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Abstract

Electricity rates are a main driver for adoption of Distributed Energy Resources (DERs) by private con-
sumers. In turn, DERs are a major component of the reliability of energy access in the long run. Defining
reliability indices in a paradigm where energy is generated both behind and in front of the meter is part of an
ongoing discussion about the future role of utilities and system operators with many regulatory implications.
This paper contributes to that discussion by analyzing the effect of rate design on the long term reliability
indices of power distribution. A methodology to quantify this effect is proposed and a case study involving
photovoltaic (PV) and storage technology adoption in California is presented. Several numerical simulations
illustrate how electricity rates affect the grid reliability by altering dispatch and adoption of the DERs. We
further document that the impact of rate design on reliability can be very different from the perspective of
the utility versus that of the consumers. Our model affirms the positive connection between investments in
DERs and the grid reliability and provides an additional tool to policy-makers for improving the reliability
of the grid in the long term.
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Nomenclature

Parameters

Anni, Ann. interest rate for investments in tech. k
CEff Charging efficiency of the battery

CFixy Fixed cost of technology k& ($)

CVary Variable cost of technology k (3/kW or $/kWh)

DEff Discharging efficiency of the battery
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EC; Energy cost at time ¢ ($)

FIL Feed-in remuneration at time ¢ ($)

Ld;  Consumer load at time ¢t (kW)

MiSoc Minimum battery state-of-charge ([0, 1])
OMV;, O&M costs of technology k ($/kW or $/kWh)
PCr Battery maximum power/capacity ratio

SR;  Normalized solar gen. at ¢t (kWh/kW installed)

Sets

I Set of consumers connected to utility at time ¢
T TpUTs

Tir Set of failure-repair times

Tyr Set of hourly time points over a year

k Technology type (PV, Storage)

t Time (hr) in Ty,

Variables

Q@ Charging/discharging aux. variable (binary)

capr  Installed capacity of technology k (kW /kWh)
chy Battery charge at time ¢t (kW)

dch;  Battery discharge at time t (kW)

i Investment decision for tech. k (binary)

jn PV output at time ¢ (kW)

soc;  Battery state of charge at time ¢ (kWh)

uey Electricity export to utility at time ¢ (kW)

Uiy Import from utility at time ¢ (kW)



1. Introduction

To achieve emission targets, countries need to increase generation share from renewable energy sources,
not only as part of the bulk generation system but also at the level of the distribution grid [1], where
private owned photovoltaic (PV) systems — installed behind the meter and coupled with electric storage and
control technologies — have been seen as an efficient way to increase decentralized renewables penetration.
Ambitious policy targets have been announced to promote adoption of these Distributed Energy Resources
(DERSs) by private consumers, such as the new amendment to the Building Energy Efficiency standard in
California that requires new residential buildings to have a rooftop PV unit installed starting in 2020 [2].
Such policy measures will continue driving down the cost of solar panels and related technologies, such as
storage, creating conditions for a massive adoption.

Besides the technology costs, mass adoption of PV and storage by private consumers is also dependent
on the portfolio of electricity tariffs offered by utilities. In fact, the magnitude and structure of tariffs —
including demand charges, energy rates and PV feed-in remuneration — strongly affect the payback period
of these investments, acting as a second main driver for adoption [3, 4, 5, 6]. Mechanisms of rate design to
promote consumers’ adoption of DERs are presented in [3] and [4]. In case of PV adoption, the authors of
[5] identify feed-in tariffs as a main socio-economic component for adoption; in [6] the dynamics between
retail electricity rates and PV adoption are evaluated.

While not the primary reason for the deployment of DERs, distribution grid security and reliability is also
impacted by the presence of DERs, see e.g. [7] and [8]. Recent studies have explored the use of utility owned
DERs to manage outages and improve the reliability of distribution systems, especially when these DERs
comprise dispatchable technologies, such as battery storage [9], electric vehicles (EV) [10, 11] and demand
response (DR) [12, 13], or when located in active portions of the distribution system, e.g. microgrids [14].
In contrast, DERs placed behind the meter are outside of utilities’ jurisdiction and therefore can only be
indirectly influenced by price signals (e.g. tariffs) to support grid operation [15, 16, 17]. For example, energy
[15] and power [16] based dynamic tariffs can be used to indirectly change the dispatch of EVs in order to
alleviate congestion. Similarly, time-differentiated energy prices can be offered to incentivize DR behaviours
that impact the reliability of the distribution grid [17]. In fact, as shown in [17], time-varying tariffs can
produce changes in consumers net load that significantly affect the magnitude and time distribution of
reliability indices, such as energy not supplied.

These contributions regarding dynamic tariffs applied to EVs and DR together with the extensive lit-
erature on time-of-use (ToU) and peak demand rates demonstrate the effectiveness of tariffs in changing
consumption behaviors and, more recently, in indirectly “dispatching” DERs in order to solve medium- and
short-term operational challenges of distribution systems. However, as pointed above, the effect of tariffs
goes beyond the operational time scale and rate design can be used to indirectly drive long-term adoption
of DERs by private consumers. Thus, tariffs could be included in the utility planning process to create

favourable scenarios of DER, deployment from the reliability perspective.



