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ABSTRACT

Multimodal CT scans, including non-contrast CT, CT perfu-
sion, and CT angiography, are widely used in acute stroke di-
agnosis and therapeutic planning. While each imaging modal-
ity has its advantage in brain cross-sectional feature visual-
izations, the varying image resolution of different modalities
hinders the ability of the radiologist to discern consistent but
subtle suspicious findings. Besides, higher image quality re-
quires a high radiation dose, leading to increases in health
risks such as cataract formation and cancer induction. In this
work, we propose a deep learning-based method Transfer-
GAN that utilizes generative adversarial networks and trans-
fer learning to improve multimodal CT image resolution and
to lower the necessary radiation exposure. Through exten-
sive experiments, we demonstrate that transfer learning from
multimodal CT provides substantial visualization and quan-
tity enhancement compare to the training without learning the
prior knowledge.

Index Terms— Image Super-Resolution, Multimodal CT,
Transfer Learning, Generative Adversarial Network

1. INTRODUCTION

Multimodal computed tomography (CT) scans, including
non-contrast CT (NCCT), CT Perfusion (CTP), and CT An-
giography (CTA), are widely used in acute stroke protocols.
NCCT scan, with its high dose scan characteristics, provides
radiologists comprehensive anatomical brain structures and
a general sense of the severity of stroke. The CTP scan is
a functional imaging technique that provides substantial in-
formation regarding hemodynamics of the brain parenchyma,
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and is usually conducted by a lower dose setting but much
longer acquisition time. The CTA scan provides better visual-
ization of the vasculature system, which is of vital importance
in diagnostic decision making. While each imaging modality
has its own advantages in brain cross-sectional feature visual-
ization, the varying image quality of different modalities due
to different scanning settings impede the ability of the radiol-
ogist to discern subtle suspicious findings. Besides, to obtain
higher image quality requires higher radiation dose as the
image quality is positively correlated to radiation exposure,
leading to increases in health risks such as cataract forma-
tion [1] and cancer induction [2]. Thus, it is highly crucial
to develop an approach to improve multimodal image quality
for better visualization in lowering the radiation exposure “as
low as reasonably achievable.”

Strategies for improving CT image resolution can be
summarized in two aspects: hardware-oriented and software-
oriented. The hardware-oriented solutions include refining
focal spot size x-ray tubes, small image receptors, and better
mechanical precision. These sophisticated hardware compo-
nents are generally hard to adjust and require a longer setup
time and upgrade cycle. Therefore, the software-oriented
methods are more attractive by reconstructing high-resolution
(HR) images directly from the low-resolution (LR) images.
As image super-resolution (SR) is an ill-posed inverse prob-
lem, how to preserve the critical visual geometry such as
edge information and shape details of the image structures
are still an open question [3]. It is especially challenging
in multimodal CT SR to achieve diagnostic image quality
accuracy.

In recent years, deep learning methods, especially gen-
erative adversarial network (GAN), achieve realistic textures
generation and better visual quality in both natural and med-
ical single image SR [4, 5, 6, 7], providing us an opportu-
nity to reconstruct HR CT images. In this work, we aim to
address multimodal CT image SR and demonstrate the fea-
sibility of our GAN based transfer learning in integrating the
shared and complementary information from different modal-
ities to achieve high diagnostic image quality.

Contributions: The contributions of this work are three-
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Fig. 1: (a). The structure for Residual in Residual Dense Block (RRDB). (b). The architecture for ESRGAN. (c). The proposed
Transfer-GAN framework.

fold: (1) It is the first integration (to the best of our knowl-
edge) of transfer learning with GAN to enhance stroke pa-
tient’s multimodal CT image quality, where the SR results
provide realistic textures and produce comparable visual
quality with HR images. (2) The transfer learning strategy
explores the complementary information among modalities
of the same subject and boosts the performance in multimodal
CT SR, and which is a novel solution for image quality en-
hancement in multimodal CT imaging instead of a single
modality. As multimodal CT imaging of the same patient is
highly correlated in structure features, the integration of prior
knowledge from different modalities is beneficial for achiev-
ing high diagnostic image quality. (3) We demonstrate the
effectiveness and accuracy of the proposed method by visual
comparisons and quantitative evaluation on peak-signal-to-
noise-ratio (PSNR) and structural similarity (SSIM) index.
The results show that our proposed method can significantly
improve the resolution for the images that are four times
smaller than the original images.

2. METHODS

We propose Transfer-GAN, a learning-based method by using
GAN with transfer learning to produce realistic multimodal
CT images to achieve high diagnostic image quality. With
the hypothesis that multimodal images from the same pa-
tient are highly correlated in structural features, transferring
and integrating the shared and complementary information
from different CT series can be beneficial for high-resolution
multimodal CT image generation. For instance, NCCT, the
static anatomical brain imaging modality at a high spatial

resolution, can contribute towards the restoration of CTP, a
spatial-temporal dynamic imaging modality to capture both
the anatomical structure at lower resolutions and blood flow
dynamics (a.k.a. the functionality of the brain) over time. As
for CTA images that require better vasculature visualization,
CTP images at peak perfusion time can provide detailed infor-
mation about blood flow, which can be useful for enhancing
CTA image quality.

