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Abstract—To guarantee safe autonomous navigation of multiple
small unmanned aircraft systems (sUAS) operating within a
limited airspace, collision avoidance algorithms must be robust
to uncertainties in aircraft states. The velocity obstacle (VO)
concept is a popular avoidance algorithm which uses a collision
cone to effectively determine if two objects will collide in the
near future. The VO method is a reactive algorithm that allows
for avoidance of dynamic obstacles. This paper proposes a novel
approach, the uncertainty velocity obstacle (UVO) method, to
enhance the decentralized VO collision avoidance method by
addressing uncertainties in the position and velocity of mov-
ing obstacles. A scenario is presented to illustrate the utility
of this method for an sUAS encountering other cooperating
vehicles. In this scenario the vehicles use global positioning
system (GPS) messages to communicate position and velocity
between cooperative vehicles. Each vehicle uses these states in a
constant-jerk Kalman filter to estimate other vehicles’ positions
and velocities. Numerical simulations show that UVO enhances
a vehicle’s ability to avoid collisions when operating in uncertain
environments.

NOMENCLATURE
a Ellipse x axis
b Ellipse y axis
(& Intesecting or tangent line offset
m Intesecting or tangentline slope
A Vehicle A
o Standard deviation
v} Velocity point i from admissible velocities
vy Desired velocity incorporating buffer zone velocity
Vg Desired velocity given no collision cones
Vbuf Buffer velocity

Buffer gain

b, Radius of buffer zone
Cr Collision radius of vehicle
d(A,I) Euclidean distance between vehicle A and I
I Repulsive force
T Max velocity of a vehicle
am™® Max acceleration of a vehicle
(z,y)  Coordinates with respect to ellipse center
Ay x position of vehicle A
Ay y position of vehicle A
Tine Line T
N Number of Vehicles
At Time step
\d Set of velocities satisfying v™* and a™*
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1. INTRODUCTION

Increasing the access of small unmanned aircraft systems
(SUAS) to the National Airspace System (NAS) will benefit
society by enabling sSUAS use for package delivery [1], secu-
rity and defense [2], medicine delivery [3], and recreation [4].
The Federal Aviation Administration (FAA) predicted a large
increase in the numbers of commercial SUAS in the US [4].
To enable safe operation in dense traffic enviroments, SUAS
need to be capable of autonomous collision avoidance despite
uncertainty in the positions of other vehicles. This paper
assists in the safe merging of sSUAS into the NAS by in-
creasing SUAS’s capability to avoid collisions when operating
in dense environments with imperfect information. This is
accomplished by augmenting the velocity obstacle method
[5] to account for uncertainty.

The main contributions of this paper include (1) augmenting
the VOs collision cone to handle position and velocity un-
certainty, (2) addressing a limitation of current VO methods
when the collision cone is undefined, and (3) recommending
the appropriate transmission range to promote safe opera-
tions.

Current VO methods assume perfect and instantancous
knowledge of the opposing vehicles’ positions and velocities.
In real-world operations this assumption is unrealistic. To
prevent collisions, the SUAS must augment the current VO
method to account for uncertainty. 'We accomplish this by
modifying the collision cone to include position and velocity
uncertainty. The results provide a dynamic collision cone
that changes to account for varying vehicle uncertainty. The
novelty of the UVO algorithm resides in how the uncertainty
is accounted for while maintaining the original VO assump-
tions.
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In traditional VO methods, the collision cone between two
vehicles has the potential to become undefined. This occurs
at a critical time when the vehicles are close together. To
augment this deficiency and ensure safe operations, we en-
hance the VO algorithm with an artificial potential field that
prevents vehicles from reaching this degenerate state.

In environments with many sUAS, estimating the positions
and velocities of other vehicles is costly. Furthermore, the
sUAS might only care about vehicles within a certain range.
Therefore, we provide an analysis for finding the appropriate
range for communicating GPS messages at which the sSUAS
should fly to prevent collisions.