This paper presents a methodology to quantify the impact of electricity tariffs on the long-term reliability
of distribution systems, considering dynamic (tariff-dependent) adoption of DERs by private consumers. This
adds another layer of complexity to the reliability analysis performed in [17], by capturing the effect of tariff
design both on short-term (dispatch) and long-term (adoption) time scales. To the best of the authors’
knowledge, such methodology does not exist in the literature. It is essential to the ongoing discussion on
the new paradigm of rate design in distributed networks with high penetration of DERs [3, 4, 18, 19]. We
use the proposed methodology to analyze the effect of different aspects of the magnitude and structure
of electricity tariffs on the average energy not supplied (AENS) from the utility, as well as on the actual
magnitude and duration of outages experienced by the consumers. In particular, we are able to quantify the
positive link between DER, behind-the-meter adoption and grid reliability. A case study involving a PG&E
69 node feeder, where consumers adopt PV and storage technologies, is used to illustrate the approach.

The paper is organized as follows: Section 2 presents the adoption model; Section 3 describes the Monte
Carlo simulation of system states and the storage model during line failures applied to compute the reliability
indices; Section 4 provides a case study where the reliability impact of different aspects of tariff design is

evaluated; finally, Section 5 presents the main conclusions.

2. Adoption Model

In this section, we model adoption of behind-the-meter DERs by private consumers, assuming economic
rationality in long-term consumers’ decisions related to the acquisition and utilization of DER technolo-
gies. This economic rationality is presented as an optimization model, where individual consumers size and
dispatch their DER assets in ways that minimize their energy costs. It is important to stress that this
approach differs from more complete socioeconomic models of adoption and diffusion that usually capture
short-term social and geographical aspects of consumers’ decisions, such as the ones used in [5] and [20].
However those models require detailed characterization of specific regions and consumer groups and do not
allow general conclusions. Thus, in the context of long-term evaluation of adoption, and with the purpose of
deriving general conclusions (not socioeconomic/spatial dependent), we assume economic rationality as the
single criterion for adoption. The approach used in this paper is part of the Distributed Resources Customer
Adoption Model (DER-CAM), a DER adoption and microgrid planning tool developed by Lawrence Berke-
ley National Laboratory. For a detailed explanation about the background knowledge and research used to
build the adoption model presented below, we refer to the methods related to the PV and storage in [21].

The objective function minimizes the fixed/variable costs for investments in DERs (in this paper we
consider only PV and storage). The cost function also takes into account the tariffs, i.e. the hourly costs of

energy and the remuneration paid by the utility for the energy injected into the grid. The cost function is



given as:

c= Z (C’Fixk <1 + CVary, - capk)Annk + Z (uiy - ECy — uey - FI). (1)
ke{s,pv} teTyr

Constraints of the problem include the fixed cost condition of the investments (2). Hourly operation of
the battery is constrained by the reservoir model (3), the storage capacity (4) and the power limits (5), as
well as inequalities precluding simultaneous charging and discharging (6)-(7). PV generation is limited by

the installed capacity and the solar irradiation (8). Equation (9) imposes the energy balance of the system.

capy, < 1 - M (2)
dCht

socy = soci—1 + chy - CEff — DEFf

MiSoc - caps < soc; < caps
chy,dchy < caps - PCr

chy <a-M

dchy < (1—a)-M

pue < capy, - SRy

Ld; = uiy — ues + pvy + dchy — chy.

The above optimization problem is rather simplified, in particular treating demand and DER, production
as certain, and all costs as known and constant over time. A more realistic setup would be a fully stochastic
model for dynamic decision-making that would capture both the intermittent generation and the multiple
layers of uncertainty in demand level and DER operations, plus side effects of DER integration saturation
and congestion. Our choice is driven by three complementary considerations. First, a fully stochastic model
would be orders of magnitude more complicated and would bring a host of computational challenges, taking
the focus away from our main topic of the interplay between tariffs and reliability. Second, we emphasize
that (2)-(9) optimizes for the behind-the-meter investments to be carried out by consumers. The latter
simply do not have the time or the skill to build a sophisticated investment framework, especially relative
to a centralized plan that might be adopted by utilities and grid operators. Thus, the DER-CAM model is
a streamlined mathematical idealization of the decision making process that might be used (and is actually
being used in reality) by prosumers to size their DERs. Third, there is an ongoing overarching debate about
the main drivers of behind-the-meter DER adoption with motives ranging from social concerns about clean
energy and climate change, to tax and regulatory driven decisions, to concerns about grid security (witness
the large-scale forced outages in California during the 2019 fire season). Since capturing all these aspects in

the adoption model is beyond the scope of this paper, the DER-CAM formulation presented above should



be viewed as a representative example of economics-driven DER, adoption serving the purpose of this paper,

rather than as the most realistic framework to predict DER adoption in a particular area.