The overall design of the proposed Transfer-GAN frame-
work is described in Fig. 1 (c). Inspired by the Enhanced
Super-Resolution GAN (ESRGAN) [5], in Fig. 1 (b), which
achieves state-of-the-art performance in natural image SR, we
continue to explore the application of GAN in the medical
imaging domain. The ESRGAN architecture of our Transfer-
GAN framework consists of three parts, a generator, a dis-
criminator, and a loss calculator. The aim of the generator of
the proposed GAN structure is to synthesize HR images that
are similar to the ground truth HR images. We use Residual
in Residual Dense Block (RRDB [5]) as our basic building
unit in the GAN generator, as more layers and the denser of
the connections will boost the performance [8]. In the exper-
iments, we concatenate 23 RRDB blocks. The structure of
RRDB can be seen in Fig. 1 (a). This dense block contains
convolution (Conv) layer and leaky ReLU (LReLU) only. It
consists of 4 pairs of Conv-LReLU layers and a convolution
layer at the end. Each Conv-LReLU pair consists of one fil-
ter sized of 3 × 3 Conv layer and followed by one LReLU
layer. When x<0, the leaky ReLU will remain a negative
small slope instead of making the function into zero in ReLU.
The relativistic discriminator is used to predict the probability
of a real image to determine whether it is relatively more real-
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(d) NCCT Scratch / Var TL-Natural / Var 
PSNR 23.76 / 1.79 27.99 * / 4.62 
SSIM 0.78 / 0.0074 0.81 * / 0.0089 

(e) CTP Scratch / Var TL-NCCT / Var 
PSNR 23.91 / 1.12 25.73 * / 1.21 
SSIM 0.79 / 0.0036 0.82 * / 0.0028 

(f) CTA Scratch / Var TL-CTP / Var 
PSNR 25.80 / 1.90 26.12 * / 2.56 
SSIM 0.88 / 0.0014 0.90 * / 0.00068 

(a) 
NCCT 
 

(b) 
CTP 

(c) 
CTA 

LR Scratch TL-Natural GT 

LR Scratch TL-NCCT GT 

LR Scratch TL-CTP GT 

Figure 1. Visual (a-c) and quantity (d-f) comparison of NCCT, CTP, and CTA images 
reconstructed by different methods. The quantity comparison is calculated as an average result 
from 184 NCCT, 882 CTP, 107 CTA test images. The best performance is highlighted in bold 
font. LR: The low-resolution image from bicubic interpolation. Scratch: No pretraining and 
training from random initialization. TL-Natural: Transfer learning from natural images 
(ImageNet). TL-NCCT: Transfer learning from non-contrast CT images. TL-CTP: Transfer 
learning from CTP images. GT: The original high-resolution image. * indicates our multimodal 
transfer learning results are significantly better than the images directly train from scratch. 

Fig. 2: Visual comparisons of NCCT (a), CTP (b), and CTA
(c) images reconstructed by different methods. LR: The low-
resolution image from bicubic interpolation. Scratch: No pre-
training. TL-Natural: Transfer learning from natural images.
TL-NCCT: Transfer learning from non-contrast CT images.
TL-CTP: Transfer learning from CTP images. GT: The orig-
inal high-resolution image.

istic than a fake image. We apply VGG network [9] as our rel-
ativistic discriminator, which is based on the idea that comes
from [10]. We calculate the perceptual loss by constraining
features before activation rather than after activation. Based
on the perceptual similarity idea presented in [11, 12], the
perceptual loss is defined as the minimized distance between
two activated features. However, there are two drawbacks to
conventional perceptual loss. The activated features become
sparse when the network becomes deeper, which will provide
weak activation and lead to inferior performance. Another
drawback is that the features after activation may cause in-
consistent reconstruction brightness compared to the ground
truth image. Therefore, using the features before activation
layers is more convincing.

3. EXPERIMENTS AND RESULTS

Our GAN model is evaluated on a dataset with IRB approval
and HIPPA-compliant that contains 4,382 images collected
from nine stroke patients’ multimodal CT images, including
415 NCCT slices, 3,696 CTP slices, and 271 CTA slices. All
images are with size 512 × 512 pixels where they are from
the same protocol with the scanning sequence of NCCT, CTP,
and CTA. The brain region has a 0.43 mm spatial resolution
(in-plane resolution) on the XY-plane. All the CT slices are
preprocessed by a brain mask to extract the brain regions out
based on the brain window in Hounsfield Units (HU) for dif-

ferent modalities. We randomly split the nine patients into
a training set (4 patients), a validation set (2 patients), and a
testing set (3 patients). To create LR dataset, we down-sample
the images into a quarter of the original size on both spatial
dimensions by using the MATLAB bicubic kernel function.