This paper validates the new UVO method and its effective-
ness in preventing collisions through Monte Carlo simula-
tions. The paper proceeds as follows. In Section 2 we present
previous and related work to UVO. In Section 3 we provide
the mathematical derivation of UVO. Finally, Sections 4 and
5 go over our results and conclusions.

2. RELATED WORKS

This section summarizes related research that has been ac-
complished in VO avoidance methods and its extension of the
reciprocal velocity obstacle (RVO) method. Key concepts to
both of these methods including collision cones and velocity
choosing will be explained. We also present prior work that
incorporates different algorithms and technologies to enhance
collision avoidance. They include artificial potential ficlds
and global positioning system (GPS) sensors.

Velocity Obstacle Method

The VO method was first proposed by [6] to enable robot mo-
tion planning in dynamic environments. Using the robot’s and
obstacle’s current position and velocity, avoidance maneuvers
can be selected that place the robot’s velocity on a collision-
free path. The method was further developed in [7], which
creates an area of collision with a dynamic obstacle called a
collision cone. If the robots choose velocities outside of the
collision cone they will avoid all obstacles. The algorithm
handles dynamic obstacles of arbitrary size.

A shortcoming in VO is that approaching agents that both
execute the method oscillate between avoiding each other and
continuing on their desired trajectory. Oscillating paths are
undesirable and [3, 8] redefine VO to mitigate this behavior.
In [8], oscillations are reduced on sUAS by creating right-
of-way or visual-flight rules. These rules mandate that only
the aircraft who is not in the right-of-way move, thus solving
most of the oscillation issues. In contrast, [5] redefines the
collision cone by assuming that each agent will take half
of the responsibility for moving out of the way. They also
account for uncertainty in the robots’ position, velocity, size,
and dynamics to reduce oscillations. Their method, called
reciprocal velocity obstacles (RVO), is summarized in Figure
1 and provides a starting point for this research. We first
review the way in which RVO creates the collision cone to
choose the appropriate velocities.

Collision Cones— All of the VO methods, RVO included,
define a collision cone which depicts the area that, if a ve-
hicle’s velocity is inside the cone, will results in an imminent
collision. For example, in Figure 1 the velocity of vehicle A,
A, lies within the collision cone, shown by the solid triangle,
and therefore is on a collision course with vehicle B.

Figure 1: The RVO method. The dotted circle around B
is the combined radii of the two vehicles and represents the
Minkowski sum. The dotted triangle is the collision cone
which is translated to the solid cone. Finally, the dots around
A, represent the admissible velocities.

The VO methods create a collision cone which originates
from vehicle A and encompasses the Minkowski sum of
vehicle A and B located at vehicle B (seen as dashed lines
and circle in Figure 1). When both vehicles are circular, the
Minkowski sum is a circle with radius equal to the sum of
both vehicles’ radii.

The collision cone is translated using a combination of the
velocity of and A and B. The original VO method translates
the cone by the velocity of B while RVO (shown here in
Figure 1) is translated using an average of the vehicles. When
more than two vehicles are present, all vehicles induce a
separate collision cone on vehicle A. The VO methods then
seek to find an achievable velocity which is outside all of the
cones.

Choosing Appropriate Velocity—To select a velocity outside
of a collision cone, the RVO method generates a cloud of
admissible velocities (AV) that it can reach within a max
acceleration. The approach in [5] for selecting a velocity is
summarized next.

The admissible velocities,

AV (Ay) = {v] s.t ||vf]]| < o™
and || A, —v}|| < a™ AL}, Yo, €v', (1)

represents the set of velocities that vehicle A can reach within
the next time step At, where v™* is the max velocity the
SUAS can fly, ™ is it maximum possible acceleration, and
v is all velocities that satisfy the ™ and ¢™®* constraints.

