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RANDOMIZED PROJECTION METHODS FOR LINEAR SYSTEMS
WITH ARBITRARILY LARGE SPARSE CORRUPTIONS\ast 
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Abstract. In applications like medical imaging, error correction, and sensor networks, one
needs to solve large-scale linear systems that may be corrupted by a small number of arbitrarily
large corruptions. We consider solving such large-scale systems of linear equations Ax = b that are
inconsistent due to corruptions in the measurement vector b. With this as our motivating example,
we develop an approach for this setting that allows detection of the corrupted entries and thus
convergence to the ``true"" solution of the original system. We provide analytical justification for our
approaches as well as experimental evidence on real and synthetic systems.
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1. Introduction. We consider solving large-scale systems of linear equations
represented by a matrix A \in \BbbR m\times n and vector b \in \BbbR m. We are interested in the
highly overdetermined setting, where m \gg n, which means the system need not nec-
essarily have a solution. One may then seek the least squares solution xLS which
minimizes \| Ax - b\| 2 (where \| \cdot \| denotes the Euclidean norm); many efficient solvers
have been developed that converge to such a solution. An alternative setting is one
where there is a solution x\ast (which we refer to as the pseudosolution) to our desired
system Ax = b\ast , but rather than observing b\ast we only have access to a corrupted
version, b, where b = b\ast + bC . When the number of nonzero entries in bC , denoted
\| bC\| 0, is small relative to m, one may still hope to recover the ``true"" solution x\ast .1

This type of sparse corruption models many applications, ranging from medical imag-
ing to sensor networks and error correcting codes. For example, a small number of
sensors may malfunction, resulting in large catastrophic reporting errors in the vector
b; since the reporting errors themselves may be arbitrarily large, the least squares
solution is far from the desired solution, but since the number of such reporting errors
is small, we may still hope to recover the true solution to the uncorrupted system.
We emphasize that such a pseudosolution x\ast may be very far from the least squares
solution xLS when the entries in bC are large, even when there are only a few nonzero
corruptions; see Figure 1 for a visual. Similar types of sparse errors may also ap-
pear in medical imaging from artifacts or system malfunctions, or in error correcting
codes from transmission errors. Indeed, the problem of so-called sparse recovery is
well studied in the approximation and compressed sensing literature [FR13, EK12].
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S20 JAMIE HADDOCK AND DEANNA NEEDELL

x\ast 

xLS

Fig. 1. A system for which the pseudosolution x \star is very far from the least squares solution
xLS. Lines represent the hyperplanes consisting of all systems \{ x : aT

i x = bi\} for rows aT
i of A.

However, in this paper we are concerned with the setting where the system is highly
overdetermined, the errors in b are sparse and large, and the system may be so large-
scale that it cannot be fully loaded into memory. This latter property has sparked a
recent resurgence of work in the area of iterative solvers that do not need access to
the entire system at once [GHJ75, HLL78, Nat01, SV09]. Our work is motivated by
such iterative methods.

It is important to point out that solving for the pseudosolution of systems Ax =
b = b\ast + bC , where \| bC\| 0 is small relative to m is related to finding a solution of
a large consistent system within an inconsistent system. The problem of finding the
maximal consistent subsystem of an inconsistent system is known as MAX-FS and it
is known to be NP-hard without a polynomial-time approximation scheme (PTAS)
[AK95]. This problem is one of the focuses of infeasibility analysis, the study of
changes necessary to make an infeasible system of linear constraints feasible [MKC00].
There are approximation algorithms [NR08] or, of course, one can solve the problem
in a brute force manner. Approaches for solving this problem generally fall into two
categories, heuristic methods which use solutions to relaxations of subproblems, and
branch-and-cut strategies for solving the integer program formulation of this problem
[Chi01, Man94, Pfe08]. These methods are not row-action methods and generally re-
quire operating on the entire system or large subsystems, making them impractical for
our setting. It has been previously observed that the behavior of projection and relax-
ation methods can detect inconsistent systems and thermal variants of these methods
have been developed for identifying consistent subsystems and even for approximating
MAX-FS solutions [JCC15, ABH05]. These methods are row-action methods, but are
designed for MAX-FS problems rather than the large consistent subsystem setting we
have described, and a comparison is not natural.

From this viewpoint, our problem is that of solving a consistent subsystem of
equations where we assume the size of this system is large relative to the size of
the entire inconsistent system. We are motivated by the setting in which one must
solve an overdetermined system of equations in which few of the rows have been
corrupted. Often, in applications, one is not concerned with finding the maximal
feasible subsystem, but instead finding its solution, and this subsystem can be assumed

D
ow

nl
oa

de
d 

09
/0

1/
20

 to
 7

6.
95

.2
42

.8
6.

 R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PROJECTION METHODS FOR CORRUPTED LINEAR SYSTEMS S21

to be large. Applications in this framework include logic programming, error detection
and correction in telecommunications, and infeasible linear programming models. Our
approach to solving for x \star will make use of the randomized Kaczmarz method, which
we discuss next.

The Kaczmarz method is a popular iterative solver for overdetermined systems
of linear equations and is especially preferred for systems with an extremely large
number of rows. The method consists of sequential orthogonal projections toward
the solution set of a single equation (or subsystem). Given the system Ax = b, the
method computes iterates by projecting onto the hyperplane defined by the equation
aTi x = bi, where aTi is a selected row of the matrix A and bi is the corresponding
entry of b. The iterates are recursively defined as

(1) xk+1 = xk +
bi  - aTi x

\| ai\| 2
ai,

where ai is selected from among the rows of A. The seminal work [SV09] proved
exponential convergence for the randomized Kaczmarz method where the rows ai are
chosen with probability \| ai\| 2/\| A\| 2F . Since then many variants of the method have
been proposed and analyzed for various types of systems; see, e.g., [GR15, NT14,
ZF13, EN11, LL10].

