
Abramoff et al. (2016) compared IDx-DR X21 to
their previous system, IDP. IDx-DR X21 applies
CNN detectors to detect lesions characteristic for
DR. These features served as input to two Rfs to
classify RDR and vision-threatening DR. The al-
gorithm surpassed IDP due to its deep learning
inclusion, improved lesion detection, and high di-
agnostic accuracy in DR and DME.

Keel et al. (2018) constructed their system,
EyeGrader, of four inception-v3 models for clas-
sifying RDR, DME, image quality for DR, and
image quality for DME. The study trained each
model with 66,790 images from Healgoo Inter-
active (2017). Gonzélez-Gonzalo et al. (2019)
evaluated RetCAD v.1.3.0, for joint detection
of DR and AMD. RetCAD v.1.3.0 included an
initial preprocessing stage, image quality assess-
ment, and two ensemble CNN architectures. The
overall system aggregated disease-wise probabil-
ities from each CNN. Quellec et al. (2019) in-
troduced OphtAl, a system of CNN-ensembles
that recognized eye laterality, detected RDR,
assessed DR severity, and generated decision
heatmaps. The work investigated several CNN
frameworks: Inception-v3, Inception-v4, VGG-
16, VGG-19, ResNet-50, ResNet-101, ResNet-
152, and NASNet-A.
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Paper

Focus

Method

Image features

Results

Spencer et al. (1996)

MAs in fluorescein
angiograms

Bilinear top-hat
transform, matched
filtering, thresholding,
region-growing

pixel intensities

a sensitivity
of 0.82

Hipwell et al.

MAs in 50-degree
digital red-free
fundus photographs

rule-based

thirteen clinically
specified features
like MA shape
and intensity

image-level
sensitivity of 0.81
and specificity

of 0.93 for MA

presence
Double-ring
filtering, principal 126 image features, 0'65.; Frue
Hatanaka et al. (2012) MAs . positive rate
component included texture on a lesion basis
analysis (PCA)
morphological opening,
Gabor filter banks,
learning ensemble:
Gaussian mixture model image-level sensitivity
(GM.I\/I)7.SVM, and . features like shape, of 0.9864, specificity
multivariate m-Mediods . . of 0.9969, and
Akram et al. (2013) MAs . . color, intensity and
with Semi-Fuzzy statistics accuracy of 0.9940
Self-Organizing Maps on DIARETDBO and
(SFSOMs), supervised DIARETDB1
Fisher discriminant
analysis (LFDA),
genetic algorithm
. DCNNS, foveation, Intensities, convexity, AUC of 0.98 on
Haloi (2015) MAs nonuniform sampling and region area the ROC dataset
z;:s:llgjl:rr;isgiﬁnt sensitivity of 0.8962
. . ’ Wavelet on a lesion basis in
Quellec et al. (2008a) MAs genetlc7 alglorltl.lm, sub-bands 120 expert-labeled
Powell’s direction set imases
descent =
global score of 0.375
Radon transform, Radon transformed and sensitivity of
Giancardo et al. (2011) MAs region growing, radial features (modeled as 0.366 on ROC. AUC
basis function SVM Gaussian) of 0.96
with PCA
sparse lasso-baseq PCA, thirty-four features
multi-scale Gaussian . . .
correlation coefficients (i.e. Gaussian filtering, sensitivity
Zhou et al. (2017) MAs false positives reduced sl;z}]:ier,nibtrlgt};tness, of 0.4831
by thresholding and p Y
. - vasculature)
region growing
PCA. rule-based true positive rate of
Hatanaka et al. (2012) MAs three-layer PCA-selected 0'68 ?,nd 1.5 false
feed-forward ANN positives/image on
ROC
fully convolutional NN free-response receiver
(FgNN) with operatic characteristic
Chudzik et al. (2018a) MAs image patches (FROC) of 0.298 on

interleaved freezing and
dice loss

ROC and 0.431 on
E-Ophtha
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AUC of 0.988 on

s (2019 s el DOXX il [ bcvbe e | AESSDOR 0
P P P 0.98 on ROC
FCNN with batch pre-annotated Erlfg—cogi?hszf% 399
Chudzik et al. (2018b) MAs ilc)()sgmallzatlon and dice :EZE)Q E:;Ch on DIARETDBI,
s and 0.355 on ROC
Two-step DCNN;
prechr 5 | o, | g oros
Hatanaka et al. (2018) MAs e pereep ' green channel .
double-ring filter, ot positives/image on
Gabor filter, Hessian puts DIARETDB1
matrix; GoogLeNet
Cascaded Multi-sieving a recall of .878,
Dai et al. (2018) MAs CNN (MS-CNN), Hybrld text/ precision of .997,
natural language image features accuracy of .961,
processing (NLP) and F-score of .934
discrete orthonormal
Stockwell transform
(DOST) with short-time statistical and
Fourier transform textural features
Deepa et al. (2019) MAs (SSFT) and wavelet skewness and sen51t1v1ty O.f 0-965
transform (WT), . and specificity of 0.953
. kurtosis from
Haralick feature the LBP
extraction; Local Binary ¢
Pattern (LBP)
histograms, ANN
PCA, RF, NN, Radial Egt‘i;nd RE AUC of 0.985 and
Cao et al. (2018) MAs basis function (RBF) importance F-measure of 0.926
SVM P on DIARETDBI
reduced features
multi-scale
. . Local
multi-orientation
radient weighting convergence sensitivity score of
Dashtbozorg et al. (2018) | MAs g . ! index features
iterative thresholding, . . 0.471 on ROC
. R (LCF), intensity,
gradient weighting, shapo
RUSBoost P
MATLAB NN Pattern
Recognition Tool sensitivity of 0.616,
Karim et al. (2019) MAs (NPRTOOL), K-means intensity images specificity of 0.414,
clustering, canny edge accuracy of 0.563
detector
Selcuk and Alkan (2019) MAs Ant colony algorithm, BVs removed Dice index values

Frangi filters

of 0.81-0.90

All red lesions

KNN classification,

removed bright lesions

image-level results

Niemeijer et al. (2005) (i.e. MAs, thresholding, and BVs, probabilistic with a sen51t1v1t.y (.)f
hemorrhages hological " ixelowise lesi 1.00 and a specificity of
(HEMs)) morphological operators pixel-wise lesion map 0.87
Mutual information of
Laplacian of Gaussian LoG responses (bright acc(:im:[cjycoffo(.)Qggg 4
. (LoG) filter, matched lesions), MF and an o on
Kar and Maity (2018) Exudates DRIVE, STARE,

filter (MF), differential
evolution (DE)
algorithm

negative LoG responses
(dark lesions)

DIARETDBI, and
MESSIDOR
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thresholding, FP,