The vehicle’s velocity is chosen using

1
penalty(v;) = ||vg — v;| + Wiime 2)
—— tc(%)
Pdist("];) b

Peol ('U; )

where wynme 1S a weight which specifies a vehicle’s aggres-
siveness. This both minimizes the time to collision (¢.) and is
the closest to the desired velocity. Refer to work in [5] for a
more detailed explanation.
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Figure 2: The degenerate case in VO happens when vehicle
A and B touch. The tangent collision cone becomes a straight
line allowing for vehicle A to choose a velocity which places
it on a collision course with vehicle B.

Probabilistic VO—Finally, [9] presents a probabilistic vari-
ation to RVO through modeling velocity level chance con-
straints. Called PRVO, this method approaches the problem
through Bayesian decomposition to calculate the individual
effect of position and velocity, PRVO is similar to this
research in that it models both positional and velocity un-
certainty. In this paper, however, we use a direct geometric
approach for incorporating the uncertainty that applies specif-
ically to SUAS scenarios by calculating the estimated position
and velocity of incoming vehicles in real time using a Kalman
filter.

Potential Fields

Potential ficlds are a common collision avoidance technique
where an artificially derived field is superimposed onto obsta-
cles to create a repulsive force [10]. The vehicle’s velocity is
guided by the negative gradient of all the potential fields. This
method provides a real-time decentralized avoidance scheme
that drives a vehicle towards its goal location while avoiding
multiple moving obstacles.

However, when using artificial potential fields, vehicles may
get trapped in local minima with no guarantees of reaching its
destination. Much of the literature regarding potential fields
aim to overcome this shortcoming. For example, in [11]
the authors reduced the effect of local minima by applying
potential fields across the entire path of the vehicle. However,
this method assumes the obstacles are static and known a-
priori. In [12] a velocity-dipole method was developed
that incorporates the velocity of the moving obstacles, the
resulting potential fields are elliptical causing the avoiding
vehicle to traverse around and behind moving obstacles. This
method works well, but is not robust to multiple vehicles
whose paths may cross.

In this paper, an artificial potential field is implemented to
mitigate a known VO and RVO edge case. This edge case
is illustrated in Figure 2, where vehicle A has calculated the
Minkowski sum of vehicle B, denoted by the dashed circle,
and is attempting to create the collision cone, denoted by
the solid line. However, because the edge of the Minkowski
sum lies at the center of vehicle A, there is only one tangent
point to the Minkowski sum causing the tangent lines of the
collision cone to become colinear. The vehicle is then unable
to compute a collision-free velocity.

To mitigate this shortcoming, we augment RVO with guid-
ance from potential fields. At close range, the potential
field induces a strong repulsive force between the vehicles
providing additional separation. The strength of the repulsive
force is dependent on the distance between the vehicles and
drops oft sharply when they are outside this edge case. At
distant ranges the potential field has a minimal effect on the

vehicle’s velocity and RVO exclusively guides the vehicle’s
path. In this way we utilize the benefits of artificial potential
fields while avoiding their shortcomings.

Collision Avoidance Sensors

The numerical simulation for this work focused on a coop-
erative scenario for the sUAS. The scenario has each sUAS
share GPS position and velocity while using a constant jerk
Kalman filter as described in [13], to approximate the position
and velocity of the other aircraft.

GPS Sharing—The sharing of GPS among commercial ve-
hicles is implemented through the FAA’s mandate to have
all aircraft flying A, B, C and some E class airspace to
be equipped with an Automatic Dependent Surveillance-
Broadcast (ADS-B) system by January 2020 [14]. ADS-B
is a technology that allows aircraft to periodically broadcast
its GPS position as well as other information such as altitude,
speed, flight number, type of aircraft, and maneuvering state
(turning, climbing, or descending) [15]. This information
allows other aircraft and air traffic control stations to aid
in safe separation of the aircraft. Aircraft below 10,000 ft
(3,048 m) are intended to use ADS-B on 978 MHz while all
other aircraft can use 1090 MHz frequency. Incorporating
ADS-B into sUAS is still a question of research and this
work provides information about how ADS-B should be
implemented by understanding collision avoidance ranges.