3. Reliability Analysis

This section presents a methodology to perform the reliability evaluation for different tariff scenarios and
subsequent adoption of PV and storage technologies. This work builds upon existing reliability methods
and indices at the level of the distribution grid, which are commonly used in the power systems reliability
studies [7, 22]. More detail about this underlying reliability framework can be found in [23].

It is important to stress that our reliability evaluation is based on the adequacy concept of reliability,
which is a common technique used for the long-term evaluation in distribution grids reliability [23]. This
means that the short-term power quality and security aspects, such as feeders’ capacity, as well as voltages

in the nodes, are considered to be within limits both with and without adoption of DERs.

3.1. Adoption Model Simulation

We consider a radial distribution network with B buses, denoted {b1,bs,bs3...,bp}. Each bus contains
a consumer with private investments in DERs. Given a tariff, an optimization is run for each consumer,
using the model presented in Section 2 to find the optimal portfolio of PV and Storage investments and their
dispatch policies. The above determines the decentralized adoption of behind-the-meter DERs; we treat grid-
side DERs as fixed, i.e. exogenous to the given distribution network and not affected by the consumer-facing
tariffs.

For each bus b € {bg,b3...,bp}, the optimization problem is solved locally, independent of the other
consumers in the distribution network, considering the data (such as load profile (Ld?)teﬂry . and tariff
¢ = (EC?, Fllt’)teTw) only for the consumer at bus b. As before, the output of the optimization includes the
optimal investments (cap?), optimal dispatch policy for the storage (chf , dchlt’ )teT,., PV generation (pvb )teTyrs
and purchase (export) of power from (to) the utility (ui?, uel)ser,,. As done in [17], by running this opti-
mization we are assuming that each consumer will dispatch storage technologies in a way that minimizes her

own costs.

3.2. Monte Carlo Simulation

In this paper, we only consider power interruptions due to failure in the distribution lines and assume
the rest of the system components, e.g. storage and PV, to work without any failures, in particular ignoring
intermittency in PV generation and any potential overvoltages caused by high solar penetration. Extending
our approach to incorporate respective failures would be mathematically straightforward, although compu-
tationally intensive. At any time ¢, we assume that each of the distribution lines [ € {1,2,..., L} could be

in one of the two states, described through the variable 6!, connected (6! = 1) and disconnected (or failed,



6! = 0). We further assume that each distribution line transitions from one state to the other independently,

following an Exponential distribution f,(-) for the transition times 7:

Fri(s) = Memes (10)

where A = )\lféé + AL(1—6). The parameter )\9 € R, represents the line failure rate, i.e. rate of transition

from state 6! = 1 to & =0, and A\l € R, represents the repair rate, i.e. rate of transitions from ¢! = 0 to

t+T,f
l _
Ot = L.

Remark: the network topology is taken to be fixed; the possibility of network reconfiguration or the use
of utility owned DERs to minimize impact of line failures has been extensively explored in the literature
(e.g. [7] and [22]) and are not considered in our reliability analysis.

The state of the distribution network is defined via L, = [6},62,...,6L], which is a vector of states for
each distribution line. The time for the next transition of the whole distribution network from state L; is

defined via 7; := min; 7} with probability density function
Fro(s) = Me s, (11)

where A\, = Zle S\i is additive thanks to properties of Exponential random variables. At the transition epoch
t + 7, the distribution network may transition to L possible states. The probability that the distribution

network changes state due to a change in the k** distribution line is:
A
?.
PIRRY
To assess the reliability of the distribution network, we simulate Monte Carlo samples of the transition times

P(’Tt = Ttk|Lt) = (12)

and transition states using Equations (11) and (12). For a total of Ny Monte Carlo samples, we denote by
Lip,n =1,...,N, the nt? sample of the sequence of transition states in the time interval [0, 7] and by
7']{;,, n =1,..., Ns the corresponding sequence of transition epochs.

Notice that the output of the optimization in Section 2 is defined on the set 7, containing only hourly
time steps, however, the transition times 77, € [0, 7] in any Monte Carlo sample are continuous. As a result,
computation of the reliability indices requires analyzing the system for t € 7" := T, |J 7~ Thus, we extend
the output of the optimization problem from ¢ € 7, to t € [0, T] using piecewise constant functions for all

the variables, except battery state-of-charge soc; which is linearly interpolated:

Ch,tj

socy = socy; 1 + chy; - CEff — DEST (t; —t) Vte[tj,tjz1) andt;e Ty (13)
3.3. Network Representation During Failures
A distribution network can be represented as a graph with vertices {v1,...,vp} representing the buses

{by,...,bp}, and the edges {ej,es,...,er} representing the distribution lines {l1,ls,...,Ir}. This transfor-
mation is useful when considering large networks with thousands of buses and distribution lines. Since we

only consider radial networks in this paper, the corresponding graph is an acyclic tree. A failure at any



distribution line is equivalent to “breaking” the edge in the corresponding tree, partitioning it into two com-
partments. At any time ¢, we represent the total number of compartments as A, > 1 and Z; +,i = 1,..., 4
representing the set of vertices in compartment 3.