Adaptive template

AUC of 0.95, sensitivity

Zhang et al. (2014) Exudates morphological top-hat ith pixel maxima of 0.96, and specificity
filters, 500-tree RF with p of 0.89 on e-ophtha EX
Gaussian-smoothed
histogram analysis, image-level sensitivity
Osareh et al. (2009) Exudates fuzzy crmeans (FCM) L.Uv space features, of 0.960 and specificity
clustering, genetic histogram features
- ; of 0.946
algorithm, multi-layer
NN
intensity thresholding,
contrast limited h turation val DIARETDBI1 sensitivity
Lokuarachchi et al. | Exudates adaptive histogram (11-}%\5/% lslp:ceoin:’:glef of 0.9459 and specificity
(2019) equalization (CLAHE), of 0.8846
mean filtering
morphology mean
shift algorithm (MSA), sensitivity, specificity,
Wisaeng and Sa- | Exudates mathematical contrast, size and accuracy of 0.9840,
Ngiamvibool (2019) morphology algorithm 0.9813, and 0.9835
(MMA)
accuracy and sensitivity
. PCA, hybrid standard image of 0.97§ and 0.99,
Khojasteh et al. (2019) Exudates ResNet-50/SVM input respectively on
model bt DIARETDBI and
e-Ophtha
Wavelet equalization, orthonormal wavel.ets
Mexican hat wavelet responses at the pixel
’ level, area and intensity correct detection rate
Brandon and Hoover | Drusen feedforward NN, . .
. . . values, border intensity of 0.87
(2003) regional classification .
using rule system values, and gradient
and density properties
HEM, MAs, sensitivity and

Lee et al. (2001)

hard exudates (HE),
cotton-wool spots
(CWS), other lesions

rule-based

clinically specified

specificity above 0.90,
and k-score above 0.75
(compared to experts)

Usher et al.

MAs, HEMs, exudates

ANN, locally

adaptive contrast
enhancement, recursive
region growing,
adaptive intensity
thresholding

Color-enhanced
intensity regions

maximum sensitivity
of 0.951 at a
specificity of 0.463

Tan et al. (2017)

MAs, HEMs, exudates

10-layer CNN

standard image
inputs

pixel-wise

sensitivity /specificity of
0.6257/0.9893 for
HEMSs, 0.4606,/0.9799
for MAs, 0.8758/0.9873
for exudates, and 0.7158
sensitivity for dark
lesions on CLEOPATRA
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Niemeijer et al. (2007b)

HEs, CWS, drusen,
bright lesions

KNN, filter responses,
thresholding, linear

discriminant analysis
(LDA)

lesion probability
mapping, contrast,
size, shape, and
proximity to vessels
and red lesions, red
lesions/image, bright
lesions/image

AUC of 0.95 and
sensitivity /specificity of
0.95/0.88, 0.95/0.86,
0.70/0.93, and 0.77/0.88
for bright lesions,
exudates, cotton-wool
spots, and drusen,
respectively

Li et al. (2019)

MAs, soft exudates
(SE), HEs, and HEMs

DeepLab-v3+, HED

standard image
inputs

average precision (AP)/
intersection over union
(ToU) of 0.0311/0.325
(MAs), 0.5634/0.3118
(HEs), 0.4359/0.2295
(SEs), 0.1842/0.1425
(HEMs)

Keel et al. (2019)

DR heatmaps

validated deep
learning models
for referable DR
Keel et al. (2018)

lesion and vessel
probabilistic maps

exudate, HEM, or vessel
abnormality in 0.96 of
true positives for DR;
0.85 of false positives
displayed nontraditional
fundus regions with or
without retinal venules

He et al. (2019)

DR lesions such as
MAs, HEMs, HEs,
CWSs, or macular
edema in Multispectral
images (MSI)

local binary patterns
(LBPs), generalized
low-rank approximation
of matrices (GLRAM),
supervised
regularization term
(SRT), Gaussian
kernel-based SVM

LBP feature vectors;
MSI spectral bands

sensitivity of 0.925,
specificity of 0.983,
and accuracy of 0.981

Saha et al. (2019)

MAs, HEs, HEMs,
SEs, OD

a DCNN, SegNet, based
on VGG16 and Binary
Cross Entropy loss

standard image
inputs

Area under the positive
prediction value vs.
sensitivity of 0.0059
(MA), 0.5498 (HE),
0.0829 (HEM), 0.1823
(SE)

Costa et al. (2019)

unspecified DR
lesions, lesion
probability maps

Inception-v3 (CNN)
with multi-instance
learning (MIL) and a
bagging scheme

image inputs

0.958 AUC while
maintaining 0.05

of the Inception V3’s
number of parameters

Son et al. (2019)

HEMSs, HEs, CWSs,
drusen, membrane
irregularities, macular
holes, myelinated nerve
fibers, chorioretinal
atrophy, vascular
abnormalities, retinal
nerve fiber layer
defects, disc changes,
lesion heatmaps

twelve NNs perform
binary classification
using regionally guided
CNN

image inputs

AUCs of 0.947 to 0.980
on IDRiD and e-ophtha

Table 4: Sample of methods used to segment lesions that are indicative of DR
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Tufail et al. (2016) assessed different soft-
ware for their potentials to replace manual pre-
screening in the National Health Service (NHS)
diabetic eye screening program (DESP). The ex-
periment compared three system: iGradingM
Philip et al. (2007), Retmarker Oliveira et al.
(2011); Ribeiro et al. (2013), and EyeArt Solanki
et al. (2015). iGradingM Philip et al. (2007)
classified disease by dot-HEM/MA presence or
insufficient image quality. The system assessed
quality by field definition and clarity; a following
process extracted lesions by morphology. Ret-
markerDR Ribeiro et al. (2013) extracted le-
sions using PCA and a region covariance de-
scriptor.  SVM distinguished lesions and clas-
sified DR. Further, RetmarkerDR implemented
image co-registration to track disease progres-
sion. The algorithm estimated translation rela-
tive to the fovea and retinal vascular tree. Eye-
Art Solanki et al. (2015); Bhaskaranand et al.
(2016) constituted a cloud system for rapid and
large-scale screening for RDR. After quality as-
sessment, the system identified pixels of interest
using multiscale morphological filters and super-
vised learning classifiers. An ensemble classifier
aggregated increasingly higher hierarchical levels
to generate an encounter grade and produce im-
age mappings. Further, image registration soft-
ware tracked changes in MAs to identify dis-
ease progression. Overall, Retmarker and Eye-
Art achieved favorable grading results. EyeArt’s
cloud infrastructure produced the fewest techni-
cal issues and the greatest scaling to large data
volumes. Walton et al. (2016) evaluated the In-
telligent Retinal Imaging System (IRIS) for DR
screening from teleretinal sites. The system used
an NN to match images to those in a reference
dataset. When compared to iGrading, Retmark,
and EyeArt, the IRIS system correctly identified
more cases of no disease and less cases of PDR.

