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Interplay between superconductivity and non-Fermi liquid at a quantum critical point in a metal. I.
The γ model and its phase diagram at T = 0: The case 0 < γ < 1
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Near a quantum critical point in a metal, a strong fermion-fermion interaction, mediated by a soft boson,
acts in two different directions: it destroys fermionic coherence and it gives rise to an attraction in one or more
pairing channels. The two tendencies compete with each other. We analyze a class of quantum critical models,
in which momentum integration and the selection of a particular pairing symmetry can be done explicitly,
and the competition between non-Fermi liquid and pairing can be analyzed within an effective model with
dynamical electron-electron interaction V (�m ) ∝ 1/|�m|γ (the γ model). In this paper, the first in the series, we
consider the case T = 0 and 0 < γ < 1. We argue that tendency to pairing is stronger, and the ground state is a
superconductor. We argue, however, that a superconducting state is highly nontrivial as there exists a discrete set
of topologically distinct solutions for the pairing gap �n(ωm ) (n = 0, 1, 2, . . . , ∞). All solutions have the same
spatial pairing symmetry, but differ in the time domain: �n(ωm ) changes sign n times as a function of Matsubara
frequency ωm. The n = 0 solution �0(ωm ) is sign preserving and tends to a finite value at ωm = 0, like in BCS
theory. The n = ∞ solution corresponds to an infinitesimally small �(ωm ), which oscillates down to the lowest
frequencies as �(ωm ) ∝ |ωm|γ /2 cos[2β log(|ωm|/ω0)], where β = O(1) and ω0 is of order of fermion-boson
coupling. As a proof, we obtain the exact solution of the linearized gap equation at T = 0 on the entire frequency
axis for all 0 < γ < 1, and an approximate solution of the nonlinear gap equation. We argue that the presence of
an infinite set of solutions opens up a new channel of gap fluctuations. We extend the analysis to the case where
the pairing component of the interaction has additional factor 1/N and show that there exists a critical Ncr > 1,
above which superconductivity disappears, and the ground state becomes a non-Fermi liquid. We show that all
solutions develop simultaneously once N gets smaller than Ncr .
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I. INTRODUCTION.

The interplay between superconductivity and pairing near
a quantum critical point (QCP) in a metal is a fasci-
nating subject, which attracted substantial attention in the
correlated electron community after the discovery of super-
conductivity (SC) in the cuprates, heavy-fermion and or-
ganic materials, and, more recently, Fe-pnictides and Fe-
chalcogenides (see, e.g., Refs. [1–12]). Itinerant QC models,
analyzed analytically in recent years include, e.g., models
of fermions in spatial dimensions D � 3 (Refs. [13–18]),
two-dimensional (2D) models near spin-density-wave (SDW)
and charge-density-wave (CDW) instabilities (Refs. [19–37]),
2kF density-wave instability (Ref. [38]), pair-density-wave
instability [39,40], q = 0 instabilities toward a Pomer-
anchuk order instability [34,41–51] and toward circulating
currents [52], 2D fermions at a half-filled Landau level
[53], generic QC models with different critical exponents
[54–62], Sachdev-Ye-Kitaev (SYK) and SYK-Yukawa mod-
els [63–67], strong coupling limit of electron-phonon super-
conductivity [68–72], and even color superconductivity of
quarks, mediated by gluon exchange [73]. These problems
have also been studied using various numerical techniques
[36,74–77].

From theory perspective, the key interest in the pairing
near a QCP is due to the fact that an effective dynamic
electron-electron interaction V (q,�), mediated by a critical
collective boson, which condenses at a QCP, provides strong
attraction in one or more pairing channels and, at the same
time, gives rise to non-Fermi liquid (NFL) behavior in the
normal state. The two tendencies compete with each other:
fermionic incoherence, associated with NFL behavior, de-
stroys Cooper logarithm and reduces the tendency to pairing,
while the opening of a SC gap eliminates the scattering at low
energies and reduces the tendency to NFL. To find the winner
(SC or NFL), one needs to analyze the set of integral equations
for the fermionic self-energy �(k, ω) and the gap function
�(k, ω) for fermions with momentum/frequency (k, ω) and
(−k,−ω).

We consider the subset of models in which collective
bosons are slow modes compared to dressed fermions, for
one reason or the other. In this situation, which bears parallels
with Eliashberg theory for electron-phonon interaction [78],
the self-energy and the pairing vertex can be approximated
by their values at the Fermi surface (FS) and computed
within one-loop approximation. The self-energy on the FS,
�(k, ω) is invariant under rotations from the point group of
the underlying lattice. The rotational symmetry of the gap
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function �(kF , ω) and the relation between the phases of
�(kF , ω) on different FS’s in multiband systems are model
specific. Near a ferromagnetic QCP, the pairing interaction
mediated by a soft boson is attractive in the p-wave channel.
Near an antiferromagnetic QCP, the strongest attraction is in
d-wave channel for the case of a single FS and fermionic
density near half-filling. For a nearly compensated metal with
hole and electron pockets, as in Fe-based superconductors,
the two attractive channels near an antiferromagnetic QCP
are s+− and d wave. Near a q = 0 nematic QCP, the pairing
interaction, mediated by soft nematic fluctuations, is attractive
in all channels: s wave, p wave, d wave, etc. In each partic-
ular case, one has to project the pairing interaction into the
proper irreducible channel, find the strongest one, and solve
for the pairing vertex within a given pairing symmetry. In
principle, even after projection, one has to solve an infinite
set of coupled equations in momentum space as in a lattice
system each irreducible representation contains an infinite
set of eigenfunctions. However, near a QCP the pairing is
often confined to a narrow range on the FS around special
“hot spots.” In this situation, the momentum integration near
the FS can be carried out exactly, and the set of coupled
equations for the self-energy and the gap function reduce to
two one-dimensional (1D) equations for�(ω) and�(ω), each
with frequency-dependent effective “local” interaction V (�)
(Ref. [22]). The same holds for the cases of s-wave pairing
by a soft optical phonon, when momentum dependencies of
� and � are not crucial and can be neglected, of non-s-wave
pairing, when one eigenfunction gives the dominant contribu-
tion to the gap (e.g., cos kx − cos ky for d-wave pairing in the
cuprates), and for the case when the fermionic density of states
is peaked at particular kF due to, e.g., van Hove singularities
(see, e.g., [4] and references therein).

Away from a QCP, the effective V (�) tends to a finite
value at � = 0. In this situation, the fermionic self-energy
has a FL form at the smallest frequencies, the equation for
�(ω) is similar to that in a conventional Eliashberg theory for
phonon-mediated superconductivity, and the only qualitative
distinction for electronically mediated pairing is that V (�)
by itself changes below Tc due to feedback from fermionic
pairing on collective modes.

At a QCP, the situation becomes qualitatively different
because the effective interaction V (�), mediated by a critical
massless boson, becomes a singular function of frequency:
on Matsubara axis V (�m) ∝ 1/|�m|γ (Fig. 1). The exponent
γ > 0 depends on the model, ranging from small γ = 0(ε) in
models in D = 3 − ε to γ � 1 in 2D models at SDW, CDW,
and nematic QCP and in Yukawa-SYKmodel [4,64,65,72,79].
The case γ = 2 corresponds to fermions, interacting with a
critical Einstein phonon. The set of models with V (�m) ∝
1/|�m|γ has been nicknamed the γ model, and we will use
this notation. We present an (incomplete) set of models in
Tables I and II.

In this and subsequent papers, we present comprehensive
analysis of the competition between NFL and SC within the
γ model. We define the dimensionless V (�m) as V (�m) =
(ḡ/|�m|)γ , where ḡ is the effective fermion-boson coupling.
This ḡ is the only parameter in the model with the dimen-
sion of energy, and we will see that it determines both the
magnitude of the gap function �(ωm) and the upper limit

FIG. 1. Frequency dependence of the effective interaction
V (�m ), mediated by a soft boson, at T = 0. Away from a QCP,
V (�m ) tends to a finite value at �m = 0. Right at a QCP, the boson
becomes massless, and V (�m ) diverges as 1/|�m|γ .

of NFL behavior in the normal state, i.e., the scale below
which �(ωm) > ωm. We show that the competition between
NFL and SC holds for all values of γ , but the physics
and the computational analysis are different for the models
with γ < 1, γ = 1, 1 < γ < 2, γ = 2, and γ > 2, which
we consider separately. We show that for all γ , a NFL self-
energy in the normal state does not prevent the formation
of bound pairs of fermions at a nonzero onset temperature
Tp. However, we argue that Tp is generally higher than the
actual superconducting Tc, and at Tc < T < Tp bound pairs
remain incoherent. In this T range various observables, e.g.,
the spectral function and the density of states, display pseu-
dogap behavior. This holds for all γ , but the width of the
pseudogap phase increases with γ . We relate the pseudogap
behavior to strong gap fluctuations, but argue that these fluc-
tuations can be viewed as long-wavelength phase fluctuations
only in some range T̄p < T < Tp. At smaller Tc < T < T̄p,
pseudogap behavior is predominantly due to the existence of
low-energy “longitudinal” gap fluctuations, which change the
functional form of �(ω) and cause phase slips. We argue that
longitudinal gap fluctuations develop a zero mode at γ = 2
in which case SC order gets destroyed already at T = 0.
Specifically, the presence of a zero mode implies that there
exists an infinite number of solutions for �(ω), all with
the same condensation energy. In this situation, the ground
state is a mixture of different �(ω), each with its own phase.
We will argue that Tc gradually vanishes at γ → 2 and re-
mains zero at larger γ , while Tp and T̄p stay finite. We show
the phase diagram in Fig. 2. Our results present the scenario
for the pseudogap, which holds even if for a given solution for
�(ω) SC stiffness is larger than Tc, i.e., conventional phase
fluctuations are weak. This scenario is complementary to the
one in which the smallness of the superfluid stiffness is caused
by the closeness to a Mott transition (see, e.g., Ref. [81] and
references therein).

A. A brief summary of the results of this work

In this paper, the first in the series, we analyze the γ

model at T = 0 at 0 < γ < 1. For definiteness, we focus on
spin-singlet pairing. The analysis of spin-triplet pairing is
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FIG. 2. The phase diagram of the γ model. In this and subse-
quent papers, we argue that for the pairing near a QCP the onset
temperatures for the pairing and for long-range superconducting
order, Tp and Tc, differ. In-between Tp and Tc the system displays
pseudogap behavior. The width of the pseudogap region increases
with increasing γ and extends to T = 0 for γ � 2. The behavior at
larger γ requires separate consideration [80].

more involved because of different spin factors in the self-
energy and the pairing vertex [49]. In this paper we discuss
even-frequency pairing. The analysis of odd-frequency
pairing [82] is more involved and requires a separate
consideration.

Our key goal is to understand the interplay between the
competing tendencies toward pairing and toward NFL behav-
ior. The first comes from the interaction in the particle-particle
channel, the second from the interaction in the particle-hole
channel. In the original γ model, both interactions are given
by the sameV (�m). In order to separate the two tendencies we
extend the model and introduce the knob to vary the relative
strength of the interaction in the two channels. Specifically,
we multiply the pairing interaction by 1/N and treat N as a
parameter. For N > 1 (N < 1) the tendency toward pairing
decreases (increases) compared to the one toward NFL ground
state. The extension to integer N > 1 can be formally justified
by extending the model from SU(1) to an SU(N ) global sym-
metry [54]. In our analysis, we use the extension to arbitrary
N �= 1 just as a computational trick to better understand what
happens in the physical case of N = 1.

The T = 0 phase diagram of the γ model for N � 1 has
been studied before [54,58]. It was argued that for any γ < 1
there exists a critical Ncr > 1, separating a SC ground state
at N < Ncr and a normal, NFL ground state at N > Ncr (see
Fig. 3). The physical case N = 1 falls into the SC region.

FIG. 3. The T = 0 phase diagram of the γ model for 0 < γ < 1
as a function of N . At smaller N < Ncr the ground state is a super-
conductor. At larger N > Ncr it is a NFL with no superconducting
order. The value of Ncr is larger than one.

A similar result has been recently found in the study of the
pairing in the SYK-type model [66].

The conventional wisdom holds that �(ω) = 0 for N >

Ncr , is infinitesimally small for N = Ncr , and has a finite value
for N < Ncr , i.e., that the linearized gap equation has the so-
lution at N = Ncr , and the nonlinear gap equation has the so-
lution for N < Ncr . We argue that in our case the conventional
wisdom fails. Namely, we prove that the linearized equation
has a solution not only for N = Ncr , but also for all N < Ncr ,
including the physical case of N = 1. We obtain the exact
solution of the linearized gap equation �(ωm) for all N < Ncr

and all 0 < γ � 1. This �(ωm) oscillates at small ωm � ḡ
as �(ωm) ∝ |ωm|γ /2 cos (βN log[(|ωm|/ḡ)γ + φN ]), where βN

and φN are particular functions of N (for a given γ ), e.g.,
βN ∝ (Ncr − N )1/2 for N � Ncr . At large ωm � ḡ, �(ωm)
decreases as 1/|ωm|γ (see Fig. 11).

At small γ , when�(ωm) is a smooth function of frequency,
the integral equation for �(ωm) can be approximated by
second-order differential equation, whose solution �diff(ωm)
also exists for all N � Ncr and can be expressed analytically
as a combination of two complex-conjugated hypergeometric
functions. This �diff(ωm) also oscillates at small ωm and
decays as 1/|ωm|γ at large frequencies (see Fig. 9). We show
that �diff(ωm) coincides with the exact �(ωm) to leading
order in γ .

We then analyze the nonlinear gap equation. We argue that
it has an infinite, discrete set of solutions, specified by integer
n, which ranges between 0 and∞. All solutions have the same
spatial gap symmetry (i.e., s wave, d wave ...). A solution
�n(ωm) changes sign n times as a function of frequency.
Each �n(ωm) tends to a finite value at ωm = 0, but the
magnitude of �n(0) progressively decreases with increasing
n. At n = ∞, �∞(ωm) is the solution of the linearized gap
equation, which has an infinite number of sign changes due to
cos[βN log (|ωm|/ḡ)γ + φN ] oscillations running down to the
smallestωm. The n = 0 solution yields sign preserving�0(ω).

The existence of an infinite set of �n(ω), each representing
a local minimum of the Luttinger-Ward (LW) functional,
opens up a new channel of longitudinal gap fluctuations,
which cause phase slips. As long as the set is discrete, there
is a single global minimum of the LW functional. In our case,
it corresponds to n = 0. Then, at T = 0 the system should
display a SC order. Still, the existence of the infinite set of
�n(ωm) is a nontrivial aspect of the pairing at a QCP. In the
next paper, we analyze the γ model for 0 < γ < 1 at a finite
T and show explicitly that for any N < Ncr there exists a
discrete, infinite set of onset temperatures for the pairing Tp,n
and the corresponding eigenfunctions �n(ωm) change sign n
times as a function of Matsubara frequency. We argue that
at T → 0, each �n(ωm) approaches the nth solution of the
nonlinear integral gap equation at T = 0. We show that away
from a QCP, only solutions with n < nmax remain, where nmax

decreases with the deviation from a QCP.
We note in passing that a discrete set of solutions for the

gap function at T = 0, with differentmomentum dependencies
along the FS, has been detected in the analysis of�(kF ) near a
nematic QCP [51,83]. There, however, the physics is different,
and the number of solutions is finite at a QCP. This is similar
to our case away from a critical point.
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FIG. 4. A phase diagram away from a QCP (left) and at a QCP
(right). Away from a QCP, the gap equation has a solution for
infinitesimally small �(ωm ) at N = Ncr , and for a finite �(ωm ) at
N < Ncr . At a QCP, a solution with infinitesimally small gap function
exists for all N � Ncr , and for N < Ncr there is a discrete set of
solutions for a finite �n(ωm ). A gap �n(ωm ) changes sign n times
as a function of ωm.

B. Relevance of the exact solution of the linearized gap equation

The existence of an infinite set of solutions of the nonlinear
gap equation is a direct consequence of a highly unusual result
that at a QCP the linearized gap equation has a solution not
only at N = Ncr , but also for any N < Ncr (see Fig. 4). This
is not away from a QCP, where the linearized gap equation
as a solution only at N = Ncr . The proof of the existence of
the solution for infinitesimally small �(ωm) for all N � Ncr ,
including the original N = 1, is, therefore, the central element
of our analysis.

The linearized gap equation can be analyzed at frequencies
much smaller and much larger than ḡ. In these two limits,
one can truncate the gap equation by keeping only leading
terms either in ωm/ḡ or in ḡ/ωm. The truncated equation
can be solved and yields �(ωm) ∝ 1/|ωm|γ at large ωn and
�(ωm) ∝ |ωm|γ /2 cos (βN log[(|ωm|/ḡ)γ + φ]) at small ωm,
where the phase factor φ is a free parameter. The generic task
is then to verify whether by fixing φ one can find �(ωm),
which smoothly interpolates between small and large ωm (see
Fig. 5). The verification would be straightforward if there was
a finite-frequency range where both forms were valid and
could be made equal by fixing φ. In our case, however, the
low-frequency and the high-frequency regimes do not overlap,
so the only option is to solve the full equation. We present
the exact solution �ex(ωm) and show that at small and large

FIG. 5. The gap equation for infinitesimally small �(ωm ). The
solution can be found separately at large and small frequencies.
There is no guarantee, however, that for any N � Ncr there exists
the solution, which interpolates between the two limiting forms.

frequencies it reduces to known forms. The analytic expres-
sion for �ex(ωm) is rather complex, but one can straightfor-
wardly plot �ex(ωm) for any input parameters (see Fig. 11).