It is known that the randomized Kaczmarz method converges for systems Ax = b
corrupted by noise with an error threshold dependent on A and the noise. In [Nee10]
it was shown that this method has iterates that satisfy

(2) \| xk  - xLS\| 2 \leq 
\biggl( 
1 - \sigma 2

min(A)

\| A\| 2F

\biggr) k

\| x0  - xLS\| 2 +
\| A\| 2F

\sigma 2
min(A)

\| e\| 2\infty ,

where \sigma min(A) denotes the minimum singular value of A, \| A\| F its Frobenius norm,
xLS the least squares solution and e = b - AxLS denotes the error term (also known
as the residual). There are variants of this method that converge to the least squares
solution [CEG83, ZF13]; however, these typically either require operations on the
columns or unknown relaxation parameters. Additionally, it is known that if a linear
system of equations or inequalities is feasible, then randomized Kaczmarz will provide
a proof or certificate of feasibility, and there are probabilistic guarantees on how
quickly it will do so [DLHN17]. However, we are now interested in using randomized
Kaczmarz for infeasible systems in which the least-squares solution is unsatisfactory
because it is far from satisfying most of the equations (e.g., the noise is sparse and
large).

1.1. Contribution. We develop methods that seek to identify the corrupted
entries in b and then converge to the pseudosolution. Our methods consist of several
``rounds"" of many iterations of the Randomized Kaczmarz (RK) method. The intu-
ition behind these methods is that if there are only few corrupted equations and many
consistent equations, then the iterations of RK will select consistent equations with
high probability, producing an iterate near the pseudosolution and then the largest
residual entries will correspond to the corrupted equations. We give a lower bound
on the probability that a single round detects the corrupted equations. One may run
many independent rounds and increase the probability of detecting these corrupted
constraints. We then give a lower bound on the probability that one of these many
rounds will detect the corrupted equations.
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S22 JAMIE HADDOCK AND DEANNA NEEDELL

1.2. Notation. To simplify, we define some general notation to be used through-
out the paper. Let | | \cdot | | refer to the Euclidean norm. We will denote vectors in boldface
(e.g., x), and matrices and scalars in nonbold (e.g., A and bi). We use aTi \in \BbbR n to
represent the ith row of A \in \BbbR m\times n and ei \in \BbbR m to represent the ith coordinate
vector. We will denote the origin as 0 \in \BbbR n. Let [m] = \{ 1, 2, . . . ,m\} and let [A] refer
to the set of indices of the rows of matrix A (i.e., for A \in \BbbR m\times n, [A] = [m]). For
D \subset [A], we let ADC = A[A] - D be the submatrix of A whose rows are indexed by the
complement of D. Denote the minimum singular value of A as \sigma min(A).

As mentioned above, we consider the situation in which A \in \BbbR m\times n and b \in \BbbR m

define an inconsistent system of equations, but there is a large consistent subsystem.
That is, A and b\ast \in \BbbR m define the consistent system of equations with solution
x\ast \in \BbbR n (i.e., Ax\ast = b\ast ) which we will refer to as the pseudosolution of the system
of equations defined by A and b. The right-hand side vector b\ast is corrupted by bC ,
so b = b\ast + bC . Let I \subset [m] be the set of indices of inconsistent equations, i.e.,
supp(bC) = I and s := | I| \ll m. We refer to the amount of corruption in each
index of I by \epsilon i \in \BbbR , so bC =

\sum 
i\in I \epsilon iei. We let \epsilon \ast be the smallest absolute entry

of the corruption, \epsilon \ast := mini\in I | \epsilon i| . We will also use A\ast to refer to the matrix A
without the rows indexed by I, A\ast = AIC , and likewise for b\ast . Note then that
b\ast := bIC = b\ast 

IC . For convenience, we will assume throughout the paper that the
rows of A are normalized to have unit norm.

2. A Kaczmarz-type approach for corrupted systems. We consider here
solving a consistent system of linear equations that has been corrupted, Ax = b\ast +bC

with \| bC\| 0 = s \ll m. Formally, given matrix A and right-hand side vector b, we are
searching for x\ast given by

(3) (bC ,x
\ast ) = argmin\bfb C ,\bfx \| bC\| 0 such that Ax = b - bC .

One can design pathological examples of corrupted linear systems in which the solution
to (3) differs from the pseudosolution; however, typically these solutions coincide. In
particular, for ai in general position, this holds. First, we recall the RK method and
fundamental convergence results.

Method 1. Randomized Kaczmarz [SV09].

1: procedure RK(A,b,x0, k)
2: for j = 1, 2, . . . , k do

3: xj = xj - 1 +
bij - \bfa T

ij
\bfx j - 1

\| \bfa ij
\| 2 aij , where ij = t \in [m] with probability propor-

tional to \| at\| 2
4: end for
5: return xk

6: end procedure

Theorem 1 (see [SV09]). Let x be the solution of Ax = b, then RK converges
to x in expectation with the average error

\BbbE \| xk  - x\| 2 \leq 
\biggl( 
1 - \sigma 2

min(A)

\| A\| 2F

\biggr) k

\| x0  - x\| 2.