5.4.2. Longitudinal Tracking

Xu et al. (2018) compared two procedures to
diagnose DR progression. One method com-
bined image registration, via Generalized Dual
Bootstrap-ICP (GDBICP), with iGrading soft-
ware. Differences were tracked by the angular
proximity of MA coordinates. The other method
used linear SVM to predict factor weights over
longitudinal study. Both methods predicted DR
severity and progress through classifying un-
changed, new, and resolved MAs.

Adal et al. (2018) diagnosed DR by longitudi-
nal changes to red lesions. Then, quadratic de-
formation registered images to account for non-
linear spatial deformation. Vessels were aligned
by multi-resolution matching employed with a
hierarchical registration model. A LoG operator
detected MAs. Spatio-temporal retinal changes
were measured by the absolute difference of the
extremes of multi-scale blobness responses. RBF
SVM yielded the highest lesion-level accuracy.

Arcadu et al. (2019) predicted DR progress ac-
cording to 2-step or greater increase on the ET-
DRS DR Severity Scale (DRSS). This scheme
trained field-specific Inception-v3 DCNNs as to
recognize signs of DR disease and worsening.
Overall, each pillar contained 25 DCNNs that
were generated under a five-times fivefold cross-
validation and transfer learning scheme. Then,
RF aggregated the probabilities across the seven
standard ETDRS image fields. The authors per-
formed analysis via Shapley Additive Explana-
tions (SHAP) to assess the positive or negative
correlations of individual DCNN probabilities to
the final RF predictions. Further, a guided back
propagation method generated attribute maps to
show regions that would be important to predict
future progression (at 6, 12, or 24 months) from
given baseline images.
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5.4.3. Binary DR Classification

Giancardo et al. (2011) applied RBF SVM
and PCA on features derived from Radon trans-
form. An un-normalized Bayes method com-
bined the SVM predictions/window and aver-
age gray level at the window center. Neigh-
boring MAs were combined by enforcing non-
maximum suppression. Tang et al. (2013) par-
titioned images into scale-specific splats to pre-
dict DR by retinal HEMs. Background regions
were partitioned into fewer large splats by ag-
gregating gradient magnitudes followed by the
watershed method. Sequential filter and wrap-
per approaches detected the optimal splat fea-
tures, which were fed into KNN. An image-
level HEM index aggregated the posteriori prob-
ability of each splat representing DR. Niemeijer
et al. (2009) combined KNN with k=281 with
a posterior probability distribution normaliza-
tion (PPDN)-based fusion system. Abramoff
et al. (2010) compared Challenge2009 Quellec
et al. (2008b) and EyeCheck. EyeCheck clus-
tered red lesion candidates and processed fea-
tures using KNN. In contrast, Challenge2009 fit
MAs to a parametric template in an adapted
wavelet domain. Combining the systems per-
formed better than either method in isolation.
Bourouis et al. (2019) developed a hybrid gener-
ative/discriminative model. The authors gener-
ated a probabilistic SVM kernel from the mix-
ture of scaled Dirichlet distributions. Over-
all, the Dirichlet-based Fisher model with min-
imum description length (MDL) criterion per-
Frazao et al. (2019) extracted
holistic texture features and local retinal fea-
tures. One stream constructed a basis image set
using Independent Component Analysis (ICA)
and matched new images based on their projec-
tions to this subspace. The other stream ex-

formed best.

tracted lesion features using image processing
and DFFS measures Moghaddam and Pentland
(1994). The authors compared several classifiers
(KNNs, NNs, SVMs, and RF's) for classification.
Gardner et al. (1996b) used an ANN to detect
features of DR and identify the disease.

Gargeya and Leng (2017) constructed a CNN
with six residual blocks, a stride of 2, batch
normalization, and ReLU activation. This sys-
tem generated heatmaps using an embedded con-
volutional visualization layer with a width of
1024 filters, average pooling layer, and a softmax
layer. Other features included metadata related
to pixel dimensions and image FOV. Overall,
a second-level gradient boosting classifier har-
nessed 1027 features to predict DR. Quellec et al.
(2017) used CNN ensembles based on the O-
o framework Kaggle (2015b) to extract param-
eters at different iterations and optimally pre-
dict lesions. The third pass of the CNN pro-
duced heatmaps to show relevant parameters.
DR grading was performed by RF following min-
pooling. Hagos and Kant (2019) applied transfer
learning using inception-v3 to tackle data im-
balance in detecting DR. Gulshan et al. (2019)
amended their deep NN Gulshan et al. (2016b)
to detect RDR and DME. The improved model
trained on the adjudicated data in Krause et al.
(2018b). Further changes increased input resolu-
tion and replaced the framework with Inception-
v4. Mobeen-ur-Rehman et al. (2019) trained a
new bH-layer CNN to avoid overfitting. The struc-
ture used two initial 3x3 convolutional layers and
three fully connect layers. Saranya Rubini et al.
(2019) developed a new model, Deep CNN-based
DR Detection (DCNN-DRD), that included five
convolution and pooling layers, a dropout layer,
three fully connected layers, and gradient de-
scent graph. Liu et al. (2019) proposed a novel
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105-block weighted path (WP) CNN (WP-CNN)
to detect RDR using stacking WP blocks. This
method employed multi-path weight coefficients
and averaged the results. Pires et al. (2019) de-
veloped a data-driven CNN approach to screen
for RDR in mobile devices. The network resem-
bled VGGNet in weighted layers and 0_O in fully
connected layers. A multi-resolution strategy
trained simplified variants of the CNN to pre-
initialize progressively larger networks. Zhou
et al. (2018) proposed a deep multiple instance
learning (MIL) algorithm. AlexNet classified
patches and fed the results into a global aggre-
gation stage to classify images. Image outcomes
averaged predictions over multiple scales to com-
pensate for irregularities in lesion shape.

Pathological changes in DR cause con-
ventional OCT-layer analysis to be difficult
Khansari et al. (2019). Thus, Rathke et al.
(2017); Khansari et al. (2019) focus on this
modality, which offers unique layer information
that cannot be harnessed in traditional retinal
fundus photography. Rathke et al. (2017) con-
structed a nonspecific approach to segmenta-
tion based on local models. Sum-product net-
works (SPN) calculated the ideal model combi-
nation based on tractable globally optimal in-
ferences. The model was trained on healthy
OCT scans with local class-specific Gaussian
models selectively modified to target pathol-
ogy shapes. Markov random field regulariza-
tion accounted for interactions between shape
and appearance. The full model added condi-
tional independence while minimizing Kullback-
Leibler divergence. SPN combined the sub-
models using maximum-likelihood and dynamic
programming. Translation-invariant pathology
specific models were incorporated into appear-
ance and shape modifications to maximize to-

tal log-likelihood. Optimal area factorization
was computed through an iterative algorithm
that utilized recursive computation and shifting
windows of increasing widths. Regularization
punished smaller models before the model en-
acted optimal MAPinference in the SPN. Sub-
regions were smoothed into a single segmen-
tation using a constrained least-squares prob-
lem. Khansari et al. (2019) aligned volumes of
interest (VOIs) in OCT using designed mask-
ing and affine registration. The system per-
formed stochastic gradient descent to optimize
B-spline transform. Next, the authors nonlin-
early registered OCT volumes to an atlas con-
structed from normal controls to measure patho-
logical changes. Specifically, the Jacobian de-
terminant of deformation indicated pathological
contraction and expansion, whereas tensor-based
morphometry (TBM) quantified local structural
changes.