ADS-B is an attractive sensor for detect and avoid (DAA)
systems and has been analyzed in a variety of studies. Initial
research [16] suggests that the use of ADS-B would greatly
enhance DAA operations for sSUAS because of its superior
range, resolution, accuracy, and update rate to any other
sensor. This study also suggests that ADS-B would be
greatly augmented by optical, radar, or other sensors that
offer detection for non-cooperative vehicles. In [17] a DAA
system is proposed that uses ADS-B to track intruders, detect
collisions, avoid collisions, and update waypoints to achieve
safe operations. It uses a Kalman filter for the estimates
and characterizes the error of the states using the ADS-B
uncertainty parameters and errors associated with latency,
resolution, and message success rate. Our work is different
in that we use a modified VO method as our avoidance
algorithm.

3. METHODS

In this section we will explain the methods used to create
the UVO in a 2D formulation. We first briefly highlight the
geometry equations found in the derivation of UVO. We then
show the formulation for position and velocity uncertainty
collision cones and explain how to calculate their associated
standard deviations. Finally, we show how to choose the
appropriate velocity and how we implemented the potential
field technique.

Ellipse Geometry

The UVO method assumes that the vehicles are operating in
a plane in 2D, therefore the derivations of the UVO method
start with the geometric equations for an intersection between
aline y = mx + c and an ellipse,

Va? + a’y? = a®b. 3)

Combining the two yields
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(a®m? + 632 4 2a°mex + a*( —b*) =0.  (4)

Next we solve Equation (4) for =z and v using the quadratic
formula to obtain

—a*me =+ abyva?m? + b2 — 2 5)
T =
1,2 aZm? + b2
and
B b2c + abmy/a?m? + b2 — &2 ©)
91,2 - a2m2 + b2 .
The value of discriminate D = a’m? 4 b® — ¢?, in Equations

(5) and (6), define the intersection points of the line and
ellipse. We will call D the tangency condition. From this
condition we can determine the intersection characteristics

1) if D < 0, then we have two intersections.
ii) if D = 0, then the line is tangent to the ellipse.
iii) if D > 0, then the line does not intersect the ellipse.

This derivation gives us a way to calculate whether or not a
line is tangent to an ellipse base on the discriminant. This will
be important as we seek to find the ellipse which is tangent to
every admissible velocity.

Position Uncertainty

The Kalman filter estimation provides an error covariance in
the z and y directions for both position and velocity. This
error covariance provides an error ellipse at a certain standard
deviation. We will use these error ellipses in the following
derivations.

The positional uncertainty can be summarized through Fig-
ure 3 where a collision cone for vehicle A is induced by
vehicle B. The standard deviation of B’s position uncertainty
is calculated through the Kalman filter update. The position
uncertainty then augments the collision cone. For example,
the dotted region in Figure 3 may represents one standard
deviation of uncertainty. More standard deviations would
mean a bigger ellipse, a bigger collision cone, and a greater
area to avoid but higher probability of avoiding the other
aircraft. The Minkowski sum is therefore represented as an
ellipse and the collision cone is redefined to encapsulate the
whole Minkowski sum.

To construct this new collision cone we solve Equation (3) for
y and take its derivative with respect to x

d —b’x
2 = @

dz ellipse a? Yy

Equation (7) represents the slope of the tangent line of any
point (x,y) on the ellipse. We can combing this equation with
the slope of the line originating from vehicle A and extending
to a point tangent to the ellipse. The slope of the line is
defined as

Figure 3: Position uncertainty method where the dashed
ellipse is the Minkowski sum, the dotted ellipse is the un-
certainty, the dashed cone is the collision cone, and the solid
cone is the final translated collision cone. The velocities
of both vehicles are represented as well as an admissible
velocity of A called v].

dy  Ay—y
e ®)

dz line

where A, and A, are the « and y position of vehicle A. This
equation determines the slopes of the dashed lines in Figure
3.

We combine Equations (7) and (8) to give
202 + VP2? = aszy + b7 Az,
Finally we substitute in Equation 3 and and solve for y to get

v b2A,

y:A_y_az—Ayx ©)

Choosing ¢ = A and m = 2 A provides the equation

for the 1ntersect1ng line. The z p0s1t10ns are found using
Equation (4).