The intuition behind our proposed approach is simple. Since the number of cor-
ruptions is small, most iterates of an RK approach will be close to the pseudosolution,
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PROJECTION METHODS FOR CORRUPTED LINEAR SYSTEMS S23

since it is rare to project onto a corrupted hyperplane. Therefore, if we run the RK
method several times, or for several rounds of iterations, most of the iterates upon
which we halt will be close to the pseudosolution. Such iterates will also have the
property that the largest components of their residual, | Axk  - b| , will correspond to
the large corrupted entries. We can thus utilize this knowledge to gradually detect the
corruptions, remove them from the system, and solve for the desired pseudosolution.

Our proposed methods can thus be described as follows. Each method consists
of W rounds of k RK iterations beginning with x0 = 0. In each round, we collect
the d indices of the largest magnitude residual entries and after all rounds, we solve
the system without the rows of A indexed by these collected indices (there may be as
many as dW rows removed). The methods differ in two ways. First, we can choose
to remove d rows within each round (resulting in Method 2 below), or simply collect
these indices and remove all collected rows after the W rounds (resulting in Methods
3 and 4 below). Second, when waiting to remove the rows until after W rounds, we
may simply select the d largest residual entries in each round (Method 3), or we may
require that the selected indices are always unique (so exactly dW rows are removed),
resulting in Method 4. The values W,k, and d are all parameters of the methods. We
give theoretical results for various natural choices of these parameters.

Method 2. Multiple Round Kaczmarz with Removal.

1: procedure MRKwR(A,b, k,W, d)
2: B = A, c = b
3: for i = 1, 2, . . . ,W do
4: xi

k = RK(B, c,0, k)
5: D = argmaxD\subset [B],| D| =d

\sum 
j\in D | Bxi

k  - c| j
6: B = BDC , c = cDC

7: end for
8: return x, where Bx = c
9: end procedure

Method 3. Multiple Round Kaczmarz without Removal.

1: procedure MRKwoR(A,b, k,W, d)
2: S = \emptyset 
3: for i = 1, 2, . . . ,W do
4: xi

k = RK(A,b,0, k)
5: D = argmaxD\subset [A],| D| =d

\sum 
j\in D | Axi

k  - b| j
6: S = S \cup D
7: end for
8: return x, where ASCx = bSC

9: end procedure

2.1. Main results. Our theoretical results provide a lower bound for the prob-
ability of successfully removing all corrupted equations after performing Method 3
or Method 4 with natural values for k, d, and W . Lemma 1 shows that there is a
detection horizon around the pseudosolution, so that if \| x - x\ast \| is sufficiently small,
the largest residual entries (of | Ax - b| ) correspond exactly to the corrupted equations
and we may distinguish these equations from the consistent system. Lemma 2 gives
a value of k so that after k iterations of RK, one can give a nonzero lower bound on
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S24 JAMIE HADDOCK AND DEANNA NEEDELL

Method 4. Multiple Round Kaczmarz without Removal with Unique Selection.

1: procedure MRKwoRUS(A,b, k,W, d)
2: S = \emptyset 
3: for i = 1, 2, . . . ,W do
4: xi

k = RK(A,b,0, k)
5: D = argmaxD\subset [A] - S,| D| =d

\sum 
j\in D | Axi

k  - b| j
6: S = S \cup D
7: end for
8: return x, where ASCx = bSC

9: end procedure

the probability that the current iterate is within the detection horizon. Theorems 2
and 3 then give lower bounds on the probability of successfully detecting all corrupted
equations in one out of all W rounds for Methods 3 and 4, respectively. Proofs of all
results are contained in the appendix.

Lemma 1. If \| x - x\ast \| < 1
2\epsilon 

\ast , we have that the d \leq s indices of largest magnitude
residual entries are contained in I; that is, for

D = argmax
D\subset [A],| D| =d

\sum 
i\in D

| Ax - b| i

we have D \subset I.

Lemma 2. Let 0 < \delta < 1. Define

k\ast = max

\Biggl( 
0,

\Biggl\lceil 
log
\Bigl( 

\delta (\epsilon \ast )2

4\| \bfx \ast \| 2

\Bigr) 
log
\Bigl( 
1 - \sigma 2

min(A\ast )

m - s

\Bigr) \Biggr\rceil \Biggr) .
Then in round 1 of Method 3 or Method 4, the iterate produced by the RK iterations,
xi
k\ast satisfies

(4) \BbbP 
\biggl[ 
\| xi

k\ast  - x\ast \| \leq 1

2
\epsilon \ast 
\biggr] 
\geq (1 - \delta )

\Bigl( m - s

m

\Bigr) k\ast 

.

First, note that we must restrict k\ast to be nonnegative; since log
\bigl( 
1 - \sigma 2

min(A\ast )
m - s

\bigr) 
is

negative, if log
\bigl( \delta (\epsilon \ast )2

4\| \bfx \ast \| 2

\bigr) 
is positive, we must define k\ast = 0. However, this corresponds

to the situation in which \epsilon \ast > 2\| x\ast \| and the initial iterate x0 = 0 is within the
detection horizon. Additionally, note that k\ast depends upon \delta , so one is not able to
make this probability as large as one likes. As \delta decreases, k\ast increases, so the right-

hand side of (4) is bounded away from 1. In Figure 2, we plot k\ast and (1 - \delta )
\bigl( 
m - s
m

\bigr) k\ast 

for Gaussian systems with various number of corruptions. In the plots, we see that
the value of \delta which maximizes this probability depends upon s. Determining this
maximizing \delta was not computable in closed form. Additionally, we point out that the
empirical behavior of the method does not appear to depend upon \delta ; we believe this
is an artifact of our proof.