Other data sources may complement DR di-
agnosis. Sun and Zhang (2019) proposed an au-
tomated system to diagnose DR based on Elec-
tronic Health Records (EHR) and RFs. EHR
are easily accessible and complement imaging
based software for DR diagnosis. Sun (2019)
proposed a 1-D CNN to detect DR from EHR.
The study harnessed diabetes diagnoses, glyco-
sylation, and biochemical tests. The approach
integrated the LeNet-5 model, batch normaliza-
tion, and an adaptive learning algorithm. As the
input data are unrelated, the 1-D convolutional
method treated each feature as an independent
channel and applied deconvolution.

5.4.4. DR Severity Classification
Roychowdhury et al. (2014) proposed DR

Analysis Using Machine Learning (DREAM).

GMM and KNN identified bright and red le-
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sions, respectively. Then, the model imple-
mented feature-ranking and filtered false pos-
itives. The final stage identified DR severity
based on lesion classifications. Yun et al. (2008)
trained an ANN to grade DR based on veins,
hemorrhages, and MAs. Costa et al. (2018) ap-
plied multiple instance learning (MIL) to lever-
age implicit information from clinical annota-
tions when classifying images. A Bag of Vi-
sual Words (BoVW) described the image (bag)
by local low-level visual descriptors (instances).
One NN encoded instance-level feature vectors
onto useful mid-level representations, whereas
the second classified bags accordingly. Error
from the second network backpropagated to the
first to enforce useful representations. Sarwinda
et al. (2018) classified NPDR stages based on
Histogram of Oriented Gradients (HOG) and
shallow learning. Factor analysis (FA) selected
the most relevant features; then, SVM and RF
independently graded for NPDR. Sil Kar and
Maity (2018) graded DR by detecting lesions
and neovascularization in sub-sampled retinal
images following compressed sensing (CS). CS
captured images using sampling rates that fell
significantly below the Nyquist frequency. An
initial stage maximized fuzzy entropy for MF re-
sponses to extract vessels. The algorithm de-
tected neovascularization according to the 2D
MI between vessel density and tortuosity in thin
vessels. Lesion detection jointly maximized the
MI between the maximum MF and Laplacian of
Gaussian (LoG) filter responses. A rule-based
scheme graded DR based on types and num-
bers of lesions (NPDR) and neovascularization
(PDR). Kaya et al. (2018) introduced hybrid
Hilbert-Huang Transform (HHT) and particle
swarm optimization (PSO)-based ANNs (HHT-
ANNPSO). The framework decomposed Video-
Oculography (VOG) signals and extracted sta-
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tistical features for classification. ANNPSO in-
cluded 20 input nodes, one hidden layer with 16
neurons, and an output classifier. The HHT-
ANNPSO model used intrinsic mode function
(IMF) groups with 4, 8, 12, and 16 input neu-
rons. PSO optimized parameter learning. Mo-
hammadpoory et al. (2019) applied visibility
graph (VG) and Radon transform (RT). The VG
method represented radon projections along a
graph according to signal complexity and frac-
tality; the study used two types of VG: natural
(NVG) and horizontal VG (HVG). The method
extracted features from the graph topology and
structure using graph theory. Then, an error-
correcting output codes (ECOC) classifier used
the extracted graph topologies to associate train-
ing data with defined codewords.

Gulshan et al. (2016a) applied ensemble of
10NNs based on Inception-v3. Ting et al. (2017)
employed eight CNNs, each adopted from VG-
GNet, to classify: DR severity (two networks),
referable glaucoma (two networks), referable
AMD (two networks), image quality (one net-
work), and non-retinal images (one network).
Yang et al. (2017) mapped lesion presence and
severity by a 10-layer CNN. Specifically, this
local network included four convolution layers,
max-pooling at layers three and five, two fully
connected layers, and a softmax layer. Next,
this stage passed two lesion maps to the global
network along with the original image. The
global network classified NPDR severity. It
was composed of a 24-layer structure with al-
ternating convolutional and max-pooling layers,
three fully-connected layers, and a softmax layer.
Zhang et al. (2017) proposed a deeply super-
vised residual network (ResNet). Their model
included five residual units with two convolu-
tion layers each. A fusion layer combined out-



puts from three multi-scale side layers. Class
imbalance was addressed by multi-class balanced
cross-entropy loss. Ardiyanto et al. (2017) devel-
oped a DCNN, Deep-DR-Net, using an encoder-
classifier with residual connections between each
layer. The encoder constructed 16-D feature
maps using concatenated 13-filter convolutional
layers and a max pooling layer. Five cas-
caded convolutions blocks contained projection-
receptive-projection sequences. A standard log-
softmax layer classified images. Roy et al. (2017)
estimated DR severity using a CNN trained on
ImageNet (DR-CNN) and fed the resulting fea-
tures into two visual dictionaries: a discrimina-
tive and generative pathology histograms (DPH
and GPH). RF predicted DR severity using in-
put features from DR-CNN and both dictionar-
ies. Takahashi et al. (2017) evaluated a modified
GoogLeNet using Davis grading and prevalence-
and bias-adjusted kappa (PABAK) scoring.

Mansour (2018) segmented interest regions
using adaptive learning-based GMM and con-
nected component analysis. AlexNet and LDA
extracted high dimensional features from these
regions and optimized feature selection, re-
spectively.  Ultimately, SVM labeled inputs.
Zhang et al. (2019) developed a two-part en-
semble, DeepDR, to detect lesions and grade
DR. Feature extraction used three CNN learn-
ers: ResNet50, DenseNet169, and DenseNet201.
Three feature classifiers operated as standard
deep NNs (SDNNs). Each SDNN included ini-
tial global average pooling (GAP), a 2048-unit
fully connected layer, and a leaky rectified lin-
ear unit function (leaky ReLU). Sahlsten et al.
(2019) modified inception-v3 by doubling the
fully-connected layers, employing Adam opti-
mization, and using dropout in the first fully-
connected layer. Li et al. (2019) compared

VGG-16, ResNet-18, GooglLeNet, DenseNet-121,
and SE-BN-Inception. DenseNet-121 performed
best on mild and severe DR. Overall, SE-BN-
Inception achieved the highest accuracy and
kappa score. Raumviboonsuk et al. (2019) em-
ployed a ten-model Inception-v4 ensemble to
grade images for DR severity, referable DME,
and image quality. Zeng et al. (2019) proposed
a Siamese-like CNN framework that graded DR
in binocular fundus images. The Siamese-like ar-
chitecture simultaneously imputed images from
both eyes into parallel inception-v3 models that
shared weights. A fully-connected layer concate-
nated features from both streams to make final
predictions. Gao et al. (2019) split each image
into four 300 x 300 pixel regions and processed
them through four different inception-v3 mod-
els. The overall model, Inception@4, concate-
nated the global average pooling layers from each
model for final classification.