The overall set of compartments at time ¢ is denoted by Ay = {Z1 4, ...,Za, ¢}, where Z; ; is the set of all
vertices which have a path to v; (substation); it corresponds to buses with uninterrupted supply of power
from the utility even after line failure(s). The buses corresponding to vertices v ¢ Z;; have no connection
to the utility at ¢. For this set of buses, consumers with no DERs, or only PV installed, experience a power
outage. In contrast, consumers with storage devices installed behind the meter are able to supply their loads

in isolation. Assumptions on the respective islanded operation are presented next.

3.4. Storage dispatch policy during outages

Line outages will force behind-the-meter storage devices to work in an islanded mode, prioritizing the sup-
ply of consumers’ load. Therefore, due to multi-period nature of the optimal dispatch given by (chi’, dch?)t>0
(again, superscript b to emphasize that it is specific to the storage at bus b), an outage affects the dispatch
policies in subsequent times.

To address this issue, an optimal re-dispatch policy should be run for each islanded storage device and
for each outage. However, given the number of outages and nodes in the system, this would increase
exponentially the computational complexity of the simulation. Instead, we propose a heuristic in order to
keep the operational conditions of the storage device as close as possible to the original optimal dispatch
calculated with the adoption model presented in Section 2.

. . . . /\b
We denote the operational policy for the charge and discharge of the storage at bus b via (chtj)tjeT
—b
and (dchy,)i;eT respectively (using * to remind that it is different from the optimal); and the corresponding
state of charge as (s/o\ci’j)tjeT. Let us define an additional state variable (mi’j)tjeT, which determines the
—~b —b
operational policy (cht], , dCht].)tjeT of the storage:
1 ifbeZy,, and §5ch = socfj
b .
My, =2 ifb¢ Ty, (14)
3 ifbeT,, and S/O\Ci)j # socfj.

The three cases in (14) determine the three modes: normal, active, and recovery.

e Normal (mfj = 1): During this mode, the bus is connected to the utility b € 7 ;,, and state of charge
is same as the optimal s’o\ctj = socy;. As a result, the dispatch follows the optimal control policy as

—~b —b
derived from the optimization in Section 2, i.e. chy = chfj, dchy, = dchfj.

e Active (my; = 2): storage transitions to a back-up mode when the bus b has no connection to the utility
b ¢ I, ,. During back-up the storage unit acts to balance the net demand (load - PV generation),

supplying power when net demand > 0 and charging when net demand < 0 while being constrained



by the physical limits of the storage unit. We assume that the storage control at time ¢; is determined
by the information available only prior to ¢;, i.e. at the time of failure, so the policy does not depend
on the time-to-repair and assumes the failure will continue at least until the nearest hourly time-step.

Thus, the storage policy is given by:

—~b —b,max\ T
dch; = ((Ldﬁj — b ) A deh; ) ; (15)
—~b —~b,max\ T
chy, = ((pvi’j - Ldlt’j) A chy, ) ) (16)
where
—b,max DFE
dchy, - [cap® - PCT] A [(socé’j — MiSoc - capb)[t]fJ:] ; (17)
gl
/Eb,max [ b PC ] capb — SOC?J. (18)
c = [cap®’ - PCr] A
Y CEfT-(t;1-t))

and x A y and (z)* are shorthand notations for min(x,y) and max(z,0) respectively.

e Recovery (mfj = 3): bus b is connected to the utility b € Z; ¢, but its operational state of battery charge
is different from the optimal, s/o\ci’j #* socé’j. Within this mode the charge/discharge policy aims to get
the operational soc back to the optimal. Namely, if the operational soc is higher than the optimal,

—~b . .
socl[’t_] — soc, >0, the customer sells energy to the grid when re-connection occurs.
J

T, (e e ™)’ a
ch, = A chy.
bONCEFf-(t]—ty) T
Conversely, when socl[’tj] - s/o\c?j <0:
—~b b
b (soc,. —soct, 1) DEff  ——pmaxy +
deh, = (1] Adehy") (20)
g (151 —t5) ’
Finally, given the operational policy of the storage, the soc updates via:
~ ~ -7 d/C7Lt]‘
socy,,, = s0ct; + (chtj -CEff— DEff) (tj41 — t). (21)

3.5. Reliability indices

In this section we discuss the computation of reliability indices. We only consider active power, with no
losses, and assume that during outages the voltage at each bus connected to the utility grid is within the
security limits. These assumptions are common in reliability studies of distribution networks [14, 17].