Theorem 2. Let 0 < \delta < 1. Suppose d \geq s, W \leq \lfloor m - n
d \rfloor , and k\ast is as given in

Lemma 2. Then Method 3 on A,b will detect the corrupted equations (I \subset S) and the
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PROJECTION METHODS FOR CORRUPTED LINEAR SYSTEMS S25

remaining equations given by A[m] - S ,b[m] - S will have solution x\ast with probability at
least

1 - 
\biggl[ 
1 - (1 - \delta )

\Bigl( m - s

m

\Bigr) k\ast \biggr] W
.

In Figure 2, we plot 1 - 
\bigl[ 
1 - (1 - \delta )

\bigl( 
m - s
m

\bigr) k\ast \bigr] W
for corrupted Gaussian systems

and choices of \delta . Here W = \lfloor (m  - n)/d\rfloor and d = s. Again, we reiterate that we
believe the dependence upon \delta is an artifact of the proof of Lemma 2. Substituting
e.g., \delta = 0.5 in probability bounds gives a value not far from its maximum for all
systems we studied; see Figures 2 and 3.

Theorem 3. Let 0 < \delta < 1. Suppose d \geq 1, W \leq \lfloor m - n
d \rfloor , and k\ast is as given in

Lemma 2. Then Method 4 on A,b will detect the corrupted equations (I \subset S) and the
remaining equations given by A[m] - S ,b[m] - S will have solution x\ast with probability at
least

1 - 
\lceil s/d\rceil  - 1\sum 

j=0

\biggl( 
W

j

\biggr) 
pj(1 - p)W - j ,

where p = (1 - \delta )
\Bigl( 

m - s
m

\Bigr) k\ast 

.

We are not able to prove a result similar to Theorem 2 or Theorem 3 for Method
2 due to the fact that rounds of this method are not independent because one removes
equations after each round.

In Figure 4, we plot 1 - 
\sum \lceil s/d\rceil  - 1

j=0

\bigl( 
W
j

\bigr) 
pj(1 - p)W - j for corrupted Gaussian systems

and choices of \delta . Here W = 2, d = \lceil s/2\rceil , and k\ast is as given in Lemma 2. We believe
that the dependence upon \delta is an artifact of our proof. Evidence suggesting this is
seen in the middle and right plots of Figure 4, as the empirical behavior of Method 4
does not appear to depend upon \delta .

These bounds on the probability of successfully detecting all corrupted equations
in one round, while provable and nonzero, are pessimistic and do not resemble the
experimental rate of success for any systems we studied; see Figures 2 and 3. A tighter
bound on the rate of convergence for particular systems could provide a tighter lower
bound on this probability.

3. Experimental results. We are only able to prove theoretical results when
the rounds of Methods 3 and 4 are independent and for the specified values of k\ast and
d. However, in practice, these methods perform well for different values of k and d,
and Method 2 can be quite successful. In this section, we present experimental results
demonstrating the performance of these methods, for various choices of d and k, on
Gaussian, correlated, and real systems.

We plot our theoretical bounds as well as comparable empirical measures, which
we denote ``success rates."" Note that Theorem 2 provides a bound on the probability
that in one of the rounds of Methods 3 we successfully detect all of the corrupted
equations. For this reason, in Figures 2 and 3, we plot the empirical rate at which our
method selects all of the s corrupted equations in one of the W rounds over 100 trials.
However, in Figures 5 and 6, we plot the rates at which all of the s corrupted equations
are selected over all of the W rounds over 100 trials, which is a more practical measure
of success. However, Theorem 3 presents a bound on the probability that all of the
s corrupted equations are selected after all of the W rounds in Method 4. Figure 4
plots this bound alongside the corresponding empirical rate. The measure of success
plotted in each figure is defined in the figure caption.
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Fig. 2. Plots for Method 3 on 50000\times 100 Gaussian system (normalized) with various numbers
of corrupted equations, s. Upper left: k\ast as given in Lemma 2. Upper middle: lower bound on
probability of successfully detecting all corrupted equations in single round as given in Lemma 2.
Upper right: Lower bound on probability of successfully detecting all corrupted equations in one
round out of W = \lfloor m - n

s
\rfloor rounds as given in Theorem 2. Lower left: Experimental ratio of success

of detecting all s corrupted equations in one round out of W = \lfloor m - n
s

\rfloor for choice of \delta . Lower right:

Experimental ratio of success of detecting all s corrupted equations in one round out of W = \lfloor m - n
s

\rfloor 
for choice of k (number of RK iterations per round).

3.1. Random data experiments. The plots in Figures 2 and 5 are all for
Method 3 on a 50000 \times 100 Gaussian system defined by A with aij \sim \scrN (0, 1), then
normalized. The system is corrupted in randomly selected right-hand side entries
with random integers in [1, 5] so that \epsilon \ast = 1. For these plots and experiments, d = s.
The upper left image of Figure 2 plots the k\ast values defined in Lemma 2 for this
system, and the upper middle image plots the theoretically guaranteed probability of
selecting all s corrupted equations in a single round. The upper right image of Figure
2 plots the theoretically guaranteed probability of selecting all s corrupted equations
in one round out of the W = \lfloor m - n

s \rfloor , while the lower left image plots the ratio of
successful trials, in which all s corrupted equations were selected in one round of the
W , out of 100 trials. The lower right plot of Figure 2 plots how this ratio changes
as the number of RK iterations, k, in each round varies. Finally, Figure 5 plots
the ratio of successful trials, in which all s corrupted equations were selected after all
W = \lfloor m - n

s \rfloor rounds, out of 100 trials as one varies \delta (left) and k (right). We note that
the lower bounds on the probability of successfully detecting all corrupted equations
in one round are quite pessimistic; experimentally (in the lower left plot) we see
that Method 3 is able to detect all corruption for much larger numbers of corrupted
equations, s, than predicted theoretically (in the upper right plot). Additionally,
we note that experimentally, successfully detecting the corrupted equations does not
appear to depend upon \delta . For all 0 < \delta < 1, the k\ast value defined in Lemma 2 appears
to be large enough to guarantee convergence within the detection horizon.