The following papers produced attention
heatmaps to explain accompanying DR grades
from retinal images. Wang et al. (2017) devel-
oped a weakly-supervised CNN, Zoom-in-Net, to
cluster features which likely represented lesions
within minimum bounding boxes. Zoom-in-Net
consisted of a main network (M-Net) that graded
images, an attention network (A-Net) that cre-
ated the heatmaps, and a Crop-Network (C-
Net) that concatenated optimum features from
the other networks. M-Net resembled Inception-
ResNet and labeled images. A-Net imputed fea-
ture maps from M-Net and processed informa-
tion through two branches. In one branch, a
1x1 convolutional layer linearly classified pix-
els. The other branch used three convolution
layers and a spatial softmax operator to gen-
erate the attention maps. C-Net greedily sam-
pled the gated attention maps from A-Net. de la
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Torre et al. (2019) proposed a 17-layer CNN with
quadratic-weighted kappa (QWK) loss. This
method defined pixel relevancy scores by the sum
of all node contributions from the pixel space
plus a constant score depending on individual
layer receptive fields. The authors mapped hid-
den layer contributions to the input receptive
field using summed gaussian distributions. Fi-
nally, they conducted PCA after the last layer.
Sayres et al. (2019) employed inception-v4 to
grade for quality and DR. The authors gener-
ated heatmaps for the predicted severity grade
based on the integrated gradients method Sun-
dararajan et al. (2017). Kumar et al. (2019) pro-
posed CLass-Enhanced Attentive Response Dis-
covery Radiomics (CLEAR-DR) to compute ra-
diomic sequences. The last sequencer stage de-
convolved each kernel response to visualize rele-
vant pixels in two maps: a dominant class atten-
tive map (region grade) and a dominant response
map (region contribution to image grade). The
final CLEAR-DR map combined these two.

Hwang et al. (2018) extracted quantified non-
perfusion parameters from projection-resolved
OCTA (PR-OCTA). The study quantified cap-
illary nonperfusion in 3 vascular plexuses in the
macula. Split-spectrum amplitude decorrelation
angiography detected blood flow, and PR-OCTA
compared this signal strength with that of the
location’s superficial signal. Directional graph
search algorithm segmented the volumes into
superficial vascular complex (SVC), intermedi-
ate capillary plexus (ICP), and deep capillary
plexus (DCP). The highest sensitivity for DR
was achieved using the extrafoveal avascular area
(EAA) from the SVC. ElTanboly et al. (2018)
graded NPDR in OCT using a two-stage deep fu-
sion classification network (DFCN). Three global
features (reflectivity, curvature, and thickness)

were fed into the DFCN with a cumulative dis-
tribution function (CDF) of twelve retinal lay-
ers. Normalized reflectivity was measured from
the foveal peak on the nasal and temporal sides.
Huber’s M-estimates detected average intensity
on a given segment. For layer curvature, the
surface was smoothed using a local-weighted
polynomial, and the Menger curvature values
were combined across each layer. Thickness
was calculated by solving the planar Laplace
equation for the harmonic function under the
Dirichlet boundary condition. The Euclidean
distances that linked vertical layers represented
layer thickness. The DFCN was trained by
stacked non-negativity constraint autoencoders
(SNCAES). In stage one, multiple SNCAEs per
layer independently compressed their input fea-
tures based on greedy unsupervised pretraining.
After fine-tuning, a SNCAE was trained on the
fused top activators. Stage two exclusively clas-
sified images with DR.
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Paper

Focus

Method

Image features

Results

Abramoff and Suttorp-

DR screening, image
gradability, pupil
dilation, urgency

EyeCheck, online
database and

neovascularization,
red and bright lesions,
and other relevant

inter-grader
agreement was

Schulten (2005) level of treatment 1IHAge processiig abnormalities 0-93
DR screening, image
gradability, BVs, Ensemble of Filter responses, AUC of 0.84

Abramoff et al. (2008)

lesions, other clinical
features

machine learning
classifiers

color histograms,

on EyeCheck

Abramoff et al. (2013)

Referable DR

Towa Detection
Program (IDP)

standard image
inputs

AUC of 0.937

Abramoff et al. (2016)

Referable and
vision-threatening
DR

IDx-DR X21
system, AlexNet
(CNN), RF

lesion characteristics

sensitivity was
0.968, specificity
was 0.870, negative
predictive value of
0.99, AUC was 0.980

Referable DR,

EyeGrader system,

standard image

sensitivity and
specificity for correct

Keel et al. (2018) Di\gﬁ’ 1mage Inception-v3 (CNN) inputs referral was 0.923
4 Y and 0.937, respectively
iGradingM, aDtha Hn]?;\;[n/ irlif(ils;ty 0.905 sensitivity and
. Binary DR morphological . ’ S ’ 0.674 specificity for
Philip et al. (2007) detection operators, clinical image quality — OD technical failures or

features

localization, small
vessels near fovea

any retinopathy

Ribeiro et al. (2013)

DR detection
and longitudinal
change

RetmarkerDR,

PCA, region
covariance
descriptor, SVM,
image co-registration

MAs, vascular
lesions, area, shape,
intensity

0.73 sensitivity for
any retinopathy,
0.85 for referable
retinopathy and
0.979 for PDR

Solanki et al. (2015);
Bhaskaranand et  al.
(2016)

Referable DR,
image quality

EyeArt, multi-scale,

morphological filters,
supervised learning,

image registration

MAs, filter responses,
aggregated level
information (pixel,
lesion, image,
encounter)

0.947 for any
retinopathy, 0.938
for referable
retinopathy and
0.996 for PDR

Walton et al. (2016)

DR screening

Intelligent Retinal
Imaging System
(IRIS), NN classifier

highest probabilistic
match to reference
dataset

sensitivity for
sight-threatening
DR was 0.664, a
false-negative rate
of 0.02, specificity
of 0.728, positive
predictive value
was 0.108, negative
predictive value was
0.978

Gonzélez-Gonzalo et al.
(2019)

Detection of DR
and age-related

macular degeneration
(AMD)

RetCAD v.1.3.0,
ensemble CNNs

standard image
inputs

AUC of 0.951,
sensitivity of 0.901,
specificity of 0.906

Quellec et al. (2019)