Velocity Uncertainty

Similar to position uncertainty, our velocity uncertainty also
affects the construction of the collision cone (Figure 4). The
top of the translated collision cone represents the mean of the
uncertainty, while the dotted ellipse once again represents the
standard deviation chosen to encompass a desired percentage
of the error covariance. To avoid this uncertainty we can draw
a cone that has the same shape as the original RVO but is
expanded to engulf the entire uncertainty ellipse.

To construct the velocity uncertainty collision cone we start
with Equation (3), solve for y, and take its derivative with
respect to x

dy —b | 2%2a?

& e2Vi-= (10)

This is the tangent slope of any « value in the ellipse.
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Figure 4: Velocity uncertainty compensation method where
the dashed line is the translated collision cone from the RVO
method and the dotted ellipse is the velocity uncertainty.
The collision cone is further augmented to engulf the entire
velocity uncertainty. Vehicle A’s velocity is A, and one
admissible velocity is v;.

Next, we substitute the slope m of Tjie, as shown in Figure
4, for Z—Z and solve for z to get

mZat
TN e (v

To obtain the corresponding y values, we substitute Equation
(11) into the ellipse Equation (3).

Determining Standard Deviation

Thus far, we assumed that we wanted to stay outside the posi-
tion and velocity uncertainty ellipses by one or two standard
deviations. In this section, we invert the problem to solve for
what standard deviation we are avoiding given a velocity v},
For example, in Figures 3 and 4 the point v represents an
admissible velocity whose point lies tangent to the depicted
standard deviation in the figure. If we were to pick a different
admissible velocity, we could either enlarge or reduce a scalar
multiple of the standard deviation to satisfy the tangency
condition a?m? +b* = ¢2. To solve for the standard deviation
we are avoiding, we first substitute in known values in for
a and b at one standard deviation, a = ca, and b = ob,.
Fortunately, a, and b, can be directly calculated from the
Kalman filter’s covariance.

Second, we solve the tangency condition for o to get

c2?
o=\ T (12)

Equation (12) allows us to quantify how far a point is from the
mean relative to the standard deviation and helps us associate
a cost to every admissible velocity.

For both positional and velocity uncertainty ¢ becomes a
function of each admissible velocity v] because m and c
(Equation (12)) are the tangent lines created in Figures 3 and
4. For the position tangent line, we use Equations (9) and (3)
and for the velocity tangent line we use Equations (11) and
(3). Therefore Equation (12) becomes opos(v;) and oy (v;)
for position and velocity.

Choosing Appropriate Velocity

Once we associate a standard deviation with uncertainty, we
choose the best commanded velocity subject to the maneu-
vering capabilities of the vehicle. We start by sub-sampling
the cloud of admissible velocities (see Equation (1)) and
assigning penalties to cach sample.

First, the penalties for distance and time-to-collision have
been defined in Equation (2). Next, we assign position and
velocity uncertainty penalties based on how many standard
deviations the corresponding point lics away from the mean.
The penalties for position and velocity become

1
/
N = —_— 1
Ppos (7}1) Wpos Upos(%{) y (13)
and
p 1
pvel(”i) = Wyel Uvel(vl/‘y (14)

We then combine the four penalties,

p(v’b{) = pdist(vz/‘) +pcol(v£) ‘f’ppos(v;) +pve1(vz/‘)7 (15)

to calculate a final penalty for each sampled admissible
velocity v].

Once all samples have an assigned final penalty, we use least
squares to fit them to an order » polynomial surface S,

S = co + croz + 11y + coox? + earxy + cany’+
"'+CnOxn+"'+cnnyn7 (16)

where ¢g, c10, - - ., Cny, are the polynomial coefficients.

