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Abstract The auroral substorm has been extensively studied over the last six decades. However, our
understanding of its driving mechanisms is still limited and so is our ability to accurately forecast its
onset. In this study, we present the first deep learning‐based approach to predict the onset of a magnetic
substorm, defined as the signature of the auroral electrojets in ground magnetometer measurements.
Specifically, we use a time history of solar wind speed (Vx), proton number density, and interplanetary
magnetic field (IMF) components as inputs to forecast the occurrence probability of an onset over the next
1 hr. The model has been trained and tested on a data set derived from the SuperMAG list of magnetic
substorm onsets and can correctly identify substorms ∼75% of the time. In contrast, an earlier prediction
algorithm correctly identifies ∼21% of the substorms in the same data set. Our model's ability to forecast
substorm onsets based on solar wind and IMF inputs prior to the actual onset time, and the trend observed in
IMF Bz prior to onset together suggest that a majority of the substorms may not be externally triggered by
northward turnings of IMF. Furthermore, we find that IMF Bz and Vx have the most significant influence on
model performance. Finally, principal component analysis shows a significant degree of overlap in
the solar wind and IMF parameters prior to both substorm and nonsubstorm intervals, suggesting that solar
wind and IMF alone may not be sufficient to forecast all substorms, and preconditioning of the magnetotail
may be an important factor.

1. Introduction

A substorm, often referred to as the magnetospheric substorm or an auroral substorm, is a complex phenom-
enon involving energy transfer from the magnetotail to the auroral ionosphere. Strong coupling between the
solar wind, magnetosphere, and the ionosphere is an important aspect of the substorm phenomenon and its
signatures can be observed in several different instruments ranging from satellites in the magnetotail to
ground‐based all‐sky imagers and magnetometers. The duration of a substorm is about 1–2 hr (Akasofu,
1964; Akasofu et al., 1965; McPherron et al., 1973) and is typically categorized into three phases: a growth
phase in which energy is extracted from the solar wind and stored in the nightside tail of the magnetosphere;
an expansion phase in which stored energy is explosively released; and a recovery phase in which the
magnetosphere relaxes to a quiet state (McPherron, 1979).

In all‐sky imaging data, a substorm appears as a sudden explosive brightening followed by a poleward
expansion of the aurora on the nightside (Akasofu, 1964). This expansion is often associated with a westward
ionospheric current flowing across the bulge of the expanding aurora. This westward current forms the
ionospheric component of a 3‐D current system called the Substorm Current Wedge (SCW), flowing in from
the magnetotail on the dawnside and out on the duskside (McPherron & Chu, 2016; McPherron et al., 1973).
The westward ionospheric component of the SCW leads to an increase in the westward auroral electrojet,
which is measured by the ground magnetometers and is usually observed as a depression in the auroral
electrojet indices, such as AL (Auroral Lower; Davis & Sugiura, 1966) and SML (SuperMAG version of AL
index; Newell & Gjerloev, 2011a). In this study, we define these signatures of the auroral substorm in ground
magnetometers and auroral indices as the magnetic substorm.

Substorms have been extensively studied over the last several decades (Akasofu, 1964; Lui, 2000; Lyons,
1995; McPherron, 1979; Newell & Gjerloev, 2011b; Newell et al., 2016; Pudovkin, 2013) using observations
from both space and ground‐based instruments, as well as through first principles‐based models. In particu-
lar, several studies have focused on analyzing the impact of different solar wind and interplanetary magnetic
field (IMF) parameters on the substorm growth phase (Akasofu, 1975; Caan et al., 1977; Freeman & Morley,
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2004; Henderson et al., 1996; Lyons, 1995; Newell et al., 2016). A majority of these studies find IMF Bz to be
the most important factor controlling substorm activity. Specifically, a southward directed Bzwas considered
to be crucial to enable energy transfer between the IMF and the magnetosphere (Caan et al., 1977;
McPherron et al., 1973; McPherron, 1979; Pudovkin, 2013). More recently, Newell et al. (2016) used
several years of substorm onsets compiled by SuperMAG (Newell & Gjerloev, 2011a) and showed that
solar wind velocity (Vx) could be the most important factor in driving substorms. While the growth phase
of substorms was typically associated with periods of elevated solar wind driving, a few studies reported
observations of substorms occurring during relatively quiet conditions (Kullen & Karlsson, 2004; Lee
et al., 2010; Miyashita et al., 2011). The growth phase of such substorms was thought to be driven by IMF
By reconnection or a previous southward Bz interval. In summary, while substorms are generally thought
to occur during periods dominated by strong geomagnetic acitivity, a subset has been reported to occur
even during quiet conditions.

A widely debated topic has been the mechanism that triggers substorm expansion phase onset. Some studies
proposed that the onset may be externally triggered by a change in solar wind and IMF conditions, such as a
northward turning of Bz (Lyons, 1995; Lyons et al., 1997; Russell, 2000), whereas recent observations contra-
dict these findings and suggest that substorms may be internally triggered and a northward turning of Bz is
not necessary (Morley & Freeman, 2007; Johnson &Wing, 2014; Freeman &Morley, 2009; Johnson &Wing,
2014; Wild et al., 2009). Furthermore, understanding the chronological sequence of events constituting the
actual trigger process has been a topic of interest for several researchers. Specifically, opposing views have
emerged on whether current disruption in the near‐Earth region is followed by magnetic reconnection
occurring farther out in the magnetotail or vice versa (Baker et al., 1996; Lui, 1991; 1996). The Time
History of Events and Macroscale Interactions during Substorms mission (Angelopoulos, 2008) addressed
this question by demonstrating that tail reconnection happens prior to current disruption (Angelopoulos
et al., 2008). The study also raised important questions about the role of preconditioning of the magneto-
sphere in terms of tail reconnection during the growth phase.