RDR and
DR severity

OphAI, CNN
ensembles for
laterality, detection,
grading

single images or
full examination
records

vision-threatening
DR with an AUC
of 0.997 and PDR
with an AUC of 0.997
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Xu et al. (2018)

DR tracking

Generalized Dual
Bootstrap-ICP
(GDBICP) and
iGrading software;
linear SVM

MAs, other
pathological features

a sensitivity of 0.94
and specificity of 0.93
using image analysis
and a sensitivity of
0.89 and specificity of
0.88 using SVM

Adal et al. (2018)

DR tracking

Quadratic
deformation,
multi-resolution
matching strategy,
LoG operator,
multi-scale blobness,
RBF SVM

red lesions,
vessel alignment

highest accuracy of
0.80 at the lesion level

Arcadu et al. (2019)

DR tracking

Field-wise DCNN
pillars aggregated

in RF, Shapley
Additive Explanations
(SHAP) and attribute
maps (map importance)

7-field color fundus
photographs, 2-step
or more ETDRS
severity scale
worsening

AUC of 0.68 (sensitivity
= 0.66, specificity = 0.77)
(6 months), AUC of 0.79
(sensitivity = 0.91,
specificity = 0.65) (12
months), and AUC of 0.77
(sensitivity = 0.79,
specificity = 0.72) (24
months)

Gargeya and Leng (2017)

DR detection

CNN, a second-level
gradient boosting
classifier

Standard image
inputs, abnormality
heatmap

AUC of 0.97, sensitivity
of 0.94, and specificity
of 0.98 on EyePACS

Giancardo et al. (2011)

DR detection

SVM, PCA, radon
transform, Bayes,
non-maximum
suppression

Radon feature
vector

global score of
0.375 on ROC

Tang et al. (2013)

DR detection

Splat partitioning,
gradient and watershed,
sequential filter and
wrapper approaches,
KNN

Splat features

AUC of 0.96 at the
splat level and 0.87
at the image level
on MESSIDOR

KNN, leave out
classification, posterior

Fused image

Niemeijer et al. (2009) DR detection and referral | probability distribution information AUC of 0.881

normalization (PPDN), ormatio

model fusion

Challenge?OOQ Fused features

(parametric template from both svstems
Abramoff et al. (2010) DR detection with wavelets) and Y AUC of 0.86

EyeCheck (KNN (exudates, CWSs,

- MAs, HEMs)
classifier)
. O-o0 framework: . accuracy

Quellec et al. (2017) DR detection CNN ensembles, RF attribute heatmaps of 0.95

Rathke et al. (2017)

DR detection in OCT
scans

Sum-product networks
(SPN), linear Gaussian,
Markov random fields,
Kullback-Leibler
divergence, MAP
interference,
translation-invariant
pathology specific

models recursive iteration

shape variations in
layer boundaries,
trained on healthy
OCT scans only

unsigned error
of 4.08 for the
mild NPDR

testing dataset
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Hagos and Kant (2019)

DR detection

Inception-v3,
cosine loss,

standard image

accuracy of

transfer learning inputs 0.909
AUC of 0.963,
i i ; sensitivity of
Gulshan et al. (2019) ifﬁé?iﬁﬁlzet(ﬁm) Inception-v4 lin;IlllCtls e 0.889 and
specificity of
0.922

Khansari et al. (2019)

detecting NPDR or
PDR in OCT images

masking and affine
registration, stochastic
gradient descent to
optimize B-spline
transform, Jacobian
determinant of
deformation, tensor-based
morphometry (TBM)

difference from
“healthy subject”
atlas

not given for
classification task;
differences in
NPDR/PDR in
voxel deformation
and layer surface
distance provided

Bourouis et al. (2019)

DR detection

new SVM kernel: scaled
Dirichlet distributions
with minimum description
length criterion

standard image
inputs

0.98 AUC and
0.9872 accuracy
on DIARETDB1

Saranya Rubini et al.

(2019)

DR detection

Deep CNN-based DR
Detection (DCNN-DRD)

standard image
inputs

0.97 accuracy

Liu et al. (2019)

RDR detection

105-block weighted
path CNN (WP-CNN)

standard image
inputs

accuracy of 0.9423,
sensitivity of 0.9094,
specificity of 0.9574,
AUC of 0.9823, and
F1-score of 0.9087

Pires et al. (2019)

DR detection for
mobile devices

VGGNet, O-o framework,
muti-resolution learning,
Nesterov momentum

standard image
inputs at different
resolutions

AUC of 0.982
(training on Kaggle,
testing on Messidor)

Frazao et al. (2019)

DR detection

Independent Component
Analysis (ICA)

holistic texture
features, local
retinal features
(MAs and
exudates),
removed OD

sensitivity of 0.901,
specificity of 0.561
on Messidor

Zhou et al. (2018)

DR detection

multiple instance learning
(MIL), patch-level CNNs
(AlexNet), image
aggregation

image patch
inputs

AUC of 0.925 on
Kaggle and 0.960 on
Messidor, Fl-score of
0.924, sensitivity of
0.995, and precision of
0.863 on DIARETDB1

Gardner et al. (1996b)

DR detection in
sixty degree
red-free fundus

ANN, thresholding

vessel abnormalities,
exudates, and
hemorrhages; image

sensitivity of 0.884
and specificity of
0.835

images patch inputs
DR Analysis 1.00 sensitivity,
) Using Machine removal of OD and 0.5316 specificity,
Roychowdhury et al. | DR grading Learning (DREAM) BVs, 1dent1.ﬁed bright and 0.904 AUC
(2014) GMM, KNN and red lesions on Messidor
veins, HEMs, MAs; sensitivity of 0.91,
Yun et al. (2008) DR grading ANN perimeter and area specificity of 1.00,

values

and accuracy of 0.84
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Gulshan et al. (2016a)

DR detection and
grading, diabetic
macular edema
(DME), image

Inception-v3,
10 CNN ensemble

standard image
inputs

AUC of 0.99,
sensitivity of 0.975,
and specificity of 0.985

gradeability

DR grading, sensitivity of 0.905

glaucoma, VGGNet, . and specificity of 0.916
Ting et al. (2017) referable age-related 8 CNN isrtlarlll(tisard Hnage for RDR; 1.0 sensitivity

macular degeneration, ensemble p and 0.911 specificity for

image quality

vision-threatening DR

Multi-instance
learning (MIL)
with Bag of Visual

weakly-labeled

AUC of 0.90 on

Costa et al. (2018) DR grading Words (BoVW), image inputs xltzss[;(igttg,o(r)lﬂlgyé); DR1,
NNs, SURF ’
features
lesion-wise AUC of
. local and standard image 0.9687 and image-wise
Yang et al. (2017) DR grading global DCNN inputs AUC of 0.9590 on
Kaggle
\gfﬁé{l{z_zzﬁ?ﬁsgit). standard image AUC of 0.854 on
Wang et al. (2017) DR grading N ) inputs, attention EyePACS and of 0.921
M-Net (inception-resnet), heatmans on MESSIDOR.
A-Net, C-Net p
deeply supervised accuracy of 0.808,
. residual network standard image sensitivity of 0.94,
Zhang et al. (2017) DR grading (ResNet), multi-class inputs specificity of 0.665,
balanced cross entropy and precision of 0.54
Deep-DR-Net image accuracy of
. . (cascaded encoder standard image 0.9571, sensitivity of
Ardiyanto et al. (2017) DR grading classifier NN with inputs 0.7692, and specificity
residual connections) of 1.00 on FINDeRS
CNN, discriminative
pathology histogram .
Roy et al. (2017) DR grading (DPH) and generative image patches quadratic kappa score

pathology histogram
(GPH), RF

of 0.86

Hwang et al. (2018)