At small γ , where the interaction V (�m) ∝ 1/|�m|γ is a
slowly varying function of frequency, the actual, integral gap
equation can be approximated by a differential equation. The
latter can be solved analytically, and the solution �diff(ωm)
is a hypergeometric function of ω. Using the properties of
a hypergeometric function at small and large values of the
argument, one can explicitly verify that �diff(ωm) does inter-
polate between the known forms at small and large ωm if one
properly chooses the value of the phase φ.

We show that �ex(ωm) and �diff(ωm) coincide at small γ

and use the analytic form of �diff(ωm) to analyze the structure
of the gap function at different N � Ncr . We demonstrate by
the direct comparison that at larger γ , �ex(ωm) and �diff(ωm)
differ qualitatively. We argue that the series for the exact
�ex(ωm) contain nonlocal terms, not present for �diff(ωm).
These nonlocal terms are negligible at small γ , but must
be kept for γ = O(1), particularly near ωm = ωmax, which
separates oscillating behavior at smaller ωm and 1/|ωm|γ
decay at larger ωm.

C. Structure of the paper

The paper is organized as follows. In Sec. II we briefly
review the γ model and extend it to N �= 1. We present the set
of coupled Eliashberg equations for the pairing vertex 
(ωm)
and the fermionic self-energy �(ωm) and combine them into
the equations for the gap function �(ωm) and the inverse
quasiparticle residue Z (ωm).

In Secs. III and IV we study the linearized gap equation
with infinitesimally small �(ωm). In Sec. III we analyze the
truncated gap equation at small and large ωm and obtain the
solutions, valid in the corresponding limits. Here, we identify
Ncr and show that the solution at small frequencies changes
qualitatively between N > Ncr and N < Ncr . In Sec. IV we
consider the limit of small γ and approximate the actual
integral gap equation by second-order differential equation.
We solve the differential equation for all ωm and explicitly
show how one can match low-frequency and high-frequency
forms by fixing a single phase factor. We show that this only
holds for N � Ncr , while for N > Ncr the potential solution
does not satisfy the condition of normalizability. In Sec. V
we obtain the exact solution �ex(ωm) of the full linearized
gap equation. We show that it exists for all N < Ncr . The
solution �ex(ωm) oscillates at small frequencies and decays
as 1/|ωm|γ at large |ωm|. In Sec. VA we analyze the structure
of �ex(ωm) and compare it with �diff(ωm). We show that
the two coincide at the smallest γ , but differ at γ = O(1).
We argue that the difference is due to the fact that �ex(ωm)
contain nonlocal terms, not present in �diff(ωm). In Sec. VI
we consider the nonlinear gap equation. We first analyze the
nonlinear differential equation and argue that it has an infinite,
discrete set of solutions �diff,n(ωm) for any N < Ncr . The in-
dex n = 0, 1, 2, . . . specifies the number of times �diff,n(ωm)
changes sign as a function of frequency. The solution with
n = 0 is sign preserving. The solution n → ∞ coincides
with the solution of the linearized differential equation. We
conjecture that the actual, nonlinear integral gap equation
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also possesses an infinite, discrete set of topologically distinct
solutions �n(ωm). Section VII presents the summary of our
results.

D. Brief outline of subsequent papers

In the next paper in the series (Paper II [84]) we consider
the linearized gap equation for the same range 0 < γ < 1
at a finite T and show that there exists an infinite discrete
set of critical temperatures Tp,n for the pairing instability,
all within the same pairing symmetry. The corresponding
eigenfunction �n(ωm) changes sign n times as a function of
discrete Matsubara frequency ωm = πT (2m + 1). We argue
that at T → 0 these finite-T solutions become �n(ωm), which
we find here in the T = 0 analysis.

For γ < 1, the sign-preserving solution �0(ωm) has the
largest condensation energy and the largest Tp,0. Still, the
presence of an infinite set of �n(ωm) at T = 0 is not only
highly unusual, but creates a new channel of “longitudinal”
gap fluctuations. In subsequent papers we will focus on the
physical case N = 1 and extend the analysis at T = 0 to γ >

1. We will show that the set �n(ω) becomes more dense with
increasing γ and eventually becomes continuous at γ = 2. For
this special γ , all solutions of the nonlinear gap equation have
equal condensation energy, and long-range superconducting
order at T = 0 gets destroyed upon averaging over different
solutions, each with its own phase. We will corroborate this
by the analysis of the gap equation for the same γ at finite T
and obtain the phase diagram, shown in Fig. 2. Later, we will
show [80] that the system behavior is rather special for larger
γ , particularly for γ > 3.

II. γ MODEL

We consider itinerant fermions at the onset of a long-range
order in either spin or charge channel. At the critical point,
the propagator of a soft boson becomes massless and medi-
ates singular interaction between fermions. We follow earlier
works [1,13,14,22,23,27,45,54,55,58,59,85] and assume that
this interaction is attractive in at least one pairing channel and
that a pairing boson can be treated as slow mode compared
to a fermion, i.e., at a given momentum q, typical fermionic
frequency is much larger than typical bosonic frequency. This
is the case for a conventional phonon-mediated superconduc-
tivity, where for q ∼ kF a typical fermionic frequency is of
order EF , while typical bosonic frequency is of order Debye
frequency ωD. The ratio δE = ωD/EF is the small parameter
for Eliashberg theory of phonon-mediated superconductivity.
This theory allows one to obtain a set of coupled integral
equations for frequency-dependent fermionic self-energy and
the pairing vertex. By analogy, the theory of electronic super-
conductivity, mediated by soft collective bosonic excitations
in spin or charge channel, is also often called Eliashberg
theory. We will use this convention.

Within the Eliashberg approximation, one can explicitly
integrate over the momentum component perpendicular to
the Fermi surface (for a given pairing symmetry) and reduce
the pairing problem to a set of coupled integral equations
for frequency-dependent self-energy �(ωm) and the pairing
vertex 
(ωm) with effective frequency-dependent dimension-

less interaction V (�) = (ḡ/|�|)γ . This interaction gives rise
to NFL form of the self-energy in the normal state and,
simultaneously, gives rise to the pairing.

At T = 0, the coupled Eliashberg equations for the pairing
vertex and the fermionic self-energy are, in Matsubara formal-
ism,


(ωm) = ḡγ

2

∫
dω′

m


(ω′
m)√

�̃2(ω′
m) + 
2(ω′

m)

1

|ωm − ω′
m|γ ,

�̃(ωm) = ωm + ḡγ

2

∫
dω′

m

�̃(ω′
m)√

�̃2(ω′
m) + 
2(ω′

m)

1

|ωm − ω′
m|γ ,

(1)

where �̃(ωm) = ωm + �(ωm). In these equations, both�(ωm)
and 
(ωm) are real functions. Observe that we define �(ωm)
with the overall plus sign and without the overall factor of i.1

In the normal state (
 ≡ 0),

�̃(ωm) = ωm + ω
γ

0 |ωm|1−γ sgnωm, (2)

where ω0 = ḡ/(1 − γ )1/γ . At small γ , ω0 = ḡe.
The superconducting gap function �(ωm) is defined as a

real function

�(ωm) = ωm

(ωm)

�̃(ωm)
= 
(ωm)

1 + �(ωm)/ωm
. (3)

The equation for �(ωm) is readily obtained from (1):

�(ωm) = ḡγ

2

∫
dω′

m

�(ω′
m) − �(ωm)

ω′
m

ωm√
(ω′

m)2 + �2(ω′
m)

1

|ωm − ω′
m|γ . (4)

This equation contains a single function �(ωm), but for the
cost that �(ωm) appears also in the right-hand side, which
makes Eq. (4) less convenient for the analysis than Eqs. (1).

Equations (1)–(4) describe color superconductivity [73]
and pairing in 3D [γ = 0+, V (�m) ∝ log |ωm|], spin- and
charge-mediated pairing in D = 3 − ε dimensions [13,14,54],
and superconductivity in graphene [86] [γ = O(ε) � 1], a
2D pairing [38] with interaction peaked at 2kF (γ = 1

4 ),
pairing at a 2D nematic/Ising-ferromagnetic QCP [41,46,49]
(γ = 1

3 ), pairing at a 2D (π, π ) SDW QCP [19,22,23,26] and
an incommensurate CDW QCP [31,87] (γ = 1

2 ), dispersion-
less fermions randomly interacting with an Einstein phonon
[64–66] and a spin-liquid model for the cuprates [27] (γ =
0.7), a 2D pairing mediated by an undamped propagating
boson (γ = 1), pairing in several Fe-based superconductors
[76] (γ = 1.2), and even the strong coupling limit of phonon-
mediated superconductivity for either dispersion-full [68–71]
or dispersionless [64,65] fermions (γ = 2). The pairing mod-
els with parameter dependent γ have been analyzed as well

1In obtaining the Eliashberg equations we assumed that states
away from the Fermi surface are irrelevant for the pairing and NFL
behavior, and extended the integration over momenta to infinite
limits. In this situation, fermionic self-energy �(ωm ) is real. If the
momentum integration over k − kF holds in finite and nonsymmetric
limits, �(ωm ) has both real and imaginary components. The same
holds in SYK-type models at a nonzero chemical potential (see
Ref. [101] and references therein).

024524-5



ARTEM ABANOV AND ANDREY V. CHUBUKOV PHYSICAL REVIEW B 102, 024524 (2020)

TABLE I. Examples of the pairing near quantum critical point in
2D.

Model/order V (q, �m ) V (�m ) = ∫ dqV (q, �m ) γ

Ising-nematic order
Ising FM 1

q2+

|�m |
q

1
|�m |2/3

2
3

Fermions at 1
2 filled

Landau level
SDW/CDW order, 1

q2+
|�m |
1

|�m |1/2
1
2

Hot-spot models

Undamped bosons 1
q2+�2

m

1
|�m | 1

Pairing by a soft 1
�2
m

1
�2
m

2
Einstein phonon
SYK-model with phonons 1

|�m |0.6
1

|�m |0.6 0.6
Weak coupling

Fe-based superconductors 1
|�m |1.2 1.2

(Refs. [24,55]). The case γ = 0 describes a BCS supercon-
ductor. We list some of the model in Tables I and II.

A justification of Eliashberg theory for electronically me-
diated superconductivity (e.g., the reasoning to neglect vertex
corrections) is case specific. For Ising-nematic fluctuations
(the case γ = 1

3 ), vertex corrections are small in ḡ/EF , which
is a small parameter of the theory [34,47,88]. In other cases,
e,g., in SYK models, a small parameter for Eliashberg ap-
proximation is 1/N , where N is the number of of fermionic
flavors [63–67]. For several 2D models, the corrections to
Eliashberg approximation for the self-energy in the normal
state are logarithmically singular and in the absence of the
pairing would change the system behavior at the smallest
frequencies [23,28,29]. One-loop logarithmic corrections just
change γ but keep the model intact (Ref. [23]), but higher-
order corrections go beyond the γ model (Refs. [28,29]).
Here, we assume that the onset temperature for the pairing
Tp is larger, at least numerically, than the scale at which
corrections to Eliashberg approximation become relevant, and
stick with the Eliashberg theory. Recent Quantum Monte
Carlo (QMC) calculations for superconductivity, mediated
by antiferromagnetic spin fluctuations [75] and Ising-nematic
fluctuations [88], have found the onset of superconductivity

TABLE II. Examples of the pairing near quantum critical point
in 3D.

Model/order V (q, �m ) V (�m ) =∫ d2qV (q,�m ) γ

Ising-nematic order 1
q2+


|�m |
q

log 1
|�m | 0+

Ising FM
SDW/CDW order

1
q2+
|�m | log 1

|�m | 0+
Hot-spot models

Anisotropic 1
q2+ε+


|�m |
|q|

1

|�m |
ε

3+ε

ε

3+ε

Ising nematic
Anisotropic 1

q2+ε+
|�m |
1

|�m |
ε

2+ε

ε

2+ε

SDW/CDW

at a temperature, almost identical to the one in the γ model
with γ = 1

2 and 1
3 , respectively, without vertex corrections.

Normal-state QMC calculations for the models with antifer-
romagnetic and Ising-nematic fluctuations also found [88]
very good agreement with the behavior of the γ models with
γ = 1

2 and
1
3 . A good agreement has been also found between

QMC calculations of superconducting Tc for electron-phonon
interaction and the γ model with γ = 2 (Ref. [89]), for
couplings smaller than the Fermi energy.

In this paper, we consider the set of γ models with 0 <

γ < 1. The analysis for γ � 1 requires separate consideration
because of divergencies in the right-hand side of both equa-
tions in Eq. (1) [but not in Eq. (4)] and will be presented in
subsequent papers.

Notice that for any γ > 0 the pairing interaction V (�) de-
cays at large frequencies as 1/|�|γ . A simple experimentation
shows that the integrals in Eqs. (1) and (4) are then convergent
in the ultraviolet. The only exceptions are the BCS case
γ = 0, when V (�) is just a constant, and the case V (�m) ∝
log |ωm|, i.e., γ = 0+ (color superconductivity/pairing in 3D,
Refs. [14,73]). For these two cases one needs to set the upper
cutoff of frequency integration at some � to cut ultraviolet
divergence. We discuss the limit γ → 0 in Appendix A.

The full set of Eliashberg equations for electron-mediated
pairing contains also the equation describing the feedback
from the pairing on the bosonic propagator. This feedback
is small by δE in the case of electron-phonon interaction,
but is generally not small when the pairing is mediated by
a collective mode because the dispersion of a collective mode
may change qualitatively below Tp. The most known example
of this kind is the transformation of Landau overdamped spin
collective mode in the normal state to a propagating mode
(often called a resonance mode) below the onset of d-wave
pairing mediated by antiferromagnetic spin fluctuations (see,
e.g., Refs. [90–93]). To avoid additional complications, we
do not include this feedback explicitly into our consideration.
In general, the feedback from the pairing makes bosons less
incoherent and can be modeled by assuming that γ moves
toward a larger value as T decreases (e.g., from γ = 1

2 to
γ = 1 for the case of antiferromagnetic fluctuations and from
γ = 1

3 to γ = 2
3 for the case of Ising-nematic fluctuations).

The coupled equations for 
 and �̃ [Eq. (1)] describe
the interplay between the two competing tendencies: one to-
ward superconductivity, specified by 
, and the other toward
incoherent non-Fermi-liquid behavior, specified by �̃. The
competition between the two tendencies is encoded in the
fact that �̃ appears in the denominator of the equation for 


and 
 appears in the denominator of the equation for �̃. In
more physical terms, a self-energy �̃ is an obstacle to Cooper
pairing, while if 
 is nonzero, it reduces the strength of the
self-energy and moves the system back into a FL regime.

In Eq. (1) the couplings in the particle-particle and particle-
hole channels have the same magnitude ḡ. To study the
interplay, it is convenient to have a parameter, which would
increase either the tendency toward NFL or toward pairing.
With this in mind, we multiply the coupling in the particle-
particle channel by a factor 1/N , i.e., set it to be ḡγ /N instead
of ḡγ , and keep the coupling in the particle-hole channel
intact. For N < 1, the tendency toward pairing is enhanced,
forN > 1 the tendency toward NFL effectively gets larger. We
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will treat N as a free parameter, but use the extension as just
a way to see the relevant physics more clearly, as our ultimate
goal is to understand system behavior in the physical case of
N = 1. We note in passing that the extension to integer N > 1
can be formalized by extending the original model to matrix
SU(N ) model [54].

The modified equations for 
(ωm) and �̃(ωm) are


(ωm) = ḡγ

2N

∫
dω′

m


(ω′
m)√

�̃2(ω′
m) + 
2(ω′

m)

1

|ωm − ω′
m|γ ,

(5)

�̃(ωm) = ωm + ḡγ

2

∫
dω′

m

�̃(ω′
m)√

�̃2(ω′
m) + 
2(ω′

m)

1

|ωm − ω′
m|γ ,

(6)

and the equation for �(ωm) becomes

�(ωm) = ḡγ

2N

∫
dω′

m

�(ω′
m) − N�(ωm)

ω′
m

ωm√
(ω′

m)2 + �2(ω′
m)

1

|ωm − ω′
m|γ .

(7)

Below we will occasionally refer to the equation for 
(ωm)
as the gap equation, notwithstanding that the gap equation is
given by Eqs. (7). Indeed, once we know 
(ωm) and �̃(ωm),
we also know �(ωm) = 
(ωm)ωm/�̃(ωm).