Over the last few decades, our reliance on satellites for communications, navigation, positioning, meteorol-
ogy, Earth observation, science, technology, security, and defense has increased significantly. Currently,
there are several hundred satellites in geosynchronous orbit and their operations can be perturbed and on
occasion totally disrupted by substorms. For example, substorm‐injected energetic particles can lead to
surface charging in satellites, which can damage surface materials and underlying components (Gubby &
Evans, 2002; Horne et al., 2013; O'Brien, 2009). Substorms can also produce geomagnetically induced
currents that adversely impact electric supply networks (Belakhovsky et al., 2019; Freeman et al., 2019).
Forecasting substorm activity has therefore been a topic of practical as well as theoretical space weather
interest. Early efforts utilized neural networks with one to two hidden layers (each layer composed of a
few units) to predict the AE index over the next time step, as a proxy for substorm activity, using limited
IMF and solar wind data as inputs (Gavrishchaka & Ganguli, 2001; Gleisner & Lundstedt, 1997;
Hernandez et al., 1993). More recently, support vector machines were trained on a limited data set (197 data
points comprising 98 onsets and 99 non‐onset intervals) and achieved 78% accuracy in predicting substorm
onsets (Tanaka et al., 2015) (Note that, in contrast to the current study in which we report both precision and
recall rates, only accuracy is reported in ; Tanaka et al., 2015). Traditional machine learning algorithms have
often been successful in modeling functions between input and output data. However, a drawback associated
with those algorithms is the necessity to manually extract features from the data set, a tedious and sometimes
impractical task when working with large and complex data sets. In contrast, while deep learning methods
require extensive computational resources, they have been successful in modeling complex mappings
between input and output variables without the necessity for manual feature engineering, especially in large
data sets (LeCun et al., 2015). Finally, a majority of the earlier neural network‐based models were trained to
predict the auroral indices (Gavrishchaka & Ganguli, 2001; Hernandez et al., 1993) and such models cannot
be directly employed to forecast a substorm onset. We believe it would be useful to develop a deep learning
model trained specifically for a binary classification task: forecasting whether a substorm will occur over
the next hour.

In this study, we present the first deep learning‐based approach to predict the onset of a magnetic substorm,
as defined by the SuperMAG SML index (Gjerloev, 2012). Specifically, we use a time history of solar wind
bulk speed (Vx), proton number density (Np), and IMF components (Bx, By, and Bz) in the geocentric solar
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magnetospheric (GSM) coordinate system as inputs to forecast the occurrence probability of an onset over
the next 1 hr. The magnetic substorms used for model development comprises a comprehensive
SuperMAG list of ∼35,000 magnetic onsets compiled between 1997 and 2017. The paper is organized as
follows. Section 2 describes the data sets used in this study, gives the definitions of technical terms, and,
explains model development and data preprocessing. Section 3 presents model prediction results and
section 4 discusses some important findings and relates them to other published works on substorms.
Section 5 gives the summary and conclusions of this study.

2. Data Sets and Model Architecture
2.1. Data Sets and Data Reprocessing

Solar Wind and IMF.The solar wind and IMF data were primarily obtained from the Advanced
Composition Explorer (ACE) spacecraft in orbit around the Earth‐Sun L1 Lagrangian point, which is
∼240 Earth radius away from the Earth's center. IMF data are from the magnetic field instrument MAG
(Smith et al., 1998) and has 16‐s resolution, while the solar wind data are from the Solar Wind Electron,
Proton, and Alpha Monitor (SWEPAM) instrument (McComas et al., 1998) and has 64‐s resolution. We used
1‐min‐averaged OMNI SW and IMF observations, which were shifted in time to the bow shock nose see
https://omniweb.gsfc.nasa.gov/html/ow_data.html\#time_shift for details.

Magnetic Substorm Onset List and SuperMAG SML Index. We use the comprehensive list of ∼35,000
substorm onsets compiled between 1997 and 2017 using the SML index (Gjerloev, 2012) to create our data
set. The substorm onsets were identified based on the SML index using the substorm identification criteria
proposed by Newell and Gjerloev (2011a). We discard outliers and undesirable data from this list by limiting
our analysis to onsets occurring between 19:00 and 05:00 magnetic local time and, 55° and 75° magnetic
latitude (the nightside auroral zone). Moreover, we consider substorms where the SML index drops below
−3,000 nT or the SME exceeds 3,000 nT as outliers (334 events) and discard them. As a result, the number
of onsets used from the SML list is reduced to ∼29,000.

The substorm onset identification algorithm of (Newell & Gjerloev, 2011a) is as follows: The SML data were
considered at a 1‐min cadence in a sliding 30‐min buffer. An onset was identified at t0 when four conditions
are satisfied:

SMLðt0 þ 1Þ−SMLðt0Þ<−15 nT (1)

SMLðt0 þ 2Þ−SMLðt0Þ<−30 nT (2)

SMLðt0 þ 3Þ−SMLðt0Þ<−45 nT (3)

∑
i¼30

i¼4
SMLðt0 þ iÞ=26−SMLðt0Þ<−100 nT (4)

Thus the drop must be sharp (equations (1)–(3), that is, 45 nT in 3 min), and sustained (equation (4), i.e.,
must be 100 nT below the initial value for the remainder of the half hour on average). The SML onset is then
placed at t0, the last minute before a 15‐nT drop. Once an onset is identified, the algorithm advances ahead
20 min, which is thus the minimum permitted time between two consecutive onsets.

In this study we formulate the substorm onset prediction as a binary classification problem. Simply put, our
goal is to forecast the occurrence probability of a substorm over the next 60 min, using a 120‐min time history
of solar wind and IMF parameters (Bx, By, Bz,Vx, andNp). Specifically, each data point used to train themodel
consists of a 120 × 5 input matrix of the solar wind and IMF, and an output which is a label indicating the
presence (labeled as 1) or absence (labeled as 0) of an onset over the next 60 min. (A 120‐min time history
was chosen to sufficiently cover the trend in Bz prior to the prediction time.) Figure 1a shows an example
of a data point used to train the deep learning model which we present later. The 2‐D input array is shaded
in gray, and the output binary label is determined based on the presence/absence of a substorm within the
next 60 min of the prediction time marked by the first vertical dotted black line from the left. The SML index
is shown to confirm the presence of substorm activity, the vertical dotted red line indicates the actual onset
time identified using the procedure described in Newell and Liou (2011). A data point is discarded if there are
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more than 20 missing values (out of 120 min) in any of the five input parameters, otherwise gaps were filled
using linear interpolation. A uniform 10‐min delay is added to OMNI solar wind and IMF data to account for
the propagation time of solar wind through the magnetosheath, the time for the effect of the external trigger
at the magnetopause to affect the magnetotail and trigger substorm onset, and the time for the substorm
onset to be detected by ground magnetometers. (Note that we have tried delay times between 0 and 20
min and found our model performance to be robust to uncertainties in delay time estimation). Following
a standard practice in machine learning to improve the performance of the model, we normalized each of
the input solar wind and IMF variables by subtracting the mean and dividing by its standard deviation,

Figure 1. (a) An example of data point classification to a deep learningmode. The 2‐D input array is shaded in gray and the
output binary label is determined based on the presence/absence of substormwithin the next 60 min of the prediction time
marked by the first vertical dotted black line from the left. The red dotted line indicates the actual onset time. In this
example, the output label is 1, corresponding to presence of substorm onset in the 60‐min time interval shaded in
orange andmarked by the two vertical dotted black lines (b) Conversion of prediction times into binary labels based on the
presence/absence of a substorm within the next 60 min.
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where the mean and standard deviation were calculated using all the measurements between 1997 and 2017.
Figure 1b illustrates the conversion of prediction times, spanning from the year 1997 to 2017 with a step of
30 min, into binary labels based on the presence/absence of a substorm within the next 60 min. This
conversion process results in a 1:6 ratio in the number of onsets versus non‐onsets. We balanced the class
labels by randomly selecting an equal number of non‐onset intervals before training the model. The final
data set has a total number of 60,678 data points, with 30,339 for each label.