DR grading in
projection resolved
OCTA (PR-OCTA)

split-spectrum
amplitude decorrelation,
directional graph search

capillary nonperfusion
in 3 vascular plexuses
in the macula

with specificity fixed

at 0.95, sensitivities of
0.70 (healthy), 0.84

(DR), and 1.0 (severe DR)

two-stage deep fusion
classification network
(DFCN) with stacked

shape, intensity, and
spatial information

non-DR and DR with 0.93

DR grading non-negativity constrained R accuracy, and early DR
ElTanboly et al. (2018) in OCT autoencoders, Huber’s (segmgn'tatlon), from mild/moderate DR
M-estimates, Menger reflectivity, curvature, with 0.98 accuracy
curvature D7irichlet and thickness (DFCN) .
boundary
single image, two images prevalence- and bias-
or %our stitgcﬂed ima, egs; " | adjusted kappa (PABAK)
Takahashi et al. (2017) DR grading modified GoogLeNet & to modified Davis grading

available in alternative
models

= 0.64; PABAK to real
prognosis grading = 0.37
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17-layer CNN,

standard image

QWK of 0.832, sensitivity
= 0.908, specificity =
0.911, positive prediction
value (PV) = 0.884,

de la Torre et al. (2019) DR grading E:;g;a(tgvx\zlv;)glgzi . inputs iega‘cive Pj/ — 0.930, B
ccuracy = 0.910, F1 =
0.896, MCC = 0.817 on
MESSIDOR
DR grading, standard image sensitivity of 0.9155

Sayres et al. (2019)

image quality

Inception-v4 (CNN)

inputs

and specificity of 0.9469

GMM and connected
component analysis
(segmentation),AlexNet
(CNN) and linear

standard image

0.9793 accuracy

Mansour (2018) DR grading discriminant analysis inputs on Kaggle
(LDA) (feature
extraction), SVM
(grading)
ResNet50, DenseNet169, . sensitivity of 0.981
Zhang et al. (2019) DR grading and DenseNet201 standard image and a specificity
’ (extraction) standard deep| inputs £ 0.989
NN (SDNN) (classify) ot Y
AUC of 0.962,
. . standard image accuracy of 0.869,
Sahlsten et al. (2019) DR grading Inception-v3 inputs and quadratic weighted
kappa of 0.910
VGG-16, ResNet-18, standard image accuracy of
Li et al. (2019) DR grading GoogLeNet, DenseNet-121 inputs g 0.8284 Y
and SE-BN-Inception p ’
Raumviboonsuk et al 121;riﬁ31%gME 10-NN ensemble based standard image QWK was
(2019) : and image quaiity on Inception-v4 inputs 0.85
DR “Siamese-like” parallel images from each AUC of 0.951,
Zeng et al. (2019) grading Tnception v-3 frameworks eye used to strengthen kappa score
the predictions in both of 0.829
“Inception@4” - . .. .
Gao et al. (2019) DR . Inception-v3 images divided into accuracy of
grading ensemble (4 CNNs) four equal patches 0.8872
Histogram of Oriented accuracy above
Gradients (HOG) and . . 0.9067, sensitivity
Sarwinda et al. (2018) er(lijli{ shallow learning methods, le?icac} ilr?;((j;lrfi;?c]ijr?d above 0.8603,
& & factor analysis (FA), & specificity above
SVM and RF 0.9308
\niiéﬁggyriziihtg/izorm graph topologies accuracy of 0.9792,
Mohammadpoory et al. | DR grading (RT), graph theory, and structures, sensitivity of 0.9583,

(2019)

error-correcting output
codes, adaboost and KNN

radon-transformed
features

and a specificity of
0.9861

Table 5: Sample of methods used to detect and grade DR
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5.5. Diabetic Macular Edema (DME)

Deepak and Sivaswamy (2012) evaluated a
rotational asymmetry metric at the macula to
grade DME in color fundus images. First, the
system generated a smear pattern for the circu-
lar region of interest (ROI) that encircled the
macula. Smearing was spatially dependent on
maximum rotation motion. Then, radon trans-
form (RT) responses were concatenated at dif-
ferent orientations. DME correlated to peaks in
intensity that corresponded to hemorrhages. To
assess DME severity, the approach approximated
the macula to be rotationally symmetric in mod-
erate DME (no hemorrhages in the macula) and
rotationally asymmetric in severe DME (hemor-
rhages in the macula). The ROI was divided into
eight angular patches with ten histogram bins
each. Specifically, the measure defined symme-
try by the second norm of the distance between
histograms of diametrically opposite pair(s) of
patches. Acharya et al. (2017) conducted a series
of RT, discrete wavelet transform (DWT), and
discrete cosine transform (DCT) to extract fea-
tures for DME diagnosis in color fundus images.
After these processes, locality sensitive discrimi-
nant analysis (LSDA) narrowed the features ex-
tracted from DCT coefficients. A decision tree

classified DME using seven input features from
LSDA.

Rasti et al. (2018) differentiated normal
retina, dry AMD, and DME in OCT. First, a
graph-based curvature algorithm corrected reti-
nal distortions and extracted volumes of inter-
est. Prior to classification, multi-scale spatial
pyramid (MSSP) decomposition decomposed im-
age slices. The multi-scale convolutional mixture
of expert (MCME) model combined four scale-
dependent CNNs. For the approach, a GMM
modeled individual experts by independent mul-

tivariate Gaussians and expert interactions by
correlated multivariate components. Each ex-
pert model individually estimated membership
for each class label based on a partition of the
feature space. A CNN gating network (CGN)
weighed the expert predictions to predict the
overall image label. During back propagation,
a cross-correlation penalty term negatively cor-
related individual experts’ errors. Sidibé et al.
(2017) approached screening for DME in spectral
domain OCT (SD-OCT) by an anomaly method.
The method constructed a Gaussian Mixture
Model (GMM) from normal OCT scans. Then,
it applied a threshold number of scans/volume
that significantly differed in Mahalanobis dis-
tance from this GMM as an assessment of ab-
normality.