After the preprocessing, we divide the experiments into
two stages: using transfer learning and without using trans-
fer learning to compare the performance for each modality.
All the experiments are conducted by a GPU workstation that
contains four NVIDIA Titan XP (Pascal) GPUs. We set the
batch size to 16, and the spatial size of the HR patch to 128
in model training as a larger receptive field is helpful in cap-
turing the semantic details. We terminate the training process
when the training iterations reach 20,000 for all modalities.

We firstly train the NCCT, CTP, and CTA images, respec-
tively, with initial weight distributions as the baseline mod-
els. As the primary goal of this work is to improve the overall
image quality for multimodal CT imaging, we continue the
training on the other modalities by fine-tuning on the base-
line models. More specifically, following the scanning se-
quence in acute stroke protocol, we train the TL-CTP model
with NCCT images, then fine-tune on the CTP images. For
the TL-CTA model, we further fine-tune the CTP model with
CTA images; thus, the knowledge learned from the previous
modality can be utilized in the following modality image re-
construction. As the NCCT is the first scanning modality, we
train the TL-NCCT with natural images (DIV2K dataset [13])
first, then fine-tune on the NCCT images. The experimental
results show that the performance has significantly improved
from the baseline models.

The model performance is evaluated by both visual and
quantitative (PSNR and SSIM) comparisons. As shown in
Fig. 2 (visual) and Table. 1 (quantitative), both compar-
isons show that our method is supremum than training the
individual CT modality respectively from scratch, which
demonstrates the effectiveness and accuracy of the proposed
Transfer-GAN method. The quantity comparison is shown
in Table. 1 (a-c), which is calculated as an average result
from 184 NCCT, 882 CTP, and 107 CTA test images. The
best performance is highlighted in bold font. We perform
one-tailed paired t-tests with α = 0.05 to compare the perfor-
mance improvements of PSNR and SSIM for multimodal CT
images. Through transfer learning of GAN, there is a signif-
icant improvement (p<0.05) for both PSNR and SSIM for
transferred from NCCT to CTP images than directly training
for CTP images, and there is a significant improvement for
CTA images by transfer learning from CTP images.

For the visual comparisons in Fig. 2, we enlarge the re-
gion of interests and display the enlarged ones on the side. As
pointed by the white arrows, we show that the pointed area is
better in transfer learning than learning from scratch and LR
with bicubic interpolation. The details can be reconstructed
clearly with higher contrast, and the edges are preserved much
better. Therefore, our experimental results support our hy-

197

Authorized licensed use limited to: University of Florida. Downloaded on June 01,2020 at 16:32:03 UTC from IEEE Xplore.  Restrictions apply. 



Table 1: Quantity comparisons of NCCT (a), CTP (b), and
CTA (c) images reconstructed by different methods. The
quantity comparison is calculated as an average result from
184 NCCT, 882 CTP, 107 CTA test images. The best perfor-
mance is highlighted in bold font. Scratch: Training from ran-
dom initialization. TL-Natural: Transfer learning from natu-
ral images. TL-NCCT: Transfer learning from NCCT images.
TL-CTP: Transfer learning from CTP images.

(a) Scratch Var TL-Natural Var

NCCT PSNR 23.76 1.79 27.99 4.62
SSIM 0.78 7.4e-3 0.81 8.9e-3

(b) Scratch Var TL-NCCT Var

CTP PSNR 23.91 1.12 25.73 1.21
SSIM 0.79 3.6e-3 0.82 2.8e-3

(c) Scratch Var TL-CTP Var

CTA PSNR 25.80 1.90 26.12 2.56
SSIM 0.88 1.4e-3 0.90 6.8e-4

pothesis that transferring and integrating the shared and com-
plementary information from different modalities is practical
for high-resolution multimodal CT image generation.

4. CONCLUSION

In this paper, we proposed Transfer-GAN, an end-to-end
multi-modal image super-resolution network with the trans-
fer learning strategy. The experiment result indicates our
approach can improve NCCT image quality by learning from
the natural images, can improve CTP image quality by learn-
ing from NCCT images, and can improve CTA image quality
by learning from CTP images, thus, provides a practical so-
lution for multimodal CT image quality enhancement. This
work is the first-time for transfer learning and GAN being in-
tegrated for multimodal CT image super-resolution. With the
shared and complementary information in NCCT, CTP, and
CTA images, integrating the features from different scans are
beneficial to achieve high diagnostic imaging quality, which
provides a novel solution for image quality enhancement in
multimodal CT imaging instead of single modality for the
general population. This work also provides a potential solu-
tion for maintaining high image quality in support of radiation
dose optimization in multimodal CT scanning, providing a
safer multimodal CT scan strategy for comprehensive brain
imaging.
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