Given a Monte Carlo sample of the transition times 7" and states Lg.p, the first step is to evaluate the

loss of load Ctbjn for the bus b at time ¢ € [0,T]. We define C"™ as:

0 if be I7,;
Cy = Ld b¢ I, caph = 0; (22)

—b,n —~bn
(Ldy — pv? —dch, +ch, )™ b¢ I}, capl> 0.



According to (22), the consumer at bus b does not experience interruptions, Cf ™ =0, if connected to
the utility b € Z{';. However, if a line failure occurs between the bus and the substation, b ¢ Z7';, and there
is no local storage, cap? = 0, the outage experienced by the consumer is equal to the load demand Ldff. The
implicit assumption is that the PV, due to voltage and frequency stability reasons, requires either the grid
or additional storage to feed the load. If neither is available, the circuit breaker connecting the PV to the
consumer trips and the loss of load experienced by the consumer is equal to the demand. Finally, if the node
is not connected but a storage unit is installed locally, cap, > 0, the loss of load will be equal to the net
demand after storage re-dispatch.

The traditional indices used to assess the reliability of the distribution systems, such as the average
energy not supplied (AENS) and the system average interruption duration index (SAIDI), are focused on
the evaluation of the performance of the utility network. Thus, if a failure occurs, the immediate loss of
load that results from the event is assigned to these indices. However, with the presence of behind-the-meter
DERs, especially PV and storage technologies, at least part of this load can be recovered during a grid failure
event, mitigating the loss of load that is actually experienced by the consumer. This creates an apparent
paradox: on the one hand, the consumer experiences less load curtailment; on the other hand, the distribution
network does not become more “reliable”, as its failure pattern and its performance do not change. Therefore,
to better translate this reality, it is necessary to create additional indices that capture the performance of
the joint system, composed by the distribution grid and the behind-the-meter DERs, and express the actual
failures experienced by the consumers. In this paper, we create two indices with these characteristics and
name them average energy not consumed (AENC) and average outage duration index (AODI). Similar to
the standard AENS, AENC computes the average energy interruptions that are actually experienced by the
consumer. Analogously, AODI corresponds to the SAIDI, but accounting for the duration of the outages
actually experienced by the consumer. Thus, when considering behind-the-meter DER, adoption driven by
rate design, AODI will be impacted by the incentives for storage installation provided by the tariff, while
SAIDI remains the same regardless of the rate design decisions, as it only depends on the characteristics of
the distribution grid failures.

Thus, we employ the standard definitions of energy not supplied ENSb’"(cI’) and duration of the inter-
ruptions from the perspective of the utility ID”"(c), plus introduce energy not consumed ENC”™(c?) and

the consumer outage duration ODb’"(cb) at the bus b for the n*" Monte Carlo sample as:

T

ENS>"(c?) ::L uif pgrp dt, (23)
T

IDb’n(Cb) = J;J 1{b¢I{‘;t}dta (24)
T

ENCP™ (c?) ;:fo chrat, (25)
T

oD""(cb) ;:L Ligpnsgydt. (26)

ENS>™ accounts for the total energy that the utility could not supply to bus b during the period [0, T].

10



ENC®™ and OD®" quantify, respectively, the loss of load and the outage duration for the consumer after
incorporating the re-dispatch from the storage. Equations (23)-(26) emphasize the dependence of these
metrics on the tariffs c?.

To clarify the definition of ENS®™(c?) and ENC>™(c), Table 1 summarizes the relationship between
these indices for different investment scenarios at bus b. As shown in the table, when only PV is installed
behind the meter, the ENC is higher than the ENS. This occurs since the demand at b seen by the utility
right before a failure is the net load, while the actual outage experienced by the consumer corresponds to

the total load due to the disconnection of PV.

Table 1: Relationship between ENS and ENC

Investment Relationship between ENS and ENC
None ENS""(c?) = ENCP™(c?)
Only PV ENS""(c) < ENC""(c?)
PV and storage ENS""™(c?) = ENC""(c?)

Finally, a generic reliability index with B buses in the distribution network can be defined as:

N, B v
1l s Fbin
IHdeX = ﬁs Z I:T], (27)
n=1
. 2
\/22[21 [72"322‘3”“ - Index]
o(Index) = N ) (28)

where F?™ is a test function. Thus, Index computes the average of the test function over the buses and
the Ny Monte Carlo samples and o(Index) is the standard error in estimating the index. If the test function
is ENS”"(c), then the corresponding index is AENS; if it is ID?™(cb), then the index is SAIDI; if it is
ENCP""(cb), then the index is AENC; and if it is OD%"(c), then the index is AODL

3.6. Algorithm

We summarize the overall sequence of steps to compute the reliability indices in Algorithm 1. Line 2 calls
the adoption model of Section 2 for computing the optimal investment in DERs and their dispatch policy.
Lines 4-10 compute the ENS, FD, ENC and OD for every bus in the network given a Monte Carlo sample
of sequence of failure repair times for the distribution lines. Lines 6-8 compute the loss of load at each
transition time (or hourly time step) in the Monte Carlo sample. Line 12 computes the reliability indices by

averaging over all the buses and samples.
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Algorithm 1 Monte Carlo simulation for reliability computation

1: Input: Distribution network, load demand for consumers
tariff rates, failure and repair rates.
2: Solve the optimization problem from Sec. 2 for each bus b = 2,3,..., B.
3: forn=1,2,...,Ns do
4:  Simulate set of failure-repair times 7, on [0,T] (Sec. 3.2).
5. forteT" := T, JT}. do

6: Find the set of buses Z; ¢ connected to substation (Sec. 3.3).