D
ow

nl
oa

de
d 

09
/0

1/
20

 to
 7

6.
95

.2
42

.8
6.

 R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PROJECTION METHODS FOR CORRUPTED LINEAR SYSTEMS S27

0 0.2 0.4 0.6 0.8 1
3000

4000

5000

6000

7000

8000

k
*

s = 1

s = 10

s = 50

s = 75

s = 100

s = 200

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(1
-

)(
m

-s
/m

)k
*

s = 1

s = 10

s = 50

s = 75

s = 100

s = 200

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1
-[

1
-(

1
-

)(
m

-s
/m

)k
* ]W

s = 1

s = 10

s = 50

s = 75

s = 100

s = 200

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

S
u
c
c
e
s
s
 r

a
te

s = 100

s = 200

s = 300

s = 400

s = 500

s = 750

s = 1000

0 1000 2000 3000 4000

k

0

0.2

0.4

0.6

0.8

1

S
u
c
c
e
s
s
 r

a
te

s = 100

s = 200

s = 300

s = 400

s = 500

s = 750

s = 1000

Fig. 3. Plots for Method 3 on 50000\times 100 correlated system (normalized) with various numbers
of corrupted equations, s. Upper left: k\ast as given in Lemma 2. Upper middle: Lower bound on
probability of successfully detecting all corrupted equations in single round as given in Lemma 2.
Upper right: Lower bound on probability of successfully detecting all corrupted equations in one
round out of W = \lfloor m - n

s
\rfloor rounds as given in Theorem 2. Lower left: Experimental ratio of success

of detecting all s corrupted equations in one round out of W = \lfloor m - n
s

\rfloor for choice of \delta . Lower right:

Experimental ratio of success of detecting all s corrupted equations in one round out of W = \lfloor m - n
s

\rfloor 
for choice of k (number of RK iterations per round).

In Figure 4, we briefly explore the theoretical guarantees for Method 4 given in
Theorem 3, and the empirical behavior of this method. These plots are for a 50000\times 
100 Gaussian system (normalized) with various number, s, of corrupted equations.
We randomly sample s entries of the right-hand side vector b and corrupt them by
adding 1, so \epsilon \ast = 1. The plot on the left of Figure 4 plots the lower bound on
the probability of selecting all corrupted equations given in Theorem 3 for W = 2,
d = \lceil s/2\rceil , and k\ast as given in Lemma 2. Meanwhile, in the middle and right plots
of Figure 4, we plot the average fraction of corrupted equations recorded for Method
4 with W = \lceil s/d\rceil and d = \lceil s/10\rceil for 100 trials. The middle plot has k\ast (as given
in Lemma 2) RK iterations per round for varying \delta , while the right plot has varying
k (number of RK iterations per round). Note that this experiment is different from
the others we present in this section as we display the average fraction of corrupted
equations recorded over 100 trials, rather than the fraction of trials which detected
all corrupted equations. We note that the theoretical bound plotted on the left of
Figure 4 is even more pessimistic than of Method 3, but meanwhile the empirical
performance of Method 4 plotted in the middle and right of Figure 4 is even better
than that seen for Method 3. For this reason, we do not plot these bounds (Theorem
3) or the performance of Method 4 for additional systems as we expect the results to
trend similarly for other systems.

The figures for Method 3 mentioned above are recreated for a system whose rows
are more correlated (A \in \BbbR 50000\times 100 with aij \sim \scrN (1, 0.5) then normalized) in Figures
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Fig. 4. Plots for Method 4 on 50000\times 100 Gaussian system (normalized) with various number
of corrupted equations, s. Left: Bound given in Theorem 3 for Method 4 with W = 2, d = \lceil s/2\rceil , and
k\ast as given in Lemma 2. Middle: Average fraction of corrupted equations detected after W = \lceil s/d\rceil 
rounds recording d = \lceil s/10\rceil equations per round with k\ast (as given in Lemma 2) RK iterations
per round for varying \delta in 100 trials. Right: Average fraction of corrupted equations detected after
W = \lceil s/d\rceil rounds recording d = \lceil s/10\rceil equations per round with varying k (number of RK iterations
per round) in 100 trials.
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Fig. 5. Plots for Method 3 on 50000\times 100 Gaussian system (normalized) with various numbers
of corrupted equations, s. Left: Experimental ratio of successfully detecting all s corrupted equations
after all W = \lfloor m - n

s
\rfloor rounds for choice of \delta . Right: Experimental ratio of successfully detecting all

s corrupted equations after all W = \lfloor m - n
s

\rfloor rounds for choice of k (number of RK iterations per
round).