We will be searching for normalized solutions for 
(ωm)
and �(ωm). Physically, the normalizability of a solution fol-
lows from the requirement that the free energy of a super-
conductor should be free from divergencies. The free energy
of a superconductor FSC can be obtained by either applying
Hubbard-Stratonovich formalism [62] or by using a generic
Luttinger-Ward-Eliashberg expression [78,94], and explicitly
integrating over momentum, approximating the density of
states by its value at the Fermi level [61,85]. The result is

FSC
N0

= −
∫

dωm
ω2
m√

ω2
m+�2(ωm)

− ḡγ

4

∫
dωmdω′

m

ωmω′
m + 1

N �(ωm)�(ω′
m)√

ω2
m + �2(ωm)

√
(ω′

m)2 + �2(ω′
m)

× 1

|ωm − ω′
m|γ . (8)

The gap equation (7) is obtained from the condition
δFSC/δ�(ωm) = 0.

The condensation energy Ec is the difference between FSC,
with �(ωm) satisfying the Eliashberg equation (7), and Fn (the
free energy for � = 0). Using Eq. (8) and the gap equation (7)
we obtain [95,96]

Ec

N0
= −
∫

dωm
|ωm|√

1 + D2(ωm)
(
√
1 + D2(ωm) − 1)2 − ḡγ

4

∫
dωmdω′

m√
1 + D2(ωm)

√
1 + D2(ω′

m)

×(
√
1 + D2(ωm) −

√
1 + D2(ω′

m))
2

(
1

|ωm − ω′
m| − 1

|ωm + ω′
m|
)

, (9)

where D(ωm) = �(ωm)/ωm. Note that both terms in the right-
hand side of (9) are negative, hence, the condensation energy
is negative for any solution of the gap equation �(ωm).

To understand whether or not the ground state at T = 0
is a NFL state or a superconducting state, we first consider
infinitesimally small 
(ωm). The corresponding equation is
obtained by neglecting 
 in the denominator of Eq. (5) and
using (2) for �̃:

N
(ωm) = 1 − γ

2

∫
dω′

m


(ω′
m)

|ω′
m|1−γ |ωm − ω′

m|γ
1

1 + ( |ω′
m|

ω0

)γ .

(10)

This is an equation for an eigenfunction of a linear operator,
in which N plays a role of the eigenvalue. Observe that the
fermion-boson coupling ḡ appears only in the last term in the
denominator, via ω0 ∝ ḡ. Without this term, the right-hand
side of (10) is marginal by power counting (the total exponent
in the denominator is 1 − γ + γ = 1). Then, once we rescale
frequency to ω̄m = ωm/ω0, the equation for 
(ω̄m) becomes
fully universal:


(ω̄m) = 1 − γ

2N

∫
dω̄′

m


(ω̄′
m)

|ω̄′
m|1−γ |ω̄m − ω̄′

m|γ
1

1 + |ω̄′
m|γ .

(11)

The same is true for the linearized equation for �(ωm):

�(ωm) = ḡγ

2N

∫
dω′

m

�(ω′
m) − N�(ωm)

ω′
m

ωm

|ω′
m|

1

|ωm − ω′
m|γ .

(12)

Using ḡγ = ω
γ

0 (1 − γ ) and introducing again ω̄m = ωm/ω0,
we reexpress (12) as

�(ω̄m) = 1 − γ

2N

∫
dω̄′

m

�(ω̄′
m) − N�(ω̄m)

ω̄′
m

ω̄m

|ω̄′
m|

1

|ω̄m − ω̄′
m|γ .

(13)

For infinitesimal 
 and �, �(ωm) = 
(ωm)/[1 +
(ω0/|ωm|)γ ] or, equivalently, �(ω̄m) = 
(ω̄m)/(1 + |ω̄m|−γ ).

A conventional wisdom, borrowed from BCS theory,
would imply that Eqs. (11) and (13) must have solutions at a
single criticalNcr , separating NFL and superconducting states,
assuming that such critical Ncr exists. By the same logic,
the full nonlinear gap equation has no solution at N > Ncr ,
while at N < Ncr , the solution 
(ωm) [or �(ωm)] has a finite
magnitude, which increases with Ncr − N .
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We show below that the situation in the γ model is dif-
ferent. Specifically, we show that critical Ncr exists, but the
linearized gap equation has a solution not only at N = Ncr ,
but for all N < Ncr . Furthermore, N = Ncr turns out to be
a multicritical point of the γ model (for 0 < γ < 1), below
which there exists an infinite number of solutions of the full
nonlinear gap equation �n(ωm). The magnitude of the nth
solution initially increases as e−An/

√
Ncr−N , where the factor An

depends on the number n of the solution.
In the next four sections we discuss the linearized gap

equation [Eqs. (11) and (13)]. We return to the nonlinear gap
equation in Sec. VI. To verify that a potential solution of
the linearized gap equation is normalizable, we will need to
analyze the free energy (8) order �2. Expanding in Eq. (8) we
obtain

FSC = Fnorm + N0

2N
J (�,N ),

J (�,N ) = N
∫

dω̄m
�2(ω̄m)(1 + |ω̄m|γ )

|ω̄m|1+γ

−1 − γ

2

∫
dωmdω′

m

�(ωm)�(ω′
m)

|ω̄m||ω̄′
m|

1

|ω̄m − ω̄′
m|γ .

(14)

The linearized gap equation (13) is obtained by varying this
FSC over �(ωm). A solution is normalizable if the variation
δJ (�,N )/δN is finite, i.e., if∫

dω̄m
�2(ω̄m)(1 + |ω̄m|γ )

|ω̄m|1+γ
(15)

is nondivergent. In terms of 
(ω̄m), the same integral is∫
dω̄m


2(ω̄m)

|ω̄m|1−γ (1 + |ω̄m|γ ) . (16)

III. LIMITS OF SMALL AND LARGE ωm

We begin with the analysis of the truncated gap equation
at small and large frequencies. The analysis can be done most
straightforwardly for Eq. (11) for the pairing vertex. At large
|ω̄m| � 1, we can pull out the external ω̄m from the integral in
the right-hand side of (10) and obtain


(ω̄m) = 1

|ω̄m|γ
1 − γ

N

∫ O(|ω̄m|)

0
dω̄′

m


(ω̄′
m)

|ω̄′
m|1−γ

1

1 + |ω̄′
m|γ .

(17)

Substituting
(ω̄′
m) ∝ 1/|ω̄m|γ into the right-hand side of (17)

we find that the integral converges at |ω̄′
m| = O(1). This shows

that pulling out ω̄m from the integral is justified when |ω̄m| �
1. The outcome is that at large frequencies


(ω̄m) = C∞
|ω̄m|γ . (18)

In this limit, 
(ω̄m) = �(ω̄m), hence, we also have

�(ω̄m) = C∞
|ω̄m|γ . (19)

In the opposite limit of small ω̄m we assume and then
verify that one can truncate (11) by replacing 1/(1 + |ω̄′

m|γ )

in the right-hand side by the upper cutoff at |ω̄′
m| = O(1). The

precise value of the cutoff frequency will play no role, and we
set the cutoff at |ω̄′

m| = 1. The equation for the pairing vertex
then becomes


(ω̄m) = 1 − γ

2N

∫ 1

−1
dω̄′

m


(ω̄′
m)

|ω̄′
m|1−γ |ω̄m − ω̄′

m|γ . (20)

Below, we analyze this equation for different N .

A. Large N

We first consider the limit of large N . The effective cou-
pling constant in Eq. (20) scales as 1/N , hence, the solution
with a nonzero 
(ωm) emerges only if the smallness of the
coupling is compensated by a large value of the frequency
integral in the right-hand side of (20). This is what happens
in a BCS superconductor (the case γ = 0). There, the pairing
kernel scales as 1/|ω̄m|, 
(ω̄m) = 
 is independent of the
running fermionic frequency, and the integral

∫ 1
−1 dω̄′

m
/|ω̄′
m|

is logarithmically singular. The logarithm compensates for
the smallness of the coupling 1/N , and superconductivity
emerges already for arbitrary weak attraction. A way to see
this is to compute the pairing vertex in the presence of an
infinitesimally small initial 
0. At T = 0 this has to be done
at a nonzero total incoming bosonic frequency �tot = �̄tot/ω0

to avoid divergencies. The result for a BCS superconductor is
well known: to logarithmic accuracy


(�̄tot ) = 
0

(
1 + 1

N
log

1

|�̄tot| + 1

N2
log2

1

|�̄tot| + · · ·
)

= 
0

1 − 1
N log 1

|�̄tot |
. (21)

The ratio 
(�̄tot )/
0 (the pairing susceptibility) diverges
at |�tot| = ω0e−N and becomes negative at smaller |�tot|,
indicating that the normal state is unstable toward pairing. [In
a more accurate description, the pole in 
(�tot ) moves from
the lower to the upper half-plane of complex frequency [97]].

For a nonzero γ , the pairing kernel is the function of both
internal ω̄′

m and external ω̄m:

K (ω̄, ω̄′
m) = 1

|ω̄′
m|1−γ |ω̄m − ω̄′

m|γ . (22)

If we set the external ω̄m to zero, we find that K (0, ω̄′
m) =

1/|ω̄′
m| is marginal, like in BCS theory. Then, if we add 
0

and compute 
(ω̄m) perturbatively, the series will be logarith-
mical, like in the BCS case. In distinction to BCS, however,
each logarithmical integral

∫
dω̄′

m/|ω̄′
m| runs between the

upper cutoff at |ω̄′
m| = 1 and the lower cutoff at |ω̄′

m| ∼ |ω̄m|.
Because the lower cutoff is finite at a finite ω̄m, we can safely
set �tot = 0. Summing up logarithmical series we then obtain


(ω̄m) =
0

(
1+ 1−γ

N
log

1

|ω̄m| + (1−γ )2

2N2
log2

1

|ω̄m|+ · · ·
)

= 
0

(
1

|ω̄m|
) 1−γ

N

. (23)

We see that the pairing susceptibility remains finite and pos-
itive for all finite ωm, even when �tot = 0. Redoing calcula-
tions at a finite �tot we find the same result as in Eq. (23),
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but with |ω̄m| replaced by max(|ω̄m|, �̄tot ). The implication is
that at a finite γ , summing up logarithms does not give rise
to the divergence of the pairing susceptibility, i.e., within a
logarithmic approximation, the system at T = 0 remains in
the normal state.

The difference between logarithmic approximation at γ =
0 and at a finite γ can be also understood by express-
ing the flow of 
(ω̄m, �̄tot ) under external 
0 in terms of
renormalization-group- (RG-) type differential equation. In
BCS theory one can resum logarithmical ladder series by
selecting a cross section in the middle with the smallest
running frequency ω̄m and integrate over frequencies larger
than ω̄m in the cross sections on both sides of the selected one.
One such integration gives 
(ω̄m), another gives the pairing
susceptibility 
(ω̄m)/
0. Combining and differentiating over
L = log 1/�̄tot , we obtain the RG equation d
(L)/dL =

2(L)/N
0, with the boundary condition 
(0) = 
0. The
solution of this equation is Eq. (21). For a nonzero γ , the
logarithmical integral in a given cross section is cut not by an
external bosonic �̄tot, but by the external fermionic frequency
in the neighboring cross section. A simple experimentation
shows that in this case the corresponding RG equation is
d
(L)/dL = 
(L)/N , where now L = log(1/|ω̄m|). The so-
lution of this equation is Eq. (23).

We now go beyond perturbation theory and analyze
Eq. (20) without the 
0 term. Our first observation is that

(ω̄m) ∝ (1/|ω̄m|)(1−γ )/N , which we found by summing up
logarithms, does satisfy Eq. (20) at |ω̄m| � 1. Indeed, substi-
tuting this form into (20) we find that it is satisfied because, to
leading order in 1/N ,∫ ∞

0

dx

|x|(1−γ )(N+1)/N

1

|1 − x|γ = N

1 − γ
. (24)

We next observe that there is another possibility to com-
pensate for the 1/N smallness of the coupling constant in
Eq. (20), by choosing 
(ω̄m) ∝ (1/|ω̄m|)γ−(1−γ )/N , such that
the integral over ω̄′

m in the right-hand side of (20) almost
diverges at small ω̄′

m. Indeed, substituting this form into (20)
we find that the equation is satisfied because to leading order
in 1/N , ∫ ∞

0

dx

|x|1−(1−γ )/N

1

|1 − x|γ = N

1 − γ
. (25)

Note that the factor N now comes from small |x| � 1. This
implies that this solution could not be obtained within a
conventional logarithmic approximation or, equivalently, from
the RG equation, as the latter assumes that the logarithms,
which sum up into the anomalous power-law form, come from
internal frequencies, which are much larger than the external
one.

The solution of (20) at large N is then the combination of
the two power-law forms


(ω̄m) = CA

|ω̄m|(1−γ )/N
+ CB

|ω̄m|γ−(1−γ )/N
. (26)

The overall factor does not matter because 
(ωm) is defined
up to a constant factor, but the ratioCA/CB is a free parameter
at this moment.

We now argue that while both terms in Eq. (26) satisfy (20),
only one component represents the normalized solution and

should be kept. Indeed, substituting
(ω̄m) into (16) and using
the fact find that for large N , (1 − γ )/N � γ /2, we find that
the integral in Eq. (16) is finite for the first term in Eq. (26)
but diverges for the second one. We then have to drop this term
and keep only the CA term in Eq. (26).

The full gap equation (11) has the solution if 
(ω̄m) =
CA/|ω̄m|(1−γ )/N at small ω̄m and 
(ω̄m) = C∞/|ω̄m|γ at large
ω̄m can be smoothly connected (see Fig. 5). We show below
that these two limiting forms cannot be connected, i.e., the
linearized equation for the pairing vertex does not have a
solution.

B. Arbitrary N

The analysis of the truncated equation for the pairing vertex
can be straightforwardly extended to arbitrary N . Like before,
we use the fact that the kernel in Eq. (20) is marginal and
search for power-law solution of (20) in the form 
(ω̄m) ∝
1/|ω̄m|γ (1/2+b), where b needs to be obtained self-consistently
(we pulled out γ in the exponent for future convenience).
Substituting into (20) and evaluating the integral we find that
b is the solution of

εb = N, (27)

where

εb = 1 − γ

2


(γ /2 − γ b)
(γ /2 + γ b)


(γ )

(
1 + cos(πγ b)

cos(πγ /2)

)
.

(28)

The integral in the right-hand side of (20) is evaluated using
the identities∫ ∞

0

dy

ya(1 + y)γ
= 
(1 − a)
(γ + a − 1)


(γ )
,

∫ 1

0

dy

ya(1 − y)γ
= 
(1 − a)
(1 − γ )


(2 − a − γ )
, (29)

∫ ∞

1

dy

ya(y − 1)γ
= 
(a + γ − 1)
(1 − γ )


(a)
.

We plot εb in Fig. 6(a). At small γ ,

εb ≈ 4

γ

1

1 − 4b2
. (30)

We see that εb is an even function of b, i.e., if b is a solution,
then −b is also a solution. This implies that


(ω̄m) = 
(z) = CA

z1/2−b
+ CB

z1/2+b
, (31)

where

z = |ω̄m|γ =
( |ωm|

ω0

)γ

. (32)

At large N , b ≈ 1/2 − (1 − γ )/(Nγ ) and (31) coincides with
(26). As N increases, b gets smaller. As long as it remains
positive, the second term in the right-hand side of (31) has to
be dropped as it does not satisfy the normalization condition
[the integral in Eq. (16) diverges for 
(ω̄m) ∝ 1/(z1/2+b)].
Then, at small z,


(z) = C

z1/2−b
, �(z) = Cz1/2+b. (33)

This is very similar to the case of large N .
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FIG. 6. The function ε(b) from Eq. (28) for real b (left panel) and imaginary b (right panel) for γ = 0.6. The solution of the truncated gap
equation at small ω̄ exists if the equation ε(b) = N has a solution.

We next observe that for any 0 < γ � 1, there exists a
critical Ncr , for which b = 0. It is given by

Ncr = ε0 =
π
2 (1 − γ )

sin π
2 (1 − γ )

π


(γ )

(
1 − cos πγ

2

)−1


2(1 − γ /2)

= 1 − γ

2


2(γ /2)


(γ )

(
1 + 1

cos(πγ /2)

)
. (34)

We plot Ncr vs γ in Fig. 7. We see that Ncr > 1 for all
γ < 1. At small γ , we have, from (30), Ncr ≈ 4/γ . At γ → 1,
Ncr → 1.

Right at N = Ncr , the two terms in Eq. (31) be-
come equal, i.e., one solution of (20) is 
(z) ∝ 1/

√
z.

On a more careful look, we find that 
(z) ∝ log z/
√
z

is also the solution. Indeed, substituting this form into
(20) and using

∫
dy|y|γ /2−1|y − 1|−γ log |y| = 0 and [(1 −

γ )/2Ncr]
∫
dy|y|γ /2−1|y − 1|−γ = 1, we find that this equa-

tion is satisfied, i.e.,

1 − γ

2Ncr

∫
dω′

m

log |ω′
m|

|ω′
m|1−γ /2|ωm − ω′

m|γ = log |ωm|
|ωm|γ /2

. (35)

The full solution of (20) at N = Ncr is then


(z) = 1√
z
(CA log z +CB) (36)

or, equivalently,


(z) = C√
z
(log z + φ), �(z) = C

√
z(log z + φ). (37)

This 
(z) contains two free parameters: C and φ. The over-
all factor C is irrelevant for the solution of the linearized
equation, but φ is a free parameter, which we can vary in a
hope that at a particular value of φ, 
(z) and �(z) interpolate
smoothly between small-z and large-z limits. This gives an in-
dication that N = Ncr may be the onset for superconductivity.