2.2. Technical Definitions

In this section we list technical terms andmodel performance metrics (e.g., Lee, 2019) that we use in the later
parts of this report to evaluate model performance.

True positive (TP) = correctly identified, that is, a substorm onset occurs and the model predicts it
correctly.

False positive (FP) = incorrectly identified, that is, a substorm onset does not occur but the model incor-
rectly predicts it as a substorm onset.

True negative (TN) = correctly rejected, that is, a substorm onset does not occur and the model correctly
predicts it as a nonsubstorm event.

False negative (FN) = incorrectly rejected, that is, a substorm onset occurs but the model does not predict
it.

Accuracy = True PositivesþTrue Negatives
True PositivesþTrue NegativesþFalse PositivesþFalse Negatives

Recall (True positive rate) = True Positives
True PositivesþFalse Negatives

False negative rate = False Negatives
True NegativesþFalse Positives

Precision = True Positives
True PositivesþFalse Positives

F1‐Score = 2
1

Precisionþ 1
Recall

¼ 2× Precision×Recall
PrecisionþRecall

The F1‐score is the harmonic average of the precision and recall, where an F1‐score reaches its best value at 1
(perfect precision and recall) and worst at 0.

2.3. Model Development

In this study, we train a convolution neural network (CNN) model to forecast the occurrence probability of a
substorm onset, Ponset, over the next 1 hr using a 120‐min history of IMF and solar wind parameters. CNNs,
first proposed by Cun et al. (1990), are a special kind of multilayer neural network. Unlike conventional
machine‐learning techniques, which are limited in their ability to process image data in their raw form,
CNNs were designed to recognize visual patterns directly from pixel images with minimal preprocessing.
They were shown to be very effective in hierarchically capturing complex spatial and temporal relations in
the data set (Cun et al., 1990). Since the 2‐D input arrays in this problem (see Figure 1a for an example data
point) can essentially be treated as 2‐D images, CNNs are therefore ideally suited for capturing the dynamics
of solar wind and IMF parameters that can eventually drive substorms.
2.3.1. Model Architecture
We developed three CNN models based on the latest variants of CNNs, such as ResNet (residual network;
He et al., 2016), FCN (fully convolutional network; Wang et al., 2017), and MLSTM‐FCN (multivariate
long short‐term memory coupled with fully convolutional network; Karim et al., 2018). A recent study
(Fawaz et al., 2019) tested nine recently developed deep learning classifiers over 12 multivariate time ser-
ies classification data sets and ranked ResNet and FCN as the best in terms of average accuracy over 10
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runs of each implemented model. After an extensive amount of model tuning we observed that all three
variants of the CNNs showed very similar performance; no model had a clear advantage over the others.
The ResNet CNN, however, is relatively easier for model tuning and is less prone to adverse effects of
adding more layers (Glorot & Bengio, 2010). We therefore decided to adopt the ResNet architecture and
analyze its forecasts in greater detail.

Figure 2a shows the schematic of ResNet CNN architecture we have used for our application. The input layer
takes a 2‐D array with 120 min (time history) × 5 (solar wind and IMF) parameters (see Figure 1a for an
example data point). The first two convolution layers (i.e., the layers that have a set of independent filters
which perform convolution operations to nodes in preceding layers) and the subsequent max pooling layer
(i.e., a downsampled version of the preceding layer) were added to reduce the input dimension while captur-
ing some low‐level features from the input data, unlike the implementation of the ResNet model by Fawaz
et al. (2019). After the max pooling layer are two Resnet Units, each consists of three identical convolution
layers stacked in series. There is an additional “shortcut connection” between the input and output of each
ResNet Unit that simply performs identity mapping and its output is added to the output of the stacked
layers. Resnet Units serve two purposes: (1) to make the architecture deeper so that the later convolution
layers can capture the complex relationship between different input features, and (2) to overcome the pro-
blem of vanishing/exploding gradients through the “shortcut connection” (He et al., 2016). The issue of
vanishing/exploding gradients arises when training deeper networks because, as the gradients (with respect
to the loss function) are back‐propagated to earlier layers, repeated multiplication may make the gradients
infinitely small/large and thereby prevent the network from training further (Glorot & Bengio, 2010). We
tested this ResNet CNN with different numbers of ResNet units, varying between 1 and 10 and found that
a CNN model with two ResNet units performs the best on a validation data set (see the next subsection for
definition) in terms of F1‐score. A max‐pooling layer is applied to the output of the second ResNet Unit,
which is then flattened to form a long 1‐D layer, connected to the output layer after one more 1‐D layer.
The output layer has two nodes—one for the substorm class and the other for the nonsubstorm class. A
SoftMax activation function, a normalized exponential function that maps the preceding vector into a
normalized probability distribution, is applied to these two nodes to obtain probability estimates for
the two classes. In summary, for any given time instant, the model is designed to accept a 120‐min
history of the five solar wind and IMF parameters as inputs and output the probability of an onset over
the next 60 min. The basic rationale in this ResNet CNN architecture, or CNN in general, is that it first
looks for low level features and then gradually builds up more abstract concepts through a series of
convolution layers.
2.3.2. Model Training
The ResNet architecture shown in Figure 2a is implemented in Keras (Chollet, 2015) with Tensorflow back-
end and trained using multi‐GPUs on the High‐Performance Computing (HPC) system available at Virginia
Tech. Each model was trained using a back‐propagation algorithm (Rumelhart et al., 1986), a widely used
learning algorithm which minimizes the training loss by adjusting the weights according to a gradient des-
cent. The objective of training is to minimize the difference between the output and target pairs (i.e., the loss
value) by optimizing the weights of the network. Equation (5) shows the expression of binary cross‐entropy
loss which our model tries to minimize. The variables y and p in equation (5), respectively, represent the
actual label (i.e., 1 for substorm onset or 0 for non‐onset) and the substorm onset probability predicted by
the model. We used “Adam” optimizer (Kingma & Ba, 2014), which is a method for efficient stochastic gra-
dient descent optimization. The adjustable parameters of “Adam” used in this study are the following: learn-
ing rate α=0.00001, learning rate decay = 0.0, exponential decay rates β1=0.9, and β2=0.999. See Kingma and
Ba (2014) for the definitions of these adjustable parameters. We split the data into three different data sets
while keeping the date points in chronological order. Such a split prevents the model from overfitting as
the test and validation time periods are completely independent of the training time period: training
(70%), validation (15%), and test (15%) data sets. Training data set was used for model training, validation
data set was used for model tuning and model selection, and test data set was used for evaluating model per-
formance (Ripley, 1996; Russell & Norvig, 2010). Figures 2b and 2c, respectively, show the loss and accuracy
versus number of epochs for the ResNet CNN model with red color for training data and blue for validation
data. An Epoch is a complete iteration over the entire training data. Both the training and validation losses
sharply decrease in the first 15 epochs and then gradually reach their own asymptotic values; 200 epochs are
enough for the loss to converge. More importantly, the loss curves show no sign of overfitting, indicated by
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the loss and accuracy curves for the validation data set not diverging from those for training data set after a
certain epoch.