7 Compute storage dispatch Jc?zin, El\zin, b=2,3,...,B (Sec. 3.4).
8: Calculate Ctb’” for b=2,3,..., B using Eqn (22).

9: end for
10:  Compute ENS»" FD”" ENC"" and OD"" (Eqns (23)-(26)).
11: end for

12: Calculate indices: AENS, SAIDI, AENC and AOD via Eqn (27).
13: return: AENS, SAIDI, AENC, AOD

4. Results

4.1. Case Study

This section discusses the effect of different tariff structures on the adoption of PV and storage technologies
by private consumers, along with the consequent impact on the reliability of the system, both from the
perspective of the consumers and the utility. We consider the modified PG&E 69-bus [24][25] MV network
(Figure 1), where each node connects either a Commercial complex (blue diamonds), a public service building
(green circles) or a block of Midrise Apartment buildings (red triangles). Annual load profiles were obtained
from the 16 DOE Reference buildings database for the climate zone of San Francisco [26]. From the database,
hospital, offices and school profiles were considered public service, while the remaining (with the exception
of the Midrise Apartment) were assumed commercial. Load profiles were scaled to fit original network load
[24] at 8:00am on the first day of January. The total annual energy consumption is ~ 23GWh.

PV radiation data was obtained from Typical Meteorological Year 3 datasets for the same geographical
area [27]. We assume the fixed cost CFix,, and variable CVar,, cost as $2500 and 25003/kWh respectively
and a PV lifetime of 20 years. We consider a storage charging/discharging efficiency (CEff/DEf f) of 0.9,
a maximum charge/discharge rate PCr of 0.3 kW per kWh installed, and minimum state of charge MiSoc
of 0.2. Due to the relatively small rate of charge/discharge, relatively low costs of storage are assumed:
fixed cost CFixs = $250 and variable cost CVar, = 250$/kWh respectively. Lifetime of the batteries is
considered to be 10 years and to simplify the analysis the effect of energy degradation due to calendar and
cycle capacity losses is neglected. However, adding this effect is straightforward, for example using the
methodological framework proposed in [28].

The base purchase rate EC; for the different consumer classes (residential, services and commercial) is

12
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Figure 1: Modified PG&E 69-bus system [25] with 3 customer types.

presented in Table 2. Residential tariffs have only two blocks of Time-of-use rates (on-peak and off-peak),
while service and commercial consumers have a three-segment tariff structure, divided into on-peak, mid-
peak and off-peak hours. The peak purchase rate for the residential consumers is during the evening from
4:00pm - 9:00pm, while service and commercial consumers have peak purchase rate during the day from
noon-6:00pm. For all classes of consumers the feed-in remuneration, FI;, received at time t for exporting
energy to the utility grid is considered to be 30% of the energy cost shown in Table 2.

We use Ny = 500 Monte Carlo samples on the time horizon of 1 year, [0,8760] hours, to compute all the

reliability metrics.

4.2. Base Case Results

Table 3 presents the four system reliability indices, considering the base case tariffs for each type of
consumer. For comparison purposes, three scenarios of investment were assumed: (A) no investments by
the consumer are allowed and only the original load is considered for the calculation of the indices; (B) the
consumers are allowed to make optimal investments, but only in PV; (C) optimal adoption of both PV and
Storage.

As presented in the Table, AENS significantly decreases when PV investments are allowed, since the
energy dependence on the utility is reduced. When storage is added to the system in scenario (C), AENS
keeps decreasing. This is explained by the incentive for self-consumption that is implicit in the tariff, with
a feed-in remuneration 30% lower than the energy costs. Thus, the presence of storage avoids some PV
injection during the daylight hours, allowing the use of this energy in subsequent periods and decreasing the
total energy required from the utility grid. By observing the distribution of AENS for the 3 scenarios (left
panel of Figure 2), it is possible to conclude that the PV investments, both alone or combined with storage,

also reduce the variance of the index.
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Table 2: Base tariff rates and periods for different classes of consumers

Type Weekdays Weekends  Summer Winter
($/kWh)  ($/kWh)

Residential Tariff Jun-Sep  Oct-May
On-peak  4:00pm - 9:00pm — 0.36335 0.22588
Off-peak Other times All times  0.26029 0.20708
Services Tariff May-Oct  Nov-April
On-peak noon - 6:00pm — 0.14726 0.10165