We now move to N < Ncr . There is no solution of (27)
for real b, consistent with the conventional wisdom that the
linearized gap equation has no solution inside the supercon-
ducting phase. However, it turns out that the solution of (20)
still exists, but for imaginary b = iβN , i.e., with complex
exponents 1/2 ± iβN . Indeed, for a generic b = iβ,

εiβ =
π
2 (1 − γ )

sin π
2 (1 − γ )

π


(γ )

(cosh πγβ − cosπγ /2)−1


[1 − γ /2(1 + 2iβ )]
[1 − γ /2(1 − 2iβ )]

= 1 − γ

2

|
[γ /2(1 + 2iβ )]|2

(γ )

(
1 + cosh(πγβ )

cos(πγ /2)

)
(38)

is real, even, and monotonically decreases with increasing β

from its maximum value ε0 = Ncr > 1 to 0, i.e., Eq. (27) has
a solution for N < Ncr at some nonzero β = βN . We plot εiβ
in Fig. 6(b). At small γ ,

εiβ ≈ 4

γ

1

1 + 4β2
(39)

and

βN = 1

2

√
Ncr − N

N
(40)

up to corrections of order γ . Solutions with complex ex-
ponents have been recently found in several other physics
problems [98–100]. For superconductivity, the solution with

complex exponents has been found in Ref. [22] for the γ

model with γ = 1
2 .

At N slightly below Ncr , βN ∝ √
Ncr − N for all γ <

1. For N = 1, βN=1 ≈ γ −1/2(1 − [(15 − π2)/24]γ + O(γ 2))
for small γ , βN=1 ≈ 1.268 for γ = 1

2 , and βN=1 → 0.792
for γ → 1. For N = O(1), but N �= 1, the behavior at γ <

1 is very similar, but for γ → 1, βN diverges as βN ≈
0.561(1/N )1/(1−γ ).

Combining the contributions with βN and −βN , we obtain


(z) = C

2

1√
z

(
eiφ

ziβN
+ e−iφ

z−iβN

)
= C√

z
cos (βN log z + φ),

(41)
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FIG. 7. The critical Ncr [for which Eq. (28) has a solution for b =
0] as a function of γ . At small γ , Ncr ≈ 4/γ . At γ → 1, Ncr → 1.

where φ is a free parameter. We see that 
(z) oscillates on
a logarithmical scale down to the lowest frequencies. Such
an oscillating solution could not be obtained perturbatively,
starting from 
(z) = 
0, because within perturbation theory

(z) remains of the same sign as 
0.

We also see that 
̄ = 
(z)
√
z ∝ ei(βN log z+φ) + c.c. has the

form of a wave function of a free fermion if we associate
x = log z with the coordinate. In terms of x, the integral in
Eq. (16) is expressed as

∫
dx 
̄(x)2, and is nothing but the

norm of the eigenfunction of continuum spectrum. The norm
can be made finite by adding infinitesimal e−δ|x| to the integral,
after which it converges. The addition of e−δ|x| also makes the
integral in Eq. (16) convergent for 
(z) at N = Ncr , however,
for N > Ncr , the integral in Eq. (16) still diverges for one term
in Eq. (31). We discuss the normalizability for N > Ncr and
N � Ncr in more detail in Appendix C.

The gap function �(z) behaves as

�(z) = C
√
z cos (βN log z + φ). (42)

We see that the solution of the truncated equation for the
pairing vertex at small z again has two free parameters. In
Eq. (42) these are the overall factor C and the phase φ. The
overall factor is irrelevant, but the phase φ is a free parameter,
which we can vary to verify whether at some particular φ,
�(z) interpolates between (42) and (19).

We emphasize that a free parameter for �(z) at small z [or,
equivalently, for 
(z)] exists both at N = Ncr and N < Ncr .
By conventional wisdom, one would expect that the linearized
gap equation has the solution only for one value of N , which
in our case is expectedly N = Ncr (see Fig. 4). However, the
presence of a free parameter for allN � Ncr hints that our case
may go against the conventional wisdom.

Matching the limiting forms of an integral equation is a
nontrivial procedure as in general one should find a finite-
frequency range where the two forms coincide. This cannot
be implemented in our case because the regions, where the
integral equation can be truncated, do not overlap. Because
of this, we will be searching for the solution of (11) without
specifically looking at the limits of small and large ω̄m.

IV. THE CASE γ � 1: THE LINEARIZED GAP EQUATION
AS THE DIFFERENTIAL EQUATION

We first consider the limit γ � 1, when the pairing in-
teraction (ḡ/|�m|)γ is a shallow function of frequency, and
reduce the linearized integral gap equation to the differential
equation, for which we obtain the exact analytical solution
�diff(ωm), which for convenience of notations we present
below as a function of z, defined in Eq. (32). We show
that a generic normalized solution exists for N � Ncr . At
small ωm, �diff(z) coincides with the solution of the truncated
gap equation. It oscillates as a function of βN log z + φ. For
arbitrary φ, �diff(z) tends to a constant at large z, instead
of decaying as 1/z. However, for a certain value of φ the
constant term cancels out, and the gap function has the correct
asymptotic behavior at high frequencies. In other words, by
fixing the phase in the oscillations of �diff(z) at small z one
recovers the correct form of sign preserving �diff(z) at large
frequencies.

To obtain the differential equation, we return to the lin-
earized equation for the pairing vertex 
(ωm) [Eq. (11)], and
use the fact that for small γ , the integral in the right-hand side
of (10) comes from internal ω′

m, which are either substantially
larger or substantially smaller than external ωm. We then split
the integral over ω′

m into two parts: in one we approximate
|ωm − ω′

m| by |ω′
m|, in the other by |ωm|. The equation for


(ωm) = 
(z) then simplifies to


(z) = 1 − γ

Nγ

[∫ ∞

z
dy


(y)

y(1 + y)
+ 1

z

∫ z

0
dy


(y)

1 + y

]
. (43)

Differentiating this equation twice over z and replacing 
(z)
by �(z) = 
(z)z/(1 + z), we obtain second-order differential
gap equation

(�diff(z)(1 + z))′′ = −Ncr

4N

�diff(z)

z2
, (44)

where (. . .)′′ = d2(. . .)/dz2 and we used the fact that for small
γ , Ncr ≈ 4/γ . This �diff(z) has to be real and satisfy the
boundary conditions at small and large z. At large z we have
from (19)

lim
z→∞ �diff(z) = C∞/z. (45)

At small z we have from (33), (37), and (42)

lim
z→0

�diff(z) =
⎧⎨
⎩
CAz1/2+b, for N > Ncr

Cz1/2(log z + φ), for N = Ncr

Cz1/2 cos(βN log z + φ), for N < Ncr .

(46)

We recall that �diff(z), which satisfies the boundary condition
(46), is normalizable in the sense that the corresponding
condensation energy is finite.

A similar differential gap equation has been obtained in
Ref. [17] for γ � 1 and N ∼ Ncr . These authors, however,
set by hand a UW cutoff at some z = O(1). In our case, the
differential equation (44) is valid for all z and the solution
must recover 1/z behavior at high frequencies [see (45)].

Before we proceed with the analysis of Eqs. (44)–(46), a
remark is in order. The integral equation (43) is “nonlocal”
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in the sense that the integrals in the right-hand side are deter-
mined by all y, not only y ≈ z. The differential equation (44),
on the other hand, is local: both right- and left-hand sides of
(44) contain �diff(z) with the same z. However, the boundary
conditions (45) and (46) imply that once we fix the asymptotic
form of �diff(z) at z → 0, we also determine the constant
C∞ in the asymptotic form at z → ∞. Let us take z large
enough such that the asymptotic form of �diff(z) holds. From
Eq. (44) we obtain for such z, C∞ = Ncr

4N

∫∞
0 �diff(y)dy/y.

One can verify that the main contribution to this integral
comes from y � z, i.e., the prefactor in �diff(z) for z → ∞ is
determined by the form of�diff(z) for much smaller z, roughly
by z � 1, for which �diff(z) is close to its form at small z. In
this sense, the nonlocality of the initial integral equation (44)
reflects itself in the boundary conditions (45) and (46) for the
local differential gap equation. We also emphasize that (44)
is a second-order differential equation, hence, �diff(z) is fully
determined by the two boundary conditions (45) and (46).

We now analyze Eqs. (44)–(46) separately for N < Ncr ,
N = Ncr , and N > Ncr . We will show that the solution exists
for all N � Ncr .

A. N < Ncr

We use Eq. (40) and reexpress Ncr/(4N ) as Ncr/(4N ) =
β2
N + 1/4. Equation (44) then becomes

(�diff(z)(1 + z))′′ = −
(

β2
N + 1

4

)
�diff(z)

z2
. (47)

At z � 1 (i.e., at ω � ω0) Eq. (44) simplifies to

(�diff(z))′′ = −
(

β2
N + 1

4

)
�diff(z)

z2
. (48)

The solution of this equation is the combination of two power-
law functions �diff(z) ∝ z−1/2±iβN . Combining the two, we
obtain the expected result

�diff(z) = Cz1/2 cos(βN log z + φ). (49)

At z � 1, we have

(�diff(z)z)′′ = −
(

β2
N + 1

4

)
�diff(z)

z2
. (50)

The solution of (50) is

�diff(z) = 1√
z

⎡
⎣A1J1

⎛
⎝
√
4β2

N + 1

z

⎞
⎠+ A2Y1

⎛
⎝
√
4β2

N + 1

z

⎞
⎠
⎤
⎦,

(51)

where J1 and Y1 are Bessel and Neumann functions. At small
value of the argument (or large z) J1(p) ≈ p and Y1(p) ≈ 1/p.
Substituting into (51) we find that to satisfy the boundary
condition (45) we must set A2 = 0. Then,

�diff(z) = A1√
z
J1

⎛
⎝
√
4β2

N + 1

z

⎞
⎠. (52)

A similar result has been obtained in Ref. [17].
At arbitrary z, the solution of (47) is expressed via hyper-

geometric function

�diff(z) = C
√
zRe

(
eiφziβN

2F 1

[
1

2
+ iβN ,

3

2
+ iβN , 1 + 2iβN ,−z

])
. (53)

At small z, 2F 1[. . . ,−z] ≈ 1, and �diff(z) is the same as in Eq. (49). At z � 1, we use large z asymptotic of the hypergeometric
function

2F 1[1/2 + iβN , 3/2 + iβN , 1 + 2βN ,−z] = z−1/2−iβN

{

(1 + 2iβN )


(3/2 + iβN )
(1/2 + iβN )

[
1 +
(
1

4
+ β2

N

)
log z

z

]
+ O

(
1

z

)}
(54)

and obtain that for arbitrary φ, �diff(z) tends to a constant, which is inconsistent with the boundary condition (45) (see Fig. 8
left panel). However, for a particular φ = φN , where

φN = arctan
ReL

ImL
, where L = 
(1 + 2iβN )


(1/2 + iβN )
(3/2 + iβN )
, (55)

the constant term in �(z) vanishes (along with log z/z correc-
tion), and �diff(z) does scale as 1/z at large z, consistent with
(45) (see Fig. 8 right panel).

At small βN , the solution of (55) is φN = π/2 −
0.772 59βN . At βN = 1, φN = π/2 − 0.932 51, and at large
βN , φN ≈ 3π/4 − βN log 4. Once φ = φN is fixed, one can
also express the prefactor A1 in Eq. (51) in terms of C in
Eq. (49), e.g., A1 = C(πβN )1/2 for βN � 1.

Analyzing Eq. (53) further, we note that both the loca-
tion and the width of the crossover between small-z and
large-z behavior of �diff(z) depend on N (Fig. 9). For N �
Ncr , βN ∝ (Ncr − N )1/2 is small. In this situation �diff(z)

oscillates as a function of log z up to z ∼ e−1/βN , then mono-
tonically increases up to z ∼ 0.2, passes through a maxi-
mum, and decays as 1/z at larger frequencies [Fig. 9(a)].
For N such that βN = O(1), logarithmic oscillations ex-
tend to z = O(1), and at larger z, �diff(z) ∝ 1/z [Fig. 9(b)].
For N = O(1), βN ≈ 0.5(Ncr/N )1/2 is large because Ncr ≈
4/γ � 1. In this situation, logarithmic oscillations of �(z) =
C

√
z cos(βN log z/4 + 3π/4), persist up to z = O(1), and at

larger z there is a range 1 < z < β2
N , where �diff(z) again

oscillates as �diff(z) ≈ C cos(3π/4 − 2βN/
√
z)/z1/4. These

oscillations persist up to z ∼ (βN )2 ∼ 1/γ , i.e., up to ω =
ωmax ∼ ḡe| log γ |/γ . At larger z, �diff(z) ∝ 1/z [Fig. 9(c)].
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FIG. 8. The solution of the differential gap equation (53) for arbitrary φ (left panel) and for particular φ = φN given by Eq. (55) (right
panel). In the last case �diff(z) satisfies both boundary conditions at small and at large z.

Oscillations at small z are best seen if we use the logarithmical
variable

x = log z = log

( |ωm|
ḡ

)γ

, (56)

while oscillations at z > 1 are best seen if we plot �diff(z) as
a function of 1/

√
z. We present both plots in Fig. 9(d).

The existence of a large intermediate range 1 < z < β2
N

for β2
N � 1 can be inferred already from Eq. (51). Indeed, in

this range the argument of the Bessel function y = 2βN/
√
z

is large, J1(y) ∝ y−1/2 cos(y − 3π/4), and �(z) displays an
oscillating behavior with the period set by 1/

√
z rather than

by log z.

The scale z ∼ β2
N also shows up in the expansion of�diff(z)

in both 1/z and z. Expanding in 1/z, we find

�diff(z) ∝ 1

z

[
1 − β2

N

2z
+ O

(
1

z2

)]
. (57)

The expansion in z yields

�diff(z) ≈ C

√
z

(1 + z)3/4
cos

(
3π

4
+ βNQ(z)

)
f

(
z

β2
N

)
, (58)

where f (0) = 1 and

Q(z) = log
z

4
− z

2
+ 3z2

16
− 5z3

48
+ 19z4

256
+ · · · . (59)

FIG. 9. The solution of the differential gap equation (53) for various βN . For βN � 1 (a) �diff(z) oscillates as a function of log z up to
z ∼ e−1/βN and decays as 1/z at z > 1. For βN = O(1) (b) logarithmic oscillations extend to z = O(1) and, at larger z, �diff(z) ∝ 1/z. For
βN � 1 (c) logarithmic oscillations persist up to z = O(1), and at larger z �diff(z) again oscillates as �diff(z) ∝ cos(3π/4 − 2βN/

√
z)/z1/4.

These oscillations persist up to z ∼ (βN )2 � 1. At larger z, �diff(z) ∝ 1/z. (d) A closer look at oscillations at z � 1 and 1 � z � β2
N for large

βN (small γ ).
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We see that oscillations extend to z > 1. At 1 � z � β2
N , the

form of Q(z) is determined by comparison with (51). We have
in this range Q(z) ≈ −2/

√
z. Then, βNQ(z) becomes of order

one at z ∼ β2
N , where the argument of f (z/β2

N ) also becomes
of order one. This sets z ∼ β2

N as the scale where Eqs. (58)
and (57) match.

The scale z ∼ β2
N [or, equivalently, ωm ∼ ωmax ∼

g(c/γ )1/γ , c = O(1)] is also the scale at which the
boundary condition at z → ∞ becomes relevant and
the phase φ gets locked at φ = φN . To see this, we
substituted 
diff(z) = �diff(z)(1 + z)/z back into the
right-hand side of (43) and evaluated the integrals. We
found that 
diff(z) ∝ z−1/2 cos (βN log z + φ) at z < 1
and 
diff(z) ∝ z−1/4 cos (2βN/

√
z + φ) at 1 < z < β2

N are
reproduced for any φ, and the corresponding integrals are
confined to internal y ∼ z in Eq. (43) (for 1 < z < β2

N the
integrals are expressed via Fresnel C function, which have
to be expanded to appropriate order). However, for z > β2

N ,
Eq. (43) is reproduced only if we set φ = φN .

B. N = Ncr

We now analyze the form of �diff(z) at N = Ncr , where,
we expect, the normalized solution for �diff first to appear.
This analysis requires the same extra care as we exercised
in Sec. III B, when we analyzed the truncated gap equation.
Namely, we need to take the limit βN → 0 rather than just set
βN = 0. To take the limit properly, we reexpress Eq. (53) as

�diff(z) = C1S(βN , z) +C2S(−βN , z), (60)

where

S(βN , z) = ziβN−1/2
2F 1[1/2+ iβN , 3/2+ iβN , 1+ 2iβN ,−z],

(61)

and C1 and C2 are two independent free parameters. Expand-
ing to linear order in βN , we obtain

�diff(z) = C∗
1S(0, z) +C∗

2S
′(0, z), (62)

where the derivative is with respect to iβN . As long as βN

is nonzero, C∗
1 and C∗

2 are two independent parameters. The
functions S(0, z) and S′(0, z) are expressed in terms of Meijer
G function and tend to finite values at large z, with sub-
leading term of order 1/z. Then, �diff(z) = a + b/z at large
z. A constant a vanishes once we choose C∗

2 /C
∗
1 = 1.294.