Loss ¼ − ðy logðpÞ þ ð1−yÞ logð1−pÞÞ (5)

3. Results

In the previous sections, we focused on data processing, model architecture, and training. We formulated the
problem as a binary classification task and developed a ResNet CNN model that can be used to forecast the
onset of a magnetic substorm over the next 60 min, using solar wind and IMF as inputs. In the current sec-
tion, we present the model forecasts, analyze its performance on a statistical scale, and discuss the role of dif-
ferent input parameters in driving the predictions. It is important to note that all the analysis presented in
this section uses the test subset of the data and excludes all intervals from the training and validation subsets.

3.1. Model Predictions

As a first step, we present four example forecasts made by themodel in Figure 3; one forecast from each of the
TP, FP, FN, and TN categories is shown. The figure presents the inputs (By, Bz, Bx, Vx, and Np) fed to the

Figure 2. (a) A schematic of ResNet CNN architecture with two ResNet Units for multivariate time series processing of
solar wind and IMF data. The input layer takes a 2‐D input array with 120 × 5 elements and the output layer renders
probability estimates. The output layer has two nodes, one for the substorm class and the other for the nonsubstorm class.
(Note that the layer dimensions are shown in log scale.) Each polyhedron between the adjacent convolution layers
represent the mapping of a previous layer to the next through a two‐dimensional convolution. (b) Loss and (c) accuracy
curves of the model training on training (red curve) and validation (blue curve) data sets. An Epoch is a complete iteration
over the entire training data. CNN = convolution neural network.
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model along with SML index which is indicative of substorm activity. The time period shown in each plot is
centered around the prediction interval (1 hr) and spans 5 hr, including the 2‐hr input period. The prediction
interval in each of the plots is indicated by the shaded regions, and the inputs to the model are taken from the
2‐hr period preceeding this interval. The actual onset times identified by SuperMAG are indicated by the red
dashed lines for the TP and FN categories and the probabilities associated with each forecast are annotated in
the bottom panels.

In the TP example, the model forecasted a potential onset for the time period covering 1230 UT and 1330 UT
with a high degree of confidence (Ponset=0.80) and an onset was indeed identified in SuperMAG SML index
∼0115 UT, confirming the prediction. A drop in SML index further confirms substorm activity during this
period. The input to the model are solar wind and IMF parameters between 1030 UT and 1229 UT; Bz was
predominantly negative and Vx was ∼−600 km/s during this period. Moving to the FP case, the model fore-
casts a substorm onset between 1800 and 1900 UT and the interval preceding the prediction (1600 ‐ 1759 UT)
was dominated with a weak negative Bz. It is interesting to note that while the onset detection criteria
(equations (1)–(4)) do not find any onset in this time period, a closer examination reveals a drop in the
SML index, perhaps associated with a minor substorm or a psuedo‐onset. This event failed to satisfy all four
criteria formulated by Newell and Gjerloev (2011a) and was therefore classified as a non‐onset, whereas our
model forecast an onset during this interval based on the input solar wind and IMF conditions. This event
shows the challenges associated with accurately identifying actual substorm onsets from the SML data set
and separating them from pseudo‐onsets and minor geomagnetic disturbances. While the SML‐based onset
list is the most comprehensive and continuous data set available, it has certain limitations and uncertainties
which propagate into the model. We must be clear that our model is trained to predict substorm onsets as
specified by the criteria of Newell and Gjerloev (2011a). In the FN case, Bz was mostly weak negative with
short periods of positive Bz and Vx was ∼−440 km/s during the input interval (1930–2129 UT). While our
model failed to forecast an onset detected by SuperMAG ∼2210 UT in this case, it is important to note that

Figure 3. Example model predictions, clockwise from top left are True Positive (TP), (top right) False Positive (FP),
(bottom right) False Negative (FN), and (bottom left) True Negative (TN) predictions. In each figure, the top three panels
show IMF By, Bz, and Bx, respectively, the fourth and fifth panels show the solar wind velocity and number density, and the
sixth panel presents the SML index. The dashed black lines and/or the shaded regions mark the prediction interval
and the dashed red lines indicate actual onset time provided by SuperMAG. The probabilities associated with each forecast
are shown in the bottom panel. See text for details.
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Ponset was 0.48 indicating higher uncertainty in the model for this
prediction. Finally, in the TN example, the model successfully forecasted
a period without any substorm activity between 1500 and 1600 UT with
a high degree of confidence (Ponset=0.11) and the same is confirmed by
the SML index. In summary, two important features can be observed from
the figure, first, a negative IMF Bz has a significant impact on the forecasts
and, second, the prediction probability (indicated by Ponset) is higher for
successful predictions compared to the FN case. These features will be
analyzed further in the next sections.

3.2. Model Performance

We used the model to forecast a large number of intervals between 1997
and 2017 and the evaluation metrics are summarized in Table 1. The

“# intervals” column in the table indicates the number of forecast intervals used during training, validation,
and testing. For example, 21,236 nonsubstorm and substorm intervals (a total of 42,472 data points) were
used to train the model, whereas 4,607 intervals of each class were used for testing. We can note from the
table that the model achieves a F1‐score of 0.74 for both the classes on the test data. The model evaluation
metrics listed in Table 1 are based on setting the Ponset threshold to 0.5, that is, we expect the model fore-
casted a substorm onset if Ponset>0.5 and a nonsubstorm otherwise. We will now analyze the impact of sys-
tematically varying this threshold between 0 and 1 on the model performance, using a Receiver Operating
Characteristic (ROC) curve. The ROC curve is created by plotting the recall against the false positive rate
at various threshold levels and serves as a useful tool for evaluating binary classifiers. We plot the ROC curve
for our model in Figure 4a, the threshold value of 0.5 is marked by the “x” symbol. As we increase the thresh-
old, the recall increases; however, this is accompanied by an increase in the false positive rate. There are
certain advantages and disadvantages of choosing a certain threshold, and the choice is therefore best left
to the end user. In comparison, the ROC curve of a model that makes a prediction based on a random guess
is indicated by the diagonal dotted black line. In other words, the further the solid black curve is from the
diagonal line, the better the model is at discriminating between onsets and non‐onsets. Overall, our model
achieves a ROC area of 0.82, which is a measure of the separability between the onset and non‐onset classes.