Finally, we use this surface equation to solve for a minimum
location. First, we find the smallest set, or convex hull, of
penalties which contains all the points. These points and
edges define our boundaries and our constraints to solve for
the minimum. We then use the Ceres Solver [18], a C++
optimization library, to find a minimum on the surface. This
minimum corresponds to the best velocity given the penalties
and is commanded in the next time step. However this
velocity does not guarantee that we are outside the collision
cone, but instead implies that we are headed outside the cone.

Potential Field

When two (or more) vehicles are in close proximity the
evading vehicle (A) can enter a degenerate state where the
collision cone is undefined. In this section we present a
modification to RVO that mitigates this edge case by incorpo-
rating a localized artificial potential ficld (PF). The PF forces
a buffer zone between two vehicles so that the distance of
the Minkowski sum of the incoming (invading) vehicle never
overlaps with the location of the evading vehicle, ensuring
that the collision cone is well-defined. The PF uses distances
between the vehicles and a gain method to create a new
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Table 1: GPS Sharing Simulations.

Case Kalman | Potential | gy | Communication | Position | Velocity | Number of Max
Filter Field Drop % o (m) o (m/s) Vehicles Velocity (m/s)
RVO Worst Case - - - 50 3.0 1.0 10 5
RVO Best Case - - - 0 0.0 0.0 10 5
KF-RVO X - - 50 3.0 1.0 10 5
PF X X - 50 3.0 1.0 10 5
Uvo X - X 50 3.0 1.0 10 5
UVO-PF X X X 50 3.0 1.0 10 5
_100 4 _100 b
—50 —501
E ol Y
> >
50+ 50
100+ . . : . . 100 . . . .
-100 -50 0 50 100 -100 -50 0 50 100
X (m) X (m)
(a) RVO (b) UVO-PF

Figure 5: The routes of the SUAS are shown for agents at a random starting positions on a circle with a 100 meter radius and
with a collision range of 50 meters. The agents are given a waypoint goal directly across the circle from their starting point. (a)
shows the RVO method with noise characteristics defined in Table 1 and low deviation from a straight path. On the other hand,
(b) shows UVO with with noise characteristics defined in Table 1 and it performing more conservatively to better guarantee
collision avoidance. The UVO weights for time to collision and position and velocity uncertainty were respectively 100, 1, and

1 (see Table 2).
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(a) Worst case results.
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Figure 6: These tests highlight the upper and lower baseline for all our simulations. The worst case always has collisions while
the best case significantly reduces the number of collision which occur. This is most likely due to the reaction time of the SUAS.
The range axis indicates a particular run’s collision range.
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(a) GPS Position Kalman Filter
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(b) GPS Velocity Kalman Filter

Figure 7: The constant-jerk Kalman filter examples with truth, estimates, and 95% confidence bounds. This example has 10
SUAS with a collision range of 40 meters and zero communication dropout with noise characteristics of 3.0 meters and 1.0
meter/sec for position and velocity. The 40 meter collision range, indicated by the gray shading, is why the estimate is only

calculated for a short period of time (roughly for 15 seconds).
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Figure 8: GPS sharing scenario test results. The progression from RVO to using both the potential field and UVO is shown.
There is a visual improvement between RVO, UVO, and finally both using the potential fields and UVO. While the potential
fields do not seem to radically improve the avoidance, combining the potential fields with UVO appears to slightly improve

avoidance.
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desired velocity for the evading vehicle. The magnitude of
the repulsive force between vehicle A and an invading vehicle

1 is given by
fo—| (oY
" \d(A ) —b,

where d(A, I') is the Euclidean distance between vehicle A
and I, b, is the radius of the buffer zone, and ¢ is a constant
gain. This force drops off sharply for distances outside the
buffer zone radius, while inside distances will generate a large
repulsive force.

an

The force is used to determine an average velocity induced by
the PF as

N—-1

1 —e(4, 1)
U = ST ;f TG LT (18)

where NV is the total number of vehicles, e(4, I;) = [A, —
I Ay — 1,7 is vector pointing from the position of
vehicle A to the position of vehicle 5 invading vehicle, and
|I]| is the 2-norm.