For this particular C∗
2 /C

∗
1 , �diff(z) from (60) satisfies the

boundary condition at z → ∞. This implies that the solution
does indeed exist at N = Ncr − 0. At small z, S(0, z) ≈ √

z,
S′(0, z) ≈ log z

√
z, hence �(z) ∝ log z

√
z, consistent with

(46). Computing the subleading terms and using C∗
2 /C

∗
1 =

1.294, we obtain at z < 1

�diff(z) = C
√
z

(
1 − 3z

4

)(
log

z

2.165
− z

4
+ O(z2)

)
. (63)

In Fig. 10 we show �diff(z) over the whole range of z. We
see that �diff(z) does not oscillate. It monotonically increases
with z at small z, passes through a maximum at z ∼ 0.2, and
then decreases as 1/z. We will study the consequences of
this behavior in Sec. VI, where we analyze the nonlinear gap
equation. A similar behavior has been obtained in Ref. [17].

FIG. 10. The gap function �diff(z) for N = Ncr − 0 (βN → 0).
The function is sign preserving. It scales as log z

√
z at small z, passes

through a maximum at z ∼ 0.2, and decreases as 1/z at z > 1.

These authors, however, put a hard UV cutoff �′(z) = 0 at
the maximum (at z = 0.2 in our case), and only analyzed the
range z < 0.2.

C. N > Ncr

At N > Ncr , the exponent bN = ((N − Ncr )/4N )1/2 is a
real number, and the solution of (50) is

�diff(z) = C1S[bN , z] +C2S[−bN , z], (64)

where

S[bB, z] = xbN+1/2
2F 1
[
1
2 + bN , 3

2 + bN , 1 + 2bN ,−z
]
. (65)

The boundary conditions at z � 1 and z � 1 [Eqs. (45) and
(46)] set two conditions on the prefactors:

C2 = 0 and

C2

C1
= −
(3/2 − bN )
(1/2 − bN )
(1 + 2bN )


(3/2 + bN )
(1/2 + bN )
(1 − 2bN )
.

(66)

These two conditions are incompatible for any bN , hence,
there is no normalized solution of the gap equation for
N > Ncr .

D. Larger γ

At larger γ , the approximations used to reduce the integral
equation for the pairing vertex to Eq. (43) are not justified. If
we formally extend (43) to γ � 1, we still obtain Eq. (44),
but with Ndiff

cr = 4(1 − γ )/γ instead of the actual Ncr given
by (34). At small γ , Ndiff

cr ≈ Ncr ≈ 4/γ , but for larger γ , they
differ. The difference becomes crucial for γ → 1, where Ndiff

cr
tends to zero, while the actual Ncr approaches 1. This can be
partly corrected by (i) expressing the differential equation in
terms of βN , as in Eq. (47), and using the correct expression
for βN in terms of γ and N , and (ii) modifying the deriva-
tion of the differential equation by adding the contribution
from internal ω′ ≈ ω, as we show in Appendix B. With this
additional contribution, the differential equation for N � Ncr

remains the same as Eq. (47), but z is rescaled to z̄ = z/d ,
where d = 4(1 − γ )/(Nγ (4β2

N + 1)). For small γ , d ≈ 1, but
for γ → 1 and N → 1, d = (1 − γ )/(β2

N + 1/4). In this limit
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z = (|ωm|/g)(1 − γ ) vanishes, but z̄ ≈ (|ωm|/g)(β2
N + 1/4)

remains finite.
Still, the assumption that the approximation of the actual

integral gap equation by the differential one can be rigorously
justified only for small γ , when the pairing interaction is a
weak function of frequency. At larger γ = O(1) one must
analyze the actual, integral gap equation. This is what we will
do next.

V. EXACT SOLUTION OF THE LINEARIZED
GAP EQUATION

In this section we prove that for any γ in the interval
0 < γ < 1, the linearized gap equation has the solution for
any N � Ncr . We obtain the exact analytical solution that
satisfies Eq. (11) and the normalization condition (15). The
analysis is somewhat involved, so we discuss the details in
Appendix C and here list the computational steps and present
the final result.

We start by rewriting Eq. (11) as eigenvalue/eigenfunction
equation of a linear integral operator

N
(ω̄m) = 1 − γ

2

∫ ∞

−∞


(ω̄′
m)dω̄′

|ω̄m − ω̄′
m|γ |ω̄′

m|1−γ

1

1 + |ω̄′
m|γ . (67)

We then introduce a set of functions


β (�m) ≡ |�m|iβγ+δ�m

|�m|γ /2
, (68)

which obey the orthogonality condition

∫
d�m

|�m|1−γ

∗

β
β ′ =
∫

dy e−iγ (β−β ′ )y = 2π

γ
δ(β − β ′), (69)

and define the function bβ as

bβ = 1

2εβ

∫
d�m

|�m|1−γ

β (�m)
(�m). (70)

Multiplying both sides of Eq. (67) by
β (�m) and integrating
over d�m/|�m|1−γ , we obtain the equation for bβ :

Nbβ = i
∫ ∞

−∞

εiβ ′

sinh [π (β ′ − β + i0)]
bβ ′dβ ′, (71)

where εiβ is defined in Eq. (38). The normalizability condition
for 
(ω̄m) for given N and γ is expressed in terms of bβ as
the nondivergence of the integral

∫ ∞

−∞

[
1 − 1

N
εβ ′

]
εβ ′bβ ′b∗

β ′dβ ′. (72)

We solve Eq. (71) subject to (72) in Appendix C and use
(70) and (69) to extract 
(ω̄m) and �(ω̄m) = 
(ω̄m)/[1 +
(ω̄m)−γ ]. We find that there is no normalizable solution for

N > Ncr , but for N � Ncr , the normalizable solution does
exist. The solution �ex(z) is expressed as

�ex(z) =
∫ ∞

−∞

sinh(πβN )e−iβ log z− i
2 I (β )dβ√

cosh[π (β − βN )] cosh[π (β + βN )]
. (73)

Here, βN is the same as before (the solution of εβN = N), and
the function I (β ) is given by

I (β ) =
∫ ∞

−∞
dβ ′ log

∣∣∣∣1 − 1

N
εβ ′

∣∣∣∣[tanh(π (β ′ − β ))

− tanh(πβ ′)]. (74)

The gap function �ex(z) likely cannot be represented by
a simple analytical formula, but can be straightforwardly
computed numerically. We plot �ex(z) for different γ and
N = 1 in Fig. 11. To show both the oscillations at small z and
the power-law behavior at larger z, we use the logarithmical
variable x = log(ω̄m)γ = log z, defined in Eq. (56).

Exact �ex(z) vs �diff(z)

In Fig. 12 we compare the exact �ex(z) for N = 1 and
various γ with the solution of the differential equation �diff(z)
(both are expressed in terms of x = log z). We see that the two
essentially coincide for small γ and remain close to each other
for γ = O(1), but the discrepancy increases with increasing
γ . To understand where the discrepancy comes from, we
expanded the exact �ex(z) in powers of z at small z and in
powers of 1/z at large z and compared with the expansion of
�diff. We present the details of the calculations in Appendix D
and here list the results. The expansion of �ex(z) in z holds in

�ex(z) = 1

1 + z
Re

∞∑
n=0

e(iβN log z+φN )C<
n zn+1/2

+
∞∑

n,m=0

D<
n,mz

(n+bm/γ+1/2). (75)

The expansion of �ex(z) in 1/z holds in

�ex(z) =
∞∑
n=0

C>
n z−(n+1) +

∞∑
n,m=0

D>
n,mz

−[n+2(m+1)/γ+1]. (76)

The real bm in Eq. (75) satisfy εbm/γ = N . There are no
solutions for |bm| < γ/2, but there are solutions for larger b
(see Fig. 13). A given bm is in the interval γ /2 + 2m < bm <

γ/2 + 2(m + 1). The crossover between the two regimes is at
z = zmax = (ωmax/ω0)γ . This is the scale at which oscillating
behavior of �ex(z) crosses over to 1/z behavior.

The expansion of �diff(z) yields

�diff(z) = 1

1 + z
Re

∞∑
n=0

e(iβN log z+φN )C̃<
n zn+1/2 (77)

for the expansion in z, and

�diff(z) =
∞∑
n=0

C̃>
n z−(n+1) (78)

for the expansion in 1/z.
We see that the expansion of �diff(z) is a regular expansion

in powers of either z or 1/z. The coefficients C̃<
n and C̃>

n can
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FIG. 11. The exact solution of the linearized gap equation �ex(x) as a function of x = log (|ωm|/ω0 )γ for N = 1 and various γ from the
interval 0 < γ < 1. For all γ , �ex(x) oscillates at small frequencies with the period set by x, and decays as (ω0/|ωm|)γ = e−x at large x.

be easily obtained by expanding the hypergeometric function
either in z or in 1/z [see Eqs. (58) and (59)]. The expansion of
�ex(z) is more complex and contains two types of terms: the
Cn series and Dn,m series. The C>

n series in Eq. (75) are local
terms in the sense that in the direct perturbative expansion of
the gap equation (7) they come from ω′

m ∼ ωm in the integral
in Eq. (7). The D<

n,m series describe nonlocal corrections,

for which the integral over ω′ is determined by ωmax � ωm.
Examining perturbation series, we find that the coefficients
C<
n can be obtained analytically and are given by

C<
n = C<

0

[
In

n∏
m=1

1

Im − 1

]
, (79)
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FIG. 12. The exact �ex(x) and the solution of the differential gap equation �diff(x) [Eq. (53)] as functions of log z = log[(|ωm|/ω0)γ ]. For
�diff, we rescaled z to z̄ = z/d , where d = 4(1 − γ )/(Nγ (4β2

N + 1)) (see Appendix B).

where

Im = 1 − γ

2N
Q(m, γ , βN ),

Q(m, γ , βN ) = 
[(m+1/2)γ+iβNγ ]
[(1/2−m)γ−iβNγ ]


(γ )

+
(1 − γ )

(

[(m + 1/2)γ + iβNγ ]


[1 − (1/2 − m)γ + iβNγ ]

+ 
[(1/2 − m)γ − iβNγ ]


[1 − (m + 1/2)γ − iβNγ ]

)
. (80)

The series do not converge absolutely because at large n,
C<
n ∝ 1/n, but each term in the series can be easily calculated.

At small γ and N = 1, when βN ≈ (Ncr/4N ) � 1, the C<
n

series in Eq. (75) reproduce, order by order, the expansion of
�diff(z) [Eqs. (58) and (59)]. The same holds for the expansion
in 1/z: the C>

n series in Eq. (76) reproduce the expansion in
Eq. (57). The D terms are small for γ � 1 by a combination
of two factors: (i) the prefactors are relatively small, e.g.,
D>

0,0 ≈ −C>
0 γ /4, and (ii) bm ≈ 2(m + 1), hence, the nonlocal

terms contain additional small factors z2m/γ in the expansion
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FIG. 13. The function εb/γ , Eq. (28), for γ = 0.5.

in z and and (1/z)−2m/γ in the expansion in 1/z. As the
consequence, for small γ , �ex(z) and �diff(z) coincide, up to
small corrections, as Fig. 12(a) demonstrates.

At larger γ = O(1), the nonlocal terms become relevant,
particularly near zmax, where�ex(z) crosses over to 1/z behav-
ior. Numbers wise, �diff(z) still agrees reasonably well with
�ex(z), as Fig. 12 shows, but qualitatively the exact �ex(z) is
different from �diff(z).

VI. NONLINEAR GAP EQUATION

We now analyze the full nonlinear gap equation (7).
We argue that it has an infinite, discrete set of solutions,
which can be specified by topological index n, and the limit
n → ∞ corresponds to the solution of the linearized gap
equation.

A. Qualitative reasoning

We begin with qualitative reasoning. We assume that for
any finite n, the gap function �n(ωm) tends to a finite value
at ωm = 0, while at ωm > ω∗

n , �n(ωm) is small and has the
same dependence on ωm as �∞(ωm) = �ex(ωm). We further
assume that ω∗

n is the only relevant scale for �n(ωm), i.e.,
�n(ωm) saturates at ωm < ω∗

n . This reasoning has two impli-
cations. First, �n(ω∗

n ) ∼ ω∗
n . Second, �n(ωm) must satisfy the

modified linearized gap equation, in which the lower limit of
integration over positive and negative ω′

m is set at a frequency
of order ω∗

n . Because �ex(ωm) is the solution for ω∗
n = 0, the

modified linearized gap equation has a solution if∫ ω∗
n

0
dω′

m

�ex(ω′
m)

ω′
m

= 0. (81)

These two conditions determine ω∗
n and �n(ω∗

n ). Below we
use the variable z instead of ωm and define z∗n = (ω∗

n/ω0)γ . In
these variables, �n(0) ∼ �n(z∗n ) ∼ ω0(zn)1/γ .

For N � Ncr , �ex(z) behaves at z < 1 as
C

√
z cos(βN log z + φN ), where βN ∝ (Ncr − N )1/2 is small

and φN = π/2 − 0.773βN . Evaluating the integral in Eq. (81)
and reexpressing the result in terms of z, we obtain

sin[βN (log z
∗ − 2.77)] = 0. (82)

This equation has a discrete set of solutions for z∗ � 1:
log z∗ = 2.77 − π (n + 1)/βN , where n = 0, 1, 2, . . ., i.e.,

z∗n ∝ e−π (n+1)/βN . (83)

All z∗n , including z∗0, are exponentially small at small βN .
The gap functions �n(0) ∼ ω0(z∗n )

1/γ are also exponentially
small:

�n(0) ∝ ω0e
−π (n+1)/(γ βN ). (84)

One can easily verify that �n(z) changes sign n times between
z = 0 and ∞.

The result z∗n ∝ e−πn/βN at n � 1 also follows from a
generic reasoning that �ex(z) should have an extremum at
z ∼ z∗n to match with a constant �n(z) ≈ �n(0) for smaller
z. We note, however, that the presence of an extremum in
�ex(z) by itself does not guarantee that the solution of the
nonlinear gap equation exists. Indeed, �ex(z) for N = Ncr has
a maximum at z = O(1), but there is no solution with a finite
�(z) for this N .

When βN � 1 [e.g., for γ � 1 and N = O(1)], we can
still apply the same reasoning for large enough n, when z∗n is
exponentially small in n. However, for n = O(1), z∗n � 1, and
we should use appropriate expression for �ex(z) in Eq. (81).
Replacing �ex(z) by �diff(z) as the two are very close, and
using the asymptotic form of �diff(z) for z > 1: �diff(z) ∼
(1/

√
z)J1(2βN/

√
z), we obtain the condition on z∗n in the form

J0

(
2βN√
z∗n

)
= O(1). (85)

This equation has a discrete set of solutions z∗n = 4β2
Nsn,

where where sn is a decreasing function of n. The corre-
sponding �n(z∗n ) ∼ �n(0) ∼ ω0(β2

N )
1/γ . For small γ , β2

N ≈
1/γ , hence, �n(0) ∼ ω0(1/γ )1/γ (Refs. [14,58,60,62]). This
analysis holds up to n = nmax, for which z∗nmax

= O(1). For
larger n, z∗n are given by Eq. (83). Still, �n(z) changes sign
n times between z = 0 and ∞.

Note that at small γ , �n(0) ∝ ω0(z∗n )
1/γ rapidly evolves

from �n(0) � ω0 when z∗n < 1 to �n(0) � ω0 when z∗n > 1.
In Ref. [60] we solved the nonlinear gap equation at small γ

and N = 1 for sign preserving �0(z). We obtained �0(0) =
0.885ḡ(1/1.4458γ )1/γ ≡ 0.326ω0(1/1.4458γ )1/γ , consistent
with our estimate. The number 1.4458 comes from the
fact that at small γ , the more explicit form of (85) is
J0(2βN/

√
z∗0 ) = O(γ ) (Refs. [14,58,60,62]).