3 and 6. The system is corrupted in randomly selected right-hand side entries with
random integers in [1, 5] so that \epsilon \ast = 1. For these plots and experiments, d = s. The
upper left image of Figure 3 plots the k\ast values defined in Lemma 2 for this system,
and the upper middle image plots the theoretically guaranteed probability of selecting
all s corrupted equations in a single round of Method 3. The upper right image of
Figure 3 plots the theoretically guaranteed probability of selecting all s corrupted
equations in one round out of the W = \lfloor m - n

s \rfloor , while the lower left image plots the
ratio of successful trials, in which all s corrupted equations were selected in one round
of the W , out of 100 trials. The lower right plot of Figure 3 plots how this ratio
changes as the number of RK iterations, k, in each round varies. Finally, Figure 6
plots the ratio of successful trials, in which all s corrupted equations were selected
after all W rounds, out of 100 trials as one varies \delta (left) and k (right). We note that
the discrepancy between the lower bound on the probability of successfully detecting
all corrupted equations in one round (upper right plot) and the experimental rate of
detecting all corruption (lower left plot) is even larger than in the case of Gaussian
systems.
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Fig. 6. Plots for Method 3 on 50000\times 100 correlated system (normalized) with various numbers
of corrupted equations, s. Left: Experimental ratio of successfully detecting all s corrupted equations
after all W = \lfloor m - n

s
\rfloor rounds for choice of \delta . Right: Experimental ratio of successfully detecting all

s corrupted equations after all W = \lfloor m - n
s

\rfloor rounds for choice of k (number of RK iterations per
round).

First, note that k\ast , as given in Lemma 2, depends very weakly upon s. In the
upper left plots of Figures 2 and 3, the values of k\ast plotted are very slightly different
for different values of s (the line thickness makes these distinct lines appear as one).
Note that the definition of k\ast (the theoretically required number of RK iterations
to reach the detection horizon) is defined by the theoretical convergence rate which
can be quite pessimistic. As has been seen in the lower right plots of Figures 2
and 3, and in the right plots of Figures 5 and 6, detection can be successful with
a significantly smaller choice of k. Note that in Figure 2, the theoretically required
k\ast value is between 600 and 1400 but k > 500 seems to perform well. Likewise, in
Figure 3, the theoretically required k\ast value is between 3000 and 8000 but k > 500
seems to perform well. It is unsurprising that this bound is even more pessimistic
for the correlated system, as the conditioning of a correlated system causes the RK
convergence guarantee to be quite poor, while experimentally we see a much faster
rate of convergence.

3.2. Implementation considerations. There are several options for d, some
more practically feasible than others. Our theoretical results are probabilistic guar-
antees for Method 3 with d \geq s, which, of course, cannot be known in practice, as
well as for Method 4 with d \geq 1, which is practical, but the method is more expensive
computationally. In practice, one could choose d as the user estimate for s.

The choice of d and W are complementary in that increasing d decreases W
(since one may have less rounds if in each round more equations are selected). In
selecting d and W , we wish to balance the desire to increase d in order to record all
of the corrupted equations when we have a successful round with the fact that as d
grows, we can have less rounds. We never discard or record more than m - n of the
constraints, as at the end of any method, we wish to have a full rank linear system of
equations remaining whose solution is x\ast , the pseudosolution. Thus, for any d we may
not run more than W = \lfloor m - n

d \rfloor rounds. However, in practice, this choice of W may
be larger than is necessary. This is explored in Figures 7 and 8. In the experiment
producing Figure 7, we ran W = \lfloor m - n

d \rfloor rounds of Method 3 with k\ast (defined in
Lemma 2) RK iterations selecting d equations each round, and record the ratio of
successful trials, which selected all s corrupted equations after all rounds, out of 100
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Fig. 7. Left: Experimental ratio of success of detecting all s corrupted equations after all
W = \lfloor m - n

d
\rfloor rounds of k\ast (as given in Lemma 2) RK iterations selecting d equations for 50000\times 100

Gaussian system with s corrupted equations. Right: Experimental ratio of success of detecting all
s corrupted equations after all W = \lfloor m - n

d
\rfloor rounds of k\ast (as given in Lemma 2) RK iterations

selecting d equations for 50000\times 100 correlated system with s corrupted equations.
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Fig. 8. Left: Experimental ratio of success of detecting all s corrupted equations after all
W \leq \lfloor m - n

s
\rfloor rounds of k\ast (as given in Lemma 2) RK iterations for 50000\times 100 Gaussian system

with s corrupted equations. Right: Experimental ratio of success of detecting all s corrupted equations
after all W \leq \lfloor m - n

s
\rfloor rounds of k\ast (as given in Lemma 2) RK iterations for 50000\times 100 correlated

system with s corrupted equations.

trials. The figure on the left shows the results for a Gaussian system, while the figure
on the right shows the results for a correlated system. In the experiment producing
Figure 8, we ran W \leq \lfloor m - n

s \rfloor rounds of Method 3 with k\ast (defined in Lemma 2) RK
iterations selecting s equations each round, and recorded the ratio of successful trials,
which selected all s corrupted equations after all rounds, out of 100 trials. The figure
on the left is for a Gaussian system, while the figure on the right is for a correlated
system. Both are corrupted with random integers in [1, 5] in randomly selected entries
of b, so \epsilon \ast = 1.

Method 2, despite not having independent rounds, performs well in practice as is
seen in Figure 9. In this experiment, we perform W = \lfloor m - n

s \rfloor rounds of Method 2
with k RK iterations, removing s equations each round. The plot shows the ratio of
successful trials, in which all s corrupted equations are removed after all W rounds,
out of 100 trials. The method is run on a Gaussian system which is corrupted by
random integers in [1, 5] in randomly selected entries of b, so \epsilon \ast = 1.
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Fig. 9. Experimental ratio of success of removing (Method 2) all s corrupted equations after all
W = \lfloor m - n

s
\rfloor rounds for 50000\times 100 Gaussian system with s corrupted equations and choice of k.
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Fig. 10. Plots for 1200\times 400 tomography system with s = 100 corrupted equations. Left: average
fraction of corrupted equations detected in 100 trials after all W = \lfloor m - n

d
\rfloor rounds of Method 3.