8:00am - noon
Mid-peak — 0.10714 0.10165
6:00pm - 9:00pm

Off-peak  9:00 pm - 8:00 am  All times  0.08057 0.08717

Commercial Tariff May-Oct  Nov-April
On-peak noon - 6:00 pm — 0.21471 0.1309
8:00am - noon
Mid-peak — 0.15958 0.1309
6:00pm - 9:00pm

Off-peak  9:00pm - 8:00am  All times  0.13151 0.11384

Table 3: Reliability Indices and Investment Scenarios (base case)

Scenario AENS SAIDI AENC AODI PV Storage

(kWh)  (hours) (kWh) (hours) (kW) (kWh)
No DERs 526.3 12.1 526.3 12.1 0 0
PV only 378.8 12.1 526.3 12.1 3,812 0
PV+Storage  355.8 121 4174 9.5 3812 3852

In contrast, as shown in Table 3, the magnitude and the duration of the outages experienced by the
consumers (AENC and AODI) only decrease when storage is added to the system. This reduction also
occurs in terms of the variance of the indices, illustrated in Figure 2 (right panel). Without storage, PV is
not able to operate in islanded mode during a line failure in the distribution grid, which results in the entire
loss of load for the consumers. From the utility perspective, the magnitude of the interruption considered
during a failure is the net load, which justifies the difference between AENS and AENC observed in Table 3.

In scenario (C), the adoption of storage by some consumers partially rectifies this difference, decreasing
the AENC and the AODI. However, the AENC is still significantly higher than the AENS, which means
that the base case tariff is not able to incentivize storage investments in all consumer segments. Indeed, the

computation of the hourly indices in Figure 3 shows a considerable difference between AENC and AENS
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Figure 2: Distribution of AENS for the 3 scenarios (left); Distribution of AENC for the 3 scenarios (right).

during the daylight periods, indicating that most of the consumers invest only in PV technologies.
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Figure 3: Hourly indices for scenario (C).

To better understand the impact of the tariff incentives on the reliability of the system via adoption of
PV and storage, a sensitivity analysis to different tariff components is conducted in the following subsections.
For ease of presentation, we restrict ourselves to univariate analysis, modifying one tariff component at a
time. More comprehensive multivariate sensitivities are left to future research. Because running our model
is computationally intensive, we advocate the application of statistical surrogates to investigate multiple

sensitivities simultaneously so as to identify optimal tariffs.

4.8. Homothetic variation of energy tariffs

The variation of the energy tariff offered by the utility affects the economic conditions for adoption of
DERs by private consumers. As shown in the previous section, this adoption has an impact on the system
reliability indices, both from the perspective of the utility and of the consumers.

By defining the energy cost rates presented in the base case tariff as EC;, the homothetic variation can

be described by EC; = ~pur - EC; Vt € [0,T], where Ypur Tepresents the variation factor of the energy
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purchase costs for consumers. In this analysis, we allow a variation of 30% of this purchase cost factor,

ie. 0.7 < 7ypuwr < 1.3,
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Figure 4: Effect of ypur on DER investments capp, and caps (left) and reliability (right).

Figure 4 presents the adoption of PV and storage as a function of the homothetic variation of the energy
costs, as well as the consequent impact on AENS and AENC. Although both PV and storage capacity
increase with the energy rates, PV is already cost-effective at 70% of costs, while storage requires higher
rates to become economically worthwhile. As expected, AENS decreases as consumption depends less on
the utility and more on the on-site PV generation, whereas the magnitude of outages experienced by the
consumers (AENC) only decreases with the adoption of storage. However, it is possible to observe that this
effect does not have a linear characteristic, i.e. initial adoption of storage has little impact on AENC, which
indicates that the reliability benefits for consumers from storage adoption depend not only on the available
capacity, but also on its utilization throughout the day. Therefore, the next subsection will analyze the

reliability impact of the time component variation of tariffs.

4.4. Time differentiation of energy rates
In this section we consider a variation in the ToU component of the tariff by increasing the cost of
energy during the peak hours and keeping constant the off-peak and mid-peak rates. Similar to the previous

analysis, we use a peak ratio, vk, to describe this variation and represent the energy costs as:

Yok - ECty  if t € Tok;
EC, =1{ " ' . (29)

ECt, if t ¢ Tox,
where Tpi is the set of times corresponding to on-peak periods presented in Table 2. Since the on-peak
component of the ToU only lasts 5 hours for residential and 6 hours for commercial and services consumers,
we allowed a variation up to 250% of these costs: 1.0 < 7,k < 2.5.
Figure 5 shows the effect of this variation on the DER investments (capy,,caps) and the consequent

impact on reliability indices. Increasing 7,k raises aggregate investments in storage up to 400% (3,852 kWh
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Figure 5: Effect of ypx on DER investments (left panel: capp, and caps on the left and right y-axis respectively) and reliability