B. Nonlinear differential equation

We now corroborate qualitative reasoning by more direct
analysis in which we derive and solve the nonlinear differ-
ential gap equation. To derive this equation, we again depart
from the original integral equations for the pairing vertex
and the self-energy [Eqs. (5) and (6)] or, equivalently, from
the nonlinear gap equation (7) and approximate the integral
over ω′

m in the left-hand side of (5) by the integrals over
ω′
m � ωm and ω′

m < ωm, each time neglecting either ω′
m or

ωm in the pairing interaction. However, for a finite �(ωm)
we have to take into account the fact that the self-energy has
a more complex form in the presence of �. In particular,
one can easily verify that if �(ωm) tends to a finite value at
ωm = 0, as we assume to be the case,�(ωm) acquires a Fermi-
liquid form �(ωm) ∼ ωm(ω0/�(0))γ at the smallest ωm. The
non-Fermi liquid �(ωm) = |ωm|1−γ ω

γ

0 signωm = ωm/z is re-
covered at frequencies for which |ωm| � �(ωm). These two
limiting forms of the self-energy can be combined into the
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FIG. 14. The ratio of �(ω → ∞)/�(ω → 0) vs log�(ω → 0).

interpolation formula

�(ωm) = ωm
ω

γ

0[
ω2
m + �2(ωm)

]γ /2 . (86)

If we include this self-energy and then follow the same deriva-
tion for the linearized differential gap equation, we would
obtain

[
�̄(z)

(
z+ 1

[1+D2(z)]γ /2

)]′′
= − Ncr

4Nz2
�̄(z)√

1+D2(z)
, (87)

where �̄(z) = �(z)/ω0 andD(z) = �(z)/z1/γ . There is a sec-
ond complication, however. One can verify that a at nonzero
�(0), the right-hand side of the actual, nonlinear integral
gap equation (7) (with the self-energy contribution kept in
the left-hand side) has a regular expansion in powers of ω2

m.
Indeed, a direct expansion in ωm yields

ḡγ

2N

∫
dω′

m

�(ω′
m)√

(ω′
m)

2 + �2(ω′
m)

1

|ωm − ω′
m|γ = A + Bω2

m,

(88)

where A and B are given by convergent integrals

A = ḡγ

2N

∫
dω′

m

�(ω′
m)√

(ω′
m)2 + �2(ω′

m)

1

|ω′
m|γ ,

B = −γ (γ + 1)

2

ḡγ

2N

∫
dω′

m√
(ω′

m)
2 + �2(ω′

m)(�(ωm) +√(ω′
m)

2 + �2(ω′
m))

1

|ω′
m|γ . (89)

The combination of Eqs. (86) and (88) then implies that at
small ωm, �(ωm) is a regular function of frequency �(ωm) =
�0 +Cω2

m, as is expected in a Fermi-liquid regime. Equiv-
alently, �̄(z) = �̄0 + C̄z2/γ . This regular expansion of �̄(z)
is not reproduced by Eq. (87). The reason can be easily
understood by analyzing how the ω2

m term appears in the

right-hand side of (88): to get it one has to keep both ω′
m

and ωm in the interaction, i.e., go beyond the approximation
used to derive (87). A simple experimentation shows that
to reproduce regular behavior of the gap function at small
frequencies, one has to multiply the right-hand side of (87)
by the factor [

√
1 + D2(z) − |D(z)|]1+γ . This factor reduces

024524-19



ARTEM ABANOV AND ANDREY V. CHUBUKOV PHYSICAL REVIEW B 102, 024524 (2020)

FIG. 15. Left: the ratio of �(ω → ∞)/�(ω → 0) vs log�(ω → 0) for different N . The inset shows �0 vs π

γβN
, the best fit has the slope

of −0.95. Right: �0 vs z for γ = 0.3 and N = 6 ≈ Ncr/2.

to 1 when D(z) is small, but gives additional z(1+γ )/γ when
D(z) is large. With this extra factor, the nonlinear differential
gap equation takes the form[

�̄(z)

(
z + 1

[1 + D2(z)]γ /2

)]′′

= − Ncr

4Nz2
�̄(z)√

1 + D2(z)
(
√
1 + D2(z) − |D(z)|)1+γ . (90)

One can verify that at small z, the solution of this equation,
if it exists, has an asymptotic form �̄(z) = �̄(0) + C̄z2/γ ,
consistent with asymptotic form of the solution of the actual
integral equation.

The boundary conditions for (90) are a finite �(0) and
�(z) ∝ 1/z at z → ∞. The last condition is the same as
for the linearized gap equation. According to our qualitative
reasoning, this equation should have an infinite, discrete set
of solutions �n(z).

We solve Eq. (90) numerically. We set �(0) to some value,
which we vary. For a generic�(0),�(z) evolves with z toward
some constant at z → ∞. We verify whether for some partic-
ular �(0), a constant vanishes and �(z) decays as 1/z. We
show the result in Fig. 14 for γ = 0.3 and N = 1 (Ncr/N ≈
13, βn ≈ 1.75). We plot the ratio of �(z → ∞)/�(0) vs
�(0). We see that for a generic �(0), �(∞) remains finite,
but there is a discrete set of �n(0), for which �(∞) vanishes.
With our numerical accuracy we can clearly identify three
such �n(0). In three insets in Fig. 14 we show �(z) for these
three�n(0). We see that the gap function changes sign n times
as a function of z (n = 0, 1, 2), precisely as we anticipated.

In the top right inset in Fig. 14 we plot �n(0) vs n for
N = 1 and γ = 0.3. We clearly see that�n(0) has exponential
dependence on n. We fitted the results to Eq. (83). The best
fit yields βN ≈ 1.51. This is quite consistent with the actual
value βN ≈ 1.75 [we note that Eq. (83) is by itself only valid
for βN < 1].

In the left panel of Fig. 15 we collect the results for γ =
0.3 and different N between N = 1 and Ncr , the inset shows a
comparison of log�0 against π

γβn
, where βN = 0.5(Ncr/N −

1)1/2. We see that the agreement is quite good: the theoretical

slope is −1 [see Eq. (84)] and the fitting of numerical data
yields the slope −0.95.

Finally, in the right panel of Fig. 15 we plot �0 vs z for
N ≈ Ncr/2, where�0(0) is already very small. We see that the
gap function flattens at z∗ ∼ (�0(0))γ , which is much smaller
than the scale at which �0(z) has a broad maximum. This is
again consistent with our qualitative reasoning.

In the subsequent publication (Paper II [84]) we collaborate
the T = 0 analysis with the analysis of the linearized gap
equation at a finite T . We show that for N < Ncr , there exists
a discrete set of onset pairing temperatures Tp,n, and the
eigenfunction �n(ωm) changes sign n times as a function
of Matsubara frequency. We argue that these �n(ωm) grow
in magnitude below Tp,n, but preserve the number of sign
changes, and at T = 0 coincide with �n(ωm), which we found
here.

We note in passing that �n(ωm) has a maximum at ω ∼
ω0 ∼ ḡ. The reason for the maximum is that at T = 0, a
nonzero �n(ωm) emerges only at N < Ncr , and �n(0), in-
cluding n = 0, scale with Ncr − N . Meanwhile, the onset
temperature for the pairing into the n = 0 state, Tp,0, is of
order ω0. The gap structure reflects this discrepancy: �n(ωm)
at the lowest frequencies scales with Ncr − N , but the gap at
ωm ∼ ω0 scales with ω0. This gives rise to a maximum at
ωm ∼ ω0.

VII. CONCLUSIONS

In this paper we analyzed the competition between two
opposing trends in the behavior of interacting fermions near
a quantum critical point in a metal: non-Fermi-liquid physics
and pairing. Both trends are captured within the model of
fermions interacting by exchanging soft-bosonic fluctuations
of an order parameter, which condenses at the critical point.
The non-Fermi-liquid behavior is the result of strong, nonan-
alytic self-energy due to boson-mediated scattering near the
Fermi surface, the pairing is due to strong attraction in at
least one pairing channel, provided by the same soft-boson
exchange. We considered a class of quantum critical mod-
els with an effective dynamical electron-electron interaction
V (�m) ∝ 1/|�m|γ (the γ model). In this paper, the first in the
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series, we considered the case 0 < γ < 1 and restricted the
analysis to T = 0. The limit γ = 0 corresponds to BCS theory
without the upper cutoff, but for all finite γ the interaction
drops off at large � and the pairing problem is ultraviolet
convergent. To parametrically separate the tendencies toward
non-Fermi liquid and pairing, we extended the model and
introduced the parameter 1/N as additional overall factor in
the pairing interaction only. At large N , the tendency toward
non-Fermi-liquid normal state at T = 0 is stronger by N , at
small N the tendency toward pairing is stronger by 1/N .

Our analysis brings two conclusions. First, we found
that there indeed exists a critical N = Ncr , separating non-
Fermi-liquid normal state at larger N and superconducting
state at smaller N . The critical Ncr > 1 for all γ < 1, such
that the original N = 1 model is superconducting at T = 0.
Second, we found that the system behavior for N < Ncr is
rather unconventional in the sense that there exists an infi-
nite set of solutions of the nonlinear gap equation �n(ωm),
n = 0, 1, 2, . . . , all within the same pairing symmetry. The
solutions are topologically distinct: �n(ωm) changes sign n
times as a function of Matsubara frequency ωm. All �n

emerge at N = Ncr , and for N � Ncr their magnitudes scale as
�n ∝ e−π (n+1)/γ βN , where βN ∝ (Ncr − N )1/2. The end point
of the set, �∞(ωm), is the solution of the linearized gap
equation at T = 0. We obtained the exact analytical solution
of the linearized gap equation at T = 0 and also a highly
accurate simple approximate solution for all N � Ncr . In the
subsequent paper we analyze the linearized gap equation
at a finite T and show that there is an infinite set of the
onset temperatures for the pairing Tp,n, and the corresponding
eigenfunctions change sign n times as functions of ωm. We
argue that these topologically distinct gap functions grow in
magnitude below the corresponding Tp,n, but largely preserve
the functional forms and at T = 0 become �n that we found
in this work.

The sign-preserving solution with n = 0 has the largest
condensation energy and is the global minimum of the con-
densation energy Ec. All other solutions are local minima.
Still, the presence of the infinite set of �n(ωm), including
the solution of the linear gap equation for all N � Ncr , is a
highly nontrivial feature of the pairing at a QCP. In subsequent
publications we extend the T = 0 analysis to γ > 1 and
argue that the local minima become more closely spaced with
increasing γ form a continuous set for γ = 2. We argue that
in this case all solutions have equal condensation energy, and
superconducting order gets destroyed already at T = 0. As
the consequence, the true superconducting Tc terminates at
γ = 2, while the onset temperature for the pairing Tp,0 = Tp
remains finite (see Fig. 2). The two temperatures then must be
different for all 0 < γ � 2, including 0 < γ < 1, which we
considered here. In-between Tc and Tp, the system displays
pseudogap behavior. We emphasize again that the root to this
highly unusual behavior is the existence of the solution of the
linearized gap equation for all N , rather than only at N = Ncr .
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APPENDIX A: CASE OF SMALL γ AND A
FINITE-FREQUENCY CUTOFF

The limit γ → 0 of the γ model attracted a lot of at-
tention from various subcommunities in physics [13,14,16–
18,54,60,73] and has been analyzed in both Eliashberg-
type and renormalization group approaches. This limit re-
quires extra care because strictly at γ = 0, the interac-
tion V (�) ∝ |�|−γ becomes frequency independent, and
the pairing problem becomes equivalent to BCS, but
without the upper cutoff for the interaction. Meanwhile,
for any nonzero γ , the gap equation converges at ω >

ωmax ∝ ge| log γ |/γ . More explicit calculation yields ωmax ∼
g(1/1.446)1/γ e| log γ |/γ (Refs. [14,58,60,62]). This ωmax re-
mains finite at any nonzero γ , but grows with decreasing γ

faster than the exponent.
In this Appendix we consider how the gap equation gets

modified if we introduce the upper cutoff for V (�m) at �m =
�, i.e., modify V (�m) = (ḡ/|�m|)γ to

V (�m) =
(

ḡ

|�m|
)γ[

1 −
( |�m|

�

)γ]
(A1)

for |�m| < �, and V (�m) = 0 for |�m| > �. We consider
γ for which � � ωmax. In this case we can expand V (�)
to first order in γ and express it for �m < � as V (�) =
γ log (�/|�|).

The normal-state self-energy is �(ωm) = γωm log�/|ωm|.
Substituting these V (�) and �(ωm) into the equation for the
pairing vertex, we obtain


(ωm) = γ

2N

∫ dω′
m log �

|ωm−ω′
m|

|ω′
m|(1 + γ log �

|ω′
m|
) . (A2)

Introducing logarithmic variables x = log�/|ωm|, x′ =
log�/|ω′

m| and restricting with the contributions from ω′
m �

ωm and ω′
m � ωm, as we did in the derivation of (43), we

reduce (A2) to


(x) = γ

N

[∫ x

0
dx′ x

′
(x′)
1 + γ x′ + x

1 + γ x

∫ ∞

x
dx′
(x′)

]
. (A3)

Differentiating twice over x and introducing y = γ x, we
obtain

(
′(y)(1 + y)2)′ = −
(y)

Nγ
. (A4)

The boundary conditions are 
(y = 0) = 0 [
(ωm) must
vanish at ωm = �] and 
(y = ∞) = 0, i.e., 
(ωm = 0) = 0.
The last condition is set to avoid the divergence in Eq. (A2) at
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FIG. 16. The function 
(y) from Eq. (A5).

vanishing ω′
m. The solution of (A4) is


(y) = C√
1 + y

cos

(
φ +
√

1

Nγ
− 1

4
log (1 + y)

)
. (A5)

This 
(y) satisfies the boundary condition 
(y = ∞) = 0
provided 1/Nγ > 1

4 , i.e., N < Ncr = 4/γ . To satisfy the other
boundary condition, we choose φ = π/2.

We plot 
(y) in Fig. 16 for N = 1 and γ = 0.01. We see
that 
(y) is an oscillating function of y for y � 1 and an
oscillating function of log y for y � 1. For y � 1 we have,
restoring the units of frequency,


(ωm) = −C sin

(
γ

√
1

Nγ
− 1

4
log

�

|ωm|

)
. (A6)

The largest frequency for oscillations is ω∗
0 ∼

�e−γ
√
1/(Nγ )−1/4. This scale determines the magnitude of

the gap �0(0). For Nγ � 1, ω∗
0 ∼ �e− π

2

√
N/γ . The ratio γ /N

plays the role of a dimensionless coupling λ, and �0 can be
cast into �0(0) ∼ �e− π

2
√

λ . This agrees with Refs. [14,73].
Comparing �0(0) obtained with and without the cutoff at �,
we see that the analysis of the γ model without the upper
cutoff is valid as long as g(1/1.446γ )1/γ � �e−γ

√
1/Nγ−1/4.

At smaller �, �0(0) ∼ �e−γ
√
1/Nγ−1/4. We emphasize that

even in this case there are an infinite number of solutions

�n(0) ∼ �e− π

2
√

λ e− nπ√
λ . (A7)

This is valid up to n ∼ 1/
√
Nγ . For larger n, relevant y in

Eq. (A4) become larger than one, and the formula for �n(0)
changes.

At small γ and N = O(1), the ratio �(ω)/ω is small at
ω ∼ ω∗

0, both when � is finite and when it is set to infinity. In
the first case, the ratio is of order

√
γ , in the second it is of

order γ . This implies that for the computations �0, the self-
energy can be safely neglected. Once self-energy is neglected,
one can easily obtain the differential gap equation for the full
V (�m) in Eq. (A1), without expanding it to first order in γ .

This allows us to study the crossover between the behavior at
finite and infinite �.

Introducing, as before, z = (|ωm|/ω0)γ and anticipating
that relevant ωm � ω0, we find that the equation for �diff(z)
for z � 1 and V (�m) given by (A1), is the same as when
� = ∞, i.e.,

(�diff(z)z)′′ = − 1

Nγ

�diff

z2
. (A8)

However, now �diff(z) has to satisfy the boundary condition
�diff(�∗) = 0, where �∗ = (�/ω0)γ . The proper solution of
(A8) is

�diff(z) ∝ 1√
z

[
J1

(
2

(Nγ z)1/2

)
Y1

(
2

(Nγ�∗)1/2

)

−Y1

(
2

(Nγ z)1/2

)
J1

(
2

(Nγ�∗)1/2

)]
. (A9)

In the limit Nγ�∗ � 1, we use

J1(x) ≈
√

2

πx
cos (x − 3π/4),

Y1(x) ≈
√

2

πx
sin (x − 3π/4) (A10)

and obtain

�diff(z) ∝ 1

z1/4
sin

(
2

(Nγ�∗)1/2 − 2
(Nγ z)1/2

)
. (A11)

In original variables ωm and �, this reduces, to the leading
order in γ , to

�diff(ωm) ∝ C

|ωm|γ /4
sin

(√
γ

N
log

|ωm|
�

)
. (A12)

This coincides with (A6), up to subleading terms.
In the opposite limit Nγ�∗ � 1, we use J1(x � 1) ∼ x,

Y1(x � 1) ∼ 1/x, where x = 2/
√
Nγ�∗. Keeping onlyY1(x),

we obtain from (A9) that the dependence on� disappears, and

�diff(z) ∝ 1√
z
J1

(
2

(Nγ z)1/2

)
. (A13)

This coincides with Eq. (52).
The same result can be obtained from the RG equations

[14,17]. One has to write a set of two RG equations for the
two-fermion pairing vertex g and the effective four-fermion
pairing interaction u. Both depend on the logarithmic scale
Ln = log�/|ωn|. To leading order in γ , the equations for the
running g(L) and u(L) are

g′ = γ g, u′ = u2 + g. (A14)

The initial condition is

g(0) =
(
ḡ

�

)γ
γ

N
, u(0) = 0. (A15)

The solution of (A14) is g(L) = g(0)eγL and

u(L) = g1/2(0)eγL/2
J1
( 2g1/2(0)

γ
eγL/2

)
Y1
( 2g1/2(0)

γ

)− Y1
( 2g1/2(0)

γ
eγL/2

)
J1
( 2g1/2(0)

γ

)
J0
( 2g1/2(0)

γ
eγL/2

)
Y1
( 2g1/2(0)

γ

)− Y0
( 2g1/2(0)

γ
eγL/2

)
J1
( 2g1/2(0)

γ

) . (A16)
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For g(0)/γ 2 = (ḡ/�)γ (1/Nγ ) � 1 (i.e., for small γ and
finite �), relevant values of the arguments of Bessel and
Neumann functions are large, and using (A10) we find that
γ cancels out, and

u(L) = g1/2(0) tan [g1/2(0)L]. (A17)

The four-fermion vertex formally diverges at the set of ω∗
n =

�e−π/[2g1/2(0)]e−nπ/g1/2(0). Using g(0) ≈ λ, valid when � is
finite and γ → 0, and associating the corresponding ω∗

n with
�n(0), we reproduce (A7).