Right: average fraction of corrupted equations removed in 100 trials after all W = \lfloor m - n
d

\rfloor rounds
of Method 2.

3.3. Real data experiments. We additionally test the methods on real data.
Our first experiments are on tomography problems, generated using the MATLAB
Regularization Toolbox by P.C. Hansen (http://www.imm.dtu.dk/\sim pcha/Regutools/)
[Han07]. In particular we present a 2D tomography problem Ax = b for an m \times n
matrix with m = fN2 and n = N2. Here A corresponds to the absorption along a
random line through an N \times N grid. In our experiments we set N = 20 and the over-
sampling factor f = 3. This yielded a matrix A with condition number \kappa (A) = 2.08.
As the resulting system was consistent, we randomly sampled s = 100 constraints
uniformly from among the rows of A and corrupted the right-hand side vector b by
adding 1 in these entries, so \epsilon \ast = 1. This corrupted system has k\ast = 66334 (as given
in Lemma 2). Figure 10 contains the average fraction of the s = 100 corrupted equa-
tions detected or removed for Methods 3 (left) and 2 (right) after all W = \lfloor m - n

d \rfloor 
rounds for various values of k (RK iterations per round) for 100 trials.

We also generated corrupted data sets using the Wisconsin (Diagnostic) Breast
Cancer data set, which includes data points whose features are computed from a
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Fig. 11. Plots for 699 \times 10 system defined by Wisconsin (Diagnostic) Breast Cancer data set
with s = 100 corrupted equations. Left: average fraction of corrupted equations detected in 100 trials
after all W = \lfloor m - n

d
\rfloor rounds of Method 3. Right: average fraction of corrupted equations removed

in 100 trials after all W = \lfloor m - n
d

\rfloor rounds of Method 2.

digitized image of a fine needle aspirate (FNA) of a breast mass and describe charac-
teristics of the cell nuclei present in the image [Lic13]. This collection of data points
forms our matrix A \in \BbbR 699\times 10, we construct b to form a consistent system, and then
corrupt a random selection of 100 entries of the right-hand side by adding 1, so \epsilon \ast = 1.
This corrupted system has k\ast = 3432 (as given in Lemma 2). Figure 11 contains the
average fraction of the s = 100 corrupted equations detected or removed for Meth-
ods 3 (left) and 2 (right) after all W = \lfloor m - n

d \rfloor rounds for various values of k (RK
iterations per round) for 100 trials.

3.4. Comparison to existing methods. As previously mentioned, although
related, a comparison of Methods 2, 3, and 4 to methods designed for MAX-FEAS

are not natural. Methods for MAX-FEAS are designed for a much more general and
harder class of problems than our proposed methods. Methods for MAX-FEAS seek to
carefully identify the largest feasible subproblem, while our methods seek to identify
and discard potentially corrupted equations.

However, one may consider our methods as iteratively computing a solution to
the current system of equations with a sparse residual, and deleting those entries
corresponding to the nonzero entries in the residual. Thus, we compare the behav-
ior of our method to convex optimization methods on the problem reformulation
min \| r\| 1 s.t. Ax  - b = r, as this reformulation should encourage sparsity in the
residual. In these experiments, we run several rounds of k iterations of various con-
vex optimization methods (initialized with the last iterate from the previous round)
implemented in the built-in MATLAB fmincon function, and remove d equations cor-
responding to the largest entries of the computed residual, r. We measure the CPU
time (using MATLAB cputime) required to remove all corrupted equations, and com-
pare this to the CPU time required by Method 2 with the same d and k values to
remove all corrupted equations.

We test on the same problem data as described in subsection 3.3. In Table 1, we
report the CPU time(s) required to remove all 100 corrupted equations by Method
2 with k = 8000 and d = 10, and the method described above for removing d = 10
equations with the algorithms ``interior-point,"" ``active-set,"" and ``sqp"" with
k = 10 iterations.
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Table 1
CPU time(s) required to remove all 100 corrupted equations by Method 2 with k = 8000

and d = 10, and the method described above for removing d = 10 equations with the algorithms
``interior-point,"" ``active-set,"" and ``sqp"" with k = 10 iterations.

Method 2 interior-point active-set sqp

tomography 1.72 795.66 6435.21 3513.30
breast cancer 1.74 202.09 2643.15 507.98

4. Conclusion. We have presented a framework of methods for using random-
ized projection methods to detect and remove corruptions in a system of linear equa-
tions. We provide theoretical bounds on the probability that these methods will
successfully detect and remove all corrupted equations. Moreover, we provide ample
experimental evidence that these methods successfully detect corrupted equations and
these results far surpass the theoretical guarantees.

Appendix A. Proofs of main results. We separate our main theoretical
results from their proofs so as to minimize distraction from the progression of the
results and plots of the probability bounds demonstrated.

Proof of Lemma 1. Suppose \| x - x\ast \| < 1
2\epsilon 

\ast . Note that for \| ai\| = 1, we have

| ri| = | Ax - b| i = | aTi x - bi| =
| aTi x - bi| 

\| ai\| 
= d(x, Hi),

where d(x, H) is the Euclidean distance of x to the set H, and Hi = \{ x : aTi x = bi\} 
is the hyperplane defined by the ith equation. Next, note that

d(x\ast , Hi) = | aTi x\ast  - bi| = | b\ast i  - bi| =

\Biggl\{ 
| \epsilon i| , i \in I,

0, i \not \in I.