After training, our model achieves an accuracy of ∼75% and the remaining 25% of the events are
misclassified. Now we separately examine the distributions of Ponset for both the onset and non‐onset classes
to further understand model performance. Such an analysis will provide insights into the confidence of a
forecast. For example, a higher Ponset (> 0.85) shows that the model is very confident of the forecast
compared to a lower value. Figure 4b shows histograms of Ponset for both the onset (purple) and non‐onset
(green) classes. In this figure, we use a threshold of 0.5 (dashed black line) to forecast an onset. So for the
non‐onset class (i.e., no subsequent substorm) when Ponset<0.5, the model's forecast is correct and is
categorized as a TN event. Likewise, when Ponset≥ 0.5 for an onset class (i.e., subsequent substorm) it is
categorized as a TP event. On the other hand, Ponset<0.5 for an onset class makes the event FN whereas
Ponset>0.5 for a non‐onset class make it FP. All four categories are marked in the figure. We note that the
model can predict large number of substorm and nonsubstorm events with high confidence as reflected by
the two peaks in the purple (Ponset>0.8) and green curves (Ponset< 0.15), respectively. However, we find that
there are a considerable number of nonsubstorm events misclassified as onsets (FPs) by the model (green
curve in regions where Ponset>0.5) and a similar albeit less prominent feature is observed for FNs. We will
further analyze this behavior in later sections and analyze the origin of this problem in greater detail.

We have so far examined the overall performance of the model forecasts and now we analyze its dependence
on the change in geomagnetic activity, binned by the maximum drop in SML index during the prediction
horizon interval of 60 min (ΔSML). In Figure 5, we show the number of forecasts (panel a) and Ponset
(panel b), individually for each prediction category (TP, FP, TN, and FN) for different ΔSML bins. It can be
seen that when the maximum drop in SML during the 1‐hr forecast interval is less than 100 (corresponding
to the −100 to 0 bin), the maximum forecasts belong to the TN category, whereas a noticeable number from
the FP and TP categories are observed as well. Furthermore, the number of TPs increases while the number
of TNs decreases withΔSML. This higher number of TNs in the first bin can be attributed to the fact that lower
ΔSML periods are usually quiet with very few onsets, and the increase in the number of onsets with ΔSML

Table 1
Model Performance for Training, Validation, and Test Data Sets

Class label Precision Recall F1‐score # intervals

Prediction for training data
0 (Nonsubstorm) 0.77 0.70 0.73 21,236
1 (Substorm) 0.72 0.79 0.75 21,236
Prediction for validation data
0 (Nonsubstorm) 0.74 0.80 0.77 4,496
1 (Substorm) 0.78 0.73 0.75 4,496
Prediction for test data
0 (Nonsubstorm) 0.74 0.75 0.74 4,607
1 (Substorm) 0.75 0.73 0.74 4,607
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accounts for the higher TPs in those bins. Panel (b) shows a plot of Ponset which is indicative of the confidence
assigned to the forecast. A very high (low) Ponset suggests the model is confident in its forecast of an onset
(non‐onset). However, an intermediate value of Ponset between 0.35 and 0.65 typically is indicative of
increased uncertainty in the predictions. It can be concluded from the figure that uncertainty in the model
while forecasting onsets (non‐onsets) is higher when |ΔSML| is low (high). Another key feature to note is
that the maximum number of FPs occur when the drop in SML is less than 100 nT, and moreover, the
model is not very confident in predicting onsets in this range. We will analyze this behavior further and
discuss its impact on model predictions in the discussion section.

3.3. Overlap in the Input Parameters

We now examine the behavior of input parameters to understand their influence on model performance. Of
particular interest is IMF Bzwhich is expected to have the maximum impact on substorm onsets (Caan et al.,
1977; Lyons, 1995; Lyons et al., 1997). In Figure 6, we present a plot of Bz with respect to the prediction time
for each of the four prediction categories (TP, FP, FN, and TN), in other words, ΔTpred indicates the time IMF

Figure 4. (a) Receiver operating characteristic (ROC) curve for the forecasts. The 0.5 threshold is marked by the “x” sign.
The dotted blue line represents the ROC curve of amodel that makes a prediction based on a random guess. (b) Histograms
of predicted probability of substorms, Ponset, forecasted for both onset (maroon) and non‐onset (green) classes.

Figure 5. Variability in model predictions with ΔSML. (a) Distribution of all the four forecast categories (TP, FP, FN, and
TN) versus ΔSML bins, and (b) variability of Ponset for the four forecast categories versus ΔSML. Each box presents the
quartiles (minimum, first quartile, median, third quartile, and maximum) of Ponset and values beyond ±1.5 times
(interquartile range) are discarded as outliers.
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Bzwasmeasured relative to the prediction time. For example, if the prediction time is 1200 UT, thenΔTpred is
−60 min for a Bz value at 1100 UT. The solid lines in the figure indicate median values whereas the shaded
regions mark the 25th and 75th percentile range of IMF Bz. While there is significant variance in Bz for all the
four forecast categories, certain strong patterns emerge for each of them. It can be noted that the input IMF
Bz turns increasingly southward for the TP category as onemoves closer to the prediction time (ΔTpred=0). In
contrast, IMF Bz turns increasingly northward closer to the prediction time for the TN category. Clearly,
there is a sharp distinction in the behavior of Bz between the TP and TN categories and such distinguishing
features are expected to improve the model performance. It is further interesting to note that the trend in
IMF Bz for the FP (FN) categories is similar to the TP (TN) categories, albeit slightly weaker. This suggests
that our model associates onsets with a preceding interval of southward IMF. More importantly, the similar-
ity in IMF Bz trend between TP and FP (as well as TN and FN) categories suggests that the errors in model
prediction could be associated with an overlap in input parameters between the onset and non‐onset classes.
We will now explore the degree of overlap in the input IMF and solar wind parameters further through
Principal Component Analysis (PCA).