In the opposite limit g(0)/γ 2 � 1, valid when γ is kept
finite and � is set to be sufficiently large, we again use
that at small x, Y1(x) � J1(x). Keeping only Y1(2g

1/2
0 /γ ) in

Eq. (A16), we obtain

u(L) = g1/2(0)eγL/2
J1
( 2g1/2(0)

γ
eγL/2

)
J0
( 2g1/2(0)

γ
eγL/2

) . (A18)

The four-fermion vertex now diverges at the set of zeros of
J0(p), where

p = 2g1/2(0)

γ

(
�

|ωm|
)γ /2

= 2

(Nγ z)1/2
, (A19)

where, as before, z = (ω0/|ωm|)γ [we used that for small γ ,
ḡγ = ω

γ

0 (1 − γ ) ≈ ω
γ

0 ]. We see that now � cancels out, and
the condition J0[2/(Nγ z)1/2] = 0 gives the same set of z∗n as
for the case when � is infinite.

APPENDIX B: DIFFERENTIAL GAP EQUATION
FOR ARBITRARY γ

The derivation of the differential gap equation (43) from
the original integral equation is only justified for small γ . In
this Appendix wemodify the derivation and show that forN =
1 the modified gap function �diff(ωm) shows qualitatively the
same behavior as the exact �(ωm) even for γ � 1.

Specifically, we add to the right-hand side of (43) the
additional contribution from ω′ ∼ ω, where the interaction is
strongly peaked at γ → 1. There is some uncertainty with this
contribution as we have to specify the range of integration
around ω′ = ω. We choose this range to be |ω′ − ω| � aγ ω

and keep aγ as a parameter. We assume that for small γ ,
aγ → 0, but for γ � 1, aγ = O(1). Adding this contribution
to the right-hand side of Eq. (43) we find that it becomes


(z)
d + z

1 + z
= 1 − γ

Nγ

[∫ ∞

z
dy


(y)

y(1 + y)
+ 1

z

∫ z

0
dy


(y)

1 + y

]
,

(B1)

where d = 1 − a1−γ
γ /N . Introducing� instead of
, rescaling

z to z̄ = z/d , and differentiating twice over z̄ we obtain
differential gap equation in the same form as in Eq. (47):

(�diff(z̄)(1 + z̄))′′ = −
(

β2
N + 1

4

)
�diff(z̄)

z̄2
, (B2)

once we identify

1 − γ

Nγ − a1−γ
γ

= β2
N + 1

4
. (B3)

Hence, the solution is given by Eq. (53) with z̄ instead of z.
Equation (B3) determines aγ . At small γ , β2

N + 1/4 ≈
1/(Nγ ), hence, a is small and z̄ ≈ z. However, for larger γ ,
aγ = O(1), and the rescaling z → z̄ is essential. Figure 12
shows that it brings �diff(z) closer to the exact �ex(z).

We note in this regard that for N = 1 and γ → 1,
a1−γ

γ /N ≈ 1 + (1 − γ ) log aγ , and the right-hand side of (B3)
becomes of order one if we choose a = O(1). This is con-
sistent with the fact that βN=1 tends to a finite value βN=1 ≈
0.79 at γ → 1. Also, the rescaling factor d = 1 − a1−γ /N ≈
−(1 − γ ) log aγ , hence for a = O(1), z̄ = z/d becomes of
order |ωm|/g. As the consequence, the modified �diff(ωm)
evolves at a nonsingular ωm ∼ g. This is consistent with the
behavior of �ex(ωm) at γ → 1 and N = 1 [see Fig. 12(e)].

APPENDIX C: EXACT SOLUTION OF THE LINEARIZED
GAP EQUATION: THE COMPUTATIONAL DETAILS

In this Appendix we present the full details of the com-
putations, leading to the formula for the exact solution of
Eq. (11). The presentation in this Appendix is self-contained
in the sense that it does not use specific notations, introduced
in the main text.

1. Reformulation of Eq. (11)

We write Eq. (11) as

E
(�) = 1 − γ

2

∫ ∞

−∞


(ω)dω

|ω − �|γ |ω|1−γ

1

1 + |ω|γ (C1)

and use the latter E instead of N to emphasize that this is a
continuous variable.2

We introduce a set of functions


β (�) = |�|2iβ+δ�

|�|γ /2
, (C2)

where β changes from −∞ to +∞ and δ� = +0 sign(1 −
|�|) is a convergence factor. It is clear that∫


β (ω)
∗
β (�)

dβ

2π
= 1

2
|�|1−γ δ(|�| − |ω|).

We now denote

aβ = 1

2

∫
d�

|�|1−γ

β (�)
(�), (C3)

multiply (C1) by 
β (�), and integrate it over d�
|�|1−γ . We

obtain

Eaβ = 1 − γ

2

1

2

∫
dω

φ(ω)

|ω|1−γ

1

1 + |ω|γ
∫


β (�)d�

|�|1−γ |� − ω|1−γ

= εβ

2

∫
dω


(ω)
β (ω)

|ω|1−γ

1

1 + |ω|γ ,

where

εβ = 1 − γ

2

|
(γ /2 + 2iβ )|2

(γ )

(
1 + cosh(2πβ )

cos(πγ /2)

)
. (C4)

2The method, presented in this Appendix, will also work for a
generalized version of Eq. (C1) with 1

1+|ω|α instead of 1
1+|ω|γ .
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From the definition (C3) [we also use the fact that 
(ω) is
taken to be an even function of frequency] we find∫

aβ
∗
β (ω)

dβ

2π
= 1

2

∫
d�

|�|1−γ

(�)
∫


β (�)
∗
β (ω)

dβ

(2π )

= 1

2

(ω).

We then have

Eaβ = εβ

∫
dβ ′

2π
aβ ′

∫
dω


∗
β ′ (ω)
β (ω)

|ω|1−γ

1

1 + |ω|γ .

We now compute the integral∫
dω


∗
β ′ (ω)
β (ω)

|ω|1−γ

1

1 + |ω|α

= 2
∫ ∞

0

dω

ω

ω2i(β−β ′ )+δω

1 + ωγ
= 2

γ

∫ ∞

−∞
dx

eix
2
γ
(β−β ′ )+xδx

1 + ex
,

where δx = −0 sign(x). At x → ∞ the integral perfectly con-
verges with or without the convergence factor. At x → −∞
we do need the convergence factor, and we assume that δx is a
small positive number. Evaluating the integral we then obtain

2

γ

∫ ∞

−∞
dx

eix
2
γ
(β−β ′−i0)

1 + ex
= − 2

γ

iπ

sinh
(
2π
γ
(β − β ′ − i0)

) (C5)

and

Eaβ = −iεβ

1

γ

∫ ∞

−∞

aβ ′dβ ′

sinh
(
2π
γ
(β − β ′ − i0)

) .
We now substitute 2β/γ = k, and use ak instead of aβ . Then,

Eak = − i

2
εγ k/2

∫ ∞

−∞

ak′dk′

sinh [π (k − k′ − i0)]
. (C6)

Introducing the new function bk via

ak = bkεγ k/2, (C7)

we obtain from (C6) the equation for bk in the form

Ebk = i

2

∫ ∞

−∞

εγ k′/2

sinh [π (k′ − k + i0)]
bk′dk′. (C8)

2. Functional F[φ]

For an infinitesimally small 
(ω), the free-energy differ-
ence between the states with
(ω) = 0 and
(ω) �= 0 is given
by

F [
]

N0ω0
= 1

2

∫

2

ω

|ω|1−γ (1 + |ω|γ )dω − 1 − γ

4E

×
∫


ω
ω′dω dω′

|ω|1−γ (1 + |ω|γ )|ω − ω′|γ |ω′|1−γ (1 + |ω′|γ ) ,

(C9)

where we defined 
(ωm) ≡ 
ω to shorten the notations.
Taking the first variation of this functional we obtain Eq. (C1)
This functional defines our space of functions, namely, we
must only consider the functions for which F [φ] is finite.

3. Normalizability condition

Now, let us take 
E
ω to be the solution of (C1) with E �= 1.

Then,

F
[

ε

ω

] = N0ḡ
2(1 − γ )−2/γ 1 − E

2

∫ ∞

−∞


2
ω

|ω|1−γ (1 + |ω|γ )dω.

(C10)
We now use


ω = 2
∫

aβ
∗
β (ω)

dβ

2π
,

where 
β (ω) is defined in Eq. (C2). According to (C5), we
have∫


2
ωdω

|ω|1−γ (1 + |ω|γ ) = − 4i

πγ

∫ aβa∗
β ′dβ dβ ′

sinh
[
2π
γ
(β − β ′ − i0)

] .
Substituting into (C10) and using

k = 2β/γ ,

we obtain

F
[
aEk
]

N0ω0
= −γ (1 − E )

i

2π

∫
aka∗

k′dk dk′

sinh [π (k − k′ − i0)]
. (C11)

Using (C7), we rewrite (C11) in terms of bk as

F
[
bEk
]

N0ω0
= −γ (1 − E )

i

π

∫
εγ k/2εγ k′/2

sinh [π (k − k′ − i0)]
bkb

∗
k′dk dk′.

It can be reexpressed as

F
[
bEk
]

N0ω0
= −γ (1 − E )

i

π

∫
εγ k/2εγ k′/2

[
1

sinh [π (k − k′ + i0)]

+ 2iδ(k − k′)
]
bkb

∗
k′dk dk′.

Comparing to (C8), we finally obtain

F
[
bEk
]

N0ḡ2(1 − γ )−2/γ γ
= − E (1 − E )

π

∫ [
1 − 1

E
εγ k′/2

]

× εγ k′/2bk′b∗
k′dk′. (C12)

Equation (C12) defines a norm for our solutions. If we manage
to solve Eq. (C8) and find bk for a given E , we will need to
verify whether for these bk , F [bEk ] is finite. This will give us
the spectrum.

4. Solution of Eq. (C8)

We now show that the normalizable solution of Eq. (C8)
exists for all E < ε0. We obtain bk and use them to obtain the
pairing vertex 
(ωm) and the gap function �(ωm). For this
purpose we need to first find symmetry properties of bk in
Eq. (C8).

a. bk vs b−k

Equation (C1) is real. So, (i) if an eigenfunction is com-
plex, its complex conjugate must also be an eigenfunction
with the same eigenvalue. The eigenvalue then is double
degenerate. (ii) If an eigenvalue is nondegenerate, then the
eigenfunction must be real (more precisely, it may have a
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trivial ω-independent phase.) If the eigenfunction of Eq. (C1)
is real, then, according to Eqs. (C2) and (C3), we have

ak = a∗
−k .

As the function εγ k/2 is real and symmetric under the change
k → −k we have

bk = b∗
−k . (C13)

b. Periodicity

Equation (C8) has an obvious, but important, property. If
we change k → k + i the right-hand side will turn into itself,
but with the opposite sign. So, we must have

bk+in = (−1)nbk . (C14)

It means, in particular, that a solution of (C8) is periodic with
the period 2i.

c. Analytical properties

Let us consider Eq. (C8) for arbitrary complex k, keeping k′
to be real. This way we define the analytical function bk . The
integral perfectly converges as long as Imk �= in for integer
n. So, the function bk can only have singularities on the lines
Imk = in. It cannot have poles on these lines, as in this case
the integral in the right-hand side of (C8) would not converge.

Let us return to Eq. (C8) and use it to define an analytic
function Bk:

Bk = i

2E

∫ ∞

−∞

εγ k′/2

sinh [π (k′ − k)]
bk′dk′

= i

2πE

∞∑
n=−∞

(−1)n
∫ ∞

−∞

εγ k′/2bk′

k′ − k + in
dk′

(we assume E �= 0). The function bk is related to Bk as

bk = lim
δ→0

Bk−iδ, Imk = 0, δ > 0. (C15)

Using the fact that both εγ k/2 and 1/ sinh(πk) are analytic in
narrow strip below the real axis, we can express Bk as

Bk = i

2E

∫ ∞−iδ̃

−∞−iδ̃

εγ k′/2

sinh [π (k′ − k)]
Bk′dk′, δ̃ > 0. (C16)

This formula must be understood in the sense that to compute
bk = limδ→0 Bk−iδ , for real k, we must first take the limit δ̃ →
0 and then δ → 0, in which case k in the right-hand side of
(C16) is below the integration path. The function Bk obviously
satisfies the periodicity condition (C14). It is also clear from
(C16) that Bk has branch cuts along the lines Imk = in.

Let us now compute limδ→0(Bk+in+iδ − Bk+in−iδ ), for real
k and positive δ. By Sokhotski-Plemelj theorem, 1

x−x0−i0 =
P 1
x−x0

+ iπδ(x − x0). Hence,

lim
δ→0

(Bk+in+iδ − Bk+in−iδ )

= −(−1)n
1

E
ελk/2bk = − 1

E
ελk/2Bk+in−iδ, δ→0, δ>0

which means that

Bk+in+i0 =
(
1 − 1

E
εγ k/2

)
Bk+in−i0. (C17)

This equation is a particular case of the Riemann-Hilbert
problem.

Here, one has to distinguish between the following two
cases:

(i) E > maxεγ k/2 = ε0: in this case the expression 1 −
1
E εγ k/2 does not change sign.

(ii) 0 < E < ε0: in this case the expression 1 − 1
E εγ k/2

changes sign twice at k = ±kE , where

εγ kE /2 = E . (C18)

We consider the two cases separately.
Case (i). E > ε0: In this case we take the logarithms of the
both sides of Eq. (C17), we then get

logBk+in+i0 − logBk+in−i0 = log

(
1 − 1

E
εγ k/2

)
.

So, the analytic function 
k = logBk has branch cuts along
the lines Imk = in with the jumps given by above formula.
According to Sokhotski-Plemelj theorem we have

logBk = 1

2π i

∞∑
n=−∞

∫ ∞

−∞

log
(
1 − 1

E εγ k′/2
)

k′ − k + in
dk′ + Fk

= 1

2i

∫ ∞

−∞
log

(
1− 1

E
εγ k′/2

)
coth[π (k′−k)]dk′+Fk,

where the analytic function Fk has no branch cuts or sin-
gularities, so it must be a polynomial. In order to find this
polynomial, we notice that the first term in the right-hand side
does not change if we shift k → k + in, while Bk must acquire
a factor of (−1)n and logBk must acquire extra ±iπn. There
are only two polynomials that have this property, they are are
±πk, so there are two solutions:

Bk = e±πk+ 1
2i

∫∞
−∞ log (1− 1

E εγ k′/2 ) coth[π (k′−k)]dk′
. (C19)

Correspondingly, there are two solutions for bk :

b±
k = Bk−i0 = e±πk+ 1

2i

∫∞
−∞ log (1− 1

E εγ k′/2 ) coth[π (k′−k+i0)]dk′
,

(C20)
where k is now real.
Notice that we have two solutions. One can check that they are
indeed complex conjugated. Now, we need to check whether
the solutions (C20) are normalizable. From (C20) we find

bkb
∗
k = e±2πke

1
2i

∫∞
−∞ log(1− 1

E εγ k′/2 ){coth[π (k′−k+i0)]−coth[π (k′−k−i0)]}dk′

= e±2πke− 1
2i

∫∞
−∞ log(1− 1

E εγ k′/2 )2iδ(k−k′ )dk′ = cosh2(πk)e− log(1− 1
E εγ k/2 ).
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As the consequence,

F
[
bEk
]

N0ḡ2(1 − γ )−2/γ γ
= −E (1 − E )

π

∫
e2πkεγ k/2dk.

The last integral diverges. The divergence implies that the solutions with E > ε0 are not normalizable and are not the part of the
spectrum.

Case (ii). 0 < E < ε0: In this case there are two points (C18) where the right-hand of (C17) changes sign. To avoid ambiguity
of log(−1), we first rewrite (C17) as

Bk+in+i0 = �(k − kE )�(k + kE )

∣∣∣∣1 − 1

E
εγ k/2

∣∣∣∣Bk+in−i0,

where � is the step function [�(x < 0) = −1 and �(x > 0) = 1]. Now, we take the log of both sides:

logBk+in+i0 − logBk+in−i0 = log

∣∣∣∣1 − 1

E
εγ k/2

∣∣∣∣+ log�(k − kE ) + log�(k + kE ).

The log�(k − kE ) is zero for k > kE and either +iπ or −iπ for k < kE . Let us introduce two yet unknown functions χn and ξn,
which have values ±1, depending on n, and rewrite the equation above as

logBk+in+i0 − logBk+in−i0 = log

∣∣∣∣1 − 1

E
εγ k/2

∣∣∣∣+ iπχn
1

2
[1 − �(k − kE )] + iπξn

1

2
[1 − �(k + kE )].