Each vehicle’s modified desired velocity is computed as

20g + vpus

. (19)

Vd —

The penalties placed on admissible velocities are then calcu-
lated using vq.

4. RESULTS

The following section highlights results from performing
the UVO algorithm in realistic scenarios and compares this
method to RVO. More specifically, this section will overview
performance differences between UVO and RVO, highlight
Monte Carlo results from the two scenarios, and finally,
recommend a safe collision range separation for sSUAS using
this method.

All of these results are based on Monte Carlo simulations
where the SUAS have real-world SUAS dynamics and control.
The vehicles are quadrotors with a mass of 5 kg, mass
moment of inertia of 0.6271 kg m?, 0.6271 kg m?, 1.25 kg
m2, linear drag coeficients of 0.1, 0.1, 0.001, and angular
drag coefficients of 0.001, 0.001, 0.001. Each quadrotor is
also running a PID controller on roll, pitch, and yaw rate.
The vehicles are randomly placed on a radius of 100 meters,
are randomly assigned a collision range, and are commanded
to achieve a waypoint exactly opposite from the other agent
(see Figure 5).

The collision range is defined as the range at which a sUAS
takes into consideration another vehicle by tracking its move-
ment and performing collision avoidance maneuvers. For
example, if a vehicle is located at a distance 30 m away but
the SUAS has a collision range of 20 m, then the vehicle will
not induce a collision cone. If one or more collisions occurs
among any vehicles for that run, then it is indicated with a
blue dot. A collision happens if any two vehicles get within
2¢, m of each other, where ¢, is the radius that represents the
vehicles’ physical size.

All of the scenarios use the following max acceleration and
weights shown in Table 2. RVO and UVO both use the same
max acceleration and time to collision weight. Only UVO
uses the weights for both position and velocity uncertainty.
Additionally the buffer zone radius b, is define as well as
the collision radius ¢,. Other variables such as the maximum
velocity, the number of vehicles, and amount of noise intro-
duced into the system are defined for each scenario (see Table

1).
Table 2: Results Variables and Weights

Weight/Variable |  Value
GEE 100 m/sec’
Whime 100
Wpos 1
Wyel 1
by 5m
Cr 1m

Performance

The difference in performance of RVO and UVO is high-
lighted in Figure 5 where the Figure 5a is RVO and Figure
5b is UVO. They both have a collision range of 50 meters and
avoid all other agents. The gray circles are where the vehicles
start and solid lines represent the paths of the vehicles.

One major difference between RVO and UVO is that RVO
allows the agents to select a path that is close to the straight
line path from the starting point to their ending point. UVO,
on the other hand, directs the vehicles to a more diverging
route to avoid regions of uncertainty where other vehicles
may be located. This difference results from selecting high
weights for position and velocity uncertainty (Equations (13)
and (14)) and the agents are diverging from all other agents
that have high uncertainty.

With this behavior in mind, UVO was tuned in the following
scenarios so that the agents would have moderate deviation
from a straight-line path. Targe weights on the uncertainty
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Figure 10: GPS scenario test with realistic characteristics. This scenario had GPS noise of 1 meter and 0.1 meter/sec for
position and velocity. It varied the number of vehicles from 5 to 15 and the max velocity from 5 to 10 m/s. (a) shows 1000 runs
as well as the recommended collision range for operating in velocities ranging from 5 to 10 m/s. We choose to set this point
at 80 meters because no collisions happen greater than this range. (b) shows max velocity verses range for each simulation,
with red stars representing zero collisions and blue dots as one or more collisions. This plot also shows an upper boundary for
collisions. Almost every blue dot which represents a collision is below this line and represents the relationship between range

and max velocity.

penalties tend to push the agents away from an optimal path
but also decreases the chance for collisions.