Each class label has an associated 2‐D array with 600 elements (120 by 5) and it is not possible to fully visua-
lize such high dimensional data. We therefore use PCA techniques to reduce the dimensions of the 2‐D input
arrays, while preserving as much variation in the data as possible, and visualize them in a new coordinate
system as shown in Figure 7. Panel (a) shows percent explained variance versus number of principal compo-
nents and Panels (b)–(d) show the two classes projected onto the first three principal components. In the
transformed coordinate system, the first three principal components alone can explain about 65% of the var-
iance in the original input data. As seen from panels (b)–(d), the two classes are strongly overlapped with
each other in the reduced 3‐D space. Admittedly, we cannot rule out the possibility that the two classes could
be more separable through the other principal components that contain the remaining 35% variance.
However, the significant overlap between the two classes suggests that large number of substorm and non-
substorm events have very similar solar wind and IMF conditions in their 120 min of time history intervals
prior to the prediction times. This is also apparent from the strong overlap in IMF Bz for the four forecast
categories shown in Figure 6.

The strong overlap revealed by the PCA shown in Figure 7 is for all substorm categories. However, we found
that the amount of overlap varies when the substorm level is considered—specifically, there is less overlap
between substorm and nonsubstorm events when smaller substorms, as characterized by ΔSML, are dis-
carded (results not shown). Here we show how the deep learning model performs for different levels of sub-
storms. Intuitively we would expect the larger substorms to be detected more easily than the smaller ones.
Figure 7e shows the recall versus substorm level thresholded by ΔSML. As expected, the model

Figure 6. Variability in IMF Bz with respect to prediction time for the four forecast categories. Solid lines indicate median
values and the shaded region indicates the 25th to 75th percentile values. Left panel shows true positive (blue) and
false positive (orange) categories, and right panel shows the true negative (green) and false negative categories (yellow).
See text for details.
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performance improves for increasing substorm levels. For example, the recall is about 75% when all
substorms are considered and it reaches ∼95% for substorms with ΔSML≥ 700. The decrease in recall for
smaller substorms correlates with more PCA overlap between the two classes (there are a few potential
explanations for this finding. See section 4.4 for a detailed discussion on the impact of solar wind/IMF
overlap and other factors on model performance).

Figure 7. Principal component analysis of the input 2‐D arrays of substorm and nonsubstorm events: (a) Percent
explained variance versus number of principal components, (b) scatter plot of first two principal components,
(c) scatter plot of first and third principal components, (d) scatter plot of second and third principal components, and
(e) variation in recall versus substorm levels thresholded by ΔSML.

Table 2
Parameter Ranking

Note. Precision and recall of onsets and non‐onsets when different IMF and solar wind parameters are given as inputs
to the model.
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3.4. Input Parameter Importance

Deep learning models generally perform better than traditional machine learning models when the data set
is large and the relationship between the input data and output labels are complex. However, deep learning
models, or any artificial neural networks in general, are known to be difficult for human interpretation
because the features generated in the last hidden layer (i.e., the layer just before the output) cannot be
directly related to the input features. In our application it is important to have some type of model interpret-
ability which we can relate to our physical understanding of drivers of substorm onsets. To overcome the
black box nature of deep learning models, we take the backward stepwise feature selection procedure which
is often used in linear regression to rank the input parameter importance. The assumption here is that if a
certain input parameter is important in triggering substorms, it should also be an important feature for deep
learning models to predict substorm onset. Such an approach was previously used by Weigel et al. (2003) to
determine the importance of different parameters in predicting groundmagnetic field and its time derivative.
Table 2 lists the performance metrics (precision, recall, and F1‐score) of the ResNet CNNmodel for different
combinations of input parameters. We can see that Bz and Vx are the most important factors on the model
performance such that Bz influences both precision and recall while Vx influences mostly the recall. This
is apparent when each of the five features is used as input individually or is dropped from the full model that
uses all the five features. The implications of the parameter importance are discussed in more detail later.

3.5. Baseline Comparison

We compare the performance of our model with the methodology described in Lyons et al. (1997) that
nowcast substorm onset. A rigorous set of quantitative rules (listed below) were proposed to determine if a
substorm is triggered at a given time (ton) based on the variations in IMF Bz 30 min prior to the onset
(i.e.,ton−30 to ton ).

NBZðton−30:tonÞ<0≥22 (6)

BZðton þ ΔtÞ−BZðtonÞ≥0:375 nT=min (7)

BZðton : ton þ 10ΔtÞ
10Δt

≥0:175 nT=min (8)

BZðton þ Δt : ton þ 3ΔtÞ≥BZðtonÞ þ 0:15 nT (9)

BZðton þ 3Δt : ton þ 10ΔtÞ≥BZðtonÞ þ 0:45 nT (10)

Equations (6) through (10) represent the criteria proposed by Lyons et al. (1997). Equation (6) quantifies the
criterion that IMF must be southward for at least 22 of the preceding 30 min, representing the growth phase
requirement. The remaining equations (7) to (10) quantify the criteria for triggering the onset, a rapid and
sustained northward turning of IMF Bz. We find that the Lyons et al. (1997) model can correctly identify
∼21% of the substorms listed in the SuperMAG database. Previous studies (Morley & Freeman, 2007;
Newell & Liou, 2011; Wild et al., 2009) applied the same criteria on other data sets such as those from
POLAR UVI (Liou, 2010) and IMAGE (Frey et al., 2004) and found that all the criteria are satisfied only
by a small subset (<30%) of substorm events, similar to our study. It should be emphasized that the Lyons
et al. (1997) model was developed for a different purpose, namely, to study the triggering mechanisms of sub-
storms and it has since then been extremely valuable in improving our understanding of substorms.
However, from a space weather prediction perspective, there are very few tools/methods available to forecast
the onset of a substorm (Tanaka et al., 2015) and we believe our model will serve this purpose.

3.6. Solar Wind‐Magnetosphere Coupling Function

While it is difficult to interpret the features captured by any deep learning‐based model, modulating the
input features and understanding their influence on the prediction can provide some useful insights. Next,
we analyze the impact of using different solar wind–magnetosphere coupling functions as inputs to
our model.

Table 3 shows performance metrics of the model (precision, recall, and F1‐score) when different coupling
functions with 120 min of time history are given as model inputs. We found that using dΦ/dt which is indi-
cative of the rate magnetic flux opened at the magnetopause (Newell et al., 2007) as input to our model gives
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the best performance in predicting substorm onsets (F1‐score = 0.73) compared to other coupling functions.
The most successful implementation of the model, which uses the raw solar wind and IMF features (i.e., Bx,
By, Bz, Vx,Np) as input features, achieves an F1‐score of 0.74, and thus performs slightly better than the other
models that use coupling functions as features. Furthermore, providing dΦ/dt as input to the model in
addition to the raw solar wind and IMF features doesn't improve the model performance any further.
These results suggest that our model is able to replicate the behavior of the coupling functions which
quantify certain aspects of solar wind ‐ magnetosphere interactions, from the input solar wind and
IMF parameters.