The Sokhotski-Plemelj theorem now gives

logBk = 1

2π i

∞∑
n=−∞

∫ ∞

−∞

log
∣∣1 − 1

E εγ k′/2
∣∣

k′ − k + in
dk′ + 1

2

∞∑
n=−∞

χn

∫ ∞

−∞

1
2 [1 − �(k − kE )]

k′ − k + in
dk′

+1

2

∞∑
n=−∞

ξn

∫ ∞

−∞

1
2 [1 − �(k + kE )]

k′ − k + in
dk′ + Fk .

This can be reexpressed as

logBk = 1

2i

∫ ∞

−∞
log

∣∣∣∣1 − 1

E
εγ k′/2

∣∣∣∣ coth[π (k′ − k)]dk′ + 1

2

∫ kE

−∞

∞∑
n=−∞

χn

k′ − k + in
dk′ + 1

2

∫ −kE

−∞

∞∑
n=−∞

ξn

k′ − k + in
dk′ + Fk .

According to (C14), the difference logBk+im − logBk should be equal to iπm independent on k. For Bk from (C21) we have

logBk+im − logBk = 1

2

∫ kE

−∞

∞∑
n=−∞

χn+m − χn

k′ − k + in
dk′ + 1

2

∫ −kE

−∞

∞∑
n=−∞

ξn+m − ξn

k′ − k + in
dk′ + Fk+im − Fk .

In order for this expression to be independent of k, the functions χn and ξn must be independent of n and Fk must be equal to
±πk + c, where c is an arbitrary complex constant. We then denote χn = χ , ξn = ξ , where χ = ±1, ξ = ±1. The signs of χ

and ξ can be chosen independently. After this, we obtain

logBk = 1

2i

∫ ∞

−∞
log

∣∣∣∣1 − 1

E
εγ k′/2

∣∣∣∣ coth [π (k′ − k)
]
dk′ + χ

π

2

∫ kE

−∞
coth[π (k′ − k)]dk′

+ ξ
π

2

∫ −kE

−∞
coth[π (k′ − k)]dk′ ± πk + c. (C21)

Now, we can find the function bk:

bk = Bk−i0 = exp

[
1

2i

∫ ∞

−∞
log

∣∣∣∣1 − 1

E
εγ k′/2

∣∣∣∣ coth[π (k′ − k + i0)]dk′ ± πk + c

+χ
π

2

∫ kE

−∞
{coth[π (k′ − k + i0)] − coth[π (k′ + i0)]}dk′

+ ξ
π

2

∫ −kE

−∞
{coth[π (k′ − k + i0)] − coth(πk′)}dk′

]
(C22)

(we redefined the constant c).
Now, we need to check if the solution (C22) is normalizable. For this, we need to verify whether the integral in Eq. (C12)

converges at large |k|. This requires us to compute the real part of the exponent in Eq. (C22) for |k| � kE . We do this on term
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by term basis:

Re

[
1

2i

∫ ∞

−∞
log

∣∣∣∣1 − 1

E
εγ k′/2

∣∣∣∣ coth[π (k′ − k + i0)]dk′ ± πk + c

]
= −1

2
log

∣∣∣∣1 − 1

E
εγ k/2

∣∣∣∣± πk + Rec,

Re

[
χ

π

2

∫ kE

−∞
{coth[π (k′ − k + i0)] − coth[π (k′ + i0)]}dk′

]

= χ

2
log

∣∣∣∣ sinh[π (k′ − k)]

sinh(πk′)

∣∣∣∣
kE

−∞
= χ

2
log

∣∣∣∣ sinh[π (kE − k)]

sinh(πkE )

∣∣∣∣− χ
π

2
k → χ

π

2
(|k| − k) for |k| → ∞,

Re

[
ξ
π

2

∫ −kE

−∞
{coth[π (k′ − k + i0)] − coth(πk′)}dk′

]

= ξ

2
log

∣∣∣∣ sinh[π (k′ − k)]

sinh(πk′)

∣∣∣∣
−kE

−∞
= ξ

2
log

∣∣∣∣ sinh[π (kE + k)]

sinh(πkE )

∣∣∣∣− ξ
π

2
k → ξ

π

2
(|k| − k) for |k| → ∞.

Combining, we find that the real part of the exponent in Eq. (C22) is

−1

2
log

∣∣∣∣1 − 1

E
εγ k/2

∣∣∣∣± πk + π
χ + ξ

2
(|k| − k).

We see that if we chose χ = ξ = −1, and the minus sign for the term ±πk, we get

−1

2
log

∣∣∣∣1 − 1

E
εγ k/2

∣∣∣∣− π |k|.

This guarantees the convergence of the integral in Eq. (C12).
With this choice of the constants, the function bk becomes

bk = exp

[
1

2i

∫ ∞

−∞
log

∣∣∣∣1 − 1

E
εγ k′/2

∣∣∣∣ coth[π (k′ − k + i0)]dk′ − πk − π

2

∫ kE

−kE

{coth[π (k′ − k + i0)] − coth[π (k′ + i0)]}dk′

−π

∫ −kE

−∞
{coth[π (k′ − k + i0)] − coth(πk′)}dk′

]
, (C23)

where, we remind, kE is defined in Eq. (C18).
Notice the following: (i) The normalizability of bk is due to the e−π |k| asymptotic. This absolute value |k| comes from the

contribution from the branch cut of the log. This holds only for E < ε0. (ii) There exists only one normalizable solution. This
means that this bk must satisfy the condition (C13). One can check explicitly that it is indeed so.

5. Pairing vertex �(ωm)

We now use bk from Eq. (C23) to compute the function 
(ωm). We recall that 
(ωm) ≡ 
(ω) is expressed via bk as


(ω) = 2
∫ ∞

−∞
aβ
∗

β (ω)
dβ

2π
= γ

2π

∫ ∞

−∞
bkεγ k/2


∗
γ k/2(ω)dk. (C24)

We show that this expression is equivalent to


(ω) = 1 + |ω|γ
|ω|γ /2

f (log |ω|γ ), (C25)

where

f (x) =
∫ ∞

−∞
bke

−ikxdk. (C26)

To prove this, we employ the following trick: use

εβ
β (ω) = 2

1 − γ

∫ ∞

−∞


β (�)d�

|�|1−γ |� − ω|γ
and write


(ω) = 1

π

γ

1 − γ

∫ ∞

−∞

d�

|�|1−γ |� − ω|γ
∫

bk

∗
γ k/2(�)dk
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or


(ω) = 1

π

γ

1 − γ

∫ ∞

−∞

d�

|�|1−γ /2|� − ω|γ f ( log(|�|γ )), where f (x) =
∫ ∞

−∞
bke

−ikxdk.

Comparing this expression with Eq. (C1), we recover (C25). Notice that this proof does not use an explicit form of the function
bk . It does, however, explicitly uses the fact that 
(ω) is the solution of (67).3

The gap function �(ω) is expressed as

�(ω) = |ω|γ /2 f (log |ω|γ ). (C27)

6. Summary: The steps to obtain the pairing vertex �(�) and the gap function �(ω) for E < ε0

The strategy is the following:
(1) Evaluate the integral

I (k) = 1

2

∫ ∞

−∞
log

∣∣∣∣1 − 1

E
εγ k′/2

∣∣∣∣ tanh[π (k′ − k)]dk′. (C28)

Notice, that it is real and antisymmetric.
(2) Construct the function

bk = sinh(πkE )e−iI (k)

√
cosh[π (k − kE )] cosh[π (k + kE )]

. (C29)

(3) Compute

f (x) =
∫ ∞

−∞
bke

−ikxdk. (C30)

(4) The exact solutions of the linearized equations for the pairing vertex and the gap function are


ex(ωm) = (1 + |ω|−γ ) f (log |�|γ ), �ex(ωm) = |ω|γ /2 f (log |�|γ ). (C31)

APPENDIX D: ASYMPTOTIC EXPANSION AT SMALL AND LARGE FREQUENCIES

To understand the structure of �ex(ωm) it is instructive to expand it at small and large ωm. One can do this in two ways:
expand in the formulas for the exact solution, or perturbatively expand the gap equation (10) order by order in ωm or 1/ωm.

For shortness, we present here the details of the direct perturbative expansion. The point of departure for the expansion in ωm

is the solution of (10) without the last term 1/(1 + |ω̄′
m|γ ): 
(ωm) = Re
0(ωm), where


0(ωm) = C<
0√|ω̄m|γ e

iφ+βN log |ω̄m|γ (D1)

and, we remind, ω̄m = ωm/ω0 and βN is the solution of ε(β ) = N , where ε(β ) is given by (38).
Let us expand the right-hand side of (10) in ωm and express 
(ωm) as Re[
0(ωm) + δ
(ωm)]. The equation for δ
(ωm) is

δ
(ωm)− 1 − γ

2N

∫
dω′

m

δ
(ω′
m)

|ω′
m|1−γ |ωm − ω′

m|γ =− 1 − γ

2Nω
γ

0

∫
dω′

m


0(ω′
m)

|ω′
m|1−2γ

(
1

|ωm − ω′
m|γ − 1

|ω′
m|γ
)

+ 1 − γ

2Nω
γ

0

∫
dω′

m


0(ω′
m)

|ω′
m|1−γ

.

(D2)

There are two types of terms in the right-hand side of (D2). The first term is local in the sense that the integral over ω′
m is

ultraviolet and infrared convergent and is determined by ω′
m comparable to ωm. Evaluating this term, we obtain

− 1 − γ

2ωγ

0N

∫
dω′

m


0(ω′
m)

|ω′
m|1−2γ

(
1

|ωm − ω′
m|γ − 1

|ω′
m|γ
)

= −|ω̄|γ 
0(ωm)I1, (D3)

where

I1 = 1 − γ

2N

∫ ∞

−∞
dy y(3γ /2−1+iβNγ )

(
1

|1 − y|γ − 1

|y|γ
)

= 1 − γ

2N


(3γ /2 + iβNγ )
(−γ /2 − iβNγ )


(γ )

+
(1 − γ )
1 − γ

2N

(

(3γ /2 + iβNγ )


(1 + γ /2 + iβNγ )
+ 
(−γ /2 − iβNγ )


(1 − 3γ /2 − iβNγ )

)
(D4)

and the integration variable y = ω′
m/ωm.

3There is another way to prove (C26) which does not use the fact that 
(ω) is a solution of (67), instead it uses the analytical properties of
the function Bk .
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1. Local corrections

Let us momentarily keep only the local term in the right-hand side of (D2). We label the corresponding portion of δ
(ωm) as
δ
L(ωm). The functional form of δ
L(ωm) is determined by (D3): δ
L(ωm) = |ω̄|γ 
0(ωm)C1. Substituting into (D2), we find
the relation between C1 and I1:

C<
1 = C<

0

(
I1

I1 − 1

)
. (D5)

This analysis can be straightforwardly extended to higher orders in the expansion in |ω̄|γ . At each other we extract infrared
convergent contribution in the source term by subtracting from 1/|ω′

m − ωm|γ a proper number of terms(1/|ω′
m|γ , ω2

m/|ω′
m|γ+2,

etc.) to make the remaining integral over ω′
m ultraviolet convergent, and solve for δ
L(ωm) induced by such source terms. The

result is

δ
L(z) = 
0(z)
∞∑
n=1

C<
n z

n, (D6)

where, we remind, z = |ω̄m|γ , and

C<
n = C<

0

[
In

n∏
m=1

1

Im − 1

]
, (D7)

where

Im = 1 − γ

2N
Q(m, γ , βN ),

Q(m, γ , βN ) = 
[(m + 1/2)γ + iβNγ ]
[(1/2 − m)γ − iβNγ ]


(γ )

+
(1 − γ )

(

[(m + 1/2)γ + iβNγ ]


[1 − (1/2 − m)γ + iβNγ ]
+ 
[(1/2 − m)γ − iβNγ ]


[1 − (m + 1/2)γ − iβNγ ]

)
. (D8)

Note than C<
n are complex numbers. Combining �
L and


0, we obtain the total local contribution to the pairing vertex

L = Re [
0 + δ
L] as


L(z) = Re

[
ei(βN log z+φ)

∞∑
n=0

C<
n z

n−1/2

]
. (D9)

Expressing (D9) as the equation for the local contribution to
the gap function �L(z) = z
L(z)/(1 + z), we obtain the first
term in Eq. (75).

At small γ and N = O(1), βN ≈ 1√
Nγ

(1 − Nγ /8) � 1.
Evaluating In in two orders in 1/βN , we find a simple expres-
sion

In = 1 + 2i
n

βN
− 3

(
n

βN

)2
. (D10)

Substituting this In into (D7) and then into (D6), using the
relation between 
 and �, and exponentiating the series to
order z3, we obtain, up to corrections of order z/β2

N ,

�L(z) = C<
0

z1/2

(1 + z)3/4
cos [φ + βNQ1(z)], (D11)

where Q1(z) = log z − z/2 + 3z2/16 + · · · . Equation (D11)
and the expansion of Q1(z) coincide with those for �diff(z),
Eqs. (58) and (59). This explicitly confirms that for γ � 1,
�(ωm) ≈ �L(ωm) ≈ �diff(ωm).

2. Nonlocal corrections

We now look at the other terms, which we had to add and
subtract at each order to make local contributions ultraviolet
convergent. At the leading order in the expansion the addi-
tional term in the right-hand side of Eq. (D2) is

1 − γ

2Nω
γ

0

∫
dω′

m


0(ω′
m)

|ω′
m|1−γ

= 1 − γ

Nγ
C<
0 e

iφ
∫ ∞

0
dx xiβN−1/2.

(D12)
This integral is ultraviolet divergent, but the divergence is
fictitious because the actual 
(ωm) must drop as 1/|ωm|γ
at large |ωm|. Accordingly, we cut ultraviolet divergencies
at some |ωm| = ωmax, which, we argue below, is roughly
where x′ changes sign. The separation into local and nonlocal
terms obviously holds only for |ωm| < ωmax. The nonlocal
term (D12) induces another set of corrections to the bare

(ωm) = Re
0(ωm). We label the corresponding nonlocal
part of the full 
(ωm) as 
nL(ωm). By construction, 
nL(ωm)
is real. Substituting (D12) into (D2), adding the complex-
conjugated term, and adding and subtracting 1/|ω′

m|γ to/from
1/|ωm − ω′

m|γ , we obtain the equation for 
nL(ωm) in the
form


nL(ωm) − 1 − γ

2N

∫
dω′

m


nL(ω′
m)

|ω′
m|1−γ

(
1

|ωm − ω′
m|γ − 1

|ω′
m|γ
)

= K, (D13)

where

K = 1 − γ

N

∫ ωmax

0
dωm

(

nL(ωm)

|ωm|γ − Re
0(ωm)

ω
γ

0

)
. (D14)
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We first notice that Eq. (D13) without the K term does
have the solution 
nL(ωm) = E<

0,0|ωm|(b0−γ /2), where b0 is the
solution of εb0/γ = N in the interval [γ /2, γ /2 + 2]. For b0
within this range, the integral in the left-hand side of (D13)
does not diverge in the infrared and ultraviolet limits. To
satisfy (D13) one needs to satisfy also the condition K = 0.
Substituting our trial solution for
nL(ωm) and Re
0(ωm) into
(D14), we find that the condition K = 0 is satisfied for some
particular ratio E<

0,0/C
<
0 .

This analysis can be extended to higher orders in
the perturbation theory. The nonlocal terms in the right-
hand side of the equation for the pairing vertex ap-
pear in the form A10 + A11|ω̄m|γ + A12ω̄

2γ
m + · · · + A20ω̄

2
m +

A21|ω̄m|2+γ + A22|ω̄m|2+2γ + · · · + A30ω̄
4
m + · · · , where all

Ai j contain C<
0 as the overall factor. To cancel all these

nonlocal terms, we choose 
nL(ωm) in the form


nL(ωm) = 1

|ω̄|γ /2

∞∑
n,m=0

Dn,m|ω̄|bm+γ n, (D15)

where γ /2 + 2m < bm < γ/2 + 2(m + 1). The terms with
m > 0 are solutions of the same equation (D14), but with

the proper number of terms subtracted from 1/|ωm − ω′
m|γ

and added to the K term in the right-hand side, to make the
integral over ω′

m in the left-hand side ultraviolet convergent.
We see from Fig. 13 that there is one bn in each interval that
satisfies (D14). Substituting this form into the equation for the
pairing vertex and collecting nonlocal terms, we find a set of
coupled algebraic equations for Dn,m with Ai j playing the role
of source terms. The precise forms of these equations cannot
be obtained within perturbative expansion in ωm, and we just
have to assume that the solution Dn,m exists. Reexpressing
(D15) as the equation for �nL instead of 
nL, we reproduce
D<

n,m series in Eq. (75).
Combining (D9) and (D15) we see that the right-hand side

of Eq. (75) is the sum of local and nonlocal contributions

�(z) = �L(z) + �nL(z). (D16)

At the largest ωm one can expand in 1/z and use �0(z) =
C>
0 /z as the zero-order solution. The expansion is straightfor-

ward and yields Eq. (76).
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