Now, consider ri for i \in I. Denoting by PH the orthogonal projection onto H,
note that

| ri| = d(x, Hi) = \| PHi
(x) - x\| 

= \| PHi
(x) - x\ast  - (x - x\ast )\| 

\geq | \| PHi
(x) - x\ast \|  - \| x - x\ast \| | 

\geq d(x\ast , Hi) - \| x - x\ast \| 

>
1

2
\epsilon \ast ,

where the first inequality follows from the triangle inequality and the second from the
fact that \| PHi

(x) - x\ast \| \geq d(x\ast , Hi) = | \epsilon i| \geq \epsilon \ast > \| x - x\ast \| .
For i \not \in I, since x\ast \in Hi,

ri = d(x, Hi) \leq \| x - x\ast \| <
1

2
\epsilon \ast .

To summarize,

| ri| = | aTi xk  - bi| 

\Biggl\{ 
< 1

2\epsilon 
\ast for i \not \in I,

> 1
2\epsilon 

\ast for i \in I.
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Thus, if we consider the above,

D = argmax
D\subset [A],| D| =d

\sum 
i\in D

| Ax - b| i

is clearly a subset of I for d \leq s.

Proof of Lemma 2. Let E be the event that i1, i2, . . . , ik\ast \not \in I for all index selec-
tions in round W . Note that

\BbbP (E) \geq 
\biggl( 
m - s

m

\biggr) k\ast 

since there are m  - s consistent equations and the equations are being selected uni-
formly at random.

Now, note that if one conditions upon E and looks at the expected value of
\| xk\ast  - x\ast \| 2, this will be the same value as the expectation of \| xk\ast  - x\ast \| 2 if xk\ast is
created with RK run on A\ast ,b\ast ; we denote this expectation as \BbbE A\ast ,\bfb \ast [\| xk\ast  - x\ast \| 2].
Applying Theorem 1, we see that

\BbbE [\| xk\ast  - x\ast \| 2| E] = \BbbE A\ast ,\bfb \ast [\| xk\ast  - x\ast \| 2]

\leq 
\biggl( 
1 - \sigma 2

min(A\ast )

m - s

\biggr) k\ast 

\| x0  - x\ast \| 2

=

\biggl( 
1 - \sigma 2

min(A\ast )

m - s

\biggr) k\ast 

\| x\ast \| 2.

Now, since

k\ast \geq 
log
\bigl( \delta (\epsilon \ast )2

4\| \bfx \ast \| 2

\bigr) 
log
\bigl( 
1 - \sigma 2

min(A\ast )

(m - s)

\bigr) ,
we have

\bigl( 
1 - \sigma 2

min(A\ast )
m - s

\bigr) k\ast 

\leq \delta (\epsilon \ast )2

4\| \bfx \ast \| 2 and so

\BbbE [\| xk\ast  - x\ast \| 2| E] \leq \delta 

4
(\epsilon \ast )2.

Applying the conditional Markov inequality, we have

\BbbP [\| xk\ast  - x\ast \| 2 >
1

4
(\epsilon \ast )2| E] \leq \BbbE [\| xk\ast  - x\ast \| 2| E]

1
4 (\epsilon 

\ast )2

\leq 
\delta 
4 (\epsilon 

\ast )2

1
4 (\epsilon 

\ast )2
= \delta .

Thus, \BbbP [\| xk\ast  - x\ast \| 2 \leq 1
4 (\epsilon 

\ast )2| E] \geq 1 - \delta so

\BbbP [\| xk\ast  - x\ast \| \leq 1

2
\epsilon \ast ] \geq (1 - \delta )

\biggl( 
m - s

m

\biggr) k\ast 

.

This completes the proof.
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Proof of Theorem 2. Since d \geq s, we need only have one ``successful"" round where
\| xk\ast  - x\ast \| < 1

2\epsilon 
\ast in order to guarantee detection of all of the corrupted equations by

Lemma 1. Since all of the rounds are independent from each other in Method 3 and by

Lemma 2 the probability that \| xk\ast  - x\ast \| < 1
2\epsilon 

\ast is at least p := (1 - \delta )
\bigl( 
m - s
m

\bigr) k\ast 

, we may
bound the probability of success by that of a binomial distribution with parameters
W and p. Thus, success happens with probability at least

1 - 
\biggl[ 
1 - (1 - \delta )

\Bigl( m - s

m

\Bigr) k\ast \biggr] W
.

This completes the proof.

Proof of Theorem 3. Since d \geq 1 and we are selecting unique indices in each
iteration of Method 4, we need to have \lceil s/d\rceil ``successful"" rounds where \| xk\ast  - x\ast \| <
1
2\epsilon 

\ast in order to guarantee detection of all of the corrupted equations by Lemma 1.
Since all of the rounds of RK iterations are independent from each other in Method
4 and by Lemma 2 the probability that \| xk\ast  - x\ast \| < 1

2\epsilon 
\ast is at least p := (1  - 

\delta )
\bigl( 
m - s
m

\bigr) k\ast 

, we may bound the probability of success by that of a cumulative binomial
distribution with parameters W and p and we calculate the probability that the
number of successes, j, is at least \lceil s/d\rceil . Thus, success happens with probability
defined by the probabilities that less than \lceil s/d\rceil rounds are successful. The probability
of success is bounded below by

1 - 
\lceil s/d\rceil  - 1\sum 

j=0

\biggl( 
W

j

\biggr) 
pj(1 - p)W - j .

This completes the proof.
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