4. Discussion

In this study, we presented the first deep learning‐based approach to forecast the occurrence probability of
substorm onsets over the next 60 min. The model was shown to achieve 72±2% precision and 77±4% recall
rates and an ROC area of 0.83 (Figure 4a). We further showed that a majority of the false positives are asso-
ciated with small substorms (|ΔSML|<100 nT). The errors in model prediction can be attributed to a strong
overlap in input parameters between the onset and non‐onset classes as demonstrated by PCA in Figure 7.
Finally, we found that Bz and Vx have the most significant impact on model performance. In this section,
we further analyze our findings and compare them with observations from previous studies.

4.1. Comparison With Previous Approaches

Some studies used neural networks to predict auroral indices over the next fewminutes using solar wind and
IMF as inputs (Gavrishchaka & Ganguli, 2001; Gleisner & Lundstedt, 1997; Hernandez et al., 1993), and pro-
vided a mechanism to forecast substorm. While these studies serve as excellent starting points, there are
uncertainties and inaccuracies associated with using auroral indices (such as AE) as a proxy for identifying
substorm activity (Kullen et al., 2009). More recently, Luo et al. (2013) developed empirical models of auroral
indices and showed that predicting short term variations is more challenging than predicting the long term
average trends. Furthermore, Barkhatov et al. (2017) used an Elman artificial neural network to make a
short‐term forecast of the AL index, and showed that taking into account the 2‐ to 3‐hr history of solar wind
kinetic energy loading the magnetosphere significantly improves the accuracy of the model. In this study, we
build on these approaches, by developing a model that directly forecasts the occurrence probability of a sub-
storm onset, with a higher prediction horizon of 60 min. In agreement with these studies, we find that incor-
porating the history of solar wind and IMF into the model, indicating the growth phase of the substorm, is
crucial for making accurate forecasts. Furthermore, our analysis shows that the deep learning‐based
approach is capable of capturing complex interactions between the solar wind and magnetosphere and
can serve as an alternative to those approaches that are based on coupling functions. These results are sup-
ported by an early study (Weigel et al., 2003), which successfully showed that a neural network can be used to
develop a “data‐derived” nonlinear coupling function to predict groundmagnetic field and its time derivative
at different local times using solar wind and IMF over a 3‐hr period as inputs.

Table 3
Precision, Recall, and F‐Score of the Model When Different Coupling Functions Are Given as Model Inputs

Model inputs Precision Recall F1‐score

VxBT 0.67 ± 0.03 0.65 ± 0.06 0.65 ± 0.03

EKL = VxBTsin
2ðθc2 Þ (Kan & Lee, 1979) 0.71 ± 0.03 0.71 ± 0.05 0.71 ± 0.01

ETL = N
1
2
pV 2

x BTsin6ðθc2 Þ (Temerin & Li, 2006) 0.72 ± 0.03 0.68 ± 0.04 0.70 ± 0.01

dΦMP
dt = V

4
3
xB

2
3
Tsin

8
3ðθc2 Þ

(Newell et al., 2007) 0.72 ± 0.03 0.75 ± 0.04 0.73 ± 0.01
Bx, By, Bz, Vx, Np 0.72 ± 0.02 0.77 ± 0.04 0.74 ± 0.01
Bx, By, Bz, Vx, Np,

dΦMP
dt

0.72 ± 0.02 0.78 ± 0.04 0.74 ± 0.01

Note. The value of each metric is given in the form of mean–std., where the mean and standard deviation are computed by training the model repeatedly on 10
different training/test/validation sets.
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4.2. External Triggering of Substorms

The epoch analysis presented in Figure 6 shows that a crucial factor driving the model's predictions is the
trend in IMF Bz. If Bz starts turning increasingly negative ∼60 min prior to the prediction time, the model
is more likely to forecast the occurrence of a substorm onset. This behavior suggests the model is capturing
the growth phase of the substorm during which energy from the solar wind is accumulated in the magneto-
tail, a widely accepted condition necessary for triggering a substorm (Freeman & Morley, 2009; Johnson
&Wing, 2014; Henderson et al., 1996; Lyons, 1995; Lyons et al., 1997; McPherron et al., 1973; Russell, 2000).

A few studies (Caan et al., 1977; Lyons, 1995; Lyons et al., 1997; Russell, 2000) postulated another condition
necessary to trigger a substorm, namely, a sharp northward turning of IMF Bz close to or coinciding with the
onset. However, the ability of our model to accurately forecast (up to 1 hr ahead) substorm onset without any
IMF or solar wind input close to the actual onset time strongly suggests that the second condition may not
always be necessary to trigger an onset. Moreover, the epoch analysis doesn't show a strong trend indicative
of IMF northward turning immediately prior to the onset. Our findings suggest that the behavior of a
majority of substorm onsets is in agreement with another set of studies (Freeman & Morley, 2009;
Johnson & Wing, 2014; Henderson et al., 1996; Morley & Freeman, 2007; Newell & Liou, 2011), which
argued that initial elevated solar wind driving conditions is the only necessary condition for triggering a
substorm, and the northward turning of IMF Bz is coincidentally rather than causally related to onsets
(Freeman & Morley, 2009; Morley & Freeman, 2007).

4.3. Input Parameter Importance

Determining the roles of different IMF and solar wind parameters in triggering a substorm has been a subject
of interest for several decades (Caan et al., 1977; McPherron et al., 1973; Newell et al., 2016; 2013;
Petrukovich et al., 2000; Troshichev et al., 1986). In this study, wemodulated the inputs given to our machine
learning model to quantify the influence of different parameters in forecasting substorm onsets. We
found IMF Bz, Vx, and IMF By had the most significant influence on the forecasts (in the same order), and
including them as inputs improved the accuracy of the forecasts whereas dropping them reduced it, as shown
in Table 2.

A southward IMF Bz was expected to be a significant factor because the magnetic flux accumulation that
occurs during substorm growth phase via dayside magnetic reconnection is well known to occur during
southward IMF Bz. In our analysis IMF By ranked third in importance. While not as impactful as Bz, under
dominant By conditions open flux can still be added to the magnetosphere via dayside reconnection
(Sandholt et al., 1998) and thus contribute to the growth phase of a substorm. Several earlier studies have
confirmed the role of By in driving substorms, especially when Bz is positive and cannot contribute to the
growth phase significantly (Lee et al., 2010; Petrukovich et al., 2000; Troshichev et al., 1986; Wild et al., 2009).