(right panel).

to 16,162 kWh), but has only moderate impact on the adoption of PV (from 3,812 kW to 4,255 kW). Thus,
a significant differentiation between off /mid peak and on-peak rate creates a stronger incentive for storage
adoption than for additional PV capacity. We note jumps in the capacity of the storage investments as
a function of v, as ToU differentiation becomes relevant for more and more classes of consumers. From
a reliability perspective, AENS remains practically constant, meaning that the overall dependence on the
utility changes minimally, due to the insignificant variation in PV investments. In contrast, AENC decreases
significantly as storage capacity is introduced. However, Figure 6 shows that the average outages experienced
by the consumers do not decrease uniformly throughout the day. When comparing the base tariff against a
scenario where peak costs are doubled, it is possible to observe a reduction on AENC during the day/evening

hours and no improvements during the night.
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Figure 6: Impact of ToU differentiation on hourly distribution of AENC: base case vs. peak factor ypi = 2.

This can be explained by the storage dispatch policy generated from an extremely differentiated ToU
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structure that incentivizes consumers to buy energy during the morning and keep the batteries full until the
on-peak period. Therefore, if a failure occurs during the day, behind-the-meter batteries will be full and able
to drastically minimize the impact of the outage on the consumers. This situation persists until the end of
peak period when batteries fully discharge and storage no longer can buffer line failures.

Thus, thanks to their capability to influence storage adoption, rate design policies comprising time
differentiation of costs are an effective solution to improve AENC. This can be seen in Figure 7 which
compares homothetic variation of Section 4.3 with the energy costs differentiation scenarios analyzed above
with respect to their impact on AENC and on the overall annual costs of the consumers. We find that for the
same annualized costs—see equation (1)—the AENC is considerably lower when differentiation is included

in rate design.
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Figure 7: Impact of homothetic variation and cost differentiation policies on consumers’ annual costs and consequent effect on
AENC. Blue dots correspond to different values of vk € [1,2], orange stars to different values of ypur € [0.7,1.3] and the black

diamond to the base scenario with vpx = ypur = 1.

4.5. Shifting time-of-use periods

Our last analysis consists of shifting in time the on-peak component of the ToU rate applied to the
residential consumers, keeping the peak costs and duration (5 hours) equal to the base case. Thus, instead
of starting at 4PM, four additional possibilities to start the residential on-peak period are explored: 8AM,
10AM, 12PM and 2PM. Figure 8 shows that this shift has little effect on the PV penetration capy,, but
a significant impact on storage adoption caps, namely storage investments decrease dramatically when the
on-peak period is moved to the morning. Indeed, in this situation, the on-peak energy costs overlap with
the solar generation period, reducing the net load when energy costs are higher and dispensing the need for
larger storage capacities.

In particular, when the on-peak starts at 8AM, it still ends within the daylight period (1PM), allowing

batteries to re-charge using PV generation, and subsequently keeping a full soc until the peak of the next
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Figure 8: Effect of shifting the on-peak period of residential tariffs on DER investments (left) and reliability (right).

morning. This long period at full capacity mitigates the impact of outages on consumers when a grid
failure occurs during the evening/night, resulting in a low value of AENC. When the on-peak period starts
at 4PM, there is almost no incentive to charge the batteries before the morning, making consumers more
vulnerable to grid failures during the night. However, since the batteries are empty in the morning, the PV
self-consumption can be maximized, reducing the overall net load purchased from the utility and decreasing

the AENS.

5. Conclusion

This paper presented a methodology to quantify the effect of rate design on the long term reliability of
power distribution, assuming that electricity tariffs will become a main driver for adoption of DERs (e.g. PV
and storage) by private consumers.

Our results show that both magnitude and structure of time-of-use electricity rates influence the adoption
and the dispatch of behind-the-meter DERs with significant impact on the outages accounted by the utility
and experienced by the consumers. In general, tariffs incentivizing PV adoption will tend to reduce the
overall consumers’ dependence on the grid, decreasing the energy-related reliability indices considered by
the utility. In contrast, tariffs incentivizing the adoption of storage technologies, such as ToU rates, tend to
mitigate the impact of grid failures on the actual loss of load. Here, the magnitude and temporal aspects of
cost differentiation play a major role on the hourly distribution of the outages experienced by the consumers.
Thus, in many cases, the rate design process can lead to contradictory reliability effects, depending whether
the indices are quantified from the perspective of the utility or of the consumer. This phenomenon reinforces
the need to rethink current regulatory frameworks in the context of mass adoption of DERs. Additionally,
different consumers have distinct sensitivities of reliability to electricity rates. As a result, methodology to

quantify the impact of electricity rates on reliability, as in this paper, can provide targeted guidance for
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policy making.

Additional analysis is required for alternative pricing mechanisms, such as dynamic pricing and demand

response policies that might become more prevalent over time.
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