Additionally, as a starting point for the scenarios, we ran both
a worst case and a best case scenario for vehicles using the
RVO method. (Figure 6). Both cases do not use a Kalman
filter (i.e. RVO uses the unfiltered GPS measurements) and
the noise characteristics defined in Table 1. Notice that in
the RVO Best Case, the method still has collisions despite
having perfect knowledge of another vehicle. We postulate
that this is due to a combination of two reasons. First, RVO
seems to be less conservative as explained above and shown
in Figure 5. Second, RVO fails occasionally when vehicles
are too close as described and then resolved in Section 3.

GPS Sharing

For the real-world GPS sharing scenario, we constrained the
SUAS to amax velocity of 5 m/sec and the number of vehicles
to 10. The vehicles share both their position and velocity with
standard deviation noise characteristics of 3.0 meters and 1.0
meters/sec.

Figure 7 shows how the constant-jerk Kalman filter performs
in this scenario. Notice that the estimation only occurs when
the agents are within the specified collision range (shown
with the gray background). Additionally, we modeled the
GPS simulation to have random GPS message dropout. This
dropout simulates bandwidth issues that might occur if too
many sUAS are in the airspace. For the GPS simulations, we
use a random dropout of 50%.

The GPS sharing scenarios are defined in Table 1 with the
combination of a Kalman filter and RVO being KF-RVO
and the combination of UVO and PF being UVO-PE. The
corresponding results are shown in Figures 8 while Figure
9 shows the exponential best fit of each of the scenarios.
The KF-RVO method shows how pairing the RVO method
with a Kalman filter allows the RVO method to approach
the RVO Best Case. Additionally, both the PF and the

UVO simulations give better results than the RVO Best Case
suggesting that both high uncertainty and degencrate RVO
situations caused RVO to fail. Finally, the UVO and the
UVO-PF scenarios are very similar but overall the UVO-
PF simulation does slightly better. This is because the PF
was designed to only mitigate occasional situations where the
vehicles enter an undesirable configuration. Overall UVO-PF
performs the best.

Recommendations

To recommend an appropriate collision range for SUAS we
ran 1000 UVO-PF Monte Carlo simulations where each was
assigned a random collision range. Additionally, we varied
the number of vehicles between 5-15 and the max velocity
between 5-10 m/sec for each simulation. The results of the
simulations are shown in Figure 10.

Figure 10a shows the collision data similar to the plots in
Figure 8. We would recommend a collision avoidance range
roughly 80 meters because no collisions happen after this
point.  Selecting a collision range above 80 meters will
achieve an appropriate balance of collision avoidance and
broadcast range. Note that this recommendation applies
specifically to SUAS with similar characteristics to the sSUAS
in these scenarios.

Figure 10b shows the maximum velocity verses range for
each simulation. This plot highlights zeros collision with red
starts and more than one collision with blue dots. We added
the line to visually highlight the trend between range and max
velocity. This trend supports the hypothesis that faster sSUAS
will need larger collision ranges. We expect that this trend
can be extrapolated to faster SUAS.

5. CONCLUSION

This paper has proposed an extension to the VO method
by incorporating positional and velocity uncertainty in the
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formulation of the collision cone. We derived collision cone
equations as well as introduced a potential field to provide
a way to counteract degenerate states when vehicles are too
close together. Finally, we have presented results which show
that the combination of the uncertainty cones and the poten-
tial field perform better in high-uncertainty environments.

From the work presented we can draw the following conclu-
sions.

1) The combination of the UVO and the potential ficlds
(UVO-PF) outperform the original RVO method when there
is a high amount of uncertainty in a system.

2) Collision range and velocity of the SUAS appear to be the
primary characteristics that affect whether a SUAS will be
successful in avoiding another sUAS.

3) We recommend a collision avoidance range of 80 meters
and above when flying the UVO-PF method with aircraft
having similar capabilities to the SUAS described here.

Future work includes extending the algorithm to 3D as well
as including additional variables into the Monte Carlo sim-
ulations. All of the agents have exactly the same dynam-
ics and control scheme but variation would provide more
realistic simulations. Additionally, this work could benefit
from agents that are unable to go below a certain velocity
(i.e. fixed-wing aircraft). Finally, future work will include
hardware verification of the algorithm.
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