6. Discussion

DR encompasses a wide range of possible le-
sions, defects, and defect locations that presents
a unique challenge to effective diagnosis. Lesion
detection algorithms particularly emphasize MA
detection as a typical indication of early DR,
such that the disease can be diagnosed before
significant eye damage occurs. However, detec-
tion of specific lesion types sacrifices effective DR
grading - such grading could heighten standard
of care and provide options to individuals in later
stages of disease progression. Further, individu-
alistic differences in the number and progression
of specific lesion types could risk leading indi-
viduals to being "missed” during screening that
relies solely on one presentation of disease.

In addition to challenges concerning DR’s di-
verse pathology, lesions and BV abnormalities
may appear in virtually any area of the retina.
Engineering approaches to DR diagnosis must
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consider the clinical relevance of DR geography.
For instance, DR requires a wide-FOV (at least
60 degrees). Such stipulations limit use for lower
FOV imaging systems and contribute to difficul-
ties in simultaneous diagnosis of DR with con-
ditions like glaucoma that primarily affect the
Optic nerve head (ONH). DR requires a proper
view of the retinal periphery, where significant
BV irregularities and damage are common in the
disease. Further, more central structures are also
essential, as damage to areas such as the mac-
ula in DME is particularly vision threatening.
Other than color fundus images, imaging modal-
ities such as flourescein angiography and OCT
provide insight into DR diagnosis. Specifically,
flourescein angiography offers high contrast for
defects such as MAs, whereas OCT provides dif-
ferences in retinal layers that would be impossi-
ble to distinguish otherwise.

The most successful studies used deep learn-
ing for classification, particularly in DR grad-
ing. Many papers had high success with end-to-
end learning; others detected lesions using less
computationally expensive systems before feed-
ing the resultant features to a CNN. Segmen-
tation of the OD and/or BVs increased overall
performance in many instances; however, such
procedures were sometimes problematic. For in-
stance, removal of BVs generally aided in MA
detection, but this procedure eliminates the abil-
ity to detect the proliferative disease. Therefore,
clinical relevance should be of the outmost im-
portance when making decisions for related pre-
processing stages: MA detection, the most com-
mon focus of lesion detection systems, serves as
a great benefit for early DR detection. As DR
progresses, BV changes and other lesion types
become more important. Further, DL systems
often perform at high sensitivity and specificity

without requiring extensive preprocessing. This
less-handcrafted approach reduces the likelihood
of important parameters being removed.

Deep learning emerged for detecting DR after
2015 and have grown dramatically since. This
trend represents a movement towards less hand-
crafted features, with the following advantages:
(1) recognizing features from images that were
previously unknown or manually undetectable,
(2) easier adjusting to diverse cohorts or imag-
ing modalities, and (3) rapid and accurate learn-
ing that addresses user variability and special-
ist availability. While numerous research groups
have received relative success, clinical implemen-
tation has been limited. These limitations con-
cern data availability and uncertainty surround-
ing deep learning systems. Researchers address
small dataset sizes through transfer learning, in
which lower-level features like image contours are
learning from public datasets (Table 1). In this
method, an algorithm trains select deeper lay-
ers on the target small database to learn specific
information and perform optimally on the in-
tended population. Clinical data also frequently
suffers from limited or weak labels (i.e. image-
wise disease severity, lesion-wise segmentations).
Thus, methods as in Dai et al. (2018) harness
the supervised information in clinical texts to
compensate for weakly-labeled images. So-called
natural language processing (NLP) uses infor-
mation that is already clinically available and
increase the accuracy of ground-truth labels.

Further, uncertainty surrounds DL’s “black-
box” nature and hinders its clinical acceptance.
Therefore, systems as in Quellec et al. (2017)
and Wang et al. (2017) output complementary
attention maps to highlight which pixels factor
into disease predictions. These attention maps
provide insight into the complex systems that
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control Al algorithms, help validate the decisions
made (i.e. prove not “randomly guessing”), and
function as clinical support tools (i.e. spotlight
areas or features that may have not been clin-
ical focuses previously). Other superior meth-
ods facilitate clinical utility in other ways, like
providing for multiple diseased states as in Gul-
shan et al. (2016a) and Ting et al. (2017). Fu-
ture research should focus on enhancing clini-
cal utility and meeting real problems surround-
ing retinal diagnostics and therapeutics, rather
than simply achieving higher label “accuracies”.
For instance, DL offers great potential for clin-
ical settings in which resources (i.e. specialists
and equipment) are limited. Such systems would
compensate for poor image quality to facilitate
use with mobile cameras, in addition to grading
image quality as in Gulshan et al. (2016a).

This survey was limited in effective compari-
son of the methods for DR detection and grad-
ing systems for two primary reasons: (1) narrow
focus within the overall topic of DR, and (2) in-
consistent use of datasets and evaluation metrics.
In the first case, it was observed that the high-
est performances were generally notable for pa-
pers that focused on specific tasks. For instance,
one study eliminated BVs and HEMs to improve
MA detection, as noted above. While this elim-
inates false positives for MAs, the authors sacri-
fice a more complete picture of DR status. Su-
perior systems used learning ensembles or deep
learning procedures to incorporate more specific
tasks into overall DR grading. Other papers
used deep learning to achieve high performance
on DR within larger eye disease diagnosis sys-
tems. Furthermore, many studies were difficult
to compare to one another effectively due to in-
consistent evaluation metrics. In reading scien-
tific literature, readers of this survey should be
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cautioned against accepting article’s claims that
report one evaluation metric. For instance, ac-
curacy can easily be manipulated by data im-
balance, or less common evaluation metrics can
be utilized to present the results more favorably
than a more objective method (i.e. AUC). Read-
ers should be equally skeptical of papers that ex-
clusively use private databases, especially when
the authors have not made their code available
for external validation.

7. Conclusions

Diabetic Retinopathy represents a high-risk
complication of diabetes that can lead to ir-
reversible blindness without proper treatment.
Proper artificial intelligence (AI) systems offer
high potential in facilitating expedited detec-
tion and relevant care for individuals who suf-
fer from this disease. Early detection systems
benefit highly from a focus on mild DR symp-
toms, notably MAs, leading to a prevalence of
such works in this area. Faster and less compu-
tationally expensive algorithms also offer high
promise for application in limited-resource areas
that would benefit from rapid screening. How-
ever, more complicated and diverse systems of
imaging and grading are emerging that can in-
crease the sensitivity and specificity of DR detec-
tion and grading than is possible by human ob-
servation. Overall, deep learning systems show
the most significant promise in simultaneous de-
tection of DR and evaluation of its severity level.
Future implementation of such algorithms will
help doctors more rapidly distinguish between
different eye diseases that may be present at once
or present similar symptoms, as well as diagnose
disease stage so that the most relevant and help-
ful treatments enacted rapidly and effectively.
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