Our model ranks Vx as the second most influential factor in forecasting substorms. This is in good agreement
with (Li et al., 2007; Luo et al., 2013; Newell et al., 2016) who showed that while the Bz component of IMF
plays an important role in modulating magnetospheric dynamics, the role of solar wind velocity is more
important than is usually assumed. Furthermore, we confirm the result reported by Li et al. (2007) that num-
ber density by itself is the least significant factor influencing substorm electrodynamics (Table 2). Recent
observations (Newell et al., 2013; Tanskanen, 2009) also showed that higher Vx is directly correlated with
increased substorm activity. Moreover, Vx has been a component of many solar wind‐magnetosphere
coupling functions that estimate the dayside magnetopause merging, in fact, 17 out of 20 coupling functions
listed in (Newell et al., 2007) include Vx. This suggests higher Vx can increase the open flux transportation to
the magnetotail, and thus, facilitate substorm growth phase. Beyond the role of Vx in modulating dayside
merging, MHD simulation studies of (Goodrich et al., 2007; Pulkkinen et al., 2007) show that higher solar
wind speed makes the magnetotail much more unstable, which may also trigger more substorms.

4.4. Impact of Solar Wind/IMF Overlap on Model Performance

An important observation from Figure 5 is that the forecasts belonging to the false positive and true negative
classes are most apparent when |ΔSML| is less than 200 nT, when the geomagnetic activity is relatively low.
However, during periods of dynamic geomagnetic activity (higher |ΔSML|), the number of TN and FP fore-
casts drops significantly and the TP forecasts dominate over the other classes. In other words, the FP
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forecasts occur during similar conditions as the TN forecasts and this behavior can be attributed to the degree
of overlap between the onset and non‐onset classes (Figure 7a). While the lower ΔSML bins are predomi-
nantly associated with quiet conditions (no onsets) they still had a notable number of “minor” substorms
or pseudo‐onset, increasing the number of FPs and the uncertainty in the model. One such example is seen
in the top‐right panel of Figure 3 where our model predicts an onset but the SML index only shows a small
disturbance or perhaps a pseudo‐onset. This uncertainty in forecasting “minor” substorms is further
confirmed by a drop in Ponset (Figure 5) when |ΔSML|<−200 nT as well as the increase in recall with
|ΔSML| threshold (Figure 7b).

The performance of our model relies on the assumption that a recent history of solar wind and IMF can
determine the dynamics of magnetic substorms. However, the distinction in solar wind and IMF conditions
prior to nonsubstorm intervals, pseudo‐onset and minor substorms is not sharp (Kullen & Karlsson, 2004).
The lack of a clear and sharp differentiating factor in solar wind and IMF prior to the two classes (substorm
and nonsubstorm) indicates the existence of an overlap between the classes (observed in the PCA
analysis shown in Figure 7) and such an overlap can reduce the performance of any machine model
(Batista et al., 2004). There are also other assumptions pertaining to the input data and the model architec-
ture, violation of which will affect the mode performance. For example, similar to other approaches such as
Magnetohydrodynamics (MHD) and time series based models, our model is developed on the assumption
that an upstream point measurements can fully represent the solar wind and IMF conditions across the
entire magnetopause. However, such a situation might not be completely valid because of the uncertainties
in point measurements (Petrukovich et al., 2000). Another assumption is that the ResNet model will capture
all of the dynamics of the magnetosphere. In principle, a neural network could fully capture the dynamics,
but this may not be possible in practice. One motivation for using a deep neural network, such as the one in
this study, is that it provides better performance than a shallow neural network even though both are “uni-
versal approximators” (Cybenko, 1989; Hornik et al., 1989). It is also important to note that the performance
of our model is also coupled with the substorm onset list derived using the SML index and any uncertainties
or shortcomings in the list may propagate into the model. Nonetheless, the SML based onset list is the most
comprehensive and continuous data set available, and is ideally suitable for training a deep learning model.

While a majority of substorms are associated with southward IMF Bz or increased solar wind driving (Kullen
& Karlsson, 2004; Lyons, 1995; McPherron et al., 1973; Newell et al., 2016), several studies have reported
observations of substorms even during northward Bz intervals (Lee et al., 2010; Miyashita et al., 2011;
Petrukovich et al., 2000). The presence of such intervals, albeit in fewer number, further reduces the model
performance. Such substorms were suggested to be driven by factors not related to recent history of solar
wind and IMF. For example, magnetosphere can take several hours to release the excess energy which
may have been supplied during a previous southward IMF interval (Akasofu, 1975; Kullen & Karlsson,
2004; Lee et al., 2010; Miyashita et al., 2011). In such cases, the 120 min of time history is not enough and
considering longer time history may help fully capture the state of the system. Another factor is the small‐
scale spatial variability in IMF during weak solar wind driving conditions which may lead to small regions
of southward IMF that can supply energy through localized reconnection regions (Kullen & Karlsson,
2004; Petrukovich et al., 2000).

In summary, we find that while the recent history of solar wind and IMF can be used to forecast a majority
substorm onsets, the significant overlap in solar wind and IMF conditions prior to minor substorms and non‐
onsets reduces the model performance. Other factors, such as the implicit model assumptions and the lack of
information on the internal state of the magnetosphere (McPherron et al., 2008), may be additional factors
that reduce the model performance.

5. Conclusions and Summary

In this paper, we presented the first deep learning‐based approach to forecast the onset of a magnetic sub-
storm, as identified by the SuperMAG SML index. A ResNet convolutional neural network architecture
was developed to predict the occurrence probability of an onset over the next 1 hr by using the 120‐min his-
tory of solar wind and IMF parameters (Vx, Np, Bx, By, and Bz) prior to onset as inputs to the model. The
model was trained on a data set consisting of substorm onset intervals derived from the list of onsets com-
piled by SuperMAG between 1997 and 2017, as well as an equal number of non‐onset intervals during the
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same time period. We further split the entire data into three subsets: training (70%), validation (15%) and test
(15%) and the model achieved 72±2% precision and 77±4% recall rates on the test set. These precision and
recall rates show that our model is able to accurately forecast the occurrence of a majority of substorm onsets
without any solar wind or IMF input close to the actual onset time. This observation suggests that the major-
ity of substorms are not externally triggered by Bz northward turning. To analyze the influence of different
parameters on the forecasts, we modulated the input IMF and solar wind parameters provided to the model
and found that IMF Bz and solar wind velocity (Vx) have the most significant influence and provide
maximum predictive power. Finally, principal component analysis reveals that small substorms share very
similar solar wind and IMF time history conditions with nonsubstorms, suggesting the inputs provided to
the model may not be sufficient by themselves to forecast all substorms, and so other factors such as internal
magnetospheric instability are at play.
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